BA2903SF-E2 [ROHM]

Comparator, 2 Func, 15000uV Offset-Max, 1300ns Response Time, BIPolar, PDSO8, SOP-8;
BA2903SF-E2
型号: BA2903SF-E2
厂家: ROHM    ROHM
描述:

Comparator, 2 Func, 15000uV Offset-Max, 1300ns Response Time, BIPolar, PDSO8, SOP-8

放大器 光电二极管
文件: 总56页 (文件大小:1504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Ground Sense Comparator  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
General Description  
Key Specifications  
Operating Supply Voltage(Single Supply):  
General purpose BA8391G/BA10393F/BA10339xx  
and high reliability BA2903xxxx/BA2901xxx integrate  
one, two or four independent high gain voltage  
comparator.  
BA8391G/BA10393F  
BA2903xxxx/BA2901xxx  
BA10339xx  
+2.0V to +36.0V  
+2.0V to +36.0V  
+3.0V to +36.0V  
Operating supply voltage range of BA8391G/BA1039  
3F/BA2903xxxx/BA2901xxx is wide(2V to 36V).  
And can be used in a variety of applications because  
current consumption is small. BA2903Wxx is a low  
input offset voltage products.(2mV max)  
Operating Supply Voltage(Split Supply):  
BA8391G/BA10393F  
BA2903xxxx/BA2901xxx  
BA10339xx  
±1.0V to ±18.0V  
±1.0V to ±18.0V  
±1.5V to ±18.0V  
Temperature Range:  
BA8391G/BA10393F/BA10339xx  
BA2903Sxxx/BA2901Sxx  
BA2903xxx/BA2901xx  
Input Offset Voltage:  
BA2903Sxxx/BA2901Sxx  
BA8391G/BA2903xxx/BA2901xx  
BA10393F/BA10339xx  
BA2903Wxx  
-40°C to +85°C  
-40°C to +105°C  
-40°C to +125°C  
Features  
Operable with a Single Power Supply  
Wide Operating Supply Voltage  
Standard Pin Assignments  
Input and Output are Ground Sense Operated  
Open Collector  
7mV(Max)  
7mV(Max)  
5mV(Max)  
2mV(Max)  
Wide Temperature Range  
Packages  
SSOP5  
W(Typ) x D(Typ) x H(Max)  
2.90mm x 2.80mm x 1.25mm  
5.00mm x 6.20mm x 1.71mm  
3.00mm x 6.40mm x 1.35mm  
2.90mm x 4.00mm x 0.90mm  
8.70mm x 6.20mm x 1.71mm  
5.00mm x 6.40mm x 1.35mm  
Application  
General Use  
Current Monitor  
Battery Monitor  
Multi vibrator  
SOP8  
SSOP-B8  
MSOP8  
SOP14  
SSOP-B14  
Selection Guide  
Maximum operating temperature  
Input Offset  
Voltage  
+85°C  
+105°C  
+125°C  
(Max)  
General Purpose  
Single  
Dual  
7mV  
BA8391G  
BA10393F  
5mV  
BA10339F  
BA10339FV  
Quad  
5mV  
BA2903SF  
BA2903F  
BA2903SFV  
BA2903SFVM  
BA2903FV  
BA2903FVM  
High Reliability  
Dual  
7m  
2mV  
7mV  
BA2903WF  
BA2903WFV  
BA2901F  
BA2901SF  
BA2901SFV  
Quad  
BA2901FV  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
1/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Simplified Schematic  
VCC  
OUT  
+IN  
-IN  
VEE  
Figure 1. Simplified Schematic (one channel only)  
Pin Configuration  
BA8391G : SSOP5  
Pin No.  
Pin Name  
-IN  
VEE  
+IN  
1
2
3
5
4
1
2
3
4
5
-IN  
VCC  
OUT  
VEE  
+IN  
-
+
OUT  
VCC  
BA10393F, BA2903SF, BA2903F, BA2903WF : SOP8  
BA2903SFV, BA2903FV, BA2903WFV : SSOP-B8  
BA2903SFVM,BA2903FVM : MSOP8  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
VCC  
OUT2  
-IN2  
1
2
8
7
OUT1  
-IN1  
CH1  
+IN1  
VEE  
+IN2  
-IN2  
-
+
3
4
+IN1  
VEE  
6
5
CH2  
+
-
+IN2  
OUT2  
VCC  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
2/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Pin Configuration - continued  
BA10339F, BA2901SF, BA2901F : SOP14  
BA10339FV, BA2901SFV, BA2901FV : SSOP-B14  
Pin No.  
Pin Name  
OUT2  
OUT1  
OUT3  
OUT4  
1
2
1
2
OUT2  
OUT1  
VCC  
-IN1  
14  
13  
3
4
12  
11  
10  
9
VCC  
-IN1  
+IN1  
3
4
5
VEE  
+IN4  
5
+IN1  
-IN2  
CH1  
CH4  
6
7
+IN2  
-IN3  
-IN4  
8
9
+IN3  
-IN4  
-IN2  
6
7
+IN3  
-IN3  
CH3  
- +  
CH2  
10  
11  
12  
13  
14  
+IN4  
VEE  
+IN2  
8
OUT4  
OUT3  
Package  
SSOP-B8  
SSOP5  
SOP8  
MSOP8  
SOP14  
SSOP-B14  
BA8391G  
BA10393F  
BA2903SF  
BA2903F  
BA2903SFV  
BA2903FV  
BA2903WFV  
BA2903SFVM BA10339F  
BA10339FV  
BA2901SFV  
BA2901FV  
BA2903FVM  
BA2901SF  
BA2901F  
BA2903WF  
Ordering Information  
B A x  
x
x
x
x
x
x
x
-
x x  
Part Number  
BA8391  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/SSOP-B8/SSOP-B14)  
TR: Embossed tape and reel  
(SSOP5/MSOP8)  
G
F
: SSOP5  
: SOP8  
SOP14  
BA10393xx  
BA10339xx  
BA2901xx  
BA2901Sxx  
BA2903xx  
BA2903Sxx  
BA2903Wxx  
FV : SSOP-B8  
SSOP-B14  
FVM: MSOP8  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
3/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Line-up  
Input Offset  
Voltage  
Supply  
Current  
(Typ)  
Orderable  
Part Number  
Operating Temperature Range  
Package  
Reel of 3000  
(Max)  
7mV  
0.3mA  
0.4mA  
SSOP5  
SOP8  
BA8391G-TR  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
BA10393F-E2  
BA10339F-E2  
BA10339FV-E2  
BA2903SF-E2  
BA2903SFV-E2  
BA2903SFVM-TR  
BA2901SF-E2  
BA2901SFV-E2  
BA2903F-E2  
-40°C to +85°C  
5mV  
SOP14  
0.8mA  
0.6mA  
0.8mA  
SSOP-B14  
SOP8  
SSOP-B8  
MSOP8  
SOP14  
-40°C to +105°C  
7mV  
SSOP-B14  
SOP8  
SSOP-B8  
MSOP8  
SOP8  
BA2903FV-E2  
BA2903FVM-TR  
BA2903WF-E2  
BA2903WFV-E2  
BA2901F-E2  
0.6mA  
0.8mA  
-40°C to +125°C  
2mV  
7mV  
SSOP-B8  
SOP14  
SSOP-B14  
BA2901FV-E2  
Absolute Maximum Ratings (Ta=25°C)  
Rating  
BA8391G  
+36  
Parameter  
Symbol  
Unit  
Supply Voltage  
VCC-VEE  
SSOP5  
V
W
V
Power Dissipation  
PD  
0.67 (Note1,2)  
Differential Input Voltage (Note 3)  
VID  
VICM  
II  
+36  
Input Common-mode  
Voltage Range  
Input Current (Note 4)  
(VEE-0.3) to (VEE+36)  
-10  
V
mA  
V
+2.0 to +36.0  
(±1.0 to ±18.0)  
Operating Supply Voltage  
Vopr  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Topr  
Tstg  
-40 to +85  
-55 to +150  
+150  
°C  
°C  
°C  
Tjmax  
(Note 1) To use at temperature above TA25°C reduce 5.4mW.  
(Note 2) Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
(Note 3) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
(Note 4) Excessive input current will flow if a differential input voltage in excess of approximately 0.6V is applied between the input unless some limiting  
resistance is used.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
4/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Absolute Maximum Ratings - continued  
Rating  
+36  
Parameter  
Supply Voltage  
Symbol  
Unit  
V
BA10393F  
BA10339xx  
VCC-VEE  
SOP8  
0.62 (Note 5,8)  
-
Power Dissipation  
PD  
SOP14  
SSOP-B14  
VID  
-
-
0.49 (Note 6,8)  
0.70 (Note 7,8)  
W
Differential Input Voltage(Note 9)  
(VEE to VCC)  
(VEE-0.3) to VCC  
-10  
V
V
Input Common-mode  
Voltage Range  
Input Current(Note 10)  
VICM  
II  
mA  
V
+2.0 to +36.0  
(±1.0 to ±18.0)  
+3.0 to +36.0  
(±1.5 to ±18.0)  
Operating Supply Voltage  
Vopr  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Topr  
Tstg  
-40 to +85  
-55 to +125  
+125  
°C  
°C  
°C  
Tjmax  
(Note 5) To use at temperature above TA25°C reduce 6.2mW.  
(Note 6) To use at temperature above TA25°C reduce 4.9mW.  
(Note 7) To use at temperature above TA25°C reduce 7.0mW.  
(Note 8) Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
(Note 9) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
(Note 10) Excessive input current will flow if a differential input voltage in excess of approximately 0.6V is applied between the input unless some limiting  
resistance is used.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Rating  
Parameter  
Supply Voltage  
Symbol  
Unit  
V
BA2903Sxxx  
0.77 (Note 11,16)  
BA2901Sxx  
BA2903xxx  
BA2901xx  
VCC-VEE  
SOP8  
+36  
-
0.77 (Note 11,16)  
-
SSOP-B8 0.68 (Note 12,16)  
-
0.68 (Note 12,16)  
-
Power Dissipation  
PD  
MSOP8  
SOP14  
SSOP-B14  
VID  
0.58 (Note 13,16)  
-
0.58 (Note 13,16)  
-
W
-
-
0.61 (Note 14,16)  
0.87 (Note 15,16)  
-
-
0.61 (Note 14,16)  
0.87 (Note 15,16)  
Differential Input Voltage (Note 17)  
36  
V
V
Input Common-mode  
Voltage Range  
Input Current (Note 18)  
VICM  
II  
(VEE-0.3) to (VEE+36)  
-10  
mA  
V
+2.0 to +36.0  
Operating Supply Voltage  
Vopr  
(±1.0 to ±18.0)  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Topr  
Tstg  
-40 to +105  
-40 to +125  
°C  
°C  
°C  
-55 to +150  
+150  
Tjmax  
(Note 11) To use at temperature above TA25°C reduce 6.2mW.  
(Note 12) To use at temperature above TA25°C reduce 5.5mW.  
(Note 13) To use at temperature above TA25°C reduce 4.7mW.  
(Note 14) To use at temperature above TA25°C reduce 4.9mW.  
(Note 15) To use at temperature above TA25°C reduce 7.0mW.  
(Note 16) Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
(Note 17) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
(Note 18) Excessive input current will flow if a differential input voltage in excess of approximately 0.6V is applied between the input unless some limiting  
resistance is used.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
5/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Electrical Characteristics  
BA8391G(Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limit  
Temperature  
Range  
Parameter  
Symbol  
VIO  
Unit  
mV  
nA  
Conditions  
OUT=1.4V  
Min  
Typ  
Max  
7
25°C  
Full range  
25°C  
-
-
-
-
-
-
2
-
Input Offset Voltage (Note 19,20)  
Input Offset Current (Note 19,20)  
Input Bias Current (Note 20,21)  
15  
VCC=5 to 36V, OUT=1.4V  
5
-
50  
IIO  
OUT=1.4V  
Full range  
25°C  
200  
250  
50  
-
IB  
VICM  
AV  
nA  
V
OUT=1.4V  
-
Full range  
500  
VCC  
-1.5  
Input Common-mode  
Voltage Range  
25°C  
25°C  
0
-
25  
88  
-
100  
100  
0.3  
-
-
V/mV  
dB  
VCC=15V, OUT=1.4 to 11.4V  
RL=15kΩ, VRL=15V  
Large Signal Voltage Gain  
-
25°C  
0.7  
1.3  
OUT=Open  
Supply Current (Note 20)  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
-
OUT=Open, VCC=36V  
+IN=0V, -IN=1V  
OUT=1.5V  
Output Sink Current(Note 22)  
25°C  
6
16  
-
Output Saturation Voltage (Note 20)  
(Low Level Output Voltage)  
+IN= 0V, -IN=1V  
25°C  
-
-
150  
-
400  
700  
I
SINK=4mA  
Full range  
+IN=1V, -IN=0V  
OUT=5V  
+IN=1V, -IN=0V  
OUT=36V  
RL=5.1kΩ, VRL=5V  
IN=100mVP-P, Overdrive=5mV  
RL=5.1kΩ, VRL=5V, IN=TTL  
Logic Swing, VREF=1.4V  
25°C  
-
-
-
-
0.1  
-
-
1
-
nA  
Output Leakage Current (Note 20)  
(High Level Output Current)  
ILEAK  
Full range  
μA  
1.3  
0.4  
Response Time  
tRE  
25°C  
μs  
-
(Note 19) Absolute value  
(Note 20) Full range TA=-40°C to +85°C  
(Note 21) Current Direction: Because the first stage is composed with PNP transistor, input bias current flows out of IC.  
(Note 22) Please determine the output current value in consideration of the power dissipation of the IC under high temperature environment.  
When the output terminal is continuously shorted, output current may be reduced by the temperature rise of the IC.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
6/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Electrical Characteristics - continued  
BA10393F (Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limit  
Typ  
1
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
OUT=1.4V  
Min  
Max  
5
Input Offset Voltage (Note 23)  
Input Offset Current (Note 23)  
Input Bias Current (Note 24)  
Input Common-mode  
Voltage Range  
VIO  
IIO  
IB  
25°C  
25°C  
25°C  
-
-
-
mV  
nA  
nA  
5
50  
OUT=1.4V  
OUT=1.4V  
50  
250  
VCC  
-1.5  
-
VICM  
AV  
25°C  
25°C  
0
-
V
-
50  
94  
-
200  
106  
0.4  
V/mV  
dB  
VCC=15V, OUT=1.4 ~ 11.4V  
RL=15kΩ, VRL=15V  
Large Signal Voltage Gain  
-
Supply Current  
ICC  
25°C  
25°C  
1
mA  
RL=,All Comparators  
-IN=1V, +IN=0V  
OUT=1.5V  
-IN=1V, +IN=0V  
ISINK=4mA  
-IN=0V, +IN=1V  
OUT=5V  
-IN=0V, +IN=1V  
OUT=36V  
Output Sink Current (Note 25)  
ISINK  
6
-
16  
250  
0.1  
-
-
mA  
mV  
nA  
Output Saturation Voltage  
(Low Level Output Voltage)  
VOL  
25°C  
25°C  
25°C  
400  
-
-
1
-
Output Leakage Current  
(High Level Output Current)  
ILEAK  
-
μA  
RL=5.1kΩ, VRL=5V  
IN=100mVP-P, Overdrive=5mV  
RL=5.1kΩ, VRL=5V, IN=TTL  
Logic Swing, VREF=1.4V  
-
1.3  
0.4  
Response Time  
tRE  
25°C  
μs  
-
-
(Note 23) Absolute value  
(Note 24) Current Direction: Because the first stage is composed with PNP transistor, input bias current flows out of IC.  
(Note 25) Please determine the output current value in consideration of the power dissipation of the IC under high temperature environment.  
When the output terminal is continuously shorted, output current may be reduced by the temperature rise of the IC.  
BA10339 xx(Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limit  
Typ  
1
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
5
Input Offset Voltage (Note 26)  
Input Offset Current (Note 26)  
Input Bias Current (Note 27)  
VIO  
IIO  
IB  
25°C  
25°C  
25°C  
-
-
-
mV  
nA  
nA  
OUT=1.4V  
OUT=1.4V  
OUT=1.4V  
5
50  
50  
250  
Input Common-mode  
Voltage Range  
VCC  
-1.5  
-
VICM  
AV  
25°C  
25°C  
0
-
V
-
50  
94  
-
200  
106  
0.8  
V/mV  
dB  
VCC=15V, OUT=1.4 ~ 11.4V  
RL=15kΩ, VRL=15V  
Large Signal Voltage Gain  
-
Supply Current  
ICC  
25°C  
25°C  
2
mA  
RL=,All Comparators  
-IN=1V, +IN=0V  
Output Sink Current(Note 28)  
ISINK  
6
-
16  
250  
0.1  
-
-
mA  
mV  
nA  
OUT=1.5V  
Output Saturation Voltage  
(Low Level Output Voltage)  
-IN=1V, +IN=0V  
VOL  
25°C  
25°C  
25°C  
400  
ISINK=4mA  
-IN=0V, +IN=1V  
-
-
1
-
Output Leakage Current  
(High Level Output Current)  
OUT=5V  
ILEAK  
-IN=0V, +IN=1V  
-
μA  
OUT=36V  
RL=5.1kΩ, VRL=5V  
IN=100mVP-P, Overdrive=5mV  
RL=5.1kΩ, VRL=5V, IN=TTL  
Logic Swing, VREF=1.4V  
-
1.3  
0.4  
Response Time  
tRE  
25°C  
μs  
-
-
(Note 26) Absolute value  
(Note 27) Current Direction: Because the first stage is composed with PNP transistor, input bias current flows out of IC.  
(Note 28) Please determine the output current value in consideration of the power dissipation of the IC under high temperature environment.  
When the output terminal is continuously shorted, output current may be reduced by the temperature rise of the IC.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
7/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Electrical Characteristics - continued  
BA2903xxx, BA2903S xxx(Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limit  
Temperature  
Range  
Parameter  
Symbol  
VIO  
Unit  
mV  
nA  
Conditions  
Min  
Typ  
Max  
7
25°C  
Full range  
25°C  
-
-
-
-
-
-
2
-
OUT=1.4V  
Input Offset Voltage (Note 29,30)  
Input Offset Current (Note 29,30)  
Input Bias Current (Note 30,31)  
15  
VCC=5 to 36V, OUT=1.4V  
5
-
50  
IIO  
OUT=1.4V  
Full range  
25°C  
200  
250  
50  
-
IB  
VICM  
AV  
nA  
V
OUT=1.4V  
Full range  
500  
VCC  
-1.5  
Input Common-mode  
Voltage Range  
25°C  
25°C  
0
-
-
25  
88  
-
100  
100  
0.6  
-
-
-
V/mV  
dB  
VCC=15V, OUT=1.4 to 11.4V  
RL=15kΩ, VRL=15V  
Large Signal Voltage Gain  
25°C  
1
OUT=Open  
Supply Current (Note 30)  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
-
2.5  
OUT=Open, VCC=36V  
+IN=0V, -IN=1V  
OUT=1.5V  
Output Sink Current(Note 32)  
25°C  
6
16  
-
Output Saturation Voltage(Note 30)  
(Low Level Output Voltage)  
+IN=0V, -IN= 1V  
25°C  
-
-
150  
-
400  
700  
I
SINK=4mA  
Full range  
+IN=1V, -IN=0V  
OUT=5V  
+IN=1V, -IN=0V  
OUT=36V  
RL=5.1kΩ, VRL=5V  
IN=100mVP-P, Overdrive=5mV  
RL=5.1kΩ, VRL=5V, IN=TTL  
Logic Swing, VREF=1.4V  
25°C  
-
-
-
-
0.1  
-
-
1
-
nA  
Output Leakage Current (Note 30)  
(High Level Output Current)  
ILEAK  
Full range  
μA  
1.3  
0.4  
Response Time  
tRE  
25°C  
μs  
-
(Note 29) Absolute value  
(Note 30) BA2903S : Full range -40°C to +105°C, BA2903: Full range -40°C to +125°C  
(Note 31) Current Direction: Because the first stage is composed with PNP transistor, input bias current flows out of IC.  
(Note 32) Please determine the output current value in consideration of the power dissipation of the IC under high temperature environment.  
When the output terminal is continuously shorted, output current may be reduced by the temperature rise of the IC.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
8/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Electrical Characteristics - continued  
BA2903Wxx (Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limit  
Typ  
0.5  
5
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
2
Input Offset Voltage (Note 33)  
Input Offset Current (Note 33)  
VIO  
IIO  
25°C  
25°C  
-
-
-
-
mV  
nA  
OUT=1.4V  
OUT=1.4V  
50  
25°C  
50  
-
250  
500  
Input Bias Current (Note 34,35)  
IB  
VICM  
AV  
nA  
V
OUT=1.4V  
Full range  
Input Common-mode  
Voltage Range  
VCC  
-1.5  
-
25°C  
25°C  
0
-
-
25  
88  
-
100  
100  
0.6  
-
V/mV  
dB  
VCC=15V, OUT=1.4 to 11.4V  
RL=15kΩ, VRL=15V  
Large Signal Voltage Gain  
-
1
25°C  
OUT=Open  
Supply Current (Note 34)  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
-
2.5  
OUT=Open, VCC=36V  
+IN=0V, -IN=1V  
OUT=1.5V  
Output Sink Current (Note 36)  
25°C  
6
16  
-
Output Saturation Voltage(Note 34)  
(Low Level Output Voltage)  
+IN=0V, -IN= 1V  
25°C  
-
-
150  
-
400  
700  
I
SINK=4mA  
Full range  
+IN=1V, -IN=0V  
OUT=5V  
+IN=1V, -IN=0V  
OUT=36V  
RL=5.1kΩ, VRL=5V  
IN=100mVP-P, Overdrive=5mV  
RL=5.1kΩ, VRL=5V, IN=TTL  
Logic Swing, VREF=1.4V  
25°C  
-
-
-
-
0.1  
-
-
1
-
nA  
Output Leakage Current (Note 34)  
(High Level Output Current)  
ILEAK  
Full range  
μA  
1.3  
0.4  
Response Time  
tRE  
25°C  
μs  
-
(Note 33) Absolute value  
(Note 34) BA2903W: Full range -40°C to +125°C  
(Note 35) Current Direction: Because the first stage is composed with PNP transistor, input bias current flows out of IC.  
(Note 36) Please determine the output current value in consideration of the power dissipation of the IC under high temperature environment.  
When the output terminal is continuously shorted, output current may be reduced by the temperature rise of the IC.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
9/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Electrical Characteristics - continued  
BA2901xx, BA2901S xx(Unless otherwise specified VCC=+5V, VEE=0V, Ta=25°C)  
Limit  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
nA  
Conditions  
Range  
Min  
Typ  
Max  
7
25°C  
Full range  
25°C  
-
-
-
-
-
-
2
-
OUT=1.4V  
Input Offset Voltage (Note 37,38)  
Input Offset Current (Note 37,38)  
Input Bias Current (Note 38,39)  
15  
VCC=5 to 36V, OUT=1.4V  
5
-
50  
IIO  
OUT=1.4V  
Full range  
25°C  
200  
250  
500  
50  
-
IB  
VICM  
AV  
nA  
V
OUT=1.4V  
Full range  
Input Common-mode  
Voltage Range  
25°C  
25°C  
0
-
VCC-1.5  
-
25  
88  
-
100  
100  
0.8  
-
-
-
V/mV  
dB  
VCC=15V, OUT=1.4 to 11.4V  
RL=15kΩ, VRL=15V  
Large Signal Voltage Gain  
25°C  
2
OUT=Open  
Supply Current (Note 38)  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
-
2.5  
OUT=Open, VCC=36V  
+IN=0V, VIN=1V  
OUT=1.5V  
Output Sink Current(Note 40)  
25°C  
6
16  
-
Output Saturation Voltage(Note 38)  
(Low Level Output Voltage)  
+IN=0V, -IN=1V  
25°C  
-
-
150  
-
400  
700  
I
SINK=4mA  
Full range  
+IN=1V, -IN=0V  
OUT=5V  
+IN=1V, -IN=0V  
OUT=36V  
RL=5.1kΩ, VRL=5V  
VIN=100mVP-P, Overdrive=5mV  
RL=5.1kΩ, VRL=5V, VIN=TTL  
Logic Swing, VREF=1.4V  
25°C  
-
-
-
-
0.1  
-
-
1
-
nA  
Output Leakage Current (Note 38)  
(High Level Output Current)  
ILEAK  
Full range  
μA  
1.3  
0.4  
Response Time  
tRE  
25°C  
μs  
-
(Note 37) Absolute value  
(Note 38) BA2901SFull range -40°C to 105°C ,BA2901Full range -40°C to +125°C  
(Note 39) Current Direction : Because the first stage is composed with PNP transistor, input bias current flows out of IC.  
(Note 40) Please determine the output current value in consideration of the power dissipation of the IC under high temperature environment.  
When the output terminal is continuously shorted, output current may be reduced by the temperature rise of the IC.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
10/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Description of electrical characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Power supply voltage (VCC/VEE)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power  
supply terminal without deterioration or destruction of characteristics of internal circuit.  
(2) Differential input voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
(3) Input common-mode voltage range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power dissipation (Pd)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25°C  
(normal temperature). As for package product, Pd is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
(1) Input offset voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
(2) Input offset current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
(3) Input bias current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
(4) Input common-mode voltage range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(5) Large signal voltage gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage) / (Differential Input voltage)  
(6) Supply current (ICC  
Indicates the current that flows within the IC under specified no-load conditions.  
(7) Output sink current (ISINK  
Denotes the maximum current that can be output under specific output conditions.  
(8) Output saturation voltage, low level output voltage (VOL  
Signifies the voltage range that can be output under specific output conditions.  
(9) Output leakage current, High level output current (ILEAK  
Indicates the current that flows into the IC under specific input and output conditions.  
(10) Response time (tRE  
)
)
)
)
)
Response time indicates the delay time between the input and output signal is determined by the time difference  
from the fifty percent of input signal swing to the fifty percent of output signal swing.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
11/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves  
BA8391G  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
BA8391G  
-40  
25℃  
85℃  
85  
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 2.  
Figure 3.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Supply Current vs Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
200  
150  
100  
50  
36V  
85℃  
5V  
25℃  
-40℃  
2V  
0
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 4.  
Figure 5.  
Supply Current vs Ambient Temperature  
Output Saturation Voltage vs Supply Voltage  
(IOL=4mA)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
12/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA8391G  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
25℃  
2V  
85℃  
5V  
36V  
-40℃  
0
-50  
-25  
0
25  
50  
75  
100  
0
2
4
6
8
10 12 14 16 18 20  
Output Sink Current [mA]  
Ambient Temperature [°C]  
Figure 6.  
Figure 7.  
Output Saturation Voltage vs Ambient Temperature  
( IOL=4mA)  
Output Saturation Voltage vs  
Output Sink Current  
(VCC=5V)  
8
6
40  
30  
20  
10  
0
4
25℃  
-40℃  
85℃  
36V  
2
5V  
0
2V  
-2  
-4  
-6  
-8  
0
10  
20  
30  
40  
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 8.  
Figure 9.  
Output Sink Current vs Ambient Temperature  
(OUT=1.5V)  
Input Offset Voltage vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
13/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA8391G  
8
6
160  
140  
120  
100  
80  
4
2V  
2
25℃  
-40℃  
0
5V  
36V  
-2  
-4  
-6  
-8  
60  
85℃  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 10.  
Figure 11.  
Input Offset Voltage vs Ambient Temperature  
Input Bias Current vs Supply Voltage  
160  
50  
40  
140  
120  
100  
80  
30  
20  
10  
36V  
-40℃  
25℃  
0
85℃  
5V  
-10  
-20  
-30  
-40  
-50  
60  
40  
2V  
20  
0
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 12.  
Figure 13.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
14/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA8391G  
50  
40  
140  
130  
120  
110  
100  
90  
30  
85℃  
20  
2V  
10  
-40℃  
25℃  
0
-10  
-20  
-30  
-40  
-50  
5V  
36V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 14.  
Figure 15.  
Input Offset Current vs Ambient Temperature  
Large Signal Voltage Gain  
vs Supply Voltage  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
36V  
85℃  
5V  
2V  
25℃  
-40℃  
80  
60  
70  
40  
60  
0
10  
20  
30  
40  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 16.  
Figure 17.  
Large Signal Voltage Gain vs Ambient  
Temperature  
Common Mode Rejection Ratio  
vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
15/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA8391G  
150  
125  
100  
75  
6
4
36V  
25℃  
-40℃  
2
85℃  
5V  
2V  
0
50  
-2  
-4  
-6  
25  
0
-1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
Input Voltage [V]  
Ambient Temperature [°C]  
Figure 18.  
Figure 19.  
Common Mode Rejection Ratio vs Ambient  
Temperature  
Input Offset Voltage - Input Voltage  
(VCC=5V)  
5
4
3
2
1
0
200  
180  
160  
140  
120  
100  
80  
-40℃  
85℃  
25℃  
60  
-50  
-25  
0
25  
50  
75  
100  
-100  
-80  
-60  
-40  
-20  
0
Ambient Temperature [°C]  
Over Drive Voltage [mV]  
Figure 20.  
Figure 21.  
Power Supply Rejection Ratio vs Ambient  
Temperature  
Response Time (Low to High)  
vs Over Drive Voltage  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
16/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA8391G  
5
4
3
2
1
0
5
4
3
2
1
0
5mV overdrive  
20mV overdrive  
85℃  
25℃  
-40℃  
100mV overdrive  
0
20  
40  
60  
80  
100  
-50  
-25  
0
25  
50  
75  
100  
Output Drive Voltage [mV]  
Ambient Temperature [°C]  
Figure 22.  
Figure 23.  
Response Time (Low to High)  
vs Ambient Temperature  
Response Time (High to Low)  
vs Over Drive Voltage  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
5
4
3
2
1
0
5mV overdrive  
20mV overdrive  
100mV overdrive  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Figure 24.  
Response Time (High to Low)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
17/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10393F  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-40℃  
25℃  
BA10393F  
85℃  
85  
0
10  
20  
30  
40  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C] .  
Supply Voltage [V]  
Figure 25.  
Figure 26.  
Supply Current vs Supply Voltage  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
500  
400  
300  
200  
100  
0
1.0  
85℃  
0.8  
0.6  
0.4  
0.2  
0.0  
36V  
25℃  
5V  
-40℃  
2V  
0
10  
20  
30  
40  
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 27.  
Figure 28.  
Supply Current vs Ambient Temperature  
Output Saturation Voltage vs Supply Voltage  
(IOL=4mA)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
18/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10393F  
500  
400  
300  
200  
100  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2V  
25℃  
5V  
85℃  
36V  
-40℃  
0
2
4
6
8
10 12 14 16 18 20  
-50  
-25  
0
25  
50  
75  
100  
Output Sink Current [mA]  
Ambient Temperature [°C]  
Figure 29.  
Figure 30.  
Output Saturation Voltage vs Ambient Temperature  
( IOL=4mA)  
Output Saturation Voltage vs  
Output Sink Current  
(VCC=5V)  
8
6
40  
30  
20  
10  
0
4
2
-40℃  
25℃  
36V  
5V  
0
85℃  
-2  
-4  
-6  
-8  
2V  
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 31.  
Figure 32.  
Output Sink Current vs Ambient Temperature  
(OUT=1.5V)  
Input Offset Voltage vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
19/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10393F  
8
6
160  
140  
120  
100  
80  
4
2
25℃  
2V  
5V  
-40℃  
0
36V  
-2  
-4  
-6  
-8  
60  
85℃  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 33.  
Figure 34.  
Input Offset Voltage vs Ambient Temperature  
Input Bias Current vs Supply Voltage  
160  
50  
40  
140  
120  
100  
80  
30  
20  
-40℃  
36V  
10  
25℃  
0
85℃  
5V  
-10  
-20  
-30  
-40  
-50  
60  
40  
2V  
20  
0
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 35.  
Figure 36.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
20/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10393F  
50  
40  
140  
130  
120  
110  
100  
90  
25℃  
30  
36V  
20  
10  
85℃  
5V  
-40℃  
0
2V  
-10  
-20  
-30  
-40  
-50  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 37.  
Figure 38.  
Input Offset Current vs Ambient Temperature  
Large Signal Voltage Gain  
vs Supply Voltage  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
36V  
25℃  
-40℃  
5V  
2V  
85℃  
80  
60  
70  
40  
60  
0
10  
20  
30  
40  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 39.  
Figure 40.  
Large Signal Voltage Gain vs Ambient  
Temperature  
Common Mode Rejection Ratio  
vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
21/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10393F  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
36V  
5V  
2V  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 41.  
Figure 42.  
Common Mode Rejection Ratio vs Ambient  
Temperature  
Power Supply Rejection Ratio vs Ambient  
Temperature  
5
4
3
2
1
0
5
4
3
2
1
0
5mV overdrive  
20mV overdrive  
5mV overdrive  
20mV overdrive  
100mV overdrive  
100mV overdrive  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 43.  
Figure 44.  
Response Time (Low to High) vs Ambient  
Temperature  
Response Time (High to Low) vs Ambient  
Temperature  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
22/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10339xx  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-40℃  
25℃  
BA10339FV  
85℃  
BA10339F  
85  
0
10  
20  
30  
40  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 45.  
Figure 46.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Supply Current vs Supply Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
500  
400  
300  
200  
100  
0
36V  
85℃  
5V  
25℃  
2V  
-40℃  
0
10  
20  
30  
40  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 47.  
Figure 48.  
Supply Current vs Ambient Temperature  
Output Saturation Voltage vs Supply Voltage  
(IOL=4mA)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
23/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10339xx  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
500  
400  
300  
200  
100  
0
2V  
85℃  
25℃  
5V  
36V  
-40℃  
-50  
-25  
0
25  
50  
75  
100  
0
2
4
6
8
10 12 14 16 18 20  
Output Sink Current [mA]  
Ambient Temperature [°C]  
Figure 49.  
Figure 50.  
Output Saturation Voltage vs Ambient Temperature  
( IOL=4mA)  
Output Saturation Voltage vs  
Output Sink Current  
(VCC=5V)  
8
6
40  
30  
20  
10  
0
4
2
0
36V  
5V  
-40℃  
25℃  
-2  
-4  
-6  
-8  
3V  
85℃  
0
10  
20  
30  
40  
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 51.  
Figure 52.  
Output Sink Current vs Ambient Temperature  
(OUT=1.5V)  
Input Offset Voltage vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
24/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10339xx  
8
6
50  
40  
30  
20  
10  
0
4
2
25℃  
-40℃  
0
36V  
5V  
-2  
-4  
-6  
-8  
85℃  
3V  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Supply Voltage [V]  
Supply Voltage [V]  
Figure 53.  
Figure 54.  
Input Offset Voltage vs Ambient Temperature  
Input Bias Current vs Supply Voltage  
50  
40  
50  
40  
30  
20  
10  
0
30  
20  
36V  
85℃  
10  
0
25℃  
-40℃  
-10  
-20  
-30  
-40  
-50  
5V  
3V  
0
10  
20  
30  
40  
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 55.  
Figure 56.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
25/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10339xx  
50  
40  
140  
130  
120  
110  
100  
90  
30  
20  
85℃  
36V  
25℃  
5V  
10  
0
-40℃  
-10  
-20  
-30  
-40  
-50  
3V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 57.  
Figure 58.  
Input Offset Current vs Ambient Temperature  
Large Signal Voltage Gain  
vs Supply Voltage  
160  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
36V  
-40℃  
25℃  
5V  
3V  
85℃  
80  
60  
70  
60  
40  
-50  
-25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 59.  
Figure 60.  
Large Signal Voltage Gain vs Ambient  
Temperature  
Common Mode Rejection Ratio  
vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
26/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA10339xx  
150  
125  
100  
75  
140  
130  
120  
110  
100  
90  
36V  
5V  
3V  
50  
80  
25  
70  
0
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 61.  
Figure 62.  
Common Mode Rejection Ratio vs Ambient  
Temperature  
Power Supply Rejection Ratio vs Ambient  
Temperature  
5
4
3
2
1
0
5
4
3
2
1
0
5mV overdrive  
5mV overdrive  
20mV overdrive  
100mV overdrive  
20mV overdrive  
100mV overdrive  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 63.  
Figure 64.  
Response Time (Low to High) vs Ambient  
Temperature  
Response Time (High to Low) vs Ambient  
Temperature  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
27/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2903xxx, BA2903Sxxx, BA2903Wxx  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BA2903F  
BA2903SF  
BA2903FV  
BA2903SFV  
25℃  
-40℃  
BA2903FVM  
BA2903SFVM  
105℃  
125℃  
105  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 65.  
Figure 66.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
(Refer to the following operating temperature)  
Supply Current vs Supply Voltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
200  
150  
100  
50  
125℃  
105℃  
25℃  
36V  
5V  
-40℃  
2V  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 67.  
Figure 68.  
Supply Current vs Ambient Temperature  
Output Saturation Voltage vs Supply Voltage  
(IOL=4mA)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2903-40°C to 125°C BA2903S-40°C to 105°C BA2903W-40°C to 125°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
28/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2903xxx, BA2903Sxxx, BA2903Wxx  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
125℃  
2V  
25℃  
5V  
105℃  
36V  
-40℃  
0
0
2
4
6
8
10 12 14 16 18 20  
-50 -25  
0
25  
50  
75 100 125 150  
Output Sink Current [mA]  
Ambient Temperature [°C]  
Figure 69.  
Figure 70.  
Output Saturation Voltage vs Ambient Temperature  
( IOL=4mA)  
Output Saturation Voltage vs  
Output Sink Current  
(VCC=5V)  
8
6
40  
30  
20  
10  
0
4
-40℃  
5V  
2
36V  
0
25℃  
105℃  
125℃  
-2  
-4  
-6  
-8  
2V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 71.  
Figure 72.  
Output Sink Current vs Ambient Temperature  
(OUT=1.5V)  
Input Offset Voltage vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2903-40°C to 125°C BA2903S-40°C to 105°C BA2903W-40°C to 125°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
29/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2903xxx, BA2903Sxxx, BA2903Wxx  
8
6
160  
140  
120  
100  
80  
4
2V  
2
-40℃  
0
5V  
36V  
25℃  
-2  
-4  
-6  
-8  
60  
40  
105℃  
125℃  
20  
0
-50 -25  
0
25  
50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 73.  
Figure 74.  
Input Offset Voltage vs Ambient Temperature  
Input Bias Current vs Supply Voltage  
160  
140  
120  
100  
80  
50  
40  
30  
20  
10  
-40℃  
25℃  
36V  
0
105℃  
125℃  
-10  
-20  
-30  
-40  
-50  
60  
40  
5V  
2V  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 75.  
Figure 76.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2903-40°C to 125°C BA2903S-40°C to 105°C BA2903W-40°C to 125°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
30/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2903xxx, BA2903Sxxx, BA2903Wxx  
140  
130  
120  
110  
100  
90  
50  
40  
30  
125℃  
25℃  
105℃  
20  
2V  
10  
-40℃  
0
-10  
-20  
-30  
-40  
-50  
5V  
36V  
80  
70  
60  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 77.  
Figure 78.  
Input Offset Current vs Ambient Temperature  
Large Signal Voltage Gain  
vs Supply Voltage  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
36V  
125℃  
105℃  
5V  
15V  
25℃  
-40℃  
80  
60  
70  
40  
60  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 79.  
Figure 80.  
Large Signal Voltage Gain vs Ambient  
Temperature  
Common Mode Rejection Ratio  
vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2903-40°C to 125°C BA2903S-40°C to 105°C BA2903W-40°C to 125°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
31/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2903xxx, BA2903Sxxx, BA2903Wxx  
150  
125  
100  
75  
6
4
25℃  
36V  
105℃  
125℃  
-40℃  
2
5V  
0
2V  
50  
-2  
-4  
-6  
25  
0
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 81.  
Figure 82.  
Common Mode Rejection Ratio vs Ambient  
Temperature  
Input Offset Voltage - Input Voltage  
(VCC=5V)  
200  
180  
160  
140  
120  
100  
80  
5
4
3
2
1
0
125105℃  
-40℃  
25℃  
60  
-50 -25  
0
25  
50  
75 100 125 150  
-100  
-80  
-60  
-40  
-20  
0
Ambient Temperature [°C]  
Over Drive Voltage [V]  
Figure 84.  
Figure 83.  
Response Time (Low to High)  
vs Over Drive Voltage  
Power Supply Rejection Ratio vs Ambient  
Temperature  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2903-40°C to 125°C BA2903S-40°C to 105°C BA2903W-40°C to 125°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
32/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2903xxx, BA2903Sxxx, BA2903Wxx  
5
4
3
2
1
0
5
4
3
2
1
0
125℃  
105℃  
5mV overdrive  
20mV overdrive  
25℃  
-40℃  
100mV overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
0
20  
40  
60  
80  
100  
Over Drive Voltage [V]  
Ambient Temperature [°C]  
Figure 85.  
Figure 86.  
Response Time (Low to High)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
Response Time (High to Low)  
vs Over Drive Voltage  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
5
4
3
2
1
0
5mV overdrive  
20mV overdrive  
100mV overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Figure 87.  
Response Time (High to Low)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2903-40°C to 125°C BA2903S-40°C to 105°C BA2903W-40°C to 125°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
33/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2901xx, BA2901Sxx  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BA2901FV  
BA2901SFV  
-40℃  
25℃  
BA2901F  
BA2901SF  
105℃  
125℃  
105  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 88.  
Figure 89.  
Supply Current vs Supply Voltage  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
(Refer to the following operating temperature)  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
36V  
125℃  
105℃  
5V  
25℃  
2V  
-40℃  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 90.  
Figure 91.  
Supply Current vs Ambient Temperature  
Output Saturation Voltage vs Supply Voltage  
(IOL=4mA)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2901-40°C to 125°C BA2901S-40°C to 105°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
34/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2901xx, BA2901Sxx  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
125℃  
2V  
25℃  
5V  
105℃  
36V  
-40℃  
0
0
2
4
6
8
10 12 14 16 18 20  
-50 -25  
0
25  
50  
75 100 125 150  
Output Sink Current [mA]  
Ambient Temperature [°C]  
Figure 92.  
Figure 93.  
Output Saturation Voltage vs Ambient Temperature  
( IOL=4mA)  
Output Saturation Voltage vs  
Output Sink Current  
(VCC=5V)  
8
6
40  
30  
20  
10  
0
4
-40℃  
5V  
2
36V  
0
25℃  
125℃  
105℃  
-2  
-4  
-6  
-8  
2V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 94.  
Figure 95.  
Output Sink Current vs Ambient Temperature  
(OUT=1.5V)  
Input Offset Voltage vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2901-40°C to 125°C BA2901S-40°C to 105°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
35/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2901xx, BA2901Sxx  
8
6
160  
140  
120  
100  
80  
4
2V  
2
-40℃  
0
5V  
36V  
25℃  
-2  
-4  
-6  
-8  
60  
40  
105℃  
125℃  
20  
0
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 96.  
Figure 97.  
Input Offset Voltage vs Ambient Temperature  
Input Bias Current vs Supply Voltage  
160  
140  
120  
100  
80  
50  
40  
30  
20  
10  
25℃  
-40℃  
36V  
0
105℃  
125℃  
-10  
-20  
-30  
-40  
-50  
60  
40  
5V  
2V  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 98.  
Figure 99.  
Input Bias Current vs Ambient Temperature  
Input Offset Current vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2901-40°C to 125°C BA2901S-40°C to 105°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
36/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2901xx, BA2901Sxx  
140  
130  
120  
110  
100  
90  
50  
40  
30  
125℃  
105℃  
20  
10  
2V  
0
-40℃  
25℃  
5V  
36V  
-10  
-20  
-30  
-40  
-50  
80  
70  
60  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 100.  
Figure 101.  
Input Offset Current vs Ambient Temperature  
Large Signal Voltage Gain  
vs Supply Voltage  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
36V  
125℃  
105℃  
5V  
15V  
25℃  
-40℃  
80  
60  
70  
40  
60  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 102.  
Figure 103.  
Large Signal Voltage Gain vs Ambient  
Temperature  
Common Mode Rejection Ratio  
vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2901-40°C to 125°C BA2901S-40°C to 105°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
37/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2901xx, BA2901Sxx  
150  
125  
100  
75  
6
4
25℃  
36V  
105℃  
125℃  
-40℃  
2
0
5V  
2V  
50  
-2  
-4  
-6  
25  
0
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 104.  
Figure 105.  
Common Mode Rejection Ratio vs Ambient  
Temperature  
Input Offset Voltage - Input Voltage  
(VCC=5V)  
200  
180  
160  
140  
120  
100  
80  
5
4
3
2
1
0
125105℃  
-40℃  
25℃  
60  
-50 -25  
0
25  
50  
75 100 125 150  
-100  
-80  
-60  
-40  
-20  
0
Ambient Temperature [°C]  
Over Drive Voltage [V]  
Figure 107.  
Figure 106.  
Power Supply Rejection Ratio vs Ambient  
Temperature  
Response Time (Low to High)  
vs Over Drive Voltage  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2901-40°C to 125°C BA2901S-40°C to 105°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
38/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Typical Performance Curves - continued  
BA2901xx, BA2901Sxx  
5
4
3
2
1
0
5
4
3
2
1
0
125℃  
105℃  
5mV overdrive  
25℃  
20mV overdrive  
100mV overdrive  
-40℃  
-50 -25  
0
25  
50  
75 100 125 150  
0
20  
40  
60  
80  
100  
Over Drive Voltage [V]  
Ambient Temperature [°C]  
Figure 108.  
Figure 109.  
Response Time (Low to High)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
Response Time (High to Low)  
vs Over Drive Voltage  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
5
4
3
2
1
0
5mV overdrive  
20mV overdrive  
100mV overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Figure 110.  
Response Time (High to Low)  
vs Ambient Temperature  
(VCC=5V, VRL=5V, RL=5.1kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BA2901-40°C to 125°C BA2901S-40°C to 105°C  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
39/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Application Information  
NULL method condition for Test Circuit1  
VCC, VEE, EK, VICM Unit : V, VRL=VCC  
BA10393 / BA10339 BA8391 / BA2903 / BA2901  
Parameter  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VF  
S1  
S2  
S3  
Calculation  
VCC VEE EK VICM VCC VEE  
EK  
VICM  
VF1  
ON  
ON  
ON  
5
5
0
0
-1.4  
-1.4  
0
0
5 to 36  
5
0
0
-1.4  
0
1
2
3
4
VF2 OFF OFF ON  
-1.4  
0
VF3 OFF ON  
ON  
5
5
15  
15  
0
0
0
0
-1.4  
-1.4  
-1.4  
0
0
0
0
5
5
15  
15  
0
0
0
0
-1.4  
-1.4  
-1.4  
0
0
0
0
VF4  
VF5  
VF6  
ON OFF  
ON  
ON  
ON  
Large Signal Voltage Gain  
-11.4  
-11.4  
- Calculation -  
1. Input Offset Voltage (VIO)  
|VF1|  
VIO  
[V]  
=
=
1+RF/RS  
|VF2-VF1|  
IIO  
[A]  
2. Input Offset Current (IIO)  
3. Input Bias Current (IB)  
RI ×(1+RF/RS)  
|VF4-VF3|  
=
IB  
[A]  
2 × RI ×(1+RF/RS)  
ΔEK × (1+RF/RS)  
AV  
=20Log  
[dB]  
4. Large Signal Voltage Gain (AV)  
|VF5-VF6|  
Rf=50kΩ  
0.1μF  
500kΩ  
VCC  
DUT  
EK  
SW1  
+15V  
Rs=50Ω  
500kΩ  
Ri=10kΩ  
Ri=10kΩ  
NULL  
SW3  
Rs=50Ω  
1000pF  
V
VF  
Vicm  
RL  
SW2  
50kΩ  
VEE  
-15V  
Figure 111. Test Circuit1 (One Channel Only)  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
40/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Application Information - continued  
Switch Condition for Test Circuit 2  
SW  
1
SW  
2
SW  
3
SW  
4
SW  
5
SW  
6
SW  
7
SW No.  
Supply Current  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Output Sink Current  
Saturation Voltage  
VOL=1.5V  
IOL=4mA  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
OFF  
ON  
Output Leakage Current VOH=36V  
Response Time RL=5.1kΩ, VRL=5V  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
VCC  
A
SW2  
SW1  
SW3  
SW4  
SW5  
SW6  
SW7  
VEE  
RL  
A
V
-IN  
+IN  
OUT  
Figure 112. Test Circuit 2 (One Channel Only)  
IN  
IN  
Input wave  
Input wave  
VREF  
overdrive voltage  
overdrive voltage  
VREF  
OUT  
OUT  
Output wave  
VCC/2  
Output wave  
VCC/2  
VCC  
VCC  
0V  
0V  
tRE (Low to High)  
tRE (High to Low)  
Figure 113. Response Time  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
41/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Power Dissipation  
Power dissipation (total loss) indicates the power that can be consumed by IC at TA=25°C (normal temperature).IC is  
heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The  
temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable  
power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature)  
and thermal resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the  
maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin  
or lead frame of the package. The parameter which indicates this heat dissipation capability (hardness of heat release)is  
called thermal resistance, represented by the symbol θja °C/W.The temperature of IC inside the package can be estimated  
by this thermal resistance. Figure 114 (a) shows the model of thermal resistance of the package. Thermal resistance θja,  
ambient temperature TA, maximum junction temperature Tjmax, and power dissipation PD can be calculated by the equation  
below:  
θja = (Tjmax-TA) / PD  
°C/W  
・・・・・ ()  
Derating curve in Figure 114 (b) indicates power that can be consumed by IC with reference to ambient temperature. Power  
that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal  
resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package  
condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Figure 115 (c) to (g) shows a derating curve for an example of BA8391, BA10393,  
BA10339, BA2903S, BA2903, BA2903W, BA2901S, and BA2901.  
Power dissipation of LSI [W]  
θja=(Tjmax-TA)/PD °C/W  
Pd (max)  
P2  
Ambient temperature TA []  
θja2 < θja1  
θ' ja2  
P1  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
Chip surface temperature Tj []  
Power dissipation PD [W]  
0
25  
50  
75  
100  
125  
150  
Ambient temperature Ta []  
(a) Thermal Resistance  
(b) Derating curve  
Figure 114. Thermal Resistance and Derating Curve  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
BA10339FV (Note 43)  
BA8391G (Note 41)  
0.6  
BA10339F (Note 44)  
BA10393F (Note 42)  
0.4  
0.2  
0.0  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(c)BA8391G  
(e)BA10339xx  
(d)BA10393F  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
BA2903F (Note 45)  
BA2903WF (Note 45)  
BA2903SF (Note 45)  
0.8  
0.6  
0.4  
0.2  
0.0  
BA2901FV (Note 48)  
BA2901SFV (Note 48)  
BA2903FV (Note 46)  
BA2903WFV (Note 46)  
BA2903SFV (Note 46)  
BA2901F (Note 49)  
BA2901SF (Note 49)  
BA2903FVM (Note 47)  
BA2903SFVM (Note 47)  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(f)BA2903xxx BA2903Sxxx  
(Note 41) (Note 42) (Note 43) (Note 44) (Note 45) (Note 46) (Note 47) (Note 48) (Note 49)  
5.4 6.2 7.0 4.9 6.2 5.5 4.7 7.0 4.9  
(g)BA2901xxx BA2901Sxxx  
Unit  
mW/℃  
When using the unit above Ta=25, subtract the value above per degree.  
Permissible dissipation is the value when FR4 glass epoxy board 70mm ×70mm ×1.6mm (cooper foil area below 3%) is mounted.  
Figure 115. Derating Curve  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
42/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Example of Circuit  
Reference voltage is VIN-  
IN  
VCC  
VRL  
Vref  
RL  
IN  
+
-
OUT  
Reference  
voltage  
Time  
Vref  
VEE  
OUT  
High  
While input voltage is bigger than reference voltage, output  
voltage is high. While input voltage is smaller than reference  
voltage, output voltage is low.  
Low  
Time  
IN  
Reference voltage is VIN+  
VCC  
VRL  
Vref  
RL  
Reference  
voltage  
+
Time  
Vref  
-
OUT  
VEE  
High  
Low  
While input voltage is smaller than reference voltage, output  
voltage is high. While input voltage is bigger than reference  
voltage, output voltage is low.  
Time  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
43/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
terminals.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply  
lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting  
the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of  
temperature and aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size  
and copper area to prevent exceeding the Pd rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground. Inter-pin shorts could be due to  
many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge  
deposited in between pins during assembly to name a few.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
44/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Operational Notes – continued  
11. Regarding Input Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Figure 116. Example of Monolithic IC Structure  
12. Unused Circuits  
When there are unused circuits it is recommended that they be connected as in Figure 117, setting the non-inverting  
input terminal to a potential within the in-phase input voltage range (VICR).  
Please keep  
this potential in VICM  
Figure 117. Disable Circuit Example  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Input Terminal Voltage  
(BA8391G / BA2903xxxx / BA2901xxx) Applying VEE + 36V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not  
ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the  
common mode input voltage range of the electric characteristics.  
15. Power Supply (single / split)  
The comparators when the specified voltage supplied is between VCC and VEE. Therefore, the single supply  
comparators can be used as a dual supply comparators as well.  
16. Terminal short-circuits  
When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation  
and, subsequently, destruction.  
17. IC Handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical  
characteristics due to piezo resistance effects.  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
45/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Physical Dimension Tape and Reel Information  
Package Name  
SSOP5  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
46/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Physical Dimension Tape and Reel Information - continued  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
47/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Physical Dimension Tape and Reel Information - continued  
Package Name  
SSOP-B8  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
48/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Physical Dimension Tape and Reel Information - continued  
Package Name  
MSOP8  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
49/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Physical Dimension Tape and Reel Information - continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
50/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Physical Dimension Tape and Reel Information - continued  
Package Name  
SSOP-B14  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
51/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Marking Diagrams  
SSOP5(TOP VIEW)  
SOP8 (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
1PIN MARK  
LOT Number  
SSOP-B8 (TOP VIEW)  
MSOP8 (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B14 (TOP VIEW)  
SOP14 (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
Product Name  
BA8391  
Package Type  
Marking  
G
F
SSOP5  
SOP8  
D6  
10393  
BA10339F  
339  
BA10393  
F
SOP14  
BA10339  
FV  
F
SSOP-B14  
SOP8  
BA2903  
BA2903W  
BA2903S  
FV  
FVM  
F
SSOP-B8  
MSOP8  
SOP8  
2903  
FV  
F
SSOP-B8  
SOP8  
2903S  
03S  
FV  
FVM  
F
SSOP-B8  
MSOP8  
SOP14  
2903S  
BA2901F  
2901  
BA2901  
FV  
F
SSOP-B14  
SOP14  
BA2901S  
2901S  
FV  
SSOP-B14  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
52/53  
Datasheet  
BA8391G BA10393F BA10339 Series BA2903 Series BA2901 Series  
Land Pattern Data  
All dimensions in mm  
Land Length  
Land Pitch  
e
Land Space  
MIE  
Land Width  
b2  
PKG  
≧ℓ 2  
SSOP5  
0.95  
1.27  
2.4  
1.0  
0.6  
SOP8  
SOP14  
4.60  
1.10  
0.76  
SSOP-B8  
SSOP-B14  
0.65  
0.65  
4.60  
2.62  
1.20  
0.99  
0.35  
0.35  
MSOP8  
SOP8, SOP14, SSOP-B8  
SSOP-B14, MSOP8  
SSOP5  
e
e
MIE  
b2  
2  
Revision History  
Date  
Revision  
Changes  
23.Aug.2013  
27.Nov.2013  
11.Dec.2013  
05.Jun.2015  
001  
002  
003  
004  
New Release  
Add the dB notation in Large Signal Voltage Gain  
Input offset voltage unit is changed from mA to mV in Page.1.  
Corrections. Update of Operational Notes  
www.rohm.com  
TSZ02201-0RFR0G200200-1-2  
05.Jun.2015 Rev.004  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
53/53  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BA2903SFV

Comparators: Ground Sense
ROHM

BA2903SFV-E2

Comparator, 2 Func, 15000uV Offset-Max, 1300ns Response Time, BIPolar, PDSO8, SSOP-8
ROHM

BA2903SFVM

Comparators: Ground Sense
ROHM

BA2903SFVM-TR

Comparator, 2 Func, 15000uV Offset-Max, 1300ns Response Time, BIPolar, PDSO8, MSOP-8
ROHM

BA2903SKN

Comparators : Ground Sense
ROHM

BA2903W

Ground Sense Comparator
ROHM

BA2903WF

Ground Sense Comparator
ROHM

BA2903WF-E2

Ground Sense Comparator
ROHM

BA2903WFV

Ground Sense Comparator
ROHM

BA2903WFV-E2

Ground Sense Comparator
ROHM

BA2903YF-C

Automotive Comparators:Ground Sense
ROHM

BA2903YF-CE2

Automotive Ground Sense Comparators
ROHM