BA3404FVM-E2 [ROHM]

Operational Amplifier, 2 Func, 7000uV Offset-Max, PDSO8, LEAD FREE, MSOP-8;
BA3404FVM-E2
型号: BA3404FVM-E2
厂家: ROHM    ROHM
描述:

Operational Amplifier, 2 Func, 7000uV Offset-Max, PDSO8, LEAD FREE, MSOP-8

放大器 光电二极管
文件: 总21页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
General-purpose Operational Amplifier/Comparator  
Ground Sense  
Operational Amplifier  
BA10358F/FV,BA10324AF/FV,BA2904F/FV/FVM,BA2902F/FV/KN  
BA3404F/FVM  
Ͷ Description  
General-purpose BA10358/BA10324A family and high-reliability  
General-purpose  
High-reliability  
Dual  
BA10358 family  
BA10324A family  
BA2904/BA2902 family integrate two independent Op-Amps and  
phase compensation capacitors on a single chip and have  
some features of high-gain, low power consumption, and  
operating voltage range of 3[V] to 32[V] (single power supply).  
BA3404family is realized high speed operation and reduce the  
crossover distortions that compare with BA10358, BA2904.  
Quad  
Dual  
BA2904 family  
Quad  
Dual  
BA2902 family  
BA3404 family  
Ͷ Features  
1) Operable with a single power supply!  
2) Wide operating supply voltage  
6) Low supply current  
7) High open loop voltage gain  
8) Internal ESD protection  
Human body model (HBM) ±5000[V](Typ.)  
(BA2904/BA2902/BA3404 family)  
9) Gold PAD (BA2904/BA2902/BA3404 family)  
10) Wide temperature range  
͗40[ͨ] to͖125[ͨ]!  
͖3.0[V] to͖32.0[V] (Single supply) !  
(BA10358 / BA10324A / BA2904 / BA2902 family)  
͖4.0[V] to͖36.0[V] (Single supply)  
(BA3404 family)  
3) Standard Op Amp. Pin-assignments  
4) Input and output are operable nearly GND level  
5) Internal phase compensation type !  
(BA2904/BA2902 family)  
͗40[ͨ] to͖85[ͨ]!  
(BA10358/BA10324A/BA3404 family)  
Ͷ Pin Assignments  
-IN1  
16  
OUT4  
14  
OUT1  
15  
-IN4  
13  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT1  
-IN1  
OUT4  
-IN4  
1
2
3
4
8
7
6
5
OUT1  
VCC  
OUT2  
-IN2  
CH1  
CH4  
12  
11  
10  
9
1
2
3
4
㻙㻌㻌㻌㻌㻗  
㻗㻌㻌㻌㻌㻙  
+IN1  
VCC  
NC  
+IN4  
VEE  
NC  
CH1  
CH4  
+IN1  
VCC  
+IN4  
VEE  
+IN3  
-IN3  
CH1  
㻙㻌㻌㻗  
-IN1  
+IN1  
VEE  
CH3  
CH2  
㻗㻌㻌㻙  
CH2  
+IN2  
-IN2  
+IN2  
+IN3  
CH2  
CH3  
㻙㻌㻌㻌㻌㻗  
㻙㻌㻌㻌㻌㻗  
5
6
7
8
+IN2  
8
OUT2  
OUT3  
-IN2  
OUT3  
-IN3  
OUT2  
SOP8  
SSOP-B8  
MSOP8  
SOP14  
SSOP-B14  
VQFN16  
BA10358F  
BA2904F  
BA3404F  
BA10358FV  
BA2904FV  
BA10324AF  
BA2902F  
BA10324AFV  
BA2902FV  
BA2904FVM  
BA3404FVM  
BA2902KN  
2007. October  
ͶBA10358 family, BA10324A family  
Ͷ Absolute maximum rating (Ta=25[ͨ])  
Rating  
Parameter  
Symbol  
Unit  
BA10358 family  
BA10324A family  
Supply Voltage  
VCC-VEE  
Vid  
+32  
V
V
Differential Input Voltage(*1)  
Input Common-mode voltage range  
Operating Temperature  
Storage Temperature  
VCC͗VEE  
Vicm  
Topr  
VEE to VCC  
-40 to +85  
-55 to +125  
+125  
V
ͨ!  
ͨ!  
ͨ!  
Tstg  
Maximum Junction Temperature  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
! !  
Application of voltage in excess of absolute maximum rating or use out absoluted maximum rated temperature environment may cause deterioration of characteristics.  
(*1)! The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more then VEE.  
Ͷ!Electrical characteristics  
Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[ͨ]  
Guaranteed limit  
Temperature  
Range  
Condition  
Parameter  
Symbol  
BA10358 family  
BA10324A family  
Unit  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
Input offset voltage  
Vio  
Iio  
-
2
7
-
2
7
mV RS=50  
Input offset current  
-
-
5
45  
0.7  
-
50  
-
5
20  
0.6  
-
50  
nA  
nA  
-
-
Input Bias current  
Ib  
250  
-
250  
RL=͡, All Op-Amps  
Supply current  
ICC  
VOH  
VOL  
AV  
-
1.2  
-
2
mA  
V
VCC-1.5  
High level output voltage  
Low level output voltage  
Large signal voltage gain  
Input common-mode voltage range  
-
-
-
RL=2[k]  
-
-
-
-
-
250  
mV RL=2[k]  
RL͠2[k],VCC=15[V]  
25  
0
100  
-
-
25  
0
100  
-
-
V/mV  
V
VCC-1.5  
VCC-1.5  
Vicm  
-
-
Common-mode rejection ratio CMRR  
65  
65  
10  
10  
0
80  
100  
20  
20  
-
-
65  
65  
20  
10  
-
75  
100  
35  
20  
-
-
-
-
-
-
-
dB  
Power supply rejection ratio  
Output source current  
Output sink current  
PSRR  
IOH  
IOL  
Vo  
-
dB RS=50ꢀ  
-
mA VIN+=1[V],VIN-=0[V], VOUT=0[V]  
mA VIN+=0[V],VIN-=1[V], VOUT=VCC  
-
VCC-1.5  
Output voltage range  
Channel separation  
V
RL=2[k]  
CS  
-
120  
-
-
120  
dB f=1[kHz], Input referred  
(*2)! Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
2/20  
ͶBA2904 family, BA2902 family  
Ͷ!Absolute maximum rating (Ta=25[ͨ])  
Rating  
Parameter  
Symbol  
Unit  
BA2904 family  
BA2902 family  
Supply Voltage  
VCC-VEE  
Vid  
+32  
32  
V
V
Differential Input Voltage(*1)  
Input Common-mode voltage range  
Operating Temperature  
Storage Temperature  
Vicm  
Topr  
(VEE-0.3) to VEE+32  
-40 to +125  
-55 to +150  
+150  
V
ͨ!  
ͨ!  
ͨ!  
Tstg  
Maximum Junction Temperature  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
! !  
Application of voltage in excess of absolute maximum rating or use out absoluted maximum rated temperature environment may cause deterioration of characteristics.  
(*1)! The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more then VEE.  
Ͷ!Electrical characteristics  
! !!!!Unless otherwise specified VCC=+5[V], VEE=0[V], Full range -40[ͨ] to +125[ͨ]  
Guaranteed limit  
Temperature  
BA2904 family  
BA2902 family  
Typ.  
Condition  
Parameter  
Symbol  
Unit  
Range  
Min.  
-
Typ.  
2
Max.  
Min.  
-
Max.  
7
25ͨ  
Full range  
-
7
2
-
VOUT=1.4[V]  
Input offset voltage (*2)  
Vio  
Vio/T  
Iio  
mV  
μV/ͨ  
nA  
-
-
-
±7  
2
10  
-
-
10  
-
VCC=5 to 30[V],VOUT=1.4[V]  
VOUT=1.4[V]  
Temperature coefficient of  
Input offset voltage  
-
±7  
2
25ͨ  
-
50  
-
50  
200  
-
Input offset current (*2)  
VOUT=1.4[V]  
VOUT=1.4[V]  
VOUT=1.4[V]  
Full range  
-
-
-
200  
-
-
Temperature coefficient of  
Input offset current  
Iio/T  
Ib  
pA/ͨ  
nA  
-
±10  
20  
-
-
-
±10  
20  
-
25ͨ  
-
250  
-
250  
250  
2
Input bias current (*2)  
Full range  
25ͨ  
-
250  
-
-
0.7  
-
1.2  
-
0.7  
-
RL=͡All Op-Amps  
Supply current  
ICC  
mA  
V
Full range  
25ͨ  
-
2
-
3
3.5  
27  
-
-
-
3.5  
27  
-
-
-
RL=2[k]  
High level output voltage  
Low level output voltage  
VOH  
Full range  
Full range  
25ͨ  
28  
5
-
28  
5
-
VCC=30[V],RL=10[k]  
RL=All Op-Amps  
VOL  
AV  
20  
20  
-
mV  
V/mV  
V
RL͠2[k],VCC=15[V]  
VOUT=1.4 to 11.4[V]  
Large signal voltage gain  
25  
0
100  
-
-
25  
0
100  
25ͨ  
Input common-mode voltage range  
Vicm  
VCC-1.5  
-
VCC-1.5  
(VCC-VEE)=5V,VOUT=VEE+1.4[V]  
25ͨ  
Common-mode rejection ratio CMRR  
Power supply rejection ratio PSRR  
50  
65  
20  
10  
10  
2
80  
100  
30  
-
-
-
-
-
-
-
-
-
-
-
-
50  
65  
20  
10  
10  
2
80  
100  
30  
-
-
-
-
-
-
-
-
-
-
-
-
dB  
VOUT=1.4[V]  
25ͨ  
dB  
VCC=5 to 30[V]  
25ͨ  
VIN+=1[V],VIN-=0[V],  
Output source current(*3)  
IOH  
IOL  
mA  
mA  
VOUT=0[V] Only 1ch is short circuit  
Full range  
25ͨ  
20  
-
20  
-
VIN+=0[V],VIN-=1[V],VOUT=5[V]  
Only 1ch is short circuit  
Output sink current(*3)  
Full range  
25ͨ  
VIN+=0[V],VIN-=1[V],  
VOUT=200[mV]  
Isink  
CS  
SR  
ft  
12  
-
40  
120  
0.2  
0.5  
40  
12  
-
40  
120  
0.2  
0.5  
40  
μA  
dB  
25ͨ  
Channel separation  
Slew rate  
f=1[kHz], Input referred  
VCC=15[V],AV=0[V],  
25ͨ  
-
-
V/μs  
RL=2[k],CL=100[pF]  
VCC=30[V],RL=2[k],  
25ͨ  
Maximum frequency  
-
-
MHz  
CL=100[pF]  
VCC=15[V],VEE=-15[V],  
25ͨ  
nV/(Hz)1/2  
Input referred noise voltage  
Vn  
-
-
RS=100[],Vi=0[V], f=1[kHz]  
(*2)! Absolute value  
(*3)! Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal shot circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
!
3/20  
ͶBA3404 family  
Ͷ!Absolute maximum rating (Ta=25[ͨ])  
Parameter  
Symbol  
Rating  
Unit  
Supply Voltage  
VCC-VEE  
Vid  
+36  
36  
V
V
Differential Input Voltage(*1)  
Input Common-mode voltage range  
Operating Temperature  
Storage Temperature  
Vicm  
Topr  
(VEE-0.3) to VEE+36  
-40 to +85  
V
ͨ!  
ͨ!  
ͨ!  
Tstg  
-55 to +150  
+150  
Maximum junction Temperature  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
! !  
Application of voltage in excess of absolute maximum rating or use out absoluted maximum rated temperature environment may cause deterioration of characteristics.  
(*1)! The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more then VEE.  
Ͷ!Electrical characteristics  
! Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[ͨ]  
Guaranteed limit  
Temperature  
Range  
Condition  
Parameter  
Symbol  
Unit  
Min.  
-
Typ.  
Max.  
5
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
25ͨ  
Input offset voltage (*2)  
Input offset current (*2)  
Input bias current(*2)  
Vio  
Iio  
2
5
mV  
nA  
nA  
dB  
V
VOUT=0[V], Vicm=0[V]  
-
-
50  
VOUT=0[V], Vicm=0[V]  
Ib  
70  
100  
±14  
-
200  
VOUT=0[V], Vicm=0[V]  
RL͠2[k],VOUT=±10[V],Vicm=0[V]  
RL͠2[k]  
Large signal voltage gain  
Maximum output voltage  
Input common-mode voltage range  
AV  
88  
±13  
-15  
70  
80  
-
-
VOM  
Vicm  
-
13  
V
VOUT=0[V]  
Common-mode rejection ratio CMRR  
90  
94  
2.0  
30  
20  
1.2  
1.2  
0.1  
-
dB  
dB  
mA  
mA  
mA  
VOUT=0[V], Vicm=-15[V] to +13[V]  
Ri͟10[k], VCC=+4[V] to +30[V]  
RL=͡ All Op-Amps, VIN+=0[V]  
Power supply rejection ratio  
Supply current  
PSRR  
ICC  
-
3.5  
VIN+=1[V], VIN-=0[V],VOUT=+12[V],  
Only 1ch is short circuit  
Output source current  
Output sink current  
Slew rate  
Isource  
Isink  
SR  
20  
10  
-
-
-
-
-
-
VIN+=0[V], VIN-=1[V],VOUT=-12[V],  
Only 1ch is short circuit  
V/μs AV=0[dB], RL=2[k],CL=100[pF]  
MHz RL=2[k]  
Unity gain frequency  
ft  
-
Total harmonic distortion  
THD  
-
%
VOUT=10[Vp-p], f=20[kHz]AV=0[dB], RL=2[k]  
(*2)! Absolute value  
!
!
!
!
!
!
!
!
!
!
!
4/20  
ͶBA10358 family  
BA10358 family  
BA10358 family  
BA10358 family  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
1
0.8  
0.6  
0.4  
0.2  
0
800  
600  
400  
BA10358F  
32V  
25ͨ  
5V  
͗40ͨ  
BA10358FV  
85ͨ!  
200  
0
3V  
0
5
10  
15  
20  
25  
30  
35  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERTURE [  
]
.
Fig.3  
Fig.1  
Fig.2  
Supply current – Ambient temperature  
Derating curve  
Supply current - Supply voltage  
BA10358 family  
BA10358 family  
BA10358 family  
35  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
5
-40ͨ  
4
3
2
1
0
85ͨ!  
25ͨ  
85ͨ  
25ͨ!  
-40ͨ!  
0
0
5
10  
15  
20  
25  
30  
35  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
]
100  
SUPPLY VOLTAGE [V]  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE[  
Fig.6  
Fig.5  
Fig.4  
Output source current – Output voltage  
High level output voltage – Ambient temperature  
High level output voltage – Supply voltage  
(VCC=5[V])  
(VCC=5[V],RL=2[k])  
̈́RL=10[k]ͅ  
BA10358 family  
BA10358 family  
BA10358 family  
40  
100  
40  
10  
30  
30  
20  
10  
0
15V  
15V  
85ͨ  
1
5V  
20  
0.1  
5V  
25ͨ  
3V  
3V  
10  
0.01  
-40ͨ  
0
0.001  
-50  
-25  
0
25  
50  
75  
100  
0
0.4  
0.8  
1.2  
1.6  
2
-50  
-25  
0
25  
50  
75  
]
100  
AMBIENT TEMPERATURE [  
]
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERAURE [  
Fig.8  
Fig.7  
Fig.9  
Output sink current – Output voltage  
Output source current – Ambient temperature  
Output sink current – Ambient temperature  
(VCC=5[V])  
(VOUT=0[V])  
(VOUT=VCC)  
BA10358 family  
BA10358 family  
BA10358 family  
60  
60  
50  
40  
30  
20  
10  
0
8
6
4
50  
32V  
40  
2
25ͨ  
-40ͨ  
30  
0
-2  
-4  
5V  
-40ͨ  
20  
85ͨ  
3V  
25ͨ  
85ͨ  
10  
-6  
-8  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Fig.11  
Fig.12  
Fig.10  
Low level sink current – Ambient temperature  
Input offset voltage – Supply voltage  
Low level sink current – Supply voltage  
(VOUT=0.2[V])  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*) The above date is ability value of sample, it is not guaranteed.  
5/20  
ͶBA10358 family  
BA10358 family  
BA10358 family  
BA10358 family  
50  
40  
30  
20  
10  
0
8
6
50  
40  
30  
20  
10  
0
4
85ͨ  
32V  
2
25ͨ  
0
3V  
5V  
-2  
-4  
-6  
-8  
-40ͨ  
5V  
32V  
3V  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.13  
Fig.14  
Fig.15  
Input offset voltage – Ambient temperature  
Input bias current – Supply voltage  
Input bias current – Ambient temperature  
(Vicm=0[V], VOUT=1.4[V])  
(Vicm=0[V], VOUT=1.4[V])  
(Vicm=0[V],VOUT=1.4[V])  
BA10358 family  
BA10358 family  
BA10358 family  
8
6
10  
50  
40  
30  
20  
10  
0
4
5
0
2
-40ͨ  
25ͨ  
-40ͨ  
25ͨ  
0
-2  
-4  
-6  
-8  
-5  
85ͨ  
85ͨ  
-10  
-1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
COMMON MODE INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig.18  
Fig.17  
Fig.16  
Input offset current – Supply voltage  
Input offset voltage – common-mode input voltage  
Input bias current – Ambient temperature  
(Vicm=0[V],VOUT=1.4[V])  
(VCC=5[V])  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
BA10358 family  
10  
BA10358 family  
140  
BA10358 family  
140  
130  
120  
110  
100  
90  
130  
-40ͨ  
25ͨ  
5
120  
110  
100  
90  
5V  
3V  
0
15V  
85ͨ  
32V  
5V  
80  
-5  
80  
70  
70  
60  
-10  
60  
2
4
6
8
10 12 14 16 18  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE[V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [°C]  
Fig.20  
Fig.21  
Fig.19  
Large signal voltage gain – Supply voltage  
Large signal voltage gain – Ambient temperature  
Input offset current – Ambient temperature  
̈́RL͛2[k]ͅ  
̈́RL͛2[k]ͅ  
(Vicm=0[V],VOUT=1.4[V])  
BA10358 family  
BA10358 family  
BA10358 family  
140  
140  
140  
130  
120  
110  
100  
90  
120  
100  
120  
100  
80  
32V  
25ͨ  
-40ͨ  
85ͨ  
5V  
80  
60  
40  
80  
60  
3V  
70  
60  
40  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig.22  
Fig.24  
Fig.23  
Common - mode rejection ratio – Supply voltage  
Power supply rejection ratio - Ambient temperature  
Common - mode rejection ratio  
- Ambient temperature  
(*) The above date is ability value of sample, it is not guaranteed.  
6/20  
ͶBA10324A family  
BA10324A family  
BA10324A family  
BA10324A family  
2
1.6  
1.2  
0.8  
0.4  
0
1000  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
800  
600  
400  
BA10324AFV  
32V  
25ͨ  
5V  
BA10324AF  
͗40ͨ  
200  
0
85ͨ  
3V  
-50  
-25  
0
25  
50  
75  
]
100  
0
25  
50  
75  
100  
125  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE [  
AMBIENT TEMPERTURE [  
]
.
SUPPLY VOLTAGE [V]  
Fig.1  
Fig.2  
Fig.3  
Derating curve  
Supply current - Supply voltage  
Supply current – Ambient temperature  
BA10324A family  
BA10324A family  
BA10324A family  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
5
-40ͨ  
4
3
2
1
0
85ͨ  
25ͨ  
85ͨ  
25ͨ  
-40ͨ  
0
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
]
100  
OUTPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
Fig.4  
Fig.5  
Fig.6  
Output voltage – Supply voltage  
Output voltage – Ambient temperature  
Output source current – Output voltage  
(VCC=5[V],RL=2[k])  
̈́RL=10[k]ͅ  
(VCC=5[V])  
BA10324A family  
BA10324A family  
40  
BA10324A family  
100  
50  
40  
30  
20  
10  
0
15V  
10  
1
15V  
30  
85ͨ  
20  
3V  
5V  
0.1  
3V  
5V  
25ͨ  
10  
0
0.01  
0.001  
-40ͨ  
-50  
-25  
0
25  
50  
75  
100  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.8  
Fig.9  
Fig.7  
Output sink current – Output voltage  
Output sink current – Ambient temperature  
Output source current – Ambient temperature  
(VCC=5[V])  
(VOUT=VCC)  
(VOUT=0[V])  
BA10324A family  
60  
BA10324A family  
BA10324A family  
60  
50  
40  
30  
20  
10  
0
8
6
50  
25ͨ  
85ͨ  
4
32V  
40  
30  
2
5V  
0
85ͨ  
-40ͨ  
25ͨ  
-2  
-4  
-6  
-8  
20  
10  
0
-40ͨ  
3V  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Fig.11  
Fig.12  
Fig.10  
Low level sink current – Ambient temperature  
Input offset voltage – Supply voltage  
Low level sink current – Supply voltage  
(VOUT=0.2[V])  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*) The above date is ability value of sample, it is not guaranteed.  
7/20  
ͶBA10324A family  
BA10324A family  
BA10324A family  
BA10324A family  
8
6
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
4
32V  
3V  
2
85ͨ  
32V  
25ͨ  
0
5V  
-2  
-4  
-6  
-8  
5V  
-40ͨ  
3V  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.13  
Fig.14  
Fig.15  
Input offset voltage – Ambient temperature  
Input bias current – Supply voltage  
Input bias current – Ambient temperature  
(Vicm=0[V], VOUT=1.4[V])  
(Vicm=0[V], VOUT=1.4[V])  
(Vicm=0[V],VOUT=1.4[V])  
BA10324A family  
BA10324A family  
BA10324A family  
50  
10  
8
6
-40ͨ  
25ͨ  
40  
30  
20  
10  
0
4
5
0
85ͨ  
2
85ͨ  
0
-2  
-4  
-6  
-8  
25ͨ  
-40ͨ  
-5  
-10  
-1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
COMMON MODE INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig.16  
Fig.17  
Fig.18  
Input bias current – Ambient temperature  
Input offset voltage – common-mode input voltage  
Input offset current – Supply voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
(Vicm=0[V],VOUT=1.4[V])  
BA10324A family  
BA10324A family  
BA10324A family  
140  
10  
140  
130  
120  
110  
100  
90  
130  
-40ͨ  
5
0
120  
15V  
32V  
5V  
3V  
110  
100  
90  
25ͨ  
85ͨ  
5V  
-5  
80  
70  
60  
80  
70  
-10  
60  
-50  
-25  
0
25  
50  
75  
100  
4
6
8
10  
12  
14  
16  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.19  
Fig.20  
Fig.21  
Input offset current – Ambient temperature  
Large signal voltage gain – Supply voltage  
Large signal voltage gain – Ambient temperature  
(Vicm=0[V],VOUT=1.4[V])  
̈́RL͛2[k]ͅ  
̈́RL͛2[k]ͅ  
BA10324A family  
BA10324A family  
140  
BA10324A family  
140  
140  
130  
120  
110  
100  
90  
120  
100  
80  
120  
32V  
100  
25ͨ  
-40ͨ  
85ͨ  
5V  
80  
80  
60  
60  
3V  
70  
40  
60  
40  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig.22  
Fig.23  
Fig.24  
Common - mode rejection ratio – Supply voltage  
Common - mode rejection ratio - Ambient temperature  
Power supply rejection ratio - Ambient temperature  
(*) The above date is ability value of sample, it is not guaranteed.  
8/20  
ͶBA2904 family  
BA2904 family  
BA2904 family  
BA2904 family  
1000  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
800  
600  
400  
200  
0
BA2904F  
BA2904FV  
32V  
25ͨ  
͗40ͨ  
5V  
BA2904FVM  
125ͨ  
3V  
0
25  
50  
75  
100  
125  
150  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERTURE [  
] .  
SUPPLY VOLTAGE [V]  
Fig.1  
Fig.3  
Fig.2  
Derating curve  
Supply current – Ambient temperature  
Supply current - Supply voltage  
BA2904 family  
BA2904 family  
BA2904 family  
50  
40  
30  
20  
10  
0
5
-40ͨ  
40  
30  
20  
10  
0
4
3
2
1
0
-40ͨ  
125ͨ  
25ͨ  
25ͨ  
125ͨ  
0
1
2
3
4
5
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE[  
]
SUPPLY VOLTAGE [V]  
Fig.6  
Fig.4  
Fig.5  
Output source current – Output voltage  
Output voltage – Supply voltage  
Output voltage – Ambient temperature  
(VCC=5[V])  
̈́RL=10[k]ͅ  
(VCC=5[V],RL=2[k])  
BA2904 family  
BA2904 family  
BA2904 family  
50  
40  
100  
15V  
40  
30  
20  
10  
0
3V  
30  
20  
10  
0
10  
1
5V  
125ͨ  
15V  
3V  
5V  
25ͨ  
0.1  
0.01  
-40ͨ!  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [  
-50 -25  
0
25 50 75 100 125 150  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT VOLTAGE [V]  
]
AMBIENT TEMPERATURE [  
]
Fig.7  
Fig.8  
Fig.9  
Output source current – Ambient temperature  
Output sink current – Output voltage  
Output sink current – Ambient temperature  
(VOUT=0[V])  
(VCC=5[V])  
(VOUT=VCC)  
BA2904 family  
BA2904 family  
32V  
BA2904 family  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
70  
6
25ͨ  
60  
50  
40  
4
-40ͨ  
2
0
5V  
3V  
-41ͨ!  
30  
25ͨ  
-2  
-4  
-6  
-8  
125ͨ  
125ͨ  
20  
10  
0
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [ ]  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.11  
Fig.10  
Fig.12  
Low level sink current – Ambient temperature  
Low level sink current – Supply voltage  
Input offset voltage – Supply voltage  
(VOUT=0.2[V])  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*) The above date is ability value of sample, it is not guaranteed.  
9/20  
ͶBA2904 family  
BA2904 family  
BA2904 family  
BA2904 family  
8
6
4
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
3V  
2
25ͨ  
32V  
125ͨ!  
0
-2  
-4  
-6  
-8  
-40ͨ  
5V  
32V  
5V  
3V  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.14  
Fig.13  
Fig.15  
Input bias current – Supply voltage  
Input offset voltage – Ambient temperature  
Input bias current – Ambient temperature  
(Vicm=0[V], VOUT=1.4[V])  
(Vicm=0[V], VOUT=1.4[V])  
(Vicm=0[V],VOUT=1.4[V])  
BA2904 family  
BA2904 family  
BA2904 family  
8
6
50  
10  
40  
30  
20  
10  
0
125ͨ!  
25ͨ  
4
5
-40ͨ  
2
-40ͨ!  
0
0
-2  
-4  
-6  
-8  
125ͨ  
25ͨ!  
-5  
-10  
-10  
-1  
0
1
2
3
4
5
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
COMMON MODE INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig.16  
Fig.17  
Fig.18  
Input bias current – Ambient temperature  
Input offset voltage – common-mode input voltage  
Input offset current – Supply voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
(Vicm=0[V],VOUT=1.4[V])  
BA2904 family  
BA2904 family  
BA2904 family  
10  
140  
140  
130  
120  
110  
100  
90  
130  
-40ͨ!  
15V  
25ͨ!  
5
0
120  
5V  
32V  
110  
100  
5V  
125ͨ!  
3V  
90  
-5  
80  
70  
60  
80  
70  
-10  
60  
-50 -25  
0
25 50 75 100 125 150  
4
6
8
10  
12  
14  
16  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [ ]  
Fig.20  
Fig.21  
Fig.19  
Large signal voltage gain – Supply voltage  
Large signal voltage gain – Ambient temperature  
Input offset current – Ambient temperature  
̈́RL͛2[k]ͅ  
̈́RL͛2[k]ͅ  
(Vicm=0[V],VOUT=1.4[V])  
BA2904 family  
BA2904 family  
BA2904 family  
140  
140  
140  
130  
120  
110  
100  
90  
120  
120  
100  
80  
5V  
32V  
-40ͨ!  
100  
80  
25ͨ  
125ͨ!  
3V  
80  
60  
60  
70  
60  
40  
40  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.23  
Fig.22  
Fig.24  
Common - mode rejection ratio - Ambient temperature  
Common - mode rejection ratio – Supply voltage  
Power supply rejection ratio - Ambient temperature  
(*) The above date is ability value of sample, it is not guaranteed.  
10/20  
ͶBA2902 family  
BA2902 family  
BA2902 family  
BA2902 family  
1000  
800  
600  
400  
200  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
32V  
25ͨ!  
͗40ͨ  
BA2902FV  
BA2902KN  
5V  
125ͨ  
3V  
BA2902F  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERTURE [  
]
.
SUPPLY VOLTAGE [V]  
Fig.1  
Fig.2  
Fig.3  
Derating curve  
Supply current - Supply voltage  
Supply current – Ambient temperature  
BA2902 family  
BA2902 family  
BA2902 family  
40  
30  
20  
10  
0
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40ͨ  
-40ͨ!  
125ͨ!  
25ͨ!  
25ͨ!  
125ͨ!  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
0
1
2
3
4
5
AMBIENT TEMPERATURE[  
]
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.4  
Fig.5  
Fig.6  
Output voltage – Supply voltage  
Output voltage – Ambient temperature  
Output source current – Output voltage  
(VCC=5[V],RL=2[k])  
̈́RL=10[k]ͅ  
(VCC=5[V])  
BA2902 family  
BA2902 family  
BA2902 family  
100  
10  
50  
40  
30  
20  
10  
0
40  
15V  
3V  
30  
5V  
125ͨ!  
1
20  
15V  
5V  
3V  
25ͨ!  
0.1  
0.01  
10  
0
-40ͨ!  
-50 -25  
0
25 50 75 100 125 150  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT VOLTAGE [V]  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERAURE [  
]
Fig.8  
Fig.7  
Fig.9  
Output sink current – Output voltage  
Output source current – Ambient temperature  
Output sink current – Ambient temperature  
(VCC=5[V])  
(VOUT=0[V])  
(VOUT=VCC)  
BA2902 family  
BA2902 family  
32V  
BA2902 family  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
70  
6
25ͨ!  
60  
50  
4
-40ͨ!  
2
40  
0
-40ͨ!  
5V  
3V  
30  
-2  
-4  
-6  
-8  
25ͨ!  
125ͨ!  
125ͨ!  
20  
10  
0
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Fig.11  
Fig.12  
Fig.10  
Low level sink current – Ambient temperature  
Input offset voltage – Supply voltage  
Low level sink current – Supply voltage  
(VOUT=0.2[V])  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*) The above date is ability value of sample, it is not guaranteed.  
11/20  
ͶBA2902 family  
BA2902 family  
BA2902 family  
BA2902 family  
50  
40  
30  
20  
10  
0
8
6
4
50  
40  
30  
20  
10  
0
3V  
2
0
32V  
25ͨ!  
125ͨ!  
5V  
-40ͨ  
5V  
32V  
-2  
-4  
-6  
-8  
3V  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.13  
Fig.15  
Fig.14  
Input offset voltage – Ambient temperature  
Input bias current – Ambient temperature  
Input bias current – Supply voltage  
(Vicm=0[V], VOUT=1.4[V])  
(Vicm=0[V],VOUT=1.4[V])  
(Vicm=0[V], VOUT=1.4[V])  
BA2902 family  
BA2902 family  
BA2902 family  
50  
8
6
10  
5
40  
30  
20  
10  
0
125ͨ!  
25ͨ!  
4
-40ͨ!  
2
-40ͨ!  
0
0
-2  
-4  
-6  
-8  
125ͨ!  
25ͨ!  
-5  
-10  
-10  
-50 -25  
0
25 50 75 100 125 150  
-1  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE [°C]  
COMMON MODE INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.16  
Fig.17  
Fig.18  
Input bias current – Ambient temperature  
Input offset voltage – Common-mode input voltage  
Input offset current – Supply voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
(Vicm=0[V],VOUT=1.4[V])  
BA2902 family  
BA2902 family  
BA2902 family  
10  
140  
140  
130  
130  
120  
110  
100  
90  
-40ͨ!  
25ͨ!  
15V  
5
0
120  
110  
100  
32V  
5V  
5V  
125ͨ!  
90  
3V  
-5  
80  
70  
60  
80  
70  
-10  
60  
-50 -25  
0
25 50 75 100 125 150  
4
6
8
10  
12  
14  
16  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [ ]  
Fig.19  
Fig.20  
Fig.21  
Input offset current – Ambient temperature  
Large signal voltage gain – Supply voltage  
Large signal voltage gain – Ambient temperature  
(Vicm=0[V],VOUT=1.4[V])  
̈́RL͛2[k]ͅ  
̈́RL͛2[k]ͅ  
BA2902 family  
BA2902 family  
BA2902 family  
140  
140  
140  
130  
120  
110  
100  
90  
120  
120  
100  
80  
-40ͨ!  
5V  
32V  
100  
25ͨ!  
125ͨ!  
80  
3V  
80  
60  
40  
60  
70  
40  
60  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig.22  
Fig.23  
Fig.24  
Common - mode rejection ratio – Supply voltage  
Common - mode rejection ratio - Ambient temperature  
Power supply rejection ratio - Ambient temperature  
(*) The above date is ability value of sample, it is not guaranteed.  
12/20  
ͶBA3404 family  
BA3404 family  
BA3404 family  
BA3404 family  
4
3
2
1
0
1000  
4
3
2
1
0
800  
600  
400  
200  
0
BA3404F  
±18.0V  
±15.0V  
25ͨ  
85ͨ!  
BA3404FVM  
-40ͨ!  
±2.0V  
0
25  
50  
75  
100  
0
8
16  
24  
32  
40  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERTURE [  
]
.
Fig.2  
Fig.1  
Fig3.  
Supply current - Supply voltage  
Derating curve  
Supply current – Ambient temperature  
BA3404 family  
BA3404 family  
BA3404 family  
15  
15  
10  
5
20  
15  
10  
5
10  
5
VOH  
VOH  
VOH  
0
0
0
-5  
-5  
-5  
-10  
-15  
-20  
VOL  
1
VOL  
-10  
-15  
-10  
VOL  
-15  
0.001  
0.1  
10  
1000  
100000  
0.01  
0.1  
10  
100  
±0  
±4  
±8  
±12  
±16  
±20  
LOAD RESISTANCE [k  
]
SUPPLY VOLTAGE [V]  
OUTPUT CURRENT [mA]  
Fig.5  
Fig.6  
Fig.4  
Output voltage – Supply voltage  
Output voltage – Output current  
Output voltage – Load resistance  
(VCC/VEE=+15[V]/-15[V],Ta=25[ͨ])  
(VCC/VEE=+15[V]/-15[V],Ta=25[ͨ])  
BA3404 family  
BA3404 family  
BA3404 family  
6
4
250  
200  
150  
100  
50  
6
4
±18.0V  
±2.0V  
2
2
85ͨ!  
±15.0V  
-40ͨ!  
25ͨ!  
0
0
25ͨ!  
-40ͨ!  
-2  
-4  
-6  
-2  
-4  
-6  
85ͨ!  
0
-50  
-25  
0
25  
50  
75  
100  
±0  
±5  
±10  
±15  
±20  
±0  
±5  
±10  
±15  
±20  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.9  
Fig.8  
Fig.7  
Input bias current – Supply voltage  
Input offset voltage – Ambient temperature  
Input offset voltage – Supply voltage  
(Vicm=0[V], VOUT=0[V])  
(Vicm=0[V], VOUT=0[V])  
(Vicm=0[V], VOUT=0[V])  
BA3404 family  
BA3404 family  
BA3404 family  
250  
200  
150  
100  
50  
40  
40  
30  
30  
20  
20  
-40ͨ  
25ͨ  
±18.0V  
10  
0
10  
±2.0V  
0
±2.0V  
85ͨ!  
-10  
-20  
-30  
-40  
±15.0V  
-10  
-20  
-30  
-40  
±15.0V  
±18.0V  
0
-50  
-25  
0
25  
50  
75  
100  
±0  
±5  
±10  
±15  
±20  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Fig.11  
Fig.12  
Fig.10  
Input offset current – Supply voltage  
Input offset current – Ambient temperature  
Input bias current – Ambient temperature  
(Vicm=0[V], VOUT=0[V])  
(Vicm=0[V], VOUT=0[V])  
(Vicm=0[V], VOUT=0[V])  
(*) The above date is ability value of sample, it is not guaranteed.  
13/20  
ͶBA3404 family  
BA3404 family  
BA3404 family  
BA3404 family  
20  
15  
10  
5
150  
125  
100  
75  
150  
125  
100  
75  
85ͨ!  
0
25ͨ  
-5  
50  
-40ͨ!  
50  
-10  
-15  
-20  
25  
25  
0
0
-3  
-2  
-1  
0
1
2
3
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT FTEiMgP.1ER4ATURE [°C]  
Common-mode rejection ratio  
– Ambient temperature  
COMMON MFODigE.I1N3PUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig.15  
Input offset voltage  
Power supply rejection ratio  
– Ambient temperature  
(VCC/VEE=+15[V]/-15[V])  
BA3404 family  
– Common-mode input voltage  
(VCC/VEE=+2.5[V]/-2.5[V])  
BA3404 family  
(VCC/VEE=+15[V]/-15[V])  
BA3404 family  
160  
140  
120  
100  
80  
150  
125  
100  
75  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
Phase  
±18.0V  
±15.0V  
Gain  
25ͨ!  
-40ͨ!  
±2.0V  
85ͨ!  
50  
60  
40  
60  
25  
20  
40  
0
0
±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18 ±20  
SUPPLY VOLTAGE [V]  
-50  
-25  
0
25  
50  
75  
100  
1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07  
FREQUENCY [Hz]  
AMBIENT TEMPERATURE [°C]  
Fig.16  
Fig.17  
Fig.18  
Large signal voltage gain – Supply voltage  
Large signal voltage gain – Ambient temperature  
Gain - Frequency  
(RL=2[kԈ])  
(RL=2[KԈ])  
(VCC=±15V)  
BA3404 family  
BA3404 family  
BA3404 family  
1.4  
1.2  
1
1.4  
25ͨ!  
±18.0V  
1.2  
1.0  
0.8  
1.0  
0.1  
20kHz  
85ͨ  
-40ͨ  
0.8  
0.6  
0.4  
0.2  
0.0  
±2.5V  
±15.0V  
0.6  
0.4  
0.2  
0.0  
0.01  
20Hz  
1kHz  
0.001  
-50  
-25  
0
25  
50  
75  
100  
0.01  
0.1  
1
10  
±0  
±4  
±8  
±12  
±16  
±20  
OUTPUT VOLTAGE [Vrms]  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE[V]  
Fig.19  
Fig.20  
Fig.21  
Slew rate – Supply voltage  
Slew rate – Ambient temperature  
Total harmonic distortion – Output voltage  
̈́VCC/VEE=+4[V]/-4[V],Av=0[dB],  
RL͛2[k],80[kHz]-LPF,Ta=25[ͨ]ͅ  
BA3404 family  
80  
60  
40  
20  
0
10  
100  
1000  
10000  
FREQUENCY [Hz]  
Fig.22  
Equivalent input noise voltage - Frequency  
(VCC/VEE=+15[V]/-15[V],Rs=100[],Ta=25[ͨ])  
(*) The above date is ability value of sample, it is not guaranteed.  
14/20  
Ͷ Schematic diagram  
VCC  
VCC  
IN  
VOUT  
IN  
VOUT  
IN  
IN  
VEE  
VEE  
BA3404 simplified schematic  
BA10358/BA10324A/BA2904/BA2902 simplified schematic  
Fig1. Simplified schematic (each Op-Amp)  
Ͷ!Test circuit1 NULL method  
! VCC,VEE,EK,Vicm,Unit :[V]  
BA10358/BA10324 family  
BA2904/BA2902 family  
BA3404 family  
Parameter  
VF  
S1  
S2  
S3  
Calculation  
Vcc  
5
VEE  
EK  
-1.4  
-1.4  
Vicm  
Vcc  
5̻30  
5
VEE  
EK  
-1.4  
-1.4  
Vicm VCC VEE  
EK  
0
Vicm  
Input offset voltage  
Input offset current  
VF1  
ON  
ON OFF  
0
0
0
0
0
0
0
0
15  
15  
-15  
-15  
0
0
1
2
VF2 OFF OFF OFF  
5
0
VF3 OFF ON  
OFF  
Input bias current  
5
0
-1.4  
0
5
0
-1.4  
0
15  
-15  
0
0
3
4
5
6
VF4  
VF5  
VF6  
VF7  
VF8  
VF9  
VF10  
ON OFF  
15  
15  
5
0
0
0
0
0
0
-1.4  
-11.4  
-1.4  
-1.4  
-1.4  
-1.4  
0
0
15  
15  
5
0
0
0
0
0
0
-1.4  
-11.4  
-1.4  
-1.4  
-1.4  
-1.4  
0
0
15  
15  
15  
15  
2
-15  
-15  
-15  
-15  
-2  
10  
-10  
0
0
0
Large signal voltage gain  
ON  
ON  
ON  
ON  
ON  
0
0
-15  
13  
0
Common-mode rejection ratio  
(Input common-mode voltage range)  
ON OFF  
ON OFF  
5
3.5  
0
5
3.5  
0
0
5
5
0
Power supply rejection ratio  
30  
0
30  
0
15  
-15  
0
0
͗Calculation͗  
1. Input offset Voltage (Vio)  
| VF1 |  
[V]  
Vio =  
1 + Rf / Rs  
C2  
0.1[μF]  
2. Input offset current (Iio)  
| VF2 VF1 |  
[A]  
Iio =  
Rf  
Ri ×(1 + Rf / Rs)  
50[k]  
C1  
0.1[μF]  
+15[V]  
RK  
S1  
Ri  
3. Input bias current (Ib)  
VCC  
500[k]  
EK  
| VF4 VF3 |  
Rs  
[A]  
Ib =  
RK 500[k]  
50[] 10[k]  
2×Ri× (1 + Rf / Rs)  
DUT  
10[k]  
50[]  
NULL  
S3  
4. Large signal voltage gain (Av)  
Ri  
Rs  
C3  
VF  
9
S2  
1000[pF]  
-15[V]  
VEE  
EK×(1+Rf /Rs)  
Vicm  
RL  
Av = 20×Log  
[dB]  
|VF5-VF6|  
5. Common-mode rejection ratio (CMRR)  
Vicm×(1+Rf/Rs)  
Fig2. Test circuit 1 (each Op-Amp)  
CMRR = 20×Log  
|VF8-VF7|  
[dB]  
6. Power supply rejection ratio (PSRR)  
Vcc×(1+Rf /Rs)  
PSRR = 20×Log  
|VF10-VF9|  
[dB]  
15/20  
Ͷ Test circuit2 switch condition  
Unit: [V]  
SW  
1
SW  
SW  
3
SW  
4
SW  
5
SW  
6
SW  
7
SW  
8
SW  
9
SW  
10  
SW  
11  
SW  
12  
SW  
13  
SW  
14  
SW No.  
Supply current  
2
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
High level output voltage  
Low level output voltage  
Output source current  
Output sink current  
Slew rate  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
Gain bandwidth product  
Input noise voltage  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
ON  
OFF  
OFF  
SW4  
SW5  
㻵㼚㼜㼡㼠㻌㼢㼛㼘㼠㼍㼓㼑  
VH  
R2  
VCC  
VL  
$
㻵㼚㼜㼡㼠㻌㼣㼍㼢㼑  
SW1  
RS  
SW2  
R1  
SW3  
㻻㼡㼠㼜㼡㼠㻌㼢㼛㼘㼠㼍㼓㼑  
㻿㻾䠙䂴㼂㻛䂴㼠  
SW6  
VIN-  
SW7  
SW8  
SW9 SW10 SW11 SW12 SW13 SW14  
VH  
VEE  
䂴㼂  
$
RL  
CL  
9
9
VIN+  
VOUT  
VL  
t
㻻㼡㼠㼜㼡㼠㻌㼣㼍㼢㼑  
Fig3. Test circuit2 (each Op-Amp)  
Fig4. Slew rate input output wave  
Ͷ Test circuit3 Channel separation  
VCC  
VEE  
VCC  
OTHER  
CH  
R1//R2  
R1//R2  
R1  
VEE  
R2  
R1  
VIN  
R2  
VOUT1  
=0.5[Vrms]  
V
V
VOUT2  
100 VOUT1  
VOUT2  
CS 20 log  
Fig5. Test circuit3  
16/20  
Ͷ Description of electrical characteristics  
Described here are the terms of electric characteristics used in this technical note. Items and symbols used are also shown.  
Note that item name and symbol and their meaning may differ from those on another manufacture’s document or general document.  
1. Absolute maximum ratings  
Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
1.1 ! Power supply voltage ̈́VCC̶VEEͅ  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power supply terminal  
without deterioration or destruction of characteristics of internal circuit.  
1.2 ! Differential input voltage ̈́Vidͅ  
Indicates the maximum voltage that can be applied between non-inverting terminal and inverting terminal without deterioration and  
destruction of characteristics of IC.  
1.3 ! Input common-mode voltage range ̈́Vicmͅ  
Indicates the maximum voltage that can be applied to non-inverting terminal and inverting terminal without deterioration or destruction of  
characteristics. Input common-mode voltage range of the maximum ratings not assure normal operation of IC. When normal  
Operation of IC is desired, the input common-mode voltage of characteristics item must be followed.  
1.4 ! Operating temperature range and storage temperature range ̈́Topr, Tstgͅ  
Operating temperature range indicates the temperature range where IC can operate. The higher the ambient temperature becomes, the  
lower is the power consumed by IC. Storage temperature range where IC can be stored without excessive deterioration of characteristics  
of IC.  
1.5 ! Power dissipation ̈́Pdͅ  
Indicates the power that can be consumed by specified mounted board at the ambient temperature 25ͨ(normal temperature).! As for  
package product, Pd is determined by the temperature that can be permitted by IC chip in the packagë́maximum junction temperatureͅ  
and thermal resistance of the package  
2. Electrical characteristics item  
2.1! Input offset voltage ̈́Vioͅ  
Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the input voltage  
difference required for setting the output voltage at 0 [V]  
2.2! Input offset voltage drift ̈́Vio/Tͅ  
Indicates the ratio of input offset voltage fluctuation against ambient temperature fluctuation.  
2.3 ! Input offset current ̈́Iioͅ  
Indicates the difference of input bias current between non-inverting terminal and inverting terminal.  
2.4! Input offset current drift ̈́Iio/Tͅ  
Indicates the difference of input bias current between non-inverting terminal and inverting terminal.  
2.5 ! Input bias current ̈́Ibͅ  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at non-inverting terminal  
and input bias current at inverting terminal.  
2.6 ! Circuit current ̈́ICCͅ  
Indicates the IC current that flows under specified conditions and no-load steady status.  
2.7 ! High level output voltage / Low level output voltagë́VOH/VOLͅ  
Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into high-level output voltage  
and low-level output voltage. High-level output voltage indicates the upper limit of output voltage. Low-level output voltage indicates the  
lower limit.  
2.8 ! Large signal voltage gain ̈́AVͅ  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal and inverting terminal.  
It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage fluctuation) / (Input offset fluctuation)  
2.9  
Input common-mode voltage range ̈́Vicmͅ  
Indicates the input voltage range where IC operates normally.  
2.10 Common-mode rejection ratio ̈́CMRRͅ  
Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the fluctuation of DC.  
CMRR ͛̈́Change of Input common-mode voltageͅ/̈́Input offset fluctuationͅ  
2.11 Power supply rejection ratio ̈́PSRRͅ  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of DC.  
PSRR͛̈́Change of power supply voltageͅ/̈́Input offset fluctuationͅ  
2.12 Output source current / Output sink current ̈́IOH/IOLͅ  
Indicates the maximum current that can be output under specified output condition (such as output voltage and load condition). It is  
divided into output source current and output sink current. Output source current indicates the current flowing out of IC, and output sink  
current flowing into IC.  
2.13 Channel separation̈́CSͅ  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage of driven channel.  
2.14 Slew rate ̈́SRͅ  
Indicates the time fluctuation ratio of voltage output when step input signal is applied  
2.15 Gain band width product ̈́GBWͅ  
Indicates the product of specified signal frequency and the gain of Op Amp at such frequency. it gives the approximate value of  
frequency where the gain of Op Amp is 1(maximum frequency, and unity gain frequency).  
!
17/20  
Ͷ!Derating curve  
Power dissipation (total loss) indicates the power that can be consumed by IC at Ta=25ͨ(normal temperature).IC is heated  
when it consumed power, and the temperature of IC ship becomes higher than ambient temperature. The temperature that can  
be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.  
Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal  
resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum  
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead  
frame of the package. The parameter which indicates this heat dissipation capability (hardness of heat release) is called  
thermal resistance, represented by the symbol j-a[ͨ/W]. The temperature of IC inside the package can be estimated by this  
thermal resistance. Fig.6 (a) shows the model of thermal resistance of the package. Thermal resistance ja, ambient  
temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below :  
! ! ! ! ! ! ! ! ! ! ! ja ͛ (Tj͗Ta) / Pd  
[ͨ/W]  
̠̠̠̠̠ ̈́
؟
ͅ  
Derating curve in Fig.6 (b) indicates power that can be consumed by IC with reference to ambient temperature. Power that  
can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at  
certain ambient temperature. This gradient, is determined by thermal resistance ja. Thermal resistance ja depends on chip  
size, power consumption, package, ambient temperature, package condition, wind velocity, etc even when the same  
of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig.7(a)-(d) show  
a derating curve for an example of BA10358, BA10324A, BA2904, and BA2902.  
Power dissipation of LSI [W]  
Pd (max)  
ja = ( Tj Ta ) / Pd  
[
/W]  
P2  
P1  
ja2 < ja1  
' ja2  
Ambient temperature Ta [  
]
ja2  
Tj ' (max) Tj (max)  
' ja1  
50  
ja1  
75  
Chip surface temperature Tj [  
]
0
25  
100  
125  
150  
㻼㼛㼣㼑㼞㻌㼐㼕㼟㼟㼕㼜㼍㼠㼕㼛㼚㻌㻌㻼㻌㼇㼃㼉  
Ambient temperature Ta [  
]
Υ
(b) Derating curve  
(a) Thermal resistance  
Fig1. Thermal resistance and derating curve  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
BA10324AFV  
700mW (*3)  
490mW (*4)  
BA10358F  
620mW (*1)  
550mW (*2)  
BA10358FV  
BA10324AF  
0
25  
50  
75  
100  
]
125  
0
25  
50  
75  
100  
]
125  
Ambient temperature Ta  
[
Ambient temperature Ta [  
䚷 䉝  
䚷 䉝  
㻔㼍㻕㻌㻮㻭㻝㻜㻟㻞㻠㻭㻌㼒㼍㼙㼕㼘㼕㼥  
㻔㼍㻕㻌㻮㻭㻝㻜㻟㻡㻤㻌㼒㼍㼙㼕㼘㼕㼥  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
BA2904F  
BA3404F  
BA2902FV  
BA2902KN  
870mW( *8)  
780mW( *5)  
BA2904FV  
660mW( *9)  
610mW (*10)  
690mW( *6)  
590mW (*7)  
BA2904FVM  
BA3404FVM  
BA2902F  
BA3404F  
BA3404FVM  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient temperature Ta  
[
䚷 䉝  
]
Ambient temperature Ta  
[
䚷 䉝  
]
㻔㼍㻕㻌㻮㻭㻞㻥㻜㻠㻌㼒㼍㼙㼕㼘㼥  
㻔㼍㻕㻌㻮㻭㻞㻥㻜㻞㻌㼒㼍㼙㼕㼘㼥  
̈́*1ͅ ̈́*2ͅ ̈́*3ͅ ̈́*4ͅ ̈́*5ͅ ̈́*6ͅ ̈́*7ͅ ̈́*8ͅ ̈́*9ͅ ̈́*10ͅ  
Unit  
[mW/ͨ]  
6.2  
5.5  
7.0  
4.9  
6.2  
5.5  
4.8  
7.0  
5.3  
4.9  
When using the unit above Ta=25[ͨ], subtract the value above per degree[ͨ]. Permissible dissipation is the value  
when FR4 glass epoxy board 70[mm]͙70[mm]͙1.6[mm] (cooper foil area below 3[ͭ]) is mounted.  
Fig2.! Derating curve  
18/20  
Ͷ!Cautions on use  
1) Processing of unused circuit  
㼂㻯㻯  
! ! It is recommended to apply connection (see the Fig.9) and set the  
noninverting input terminal at the potential within input common-mode  
voltage range (Vicm), for any unused circuit.  
To the potential  
within Vicm  
2) Input voltage  
! ! Applying VEE+32[V](BA2904/BA2902 family) and VEE+36[V](BA3404 family)  
to the input terminal is possible without causing deterioration of the electrical  
characteristics or destruction, irrespective of the supply voltage.  
However, this does not ensure normal circuit operation.  
Please note that the circuit operates normally only when the input voltage  
is within the common mode input voltage range of the electric characteristics.  
㼂㻱㻱  
Fig.1 Example of processing unused circuit  
3) Power supply (split supply / single supply) in used  
Op amp operates when specified voltage is applied between VCC and  
VEE. Therefore, the single supply Op Amp can be used for split supply  
Op Amp as well.  
4) Power dissipation (Pd)  
! ! Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
5) Short-circuit between pins and wrong mounting  
Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other  
components on the circuits, can damage the IC.  
6) Use in strong electromagnetic field  
! ! Using the ICs in strong electromagnetic field can cause operation malfunction.  
7) Radiation  
! ! This IC is not designed to be radiation-resistant.  
8) Handing of IC  
! ! When stress is applied to IC because of deflection or bend of board, the characteristics may fluctuate due to piezoelectric  
(piezo) effect.  
9) Output stage operation  
! ! The output stage of the IC is configured using class C push –pull circuits. Therefore, when the load resister is connect to  
the middle potential of VCC and VEE, crossover distortion occurs at the change over between discharging and charging  
of output current. Connecting a resister between the output terminal and VEE, and increasing the bias current for class A  
operation will suppress cross over distortion.  
10) Inspection on set board  
! ! During testing, turn on or off the power before mounting or dismounting the board from the test Jig.  
Do not power up the board without waiting for the output capacitors to discharge. The capacitors in the low output impedance  
terminal can stress the device. Pay attention to the electro static voltages during IC handling, transportation, and storage.  
11) Output capacitor  
! ! When VCC terminal is shorted to VEE (GND) potential and an electric charge has accumulated on the external capacitor,  
connected to output terminal, accumulated charge may be discharged VCC terminal via the parasitic element within the  
circuit or terminal protection element. The element in the circuit may be damaged (thermal destruction). When using this IC for  
an application circuit where there is oscillation, output capacitor load does not occur, as when using this IC as a voltage  
comparator. Set the capacitor connected to output terminal below 0.1[μF] in order to prevent damage to IC.  
19/20  
Ͷ Dimensions  
SOP8  
SSOP-B8  
MSOP8  
!
!
!
!
!
!
!
!
!
!
!
!
!
SOP14  
SOP-B14  
VQFN16  
Ͷ Model number construction  
̠Specify the product by the model number  
when placing an order.  
-
̠Make sure of the combinations of items.  
̠Start with the leftmost space without leaving  
any empty space between characters.  
B A 1 0 3 5 8 F  
E 2  
E2 Embossed tape on reel with pin 1 near far when pulled out  
TR Embossed tape on reel with pin 1 near far when pulled out  
ROHM product name Package type  
̠BA10358!  
̠BA10324A!  
̠BA2904  
̠F  
: SOP8/SOP14  
̠FV : SSOP-B8/SSOP-B14  
̠FVM : MSOP8  
̠BA2902  
̠KN : VQFN16  
̠BA3404  
Packing specification reference  
Packing  
specification name  
Package  
Quantity  
Embossed carrier tape  
SOP8/  
SSOP-B8/  
SOP14/  
E2  
TR  
E2  
2500  
3000  
2500  
Direction of feed  
1Pin  
SSOP-B14  
Reel  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
MSOP8  
Direction of feed  
1Pin  
Reel  
VQFN16  
Direction of feed  
1pin  
Reel  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUPOPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2007 ROHM CO.,LTD.  
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

BA3404FVM-TR

Operational Amplifier, 2 Func, 5000uV Offset-Max, BIPolar, PDSO8, MSOP-8
ROHM

BA3404KN-E2

Operational Amplifier, 2 Func, 7000uV Offset-Max, BIPolar, VQFN-16
ROHM

BA3404L

Monolithic IGs
ROHM

BA3404L-DX

Audio Preamplifier, 2 Channel(s), 1 Func, PZIP16, ZIP-16
ROHM

BA3406AF

Monolithic IGs
ROHM

BA3406AF-DX

Audio Preamplifier, 2 Channel(s), 1 Func, PDSO16, SOP-16
ROHM

BA3406AF-DXE1

Audio Preamplifier, 2 Channel(s), 1 Func, PDSO16, SOP-16
ROHM

BA3406AF-DXE2

Audio Preamplifier, 2 Channel(s), 1 Func, PDSO16, SOP-16
ROHM

BA3406AF-DXT1

Audio Preamplifier, 2 Channel(s), 1 Func, PDSO16, SOP-16
ROHM

BA3406AF-DXT2

Audio Preamplifier, 2 Channel(s), 1 Func, PDSO16, SOP-16
ROHM

BA3406AF-E1

2 CHANNEL, AUDIO PREAMPLIFIER, PDSO16, SOP-16
ROHM