BA82902YFJ-C [ROHM]

BA82902YFJ-C是将高增益且接地检测输入独立的运算放大器以4个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。;
BA82902YFJ-C
型号: BA82902YFJ-C
厂家: ROHM    ROHM
描述:

BA82902YFJ-C是将高增益且接地检测输入独立的运算放大器以4个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。

放大器 运算放大器
文件: 总38页 (文件大小:1977K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifier Series  
Automotive Excellent EMI Immunity  
Ground Sense  
Operational Amplifiers  
BA82904Yxxx-C BA82902Yxxx-C  
Key Specifications  
General Description  
Operating Supply Voltage Range  
BA82904Yxxx-C and BA82902Yxxx-C are high-gain,  
ground sense input Op-Amps. These ICs are  
monolithic ICs integrated dual or quad independent  
Op-Amps on a single chip. These Op-Amps have  
some features of low power consumption, and can  
operate from 3V to 36V (single power supply).  
Single Supply:  
Dual Supply:  
3V to 36V  
±1.5V to ±18.0V  
Low Supply Current  
BA82904Yxxx-C  
0.5mA (Typ)  
BA82902Yxxx-C  
0.7mA (Typ)  
20nA (Typ)  
2nA (Typ)  
BA82904Yxxx-C  
and  
BA82902Yxxx-C  
are  
Input Bias Current:  
Input Offset Current:  
Operating Temperature Range: -40°C to +125°C  
manufactured for automotive requirements of engine  
control unit, electric power steering, and so on.  
Furthermore, they have the advantage of EMI  
tolerance dose. It is easy to replace with conventional  
products, and the EMI design is simple.  
Packages  
SOP8  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 6.20mm x 1.71mm  
8.70mm x 6.20mm x 1.71mm  
5.00mm x 6.40mm x 1.35mm  
2.90mm x 4.00mm x 0.90mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.20mm  
Features  
AEC-Q100 Qualified(Note 1)  
SOP14  
SSOP-B14  
MSOP8  
SOP-J14  
Single or Dual Power Supply Operation  
Wide Operating Supply Voltage Range  
Standard Op-Amp Pin-assignments  
Operable from Almost GND Level for Both Input  
and Output  
TSSOP-B14J  
Low Supply Current  
High Open Loop Voltage Gain  
Internal ESD Protection Circuit  
Wide Operating Temperature Range  
Integrated EMI Filter  
(Note 1) Grade 1  
Applications  
Engine Control Unit  
Electric Power Steering (EPS)  
Anti-Lock Braking System (ABS)  
Automotive Electronics  
Selection Guide  
Maximum Operating Temperature  
Output Current  
Source / Sink  
125°C  
Supply Current  
0.5mA  
BA82904YF-C  
BA82904YFVM-C  
Automotive  
Dual  
30mA / 20mA  
BA82902YF-C  
BA82902YFV-C  
BA82902YFJ-C  
BA82902YFVJ-C  
Quad  
30mA / 20mA  
0.7mA  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
1/35  
TSZ22111 14 001  
BA82904Yxxx-C BA82902Yxxx-C  
Equivalent Circuit  
VCC  
-IN  
OUT  
+IN  
VEE  
Figure 1. Equivalent Circuit (One Channel Only)  
Pin Configuration  
BA82904YF-C: SOP8  
BA82904YFVM-C: MSOP8  
Pin No.  
Pin Name  
OUT1  
-IN1  
(TOP VIEW)  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
VCC  
OUT2  
-IN2  
1
2
3
4
8
7
6
5
CH1  
+IN1  
-
+
VEE  
+IN1  
VEE  
CH2  
+IN2  
+
-
-IN2  
+IN2  
OUT2  
VCC  
BA82902YF-C: SOP14  
BA82902YFV-C: SSOP-B14  
BA82902YFJ-C: SOP-J14  
BA82902YFVJ-C: TSSOP-B14J  
Pin No.  
Pin Name  
1
2
OUT1  
-IN1  
(TOP VIEW)  
OUT1 1  
OUT4  
14  
3
+IN1  
VCC  
+IN2  
-IN2  
4
-IN1  
+IN1  
VCC  
2
3
4
13 -IN4  
CH1  
CH4  
-
+
+
-
5
+IN4  
VEE  
+IN3  
-IN3  
12  
11  
10  
9
6
7
OUT2  
OUT3  
-IN3  
+IN2 5  
8
+
CH3  
-
-
+
CH2  
9
6
7
-IN2  
10  
11  
12  
13  
14  
+IN3  
VEE  
OUT2  
8 OUT3  
+IN4  
-IN4  
OUT4  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
2/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Absolute Maximum Ratings (Ta = 25°C)  
Parameter  
Symbol  
Rating  
Unit  
Supply Voltage  
VCC-VEE  
VID  
36  
V
V
Differential Input Voltage(Note 1)  
Input Common-mode Voltage Range  
Input Current  
36  
(VEE-0.3) to (VEE+36)  
-10  
VICM  
II  
V
mA  
°C  
°C  
Storage Temperature Range  
Maximum Junction Temperature  
Tstg  
Tjmax  
-55 to +150  
150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design PCB boards with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then the input pin voltage is set to VEE or more.  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
3
5
36  
(±18)  
Operating Supply Voltage  
Operating Temperature  
Vopr  
Topr  
V
(±1.5)  
(±2.5)  
-40  
+25  
+125  
°C  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
3/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
MSOP8  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
284.1  
21  
135.4  
11  
°C/W  
°C/W  
ΨJT  
SOP8  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
197.4  
21  
109.8  
19  
°C/W  
°C/W  
ΨJT  
SOP14  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
166.5  
26  
108.1  
22  
°C/W  
°C/W  
ΨJT  
SSOP-B14  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
159.6  
13  
92.8  
9
°C/W  
°C/W  
ΨJT  
SOP-J14  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
118.5  
10  
67.2  
10  
°C/W  
°C/W  
ΨJT  
TSSOP-B14J  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
185.4  
16  
98.4  
14  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2mm x 74.2mm  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
70μm  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
4/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Electrical Characteristics  
BA82904Yxxx-C (Unless otherwise specified VCC=5V, VEE=0V)  
Limits  
Temperature  
Parameter  
Input Offset Voltage(Note 1)  
Input Offset Current(Note 1)  
Input Bias Current(Note 1)  
Supply Current  
Symbol  
VIO  
Unit  
mV  
Conditions  
Range  
Min  
-
Typ  
2
Max  
25°C  
Full range  
25°C  
6
VOUT=1.4V  
VCC=5V to 30V, VOUT=1.4V  
-
-
9
-
2
40  
IIO  
nA VOUT=1.4V  
Full range  
25°C  
-
-
50  
-
20  
-
60  
IB  
nA VOUT=1.4V  
Full range  
25°C  
-
100  
-
0.5  
-
1.2  
ICC  
mA RL=∞, All Op-Amps  
Full range  
25°C  
-
1.2  
3.5  
3.2  
27  
-
-
-
RL=2kΩ  
Maximum Output  
Voltage (High)  
VOH  
-
-
V
Full range  
28  
5
-
VCC=30V, RL=10kΩ  
Maximum Output Voltage(Low) VOL  
Full range  
25°C  
20  
mV RL=∞, All Op-Amps  
25  
25  
0
100  
-
-
RL≥2kΩ, VCC=15V  
V/mV  
Large Signal Voltage Gain  
AV  
VOUT=1.4V to 11.4V  
Full range  
25°C  
-
-
VCC-1.5  
Input Common-mode  
Voltage Range  
(VCC-VEE)=5V  
V
VICM  
VOUT=VEE+1.4V  
Full range  
0
-
VCC-2.0  
Common-mode Rejection  
Ratio  
CMRR Full range  
70  
70  
20  
10  
10  
2
80  
100  
30  
-
-
-
-
-
-
-
-
-
-
-
dB VOUT=1.4V  
Power Supply Rejection Ratio PSRR Full range  
dB VCC=5V to 30V  
25°C  
V+IN=1V, V-IN=0V  
mA VOUT=0V  
Output Source Current(Note 2)  
Output Sink Current(Note 2)  
ISOURCE  
Full range  
25°C  
1CH is short circuit  
20  
-
V+IN=0V, V-IN=1V  
mA VOUT=5V  
Full range  
25°C  
1CH is short circuit  
ISINK  
V+IN=0V, V-IN=1V  
μA  
12  
-
40  
0.2  
0.5  
120  
VOUT=200mV  
VCC=15V, AV=0dB  
RL=2kΩ, CL=100pF  
Slew Rate  
SR  
GBW  
CS  
V/μs  
25°C  
VCC=30V, RL=2kΩ  
CL=100pF  
Gain Bandwidth Product  
25°C  
-
MHz  
Channel Separation  
dB f=1kHz, input referred  
25°C  
-
(Note 1) Absolute value  
(Note 2) Under high temperatures, it is important to consider the Tjmax and Thermal Resistance when selecting the output current.  
When the output pin is continuously shorted, the output current may reduce because of the internal temperature rise by heating.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
5/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Electrical Characteristics - continued  
BA82902Yxxx-C (Unless otherwise specified VCC=5V, VEE=0V)  
Limits  
Temperature  
Parameter  
Input Offset Voltage(Note 1)  
Input Offset Current(Note 1)  
Input Bias Current(Note 1)  
Supply Current  
Symbol  
VIO  
Unit  
mV  
Conditions  
Range  
Min  
-
Typ  
2
Max  
25°C  
Full range  
25°C  
6
VOUT=1.4V  
VCC=5V to 30V, VOUT=1.4V  
-
-
9
-
2
40  
IIO  
nA VOUT=1.4V  
Full range  
25°C  
-
-
50  
-
20  
-
60  
IB  
nA VOUT=1.4V  
Full range  
25°C  
-
100  
-
0.7  
-
2
ICC  
mA RL=∞, All Op-Amps  
Full range  
25°C  
-
3
3.5  
3.2  
27  
-
-
-
RL=2kΩ  
Maximum Output  
Voltage (High)  
VOH  
-
-
V
Full range  
28  
5
-
VCC=30V, RL=10kΩ  
Maximum Output Voltage(Low) VOL  
Full range  
25°C  
20  
mV RL=∞, All Op-Amps  
25  
25  
0
100  
-
-
RL≥2kΩ, VCC=15V  
V/mV  
Large Signal Voltage Gain  
AV  
VOUT=1.4V to 11.4V  
Full range  
25°C  
-
-
VCC-1.5  
Input Common-mode  
Voltage Range  
(VCC-VEE)=5V  
V
VICM  
VOUT=VEE+1.4V  
Full range  
0
-
VCC-2.0  
Common-mode Rejection  
Ratio  
CMRR Full range  
70  
70  
20  
10  
10  
2
80  
100  
30  
-
-
-
-
-
-
-
-
-
-
-
dB VOUT=1.4V  
Power Supply Rejection Ratio PSRR Full range  
dB VCC=5V to 30V  
25°C  
V+IN=1V, V-IN=0V  
mA VOUT=0V  
Output Source Current(Note 2)  
Output Sink Current(Note 2)  
ISOURCE  
Full range  
25°C  
1CH is short circuit  
20  
-
V+IN=0V, V-IN=1V  
mA VOUT=5V  
Full range  
25°C  
1CH is short circuit  
ISINK  
V+IN=0V, V-IN=1V  
μA  
12  
-
40  
0.2  
0.5  
120  
VOUT=200mV  
VCC=15V, Av=0dB  
RL=2kΩ, CL=100pF  
Slew Rate  
SR  
GBW  
CS  
V/μs  
25°C  
VCC=30V, RL=2kΩ  
CL=100pF  
Gain Bandwidth Product  
25°C  
-
MHz  
Channel Separation  
dB f=1kHz, input referred  
25°C  
-
(Note 1) Absolute value  
(Note 2) Under high temperatures, it is important to consider the Tjmax and Thermal Resistance when selecting the output current.  
When the output pin is continuously shorted, the output current may reduce because of the internal temperature rise by heating.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
6/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s or general  
document.  
1. Absolute Maximum Ratings  
Absolute maximum rating items indicate the condition which must not be exceeded even momentarily. Applying of voltage in  
excess of absolute maximum rating or use at outside the temperature range which is provided in the absolute maximum  
ratings may cause deteriorating the characteristics of the IC or destroying it.  
1.1 Supply Voltage (VCC-VEE  
)
Indicates the maximum voltage that can be applied between the positive power supply pin and negative power  
supply pin without deteriorating the characteristics of internal circuit or destroying the IC.  
1.2 Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting pin and inverting pin without deteriorating  
the characteristics of the IC or without destroying it.  
1.3 Input Common-mode Voltage Range (VICM  
)
Indicates the voltage range that can be applied to the non-inverting pin and inverting pin without deteriorating the  
characteristics of the IC or without destroying it. Input common-mode voltage range of the maximum ratings does not  
assure normal operation of the IC. For normal operation, use the IC within the input common-mode voltage range of  
electrical characteristics.  
1.4 Storage Temperature Range (Tstg)  
The storage temperature range denotes the range of temperatures the IC can be stored without causing excessive  
deteriorating the characteristics of the IC.  
2. Electrical Characteristics  
2.1 Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting pin and inverting pin. It can be translated as the input voltage  
difference required for setting the output voltage at 0V.  
2.2 Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting pins.  
2.3 Input Bias Current (IB)  
Indicates the current that flows into or out of the input pin. It is defined by the average of input bias currents at the  
non-inverting and inverting pins.  
2.4 Supply Current (ICC  
)
Indicates the current that flows within the IC under no-load conditions.  
2.5 Maximum Output Voltage (High) / Maximum Output Voltage (Low) (VOH/VOL  
)
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage High and maximum output voltage Low. Maximum output voltage (High) indicates the upper limit of output  
voltage while maximum output voltage (Low) indicates the lower limit.  
2.6 Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage regarding the voltage difference between non-inverting pin and  
inverting pin. It is normally the amplifying rate (gain) with reference to DC voltage.  
AV = (Output Voltage) / (Differential Input Voltage)  
2.7 Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
2.8 Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input Common-mode Voltage) / (Input Offset Voltage Fluctuation)  
2.9 Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of  
DC.  
PSRR = (Change of Power Supply Voltage) / (Input Offset Voltage Fluctuation)  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
7/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Description of Electrical Characteristics - continued  
2.10 Output Source Current / Output Sink Current (ISOURCE / ISINK  
)
The maximum current that can be output from the IC under specific output conditions. It is typically divided into  
output source current and output sink current. The output source current indicates the current flowing out from the IC,  
and the output sink current indicates the current flowing into the IC.  
2.11 Slew Rate (SR)  
This parameter indicates the operation speed of the Op-Amps. Indicates the rate at which the output voltage can  
change per specified unit time.  
2.12 Gain Bandwidth Product (GBW)  
This indicates the product of an arbitrary frequency and its gain in the range of the gain slope of 6 dB/octave.  
2.13 Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the other channel regarding the change of output voltage of the  
channel which is driven.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
8/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves  
BA82904Yxxx-C  
1.0  
0.8  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=+25ºC  
VCC=36V  
Ta=-40ºC  
0.6  
VCC=5V  
0.4  
Ta=+125ºC  
VCC=3V  
0.2  
0.0  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 2. Supply Current vs Supply Voltage  
Figure 3. Supply Current vs Ambient Temperature  
5
4
3
2
1
0
40  
30  
20  
10  
0
Ta=+25ºC  
Ta=+125ºC  
Ta=-40ºC  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature: Ta[°C]  
Supply Voltage: Vcc[V]  
Figure 4. Maximum Output Voltage vs Supply Voltage  
Figure 5. Maximum Output Voltage vs Ambient Temperature  
(RL=10kΩ)  
(VCC=5V, RL=2kΩ)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
9/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82904Yxxx-C  
50  
50  
40  
30  
20  
10  
0
Ta=-40ºC  
40  
VCC=5V  
Ta=+25ºC  
VCC=36V  
VCC=3V  
30  
20  
Ta=+125ºC  
10  
0
0
1
2
3
4
5
-50 -25  
0
25  
50  
75 100 125 150  
Output Voltage: VOUT[V]  
Ambient Temperature: Ta[°C]  
Figure 6. Output Source Current vs Output Voltage  
(VCC=5V)  
Figure 7. Output Source Current vs Ambient Temperature  
(VOUT=0V)  
50  
100  
10  
40  
VCC=36V  
Ta=+125ºC  
1
30  
VCC=5V  
Ta=+25ºC  
0.1  
20  
VCC=3V  
Ta=-40ºC  
0.01  
10  
0
0.001  
-50 -25  
0
25  
50  
75 100 125 150  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
Ambient Temperature: Ta[°C]  
Output Voltage: VOUT[V]  
Figure 8. Output Sink Current vs Output Voltage  
(VCC=5V)  
Figure 9. Output Sink Current vs Ambient Temperature  
(VOUT=VCC  
)
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
10/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82904Yxxx-C  
80  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=+25ºC  
VCC=36V  
60  
Ta=-40ºC  
50  
VCC=5V  
40  
Ta=+125ºC  
VCC=3V  
30  
20  
10  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 11. Output Sink Current vs Ambient Temperature  
(VOUT=0.2V)  
Figure 10. Output Sink Current vs Supply Voltage  
(VOUT=0.2V)  
8
6
8
6
4
4
Ta=-40ºC  
Ta=+25ºC  
VCC=5V  
VCC=36V  
2
2
VCC=3V  
0
0
-2  
-4  
-6  
-8  
Ta=+125ºC  
-2  
-4  
-6  
-8  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 13. Input Offset Voltage vs Ambient Temperature  
(VICM=0V, VOUT=1.4V)  
Figure 12. Input Offset Voltage vs Supply Voltage  
(VICM=0V, VOUT=1.4V)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
11/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82904Yxxx-C  
50  
40  
30  
50  
40  
30  
20  
10  
0
VCC=36V  
VCC=3V  
Ta=-40ºC  
Ta=+25ºC  
20  
VCC=5V  
Ta=+125ºC  
10  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 14. Input Bias Current vs Supply Voltage  
(VICM=0V, VOUT=1.4V)  
Figure 15. Input Bias Current vs Ambient Temperature  
(VICM=0V, VOUT=1.4V)  
50  
40  
30  
20  
10  
0
10  
8
6
Ta=-40ºC  
Ta=+25ºC  
4
2
0
Ta=+125ºC  
-2  
-4  
-6  
-8  
-10  
-10  
-1  
0
1
2
3
4
5
-50 -25  
0
25  
50 75 100 125 150  
Input Common-mode Voltage: VICM[V]  
Ambient Temperature: Ta[°C]  
Figure 16. Input Bias Current vs Ambient Temperature  
(VCC=30V, VICM=28V, VOUT=1.4V)  
Figure 17. Input Offset Voltage vs  
Input Common-mode Voltage  
(VCC=5V)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
12/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82904Yxxx-C  
10  
5
10  
5
VCC=36V  
Ta=-40ºC  
Ta=+25ºC  
VCC=5V  
0
0
VCC=3V  
Ta=+125ºC  
-5  
-5  
-10  
-10  
0
10  
20  
30  
40  
-50 -25  
0
25  
50 75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 19. Input Offset Current vs  
Ambient Temperature  
Figure 18. Input Offset Current vs  
Supply Voltage  
(VICM=0V, VOUT=1.4V)  
(VICM=0V, VOUT=1.4V)  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
Ta=+25ºC  
Ta=-40ºC  
VCC=36V  
VCC=5V  
VCC=3V  
Ta=+125ºC  
80  
80  
70  
70  
60  
60  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 21. Large Signal Voltage Gain vs  
Ambient Temperature  
(RL=2kΩ)  
Figure 20. Large Signal Voltage Gain vs  
Supply Voltage  
(RL=2kΩ)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
13/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82904Yxxx-C  
140  
140  
120  
100  
80  
120  
VCC=36V  
Ta=+25ºC  
Ta=-40ºC  
100  
VCC=5V  
80  
Ta=+125ºC  
VCC=3V  
60  
40  
60  
40  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 22. Common Mode Rejection Ratio vs  
Supply Voltage  
Figure 23. Common Mode Rejection Ratio vs  
Ambient Temperature  
(VOUT=1.4V)  
(VOUT=1.4V)  
140  
130  
120  
110  
100  
90  
80  
70  
60  
-50 -25  
0
25 50 75 100 125 150  
Ambient Temperature: Ta[°C]  
Figure 24. Power Supply Rejection Ratio vs  
Ambient Temperature  
(VCC=5V)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
14/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82902Yxxx-C  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
2.0  
1.6  
1.2  
VCC=36V  
Ta=+25ºC  
Ta=-40ºC  
0.8  
Ta=+125ºC  
VCC=5V  
VCC=3V  
0.4  
0.0  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature: Ta[°C]  
Supply Voltage: Vcc[V]  
Figure 26. Supply Current vs Ambient Temperature  
Figure 25. Supply Current vs Supply Voltage  
5
4
3
2
1
0
40  
30  
20  
10  
0
Ta=+25ºC  
Ta=+125ºC  
Ta=-40ºC  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature: Ta[°C]  
Supply Voltage: Vcc[V]  
Figure 28. Maximum Output Voltage vs Ambient Temperature  
Figure 27. Maximum Output Voltage vs Supply Voltage  
(VCC=5V, RL=2kΩ)  
(RL=10kΩ)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
15/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82902Yxxx-C  
50  
50  
40  
30  
20  
10  
0
Ta=-40ºC  
40  
VCC=5V  
Ta=+25ºC  
VCC=36V  
VCC=3V  
30  
20  
Ta=+125ºC  
10  
0
0
1
2
3
4
5
-50 -25  
0
25  
50  
75 100 125 150  
Output Voltage: VOUT[V]  
Ambient Temperature: Ta[°C]  
Figure 30. Output Source Current vs Ambient Temperature  
(VOUT=0V)  
Figure 29. Output Source Current vs Output Voltage  
(VCC=5V)  
50  
100  
10  
40  
VCC=36V  
Ta=+125ºC  
1
30  
VCC=5V  
Ta=+25ºC  
0.1  
20  
VCC=3V  
Ta=-40ºC  
0.01  
10  
0
0.001  
-50 -25  
0
25  
50  
75 100 125 150  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
Ambient Temperature: Ta[°C]  
Output Voltage: VOUT[V]  
Figure 32. Output Sink Current vs Ambient Temperature  
(VOUT=VCC  
Figure 31. Output Sink Current vs Output Voltage  
(VCC=5V)  
)
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
16/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82902Yxxx-C  
80  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=+25ºC  
VCC=36V  
60  
Ta=-40ºC  
50  
VCC=5V  
40  
Ta=+125ºC  
VCC=3V  
30  
20  
10  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 33. Output Sink Current vs Supply Voltage  
(VOUT=0.2V)  
Figure 34. Output Sink Current vs Ambient Temperature  
(VOUT=0.2V)  
8
6
8
6
4
4
Ta=-40ºC  
Ta=+25ºC  
VCC=5V  
VCC=36V  
2
2
VCC=3V  
0
0
-2  
-4  
-6  
-8  
Ta=+125ºC  
-2  
-4  
-6  
-8  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 36. Input Offset Voltage vs Ambient Temperature  
(VICM=0V, VOUT=1.4V)  
Figure 35. Input Offset Voltage vs Supply Voltage  
(VICM=0V, VOUT=1.4V)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
17/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82902Yxxx-C  
50  
40  
30  
50  
40  
30  
20  
10  
0
VCC=36V  
Ta=-40ºC  
Ta=+25ºC  
20  
VCC=3V  
VCC=5V  
Ta=+125ºC  
10  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 38. Input Bias Current vs Ambient Temperature  
(VICM=0V, VOUT=1.4V)  
Figure 37. Input Bias Current vs Supply Voltage  
(VICM=0V, VOUT=1.4V)  
50  
40  
30  
20  
10  
0
10  
8
6
Ta=-40ºC  
Ta=+25ºC  
4
2
0
Ta=+125ºC  
-2  
-4  
-6  
-8  
-10  
-10  
-1  
0
1
2
3
4
5
-50 -25  
0
25  
50 75 100 125 150  
Input Common-mode Voltage: VICM[V]  
Ambient Temperature: Ta[°C]  
Figure 40. Input Offset Voltage vs  
Input Common-mode Voltage  
(VCC=5V)  
Figure 39. Input Bias Current vs Ambient Temperature  
(VCC=30V, VICM=28V, VOUT=1.4V)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
18/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82902Yxxx-C  
10  
5
10  
5
VCC=36V  
Ta=-40ºC  
Ta=+25ºC  
VCC=5V  
0
0
VCC=3V  
Ta=+125ºC  
-5  
-5  
-10  
-10  
0
10  
20  
30  
40  
-50 -25  
0
25  
50 75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 41. Input Offset Current vs  
Supply Voltage  
Figure 42. Input Offset Current vs  
Ambient Temperature  
(VICM=0V, VOUT=1.4V)  
(VICM=0V, VOUT=1.4V)  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
Ta=+25ºC  
Ta=-40ºC  
VCC=36V  
VCC=5V  
VCC=3V  
Ta=+125ºC  
80  
80  
70  
70  
60  
60  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 44. Large Signal Voltage Gain vs  
Ambient Temperature  
(RL=2kΩ)  
Figure 43. Large Signal Voltage Gain vs  
Supply Voltage  
(RL=2kΩ)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
19/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Typical Performance Curves - continued  
BA82902Yxxx-C  
140  
140  
120  
100  
80  
120  
VCC=36V  
Ta=+25ºC  
Ta=-40ºC  
100  
VCC=5V  
80  
Ta=+125ºC  
VCC=3V  
60  
40  
60  
40  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
Supply Voltage: Vcc[V]  
Ambient Temperature: Ta[°C]  
Figure 45. Common Mode Rejection Ratio vs  
Supply Voltage  
Figure 46. Common Mode Rejection Ratio vs  
Ambient Temperature  
(VOUT=1.4V)  
(VOUT=1.4V)  
140  
130  
120  
110  
100  
90  
80  
70  
60  
-50 -25  
0
25 50 75 100 125 150  
Ambient Temperature: Ta[°C]  
Figure 47. Power Supply Rejection Ratio vs  
Ambient Temperature  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
20/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Application Information  
Test Circuit 1: Measurement Condition  
VCC, VEE, VEK, VICM Unit: V  
Parameter  
VF  
SW1  
SW2  
SW3  
VCC  
VEE  
VEK  
VICM  
Calculation  
Input Offset Voltage  
VF1  
VF2  
ON  
ON  
OFF 5 to 30  
0
0
0
-1.4  
-1.4  
-1.4  
0
0
0
1
2
3
4
5
6
Input Offset Current  
Input Bias Current  
OFF  
OFF  
OFF  
OFF  
ON  
5
5
VF3  
VF4  
VF5  
VF6  
VF7  
VF8  
VF9  
VF10  
OFF  
ON  
ON  
OFF  
15  
15  
5
0
0
0
0
0
0
-1.4  
-11.4  
-1.4  
-1.4  
-1.4  
-1.4  
0
0
Large Signal Voltage Gain  
ON  
ON  
ON  
ON  
ON  
ON  
0
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
OFF  
OFF  
5
3.5  
0
5
Power Supply Rejection Ratio  
30  
0
0.1µF  
- Calculation -  
1. Input Offset Voltage (VIO)  
RF=50kΩ  
V
500kΩ  
0.1µF  
F1  
1+ R / R  
V
=
[V]  
SW1  
VCC  
IO  
F
S
15V  
VEK  
VO  
RS=50Ω  
RI=10kΩ  
2. Input Offset Current (IIO)  
500kΩ  
DUT  
V
-V  
NULL  
-15V  
F2 F1  
× (1+ R / R  
I
=
[A]  
SW3  
IO  
R
)
RS=50Ω  
RI=10kΩ  
1000pF  
I
F
S
V
VF  
RL  
VICM  
SW2  
3. Input Bias Current (IB)  
50kΩ  
VEE  
V
-V  
F4 F3  
2 × R × (1+ R / R  
I
=
[A]  
B
)
I
F
S
Figure 48. Test Circuit 1 (One Channel Only)  
4. Large Signal Voltage Gain (AV)  
ΔV × (1+ R /R  
)
EK  
F
S
A
=
20 × Log  
[dB]  
V
V
-V  
F5 F6  
5. Common-mode Rejection Ration (CMRR)  
ΔV  
× (1+ R /R  
F
)
ICM  
S
CMRR  
=
20 × Log  
[dB]  
V
-V  
F8 F7  
6. Power Supply Rejection Ratio (PSRR)  
ΔV  
CC  
× (1+ R /R )  
F
S
PSRR = 20 × Log  
[dB]  
V
-V  
F10 F9  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
21/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Application Information - continued  
Test Circuit 2: Switch Condition  
SW SW SW SW SW SW SW SW SW SW SW SW SW SW  
10 11 12 13 14  
SW No.  
1
2
3
4
5
6
7
8
9
Supply Current  
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON ON OFF OFF OFF  
OFF ON OFF OFF ON ON OFF OFF ON ON ON OFF OFF OFF  
ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Output Source Current  
Output Sink Current  
Slew Rate  
Gain Bandwidth Product  
Equivalent Input Noise Voltage  
SW4  
Input voltage  
SW5  
R2  
VH  
VCC  
A
VL  
time  
Input wave  
Output voltage  
SW1  
RS  
SW2  
SW3  
SRΔV/Δt  
90%  
SW14  
SW13  
SW9 SW10 SW11 SW12  
VH  
SW7 SW8  
SW6  
R1  
C
ΔV  
VEE  
A
10%  
V
RL  
CL  
V
VL  
VIN-  
VIN+  
VOUT  
t
Δ
time  
Output wave  
Figure 49. Test Circuit 2 (One Channel Only)  
Figure 50. Slew Rate Waveform  
Test Circuit 3: Channel Separation Measurement Condition  
VCC  
VCC  
OTHER  
CH  
R1//R2  
R1//R2  
VEE  
VEE  
R1  
R2  
R1  
R2  
VOUT1  
V
V
VOUT2  
VIN  
=0.5[Vrms]  
40dB amplifier  
40dB amplifier  
100 VOUT1  
×
CS 20 log  
×
VOUT2  
(R1=1kΩ, R2=100kΩ)  
Figure 51. Test Circuit 3  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
22/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Application Information - continued  
EMI Immunity  
BA82904Yxxx-C and BA82902Yxxx-C have high tolerance for electromagnetic interference from the outside because they  
have EMI filter, and the EMI design is simple. The data of the IC simple substance on ROHM board are as follows. They  
are most suitable to replace from conventional products. The test condition is based on ISO11452-2.  
<Test Condition> Based on ISO11452-2  
Test Circuit: Voltage Follower  
VCC: 12V  
VIN+: 6V  
Conventional Product  
Test Method: Substituted Law  
(Progressive Wave)  
Field Intensity: 200V/m  
Test Wave: CW (Continuous Wave)  
Frequency: 200MHz 1000MHz (2% step)  
BA82904Yxxx-C,  
BA82902Yxxx-C  
Figure 52. EMI Characteristics  
Figure 54. EMI Evaluation Board (BA82902Yxxx-C)  
Figure 53. EMI Evaluation Board (BA82904Yxxx-C)  
Figure 55. Measurement Circuit of EMI Evaluation  
(Note) The above data is obtained using typical IC simple substance on ROHM board. These values are not guaranteed.  
Design and Evaluate in actual application before use.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
23/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Application Information - continued  
VCC  
1. Unused Circuits  
When there are unused circuits, it is recommended that they are  
connected as in Figure 56, and set the non-inverting input pin to electric  
potential within the input common-mode voltage range (VICM).  
+
-
Connect  
to VICM  
VICM  
2. Input Voltage  
Applying VEE+36V to the input pin is possible without causing deterioration  
of the electrical characteristics or destruction, regardless of the supply  
voltage. However, this does not ensure normal circuit operation. Note that  
the circuit operates normally only when the input voltage is within the  
common-mode input voltage range of the electric characteristics.  
VEE  
Figure 56. Example of Application  
Circuit for Unused Op-amp  
3. Power Supply (single / dual)  
The Op-Amp operates when the voltage supplied is between the VCC and  
VEE pin. Therefore, the single supply Op-Amp can be used as dual supply  
Op-Amp as well.  
4. IC Operation  
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected  
to the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and charging  
of the output current. Connecting a resistor between the output pin and the VEE pin, and increasing the bias current for  
Class A operation will suppress crossover distortion.  
5. Output Capacitor  
When the VCC pin is shorted to VEE(GND) electric potential in a state where electric charge is accumulated in the  
external capacitor that is connected to the output pin, the accumulated electric charge will flow through parasitic elements  
or pin protection elements inside the circuit and discharges to the VCC pin. It may cause damage to the elements inside  
the circuit (thermal destruction). When using this IC as an application circuit which does not constitute a negative  
feedback circuit and does not occur the oscillation by an output capacitive load such as a voltage comparator, set the  
value of the capacitor connected to the output pin to 0.1uF or less to prevent IC damage caused by the accumulation of  
electric charge as mentioned above.  
6. Oscillation by Output Capacitor  
Pay attention to the oscillation by capacitive load in designing an application which constitutes a negative feedback loop  
circuit with these ICs.  
7. IC handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations of the electrical  
characteristics due to the piezo resistance effects. Pay attention to defecting or bending the board.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
24/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
25/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Operational Notes continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 57. Example of monolithic IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all  
within the Area of Safe Operation (ASO).  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
26/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Ordering Information  
B A 8 2 9 0 x Y x x x  
-
C x x  
Part Number  
BA82904Yxxx  
BA82902Yxxx  
Package  
: SOP8  
SOP14  
Packaging and forming specification  
C: Automotive (Engine control unit, EPS,  
ABS, and so on)  
F
FV : SSOP-B14  
FVM: MSOP8  
FJ : SOP-J14  
FVJ : TSSOP-B14J  
E2: Embossed tape and reel  
(SOP8/SOP14/SSOP-B8/SSOP-B14  
/SOP-J14/TSSOP-B14J)  
TR: Embossed tape and reel  
(MSOP8)  
Lineup  
Operating  
Temperature Range  
Operating  
Supply Voltage  
Number of  
Channels  
Package  
Reel of 2500  
Orderable Part Number  
SOP8  
Dual  
BA82904YF-CE2  
BA82904YFVM-CTR  
BA82902YF-CE2  
BA82902YFV-CE2  
BA82902YFJ-CE2  
BA82902YFVJ-CE2  
MSOP8  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
SOP14  
-40°C to +125°C  
3V to 36V  
SSOP-B14  
Quad  
SOP-J14  
TSSOP-B14J  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
27/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Marking Diagrams  
SOP8(TOP VIEW)  
MSOP8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
Pin 1 Mark  
Pin 1 Mark  
SOP14(TOP VIEW)  
SSOP-B14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
Pin 1 Mark  
Pin 1 Mark  
SOP-J14(TOP VIEW)  
TSSOP-B14J (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
Pin 1 Mark  
Pin 1 Mark  
Product Name  
Package Type  
Marking  
82904  
82904  
F-C  
SOP8  
BA82904Y  
MSOP8  
FVM-C  
F-C  
SOP14  
BA82902YF  
802Y  
FV-C  
SSOP-B14  
SOP-J14  
BA82902Y  
FJ-C  
82902YFJ  
802YJ  
FVJ-C  
TSSOP-B14J  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
28/35  
TSZ22111 15 001  
BA82904Yxxx-C BA82902Yxxx-C  
Physical Dimension and Packing Information  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT: mm)  
PKG: SOP8  
Drawing No.: EX112-5001-1  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
29/35  
BA82904Yxxx-C BA82902Yxxx-C  
Physical Dimension and Packing Information - continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT: mm)  
PKG: SOP14  
Drawing No.: EX113-5001  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
30/35  
BA82904Yxxx-C BA82902Yxxx-C  
Physical Dimension and Packing Information - continued  
Package Name  
SSOP-B14  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
31/35  
BA82904Yxxx-C BA82902Yxxx-C  
Physical Dimension and Packing Information - continued  
Package Name  
MSOP8  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
32/35  
BA82904Yxxx-C BA82902Yxxx-C  
Physical Dimensions and Packing Information continued  
Package Name  
SOP-J14  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
33/35  
BA82904Yxxx-C BA82902Yxxx-C  
Physical Dimensions and Packing Information continued  
Package Name  
TSSOP-B14J  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
34/35  
BA82904Yxxx-C BA82902Yxxx-C  
Revision History  
Date  
Revision  
001  
Changes  
10.May.2017  
01.Jun.2017  
14.Jun.2017  
New Release  
002  
Correction of erroneous description : P.3 Delete (Note 2)  
003  
P.3 Update Orderable Parts Number  
P.1 Update General description  
P.23 Added application hint  
29.Jun.2017  
004  
27.Jul.2017  
31.Aug.2017  
20.Feb.2018  
15.Apr.2020  
22.Sep.2022  
005  
006  
007  
008  
009  
Update Physical Dimension and Packing Information  
P.5, 6 Change Limits  
Update Lineup (BA82902YFJ-C, BA82902YFVJ-C)  
Correction of erroneous description : Change Gain units of page 5 and page 6  
Modified title  
www.rohm.com  
TSZ02201-0GLG0G200040-1-2  
22.Sep.2022 Rev.009  
© 2017 ROHM Co., Ltd. All rights reserved.  
35/35  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BA82902YFJ-CE2

Operational Amplifier,
ROHM

BA82902YFV-C

BA82902YFV-C是将高增益且接地检测输入独立的运算放大器以4个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82902YFV-CE2

Operational Amplifier,
ROHM

BA82902YFVJ-C

BA82902YFVJ-C是将高增益且接地检测输入独立的运算放大器以4个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82902YFVJ-CE2

Operational Amplifier,
ROHM

BA82903YF-C

BA82903YF-C是将高增益且接地检测输入独立的比较器以2个电路集成于1枚芯片的单片IC。工作范围宽达2V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82903YFVM-C

BA82903YFVM-C是将高增益且接地检测输入独立的比较器以2个电路集成于1枚芯片的单片IC。工作范围宽达2V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82904YF-C

BA82904YF-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82904YF-CE2

Operational Amplifier,
ROHM

BA82904YFVM-C

BA82904YFVM-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。工作范围宽达3V~36V(单一电源工作时),且消耗电流低,适用于引擎控制单元、EPS、ABS等所有车载应用。不仅如此,还具有出色的EMI耐受力,可轻松替换现有产品,EMI设计也更容易。
ROHM

BA82904YFVM-CTR

Operational Amplifier,
ROHM

BA829_09

Serial / Parallel 5-input Driver
ROHM