BD12801MUF-M [ROHM]

BD12801MUF-M是一款16通道恒流驱动器,具有13bit PWM调光和8bit局部DC调光通道。可通过SPI与微控制器通信。;
BD12801MUF-M
型号: BD12801MUF-M
厂家: ROHM    ROHM
描述:

BD12801MUF-M是一款16通道恒流驱动器,具有13bit PWM调光和8bit局部DC调光通道。可通过SPI与微控制器通信。

通信 驱动 控制器 微控制器 驱动器
文件: 总68页 (文件大小:1435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive LED Driver Series  
16-channel Constant Current Driver  
Embedded Automotive Backlight LED Driver  
BD12801MUF-M  
General Description  
Key Specifications  
BD12801MUF-M is 16-channel constant current driver  
with 13 bit PWM dimming and 8 bit local DC dimming  
individual channels. Communication with µController via  
SPI is feasible.  
Power Supply Voltage Range:  
LED Output Current Range:  
Operating Temperature Range:  
3.0 V to 5.5 V  
20 mA to 130 mA  
-40 °C to +125 °C  
Package  
VQFN48FAV070  
W (Typ) x D (Typ) x H (Max)  
7.0 mm x 7.0 mm x 1.0 mm  
Features  
AEC-Q100 Qualified(Note 1)  
Integrated 16-channel 20 V LED Constant Current  
Driver  
SPI Interface  
Independent 13 bit PWM Dimming Function  
Independent 8 bit Local DC Dimming Function  
Independent 8 bit Phase Shift Function  
LSI Protection Function (UVLO, TSD, ISETSCP)  
LED Abnormality Detection Function (Open/Short)  
Integrated Abnormality Output FAIL Pin  
Cascade Connection Feasible  
(Note 1) Grade 1  
Applications  
Cluster, Center Infotainment Display  
Other Automotive Backlights  
Typical Application Circuit  
・・・  
Buck  
Buck-Boost DC/DC  
Converter  
VCC  
LED1  
LED2  
LED3  
LED4  
LED5  
EN  
VREG33  
LED6  
LED7  
SDI  
LED8  
LED9  
SCLK  
LED10  
LED11  
SCSB  
BD12801MUF-M  
SDO  
LED12  
LED13  
LED14  
VREG33  
FAIL  
LED15  
LED16  
VSYNC  
EXTCLK  
LGND  
ISET  
TEST1 TEST2  
GND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0V1V0B200010-1-2  
***-1-  
1/65  
10.May.2021 Rev.001  
 
 
 
 
 
 
BD12801MUF-M  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................5  
Description of Blocks ......................................................................................................................................................................6  
Absolute Maximum Ratings ............................................................................................................................................................9  
Thermal Resistance........................................................................................................................................................................9  
Recommended Operating Conditions...........................................................................................................................................10  
Electrical Characteristics...............................................................................................................................................................10  
Typical Performance Curves.........................................................................................................................................................12  
Functions of Logic Blocks .............................................................................................................................................................14  
Timing Chart .................................................................................................................................................................................40  
Application Examples ...................................................................................................................................................................59  
I/O Equivalence Circuit .................................................................................................................................................................60  
Operational Notes.........................................................................................................................................................................61  
Ordering Information.....................................................................................................................................................................63  
Marking Diagram ..........................................................................................................................................................................63  
Physical Dimension and Packing Information...............................................................................................................................64  
Revision History............................................................................................................................................................................65  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
2/65  
10.May.2021 Rev.001  
 
BD12801MUF-M  
Pin Configuration  
(TOP VIEW)  
EXP-PAD (Note 1)  
EXP-PAD (Note 1)  
N.C.  
N.C.  
LED10  
LED9  
37  
38  
39  
40  
41  
42  
43  
44  
24  
23  
N.C.  
22 N.C.  
ISET  
21 LGND  
VREG33  
VCC  
N.C.  
20  
19  
18  
17  
16  
15  
14  
13  
TEST2  
TEST1  
SDO  
EN  
GND  
LGND  
N.C.  
FAIL 45  
SCSB  
SDI  
46  
47  
48  
LED8  
LED7  
EXP-PAD  
SCLK  
EXP-PAD (Note 1)  
EXP-PAD (Note 1)  
(Note 1) EXP-PAD on the corner is comprised of three electrodes and is short-circuited inside.  
Pin Descriptions  
Pin No.  
1
Pin Name  
EXTCLK  
Function  
EXTCLK signal pin. Input the frequency 8,192 times of VSYNC (PWMFREQ[1:0] = 0).  
2
3
VSYNC  
N.C.  
VSYNC signal pin  
-
4
LED1  
LED2  
LED3  
LED4  
N.C.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
-
5
6
7
8
9
LGND  
N.C.  
Analog GND for constant current driver block  
-
10  
11  
12  
13  
14  
15  
16  
LED5  
LED6  
LED7  
LED8  
N.C.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
-
LGND  
Analog GND for constant current driver block  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
3/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Pin Descriptions - continued  
Pin No.  
17  
Pin Name  
SDO  
Function  
Data output pin.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
TEST1  
TEST2  
N.C.  
TEST mode output pin. Set this pin open.  
TEST mode input pin. Connect to GND.  
-
LGND  
N.C.  
Analog GND for constant current driver block  
-
LED9  
LED10  
LED11  
LED12  
N.C.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
-
LGND  
N.C.  
Analog GND for constant current driver block  
-
LED13  
LED14  
LED15  
LED16  
N.C.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
Constant current output pin. Connect to LED cathode.  
-
N.C.  
-
N.C.  
-
N.C.  
-
N.C.  
-
N.C.  
-
ISET  
LED current setting pin. LED current is set by resistor connected to GND.  
VREG33  
VCC  
Output 3.3 V constant voltage  
Power supply pin  
EN  
Engage Standby-mode with VEN = Low. Operation mode with VEN = High.  
GND  
Small signal GND  
Abnormal detection output pin  
Chip select setting pin  
Data input pin  
FAIL  
SCSB  
SDI  
SCLK  
CLK input pin  
Exposed Pad. Connect center EXP-PAD to the internal PCB ground plane using multiple via, it  
will provide excellent heat dissipation characteristics.  
-
EXP-PAD  
(Note) LED1 to LED16 are defined as LEDn (n = 1 to 16) from this page.  
If there is no use LEDn channel, set open for the pin. If LEDn pin connects to GND, standby current isn’t 0 µA (Typ) because there is a current path.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
4/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Block Diagram  
VCC  
EN  
VCCUVLO  
Band  
Gap  
Voltage  
3.3 V  
REG  
VREG33UVLO  
TSD  
ISET  
ISET SHORT DET  
VREG33  
VCC  
Constant Current Driver  
DTY01[12:0]  
13  
LED1  
LED OPEN DET  
LED SHORT DET  
Thermal Warning  
LCDAC1[7:0]  
SDI  
8
ERLOP[0]  
ERLSH[0]  
WARTSD[0]  
SCLK  
DTY13[12:0]  
13  
SCSB  
SDO  
LED13  
LED14  
LED15  
LED16  
LED OPEN DET  
LED SHORT DET  
Thermal Warning  
LCDAC13[7:0]  
8
Level  
Shifter  
ERLOP[12]  
ERLSH[12]  
WARTSD[12]  
DTY14[12:0]  
13  
LOGIC  
Control  
LED OPEN DET  
LED SHORT DET  
Thermal Warning  
LCDAC14[7:0]  
VSYNC  
8
ERLOP[13]  
ERLSH[13]  
WARTSD[13]  
EXTCLK  
DTY15[12:0]  
13  
LED OPEN DET  
LED SHORT DET  
Thermal Warning  
LCDAC15[7:0]  
8
ERLOP[14]  
PROTECT  
LOGIC  
ERLSH[14]  
FAIL  
WARTSD[14]  
DTY16[12:0]  
13  
LED OPEN DET  
LED SHORT DET  
Thermal Warning  
LCDAC16[7:0]  
TEST1  
TEST2  
TEST  
MODE  
LOGIC  
8
ERLOP[15]  
ERLSH[15]  
WARTSD[15]  
LGND  
GND  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
5/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
Description of Blocks  
If there is no description, the mentioned values are typical value.  
1. Reference Voltage (3.3V REG)  
3.3V REG Block generates 3.3 V at EN = High, and outputs to the VREG33 pin. This voltage (VVREG33) is used as I/O  
interface power supply for internal circuit. The VREG33 pin has UVLO function, and it starts operation at VCC ≥ 2.8 V and  
VVREG33 ≥ 2.7 V and stops when at VCC ≤ 2.7 V or VVREG33 ≤ 2.6 V. About the condition to release/detect VVREG33 voltage,  
refer to Table 1. Protection Table. Connect a ceramic capacitor (CVREG33) to the VREG33 pin for phase margin. CVREG33  
range is 1.0 µF to 4.7 µF and recommended value is 2.2 µF. If the CVREG33 is not connected, it might occur unstable  
operation e.g. oscillation. In addition, VREG33 pin has the over current protection function. If the load current of  
VREG33 pin exceeds 15 mA, the voltage drops. The following diagram shows the power supply system of MCU and  
LED Driver. Select the suitable connection in accord with application structure.  
Case 1: A power supply of MCU and LED Driver are different.  
Case 2: A power supply of MCU and LED Driver are same.  
3.3 V  
MCU  
5.0 V  
VCC  
3.3 V  
5.0 V  
MCU  
VCC  
VCC  
SPI  
SPI  
SPI  
VREG33  
BD12801MUF-M  
MCU  
BD12801MUF-M  
BD12801MUF-M  
VREG33  
VREG33  
OCP in VREG33 is not activated.  
Figure 1. VCC Pin and VREG33 Pin Connection  
2. Constant Current Driver  
This device integrates 16-channel constant current driver. Constant current drivers capability is defined by supply  
voltage thus with VCC ≥ 4.2 V will be 130 mA/ch and with 3.0 V ≤ VCC < 4.2 V will be 100 mA/ch. Also 13 bit PWM  
dimming function, 8 bit DC dimming function, 8 bit phase shift function are built in for independent channel.  
(1) Maximum LED Output Current Setting (RISET  
)
1000  
100  
LED  
Driver  
LEDn  
(n=1 to 16)  
10  
1
10  
100  
ISET  
RISET [kΩ]  
RISET  
Figure 2. ILEDMAX vs RISET  
Figure 3. ISET Block Diagram  
The Maximum LED Output Current ILEDMAX can be obtained by the following equation.  
퐿퐸퐷푀퐴푋 = 757/푅ꢀ푆퐸푇  
[A]  
The operating range of the RISET value is from 6.3 kΩ to 30 kΩ. Additionally, the RISET value could not be changed  
during operation. In this IC, ISET SHORT protection is built-in to protect an LED element from excess current when  
the ISET pin and GND are shorted. If the RISETSCP is 2.2 kΩ (Typ) or less, the IC detects ISET SHORT protection  
and LED current is turned off.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
6/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
2. Constant Current Driver - continued  
(2) Local DC Dimming Control  
Integrates 8 bit DC dimming function LCDACn[7:0], which controls LED current of each channel by SPI input from  
the defined LED current by RISET. LED current under DC dimming can be calculated in below equation.  
{( }  
[
]
)
퐿퐸퐷푛 = 퐼퐿퐸퐷푀퐴푋 × ꢁ퐶ꢂꢃ퐶ꢄ 7: 0 + 1 /256  
>
0.02 [A] (ꢄ = 1 푡표 16)  
In instance when RISET = 6.3 kΩ and LCDACn[7:0] = 0xFF, LED current will be 120 mA. As minimum LED current of  
the device is minimum 20 mA, LCDACn[7:0] should be set from 0x2A to 0xFF. Note that LCDACn[7:0] minimum bit  
cannot be set due to minimum current 20 mA. Step width will be 0.47 mA ( = 120 mA / 256 ). On the other hand RISET  
= 19 kΩ and LCDACn[7:0] = 0xFF will set LED current as 40 mA, LCDACn[7:0] should be set from 0x80 to 0xFF.  
Step width will be 0.156 mA ( = 40 mA / 256). LCDACn[7:0] setting range will differ by RISET  
.
(3) Local PWM Dimming Control  
PWM dimming frequency, pulse width, and phase shift can be controlled by SPI input. Constant current driver can be  
controlled synchronized to PWM for independent channel set by SPI.  
However constant current driver’s minimum pulse width depends on LED current value. When LED current value is  
80 mA or more, set the minimum pulse width to more than 0.6 µs. If LED current value is less than 80 mA, set the  
minimum pulse width to more than 2 µs. For example with PWM frequency 200 Hz at LED current of 100 mA setting,  
it’s possible to set with 13 bit full range of PWM duty. Average LED current under PWM dimming can be calculated in  
below equation.  
{( }  
[
]
)
퐿퐸퐷푛_퐴푉퐸 = 퐼퐿퐸퐷푛 × ꢂꢅ푌ꢄ 12: 0 + 1 / 8,192  
[A] (ꢄ = 1 푡표 16)  
(4) Local Phase Shift Control  
This device integrates 8 bit Phase Shift function. Control by independent channel based on set PWM cycle is  
feasible. In case PWM frequency is 200 Hz, shift rate per channel can be set by about 20 µs steps. Refer to Figure 4.  
To summarize (1) to (3), the LED current setting, PWM dimming, DC dimming are schematically shown as Figure 5.  
LED Current  
1 ms/div  
ILED1 (50 mA/div)  
Maximum setting  
130 mA  
(A)  
ILEDMAX  
ILED2(50 mA/div)  
(B)  
ILEDn  
ILED3 (50 mA/div)  
Minimum Setting  
20 mA  
t
(C)  
Figure 4. Local Phase Shift Control  
Figure 5. Setting Range by Dimming Method  
(A) ILEDMAX is set to the maximum LED current value  
from 20 mA to 130 mA by RISET  
.
(B) When ILEDMAX is set to 80 mA by RISET, DC dimming  
range is limited from 64 to 256 because of  
minimum LED current setting 20 mA.  
(C) PWM dimming can be controlled by 13 bit range.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
7/65  
***-1-  
10.May.2021 Rev.001  
 
 
BD12801MUF-M  
Description of Blocks - continued  
3. Protection Feature  
Table 1. Protection Table  
Error Setting(Note 4)  
Error  
Protection  
Error Flag  
FAIL(Note 6)  
Protection Name  
Recommend Operation  
Detection  
Condition  
Release  
Condition  
Pin  
SSMASK  
ERRMASK  
ERRLAT  
Error Register  
Clear Condition  
Enable  
DTYENn = 1  
and  
LEDOPEN = 1  
and  
DTYENn = 0  
or  
LEDOPEN = 0  
or  
Protection released  
(ERRLAT = 0)  
or  
target LEDn(Note 3) OFF  
(DTYENn(Note 3) = 0)  
LEDn(Note 3)  
LED OPEN  
LEDOPEN  
O
O
O
ERLOP[15:0]  
Low  
[ PWMn = High  
[ PWMn = High  
ERRCLR  
and  
(Note 3)  
and  
(ERRLAT = 1)  
(Note 3)  
VLEDn  
0.2 V]  
VLEDn  
> 0.2 V]  
DTYENn = 1  
and  
LEDSHEN = 1  
and  
DTYENn = 0  
or  
LEDSHEN = 0  
or  
[ PWMn = High  
and  
VLEDn(Note 3) < register  
setting ]  
Protection released  
(ERRLAT = 0)  
or  
ERRCLR  
(ERRLAT = 1)  
target LEDn(Note 3) OFF  
(DTYENn(Note 3) = 0)  
LEDn(Note 3)  
LEDn(Note 3)  
ISET  
LED SHORT  
LEDSHEN  
LEDOPEN  
-
O
O
O
O
O
O
ERLSH[15:0]  
Low  
[ PWMn = High  
and  
(Note 3)  
VLEDn  
register  
setting ]  
DTYENn = 0  
and  
LEDOPEN = 1  
TSD detect  
or  
EN detect  
or  
TSD detect  
or  
EN detect  
or  
and  
LED SCP(Note 1)  
(Note 3)  
All LEDn(Note 3) OFF  
-
-
WARSCP  
VSYNC  
VLEDn  
0.2 Vduring  
VCCUVLO detect  
or  
VREG33UVLO detect  
VCCUVLO detect  
or  
VREG33UVLO detect  
SCP setting time  
(after detecting LED Open  
Error)  
Protection released  
(ERRLAT = 0)  
or  
ERRCLR  
(ERRLAT = 1)  
LED1 to 16 OFF  
(automaticaly)  
RSETSCP 2.2 kΩ  
ISET SHORT  
RSETSCP > 2.2 kΩ  
-
O
WARISET  
Low  
Protection released  
(ERRLAT = 0)  
or  
ERRCLR  
(ERRLAT = 1)  
WARTSD[15:0]  
(Note 2)  
target LEDn OFF  
(DTYENn(Note 3) = 0)  
Tj 135 °C  
Tj 125 °C  
Thermal Warning  
-
TSDWEN  
-
O
Low  
Low  
All block initialized  
(automaticaly)  
TSD(Note 5)  
-
Tj 175 °C  
VCC 2.7 V  
Tj 150 °C  
VCC 2.8 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Protection released  
High  
(Hi-z)  
High  
(Hi-z)  
All block initialized  
(automaticaly)  
All block initialized  
(automaticaly)  
VCCUVLO(Note 5)  
VREG33UVLO(Note 5)  
VCC  
-
-
VREG33  
VVREG33 2.6 V  
VVREG33 2.7 V  
(Note 1) It can’t detect “SCP error” if LEDn (n = 1 to 16) pin shorts GND before setting DTYEN = 1 and detecting “LED open error”. This function is available after  
detecting “LED open error”.  
(Note 2) WARTSD[n-1]: monitor LEDn  
(Note 3) n = 1 to 16  
(Note 4) O: It has this function. -: It doesn’t have this function.  
(Note 5) When it detects “VREG33UVLO” or “VCCUVLO” or “TSD” or “EN”, it can’t detect other protection.  
(Note 6) The FAIL pin is recommended to pull up to VVREG33. Recommended value for pull up resistance is 20 kΩ to 100 kΩ.  
When above failure is detected, the FAIL pin voltage becomes Low. If the FAIL pin is not used pin, it shall be kept open or short to GND.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
8/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
VCC  
Rating  
Unit  
V
Power Supply Voltage  
EN Pin Voltage  
-0.3 to +7.0  
-0.2 to +7.0  
-0.2 to +20.0  
-0.3 to +7.0  
VEN  
V
LED1 to LED16 Pin Voltage  
VLED1 to VLED16  
VFAIL  
V
FAIL Pin Voltage  
V
VREG33, SCSB, SCLK, SDI, SDO,  
VSYNC, EXTCLK, TEST1, TEST2,  
ISET Pin Voltage  
VVREG33, VSCSB, VSCLK, VSDI, VSDO, VVSYNC, VEXTCLK  
VTEST1, VTEST2, VISET  
,
-0.2 to +7.0  
V
Storage Temperature Range  
Tstg  
-55 to +150  
150  
°C  
°C  
Maximum Junction Temperature  
Tjmax  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VQFN48FAV070  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
71.4  
6.0  
24.2  
3.0  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
9/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
3.0  
1.0  
6.3  
20  
Typ  
Max  
5.5  
Unit  
V
Condition  
Power Supply Voltage  
VCC  
CVREG33  
RISET  
5.0  
2.2  
4.7  
µF  
kΩ  
kΩ  
kHz  
%
VREG33 Pin Connect Capacitance  
ISET Pin Connection Resistance  
-
30.0  
100  
5,000.0  
60  
FAIL Pin Connection Resistance  
EXTCLK Frequency  
RFAIL  
fEXTCLK  
-
409.6  
40  
-
-
EXTCLK Duty  
DEXTCLK  
fVSYNCCLK  
tVSYNCMIN  
ILEDMAX1  
ILEDMAX2  
Topr  
VSYNC Frequency  
50  
-
600  
-
Hz  
µs  
VSYNC Minimum Pulse Width  
LEDn Output Current 1  
LEDn Output Current 2  
Operating Temperature  
50  
-
20  
-
-
100  
130  
+125  
mA  
mA  
°C  
3.0 V ≤ VCC < 4.2 V  
VCC ≥ 4.2 V  
20  
-40  
+25  
(Note) Above operation range is referring to IC independently. Thorough verification of the coefficient setting in actual application shall be practiced.  
Electrical Characteristics  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 3.0 V to 5.5 V)  
Parameter  
[Device Overview]  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
VEN = High,  
All Current drivers are OFF  
Circuit Current  
ICC  
-
-
5.5  
0
15.0  
300  
mA  
µA  
Standby Current  
ISTB  
VEN = Low  
[VREG33 Block]  
VCC = 3.5 V to 5.5 V,  
IVREG33 = 0 mA  
VCC = 3.5 V to 5.5 V,  
IVREG33 = -5 mA  
VREG33 Pin Output Voltage  
VVREG33  
ΔVVREG33  
IVREG33OCP  
3.1  
-
3.3  
30  
-
3.5  
80  
-
V
VREG33 Pin  
Load Regulation Voltage  
VREG33 Pin  
mV  
mA  
10  
VCC = 5.0 V  
Over Current Protection  
[PROTECT LOGIC Block]  
VCCUVLO Detection Voltage  
VCCUVLO Hysteresis Voltage  
VREG33UVLO Detection Voltage  
VREG33UVLO Hysteresis Voltage  
LED OPEN Detection Voltage  
LED SHORT Detection Voltage  
VVCCUVLO  
VVCCUHYS  
VVREG33UVLO  
VVREG33UHYS  
VOPDET  
2.55  
-
2.70  
100  
2.60  
100  
0.2  
2.85  
-
V
mV  
V
VCC: SWEEP DOWN  
2.40  
-
2.80  
-
VVREG33: SWEEP DOWN  
mV  
V
0.1  
4.5  
0.3  
5.1  
VLEDn: SWEEP UP  
LEDSH = 0xF  
VSHDET  
4.8  
V
ISET GND Short Detection  
Resistance  
Thermal Warning Monitor Detection  
Temperature  
Thermal Warning Monitor  
Hysteresis Width  
RSETSCP  
tMON  
0.7  
2.2  
135  
10  
4.3  
kΩ  
°C  
°C  
-
-
-
-
tMONHYS  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
10/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
Electrical Characteristics - continued  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 3.0 V to 5.5 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
[Constant Current Driver Block]  
ISET Pin Reference Voltage  
LEDn Pin ON Resistance  
VISET  
RLED1  
IOUT1  
-
-
0.606  
-
V
Ω
-
6.5  
106  
+4  
LEDn Pin Output Current1(Note 1)  
94  
-4  
100  
mA  
%
-
-
Ta = 25 °C, VCC = 5 V  
Ta = 25 °C, VCC = 5 V  
LEDn Pin Output Current  
Absolute Error1(Note 1)  
ΔIOUTA1  
-6  
+6  
%
-4  
-
+4  
%
LEDn Pin Output Current  
Relative Error1(Note 1)  
ΔIOUTR1  
IOUT2  
-6  
-
+6  
%
LEDn Pin Output Current2(Note 2)  
45  
-6  
50  
-
55  
mA  
%
+6  
Ta = 25 °C, VCC = 5 V  
Ta = 25 °C, VCC = 5 V  
LEDn Pin Output Current  
Absolute Error2(Note 2)  
ΔIOUTA2  
-7.5  
-6  
-
+7.5  
+6  
%
-
%
LEDn Pin Output Current  
Relative Error2(Note 3)  
ΔIOUTR2  
-7.5  
-
+7.5  
%
[EN Input Pin]  
EN Pin Input Current  
IEN  
18  
30  
-
50  
µA  
V
VEN = 3.0 V  
0.8 x  
VVREG33  
VVREG33  
+ 0.2  
+0.2 x  
VVREG33  
EN Pin Input High Voltage  
EN Pin Input Low Voltage  
VENH  
VENL  
-0.2  
-
V
[LOGIC Input (SCSB, SCLK, SDI, EXTCLK, VSYNC)]  
LOGIC Pin Input Current  
IIN  
-1  
0
-
+1  
µA  
V
VIN = VCC  
0.8 x  
VVREG33  
VVREG33  
+ 0.2  
LOGIC Pin Input High Voltage  
VINH  
+0.2 x  
VVREG33  
LOGIC Pin Input Low Voltage  
[LOGIC Output Block (SDO)]  
SDO Pin Output High Voltage  
VINL  
-0.2  
-
V
VVREG33  
-0.2  
VVREG33  
+0.2  
VSDOH  
VSDOL  
-
-
V
V
ISDO = -1 mA  
ISDO = +1 mA  
SDO Pin Output Low Voltage  
[FAIL Output Block]  
-
0.2  
FAIL Pin ON Resistance  
FAIL Pin Leak Current  
RFAIL  
0.5  
-
1.0  
-
2.0  
0.1  
kΩ  
µA  
IFAIL = +1 mA  
VFAIL = 5.0 V  
ILEAKFAIL  
(Note 1) RISET = 7.5 kΩ, VLEDn = 0.65 V, SDI = w(0x18,0xFF), w(0x19,0x3F)  
(Note 2) RISET = 15 kΩ, VLEDn = 0.65 V, SDI = w(0x18,0xFF), w(0x19,0x3F)  
(Note 3) VLEDn describes either pin of LED1 to LED16 voltage.  
ILEDn describes either pin of LED1 to LED16 current.  
ΔIOUTA1 = (ILEDn/0.1 - 1) x 100  
ΔIOUTR1 = (ILEDn/ILED_AVE - 1) x 100  
ILED_AVE describes the average current of LED1 to LED16.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
11/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
Typical Performance Curves  
200  
175  
150  
125  
100  
75  
12  
10  
8
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
6
4
50  
2
25  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
Power Supply Voltage: VCC [V]  
Power Supply Voltage: VCC [V]  
Figure 6. Standby Current  
vs Power Supply Voltage  
Figure 7. Circuit Current vs Power Supply Voltage  
(VEN = High)  
0.30  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
VCC = 3.3 V  
VCC = 5.0 V  
VCC = 5.5 V  
VCC = 3.3 V  
VCC = 5.0 V  
VCC = 5.5 V  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
-40 -20 +0 +20 +40 +60 +80 +100+120  
-40 -20 +0 +20 +40 +60 +80 +100 +120  
Temperature [°C]  
Temperature [°C]  
Figure 8. VREG33 Pin Output Voltage  
vs Temperature  
Figure 9. LED OPEN Detection Voltage  
vs Temperature  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
12/65  
TSZ22111 • 15 • 001  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
Typical Performance Curves - continued  
5.1  
105  
104  
103  
102  
101  
100  
99  
VCC = 3.3 V  
VCC = 3.3 V  
VCC = 5.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 5.5 V  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
98  
RISET = 7.5 kΩ  
97  
VLED1 = 0.65 V  
SDI = w(0x18,0xFF)  
w(0x19,0x3F)  
96  
95  
-40 -20 +0 +20 +40 +60 +80 +100 +120  
-40 -20 +0 +20 +40 +60 +80 +100 +120  
Temperature [°C]  
Temperature [°C]  
Figure 10. LED SHORT Detection Voltage  
vs Temperature  
Figure 11. LEDn Pin Output Current1 vs Temperature  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
60  
40  
20  
0
Ta = +25 °C  
Ta = +125 °C  
RISET = 7.5 kΩ  
VLED1 = 0.65 V  
SDI = w(0x18,0xFF)  
w(0x19,0x3F)  
RISET = 7.5 kΩ  
VLED1 = 0.65 V  
SDI = w(0x18,0xFF)  
w(0x19,0x3F)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
LEDn Pin Voltage [V]  
LED Pin Voltage [V]  
Figure 12. LEDn Pin Output Current1 vs LED Pin Voltage  
(VCC = 3.3 V)  
Figure 13. LEDn Pin Output Current1 vs LED Pin Voltage  
(VCC = 5.0 V)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
13/65  
TSZ22111 • 15 • 001  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
Functions of Logic Blocks  
1. Serial Interface and AC Electrical Characteristics  
Serial Peripheral Interface (SPI) controls the IC with SCSB, SCLK, SDI, and SDO signals.  
Start the SPI communication with the initial value of SCSB is ‘High’, and that of SCLK and SDI is ‘Low’.  
When using several devices, connect the SDO pin to the SDI pin of the next device to make cascade connection.  
SDO signal is output after SDI input from 8 datas. Example of the n byte Write is shown in the following.  
SDO is in the state of output the signals. (initial value is ‘Low’)  
SCSB  
・・・・・・・・・・  
1st 2nd 3rd 4th 5th 6th 7th 8th  
SCLK  
SDI  
・・・・・・・・・・  
・・・・・・・・・・  
DA DA DA DA DA DA ND ND ND ND ND ND ND ND  
[5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
RA RA RA RA RA RA RA DT DT DT DT DT DT DT DT  
[6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
B
S
RW  
DevAddr[5:0]  
8 bits  
NumOfData[6:0]  
8 bits  
RegAddr[6:0]  
8 bits  
Data1[7:0]  
8 bits  
DA DA DA DA DA DA ND ND ND ND ND ND ND ND  
[5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
RA RA RA RA RA RA RA DT  
[6] [5] [4] [3] [2] [1] [0] [7]  
B
S
 Low  
RW  
SDO  
・・・・・・・・・・  
・・・・・・・・・・  
・・・・・・・・・・  
B:  
S:  
Broadcast  
Single  
DT DT DT DT DT DT DT DT DT DT DT  
[2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
RW:  
Read / Write  
Device Address  
Number Of Data  
Register Address  
Data  
・・・・・・・・・・  
DA[5:0]:  
ND[7:0]:  
RA[6:0]:  
DT[7:0]:  
Data[7:0]  
DT DT DT DT DT DT DT DT  
[6] [5] [4] [3] [2] [1] [0] [7]  
 Low  
・・・・・・・・・・  
Figure 14. SPI Protocol (Write)  
SCSB  
SCLK  
SDI  
・・・・・・・・・・  
・・・・・・・・・・  
1st 2nd 3rd 4th 5th 6th 7th 8th  
DA DA DA DA DA DA ND ND ND ND ND ND ND ND  
RA RA RA RA RA RA RA  
[6] [5] [4] [3] [2] [1] [0]  
B
S
0
RW  
[5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
・・・・・・・・・・  
DevAddr[5:0]  
8 bits  
NumOfData[6:0]  
8 bits  
RegAddr[6:0]  
8 bits  
DA DA DA DA DA DA ND ND ND ND ND ND ND ND  
[5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
RA RA RA RA RA RA RA RD  
[6] [5] [4] [3] [2] [1] [0] [7]  
B
S
 Low  
RW  
SDO  
・・・・・・・・・・  
・・・・・・・・・・  
・・・・・・・・・・  
B:  
S:  
RW:  
DA[5:0]:  
ND[6:0]:  
RA[6:0]:  
DT[7:0]:  
RD[7:0]:  
Broadcast  
Single  
0
・・・・・・・・・・  
Read / Write  
Device Address  
Number Of Data  
Register Address  
Data  
8 bits  
RD RD RD RD RD RD RD RD RD RD  
[6] [5] [4] [3] [2] [1] [0] [7] [6] [5]  
RD  
[0]  
Read Data  
・・・・・・・・・・  
Figure 15. SPI Protocol (Read)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
14/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Functions of Logic Blocks - continued  
2. SPI AC Timing  
VSYNC  
tSCSBHP  
tSCSBVS  
tSCSBVH  
high Vth  
low Vth  
SCSB  
tSCSBS  
fSCLK  
tSCLKH  
tSCSBH  
SCLK  
SDI  
tSDIH  
tSDIS  
tSDIH  
tSDIS  
tSCLKL  
tSDOD  
tSDOD  
SDO  
High Vth  
Low Vth  
Figure 16. SPI AC Timing  
Table 2. SPI AC Timing  
Recommended Operation Condition (Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 3.0 V to 5.5 V)  
Rating  
Parameter  
Symbol  
Unit  
Comments  
Min  
0.1  
40  
Typ  
Max  
SCLK Frequency  
fSCLK  
DSCLK  
tSCLKH  
tSCLKL  
tSDIS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
MHz  
%
SCLK Duty  
60  
SCLK High Level Range  
SCLK Low Level Range  
SDI Input Setup Time  
SDI Input Hold Time  
SCSB Input Setup Time  
SCSB Input Hold Time  
70  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
70  
-
40  
-
tSDIH  
25  
-
tSCSBS  
tSCSBH  
100  
100  
25  
-
-
140  
100  
140  
-
VCC = VVREG33: 3.0 V to 3.6 V  
VCC = VVREG33: 4.5 V to 5.5 V  
VCC = VVREG33: 3.0 V to 5.5 V  
SDO Output Delay Time  
tSDOD  
15  
15  
SCSB High Pulse Width  
tSCSBHP  
tSCSBVS  
tSCSBVH  
1000  
10  
SCSB Setup Time for VSYNC  
SCSB Hold Time for VSYNC  
-
10  
-
(Output load capacitance: 15 pF)  
(Note) It is not available to input VSYNC during SCSB = L.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
15/65  
TSZ22111 • 15 • 001  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
Functions of Logic Blocks - continued  
3. Cascade Connection  
Each device can be controlled by connecting the SCLK and SCSB pins to all devices in parallel, and by connecting  
each SDO to the SDI of the next device in series. The maximum number of devices that can be cascaded is 16.  
MCU  
Device #1  
SDI SDO  
SCSB  
Device #2  
SDI SDO  
SCSB  
Device #n  
SDI SDO  
SCSB  
DO  
SCLK  
SCLK  
SCLK  
CS  
*n = Max 16  
CLK  
DI  
Figure 17. Image of Cascade Connection  
4. SPI Data Flow  
MCU Write and Read as following flow. This IC has 3 timing for update analog control data.  
Type A (immediately):  
Type B (VSYNC):  
Type C (PWM):  
It updates data after SPI access.  
It updates data after SPI access and VSYNC rising edge.  
It updates data after SPI access and VSYNC and PWM rising edge.  
(PWM is internal signal set by SPI)  
So, there is mismatch between “Read data” and “Control data”.  
register  
A
SPI Write  
(update timing  
"Immediately")  
VSYNC rising edge  
Control  
Data  
B
Analog  
Circuit  
MCU  
(update timing  
"VSYNC")  
SPI Read  
PWM rising  
Control  
Data  
buffer  
C
(update timing  
"PWM")  
Figure 18. SPI Data Flow  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
16/65  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
Functions of Logic Blocks - continued  
5. SPI Protocol  
(1) Device Address  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
DevAddr [5:0]  
B
S
Bit  
B
Parameter  
Broadcast  
Function  
B = 1: All chips receive the data (Write only/No Read)  
B = 0: Write/Read to the chip that assigned by DevAddr [5:0]  
S = 1: 1 byte Write/Read mode  
S
Single byte  
S = 0: block Write/Read mode  
0x00: Write the same data to the same RegAddr of all devices (Provided, B = 1)  
0x01 to 0x3E: Each Device Address  
0x3F: Write the different data to the same RegAddr of all devices (Provided, B = 1)  
Device  
Address  
DevAddr [5:0]  
DevAddr of each device will be calculated by counting the number of byte of 0x00 data after the fall-edge of SCSB.  
When matching the received DevAddr and calculated DevAddr of the device, Write/Read function will occur.  
When unmatching the received DevAddr and calculated DevAddr of the chip, not taking in the data and output to  
SDO. Refer to the each protocol for the details.  
(2) Number of transferred byte when block Write/Read  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
0
NumOfData [6:0]  
Bit  
Parameter  
Function  
Number of transferred byte for one  
device  
NumOfData [6:0]  
0x02 to 0x48  
When S = 0 (Block Write/Read) of DevAddr, set the number of transferred byte (NumOfData) after DevAddr.  
When S = 1, it skip this packet. (“Device Address” ->“Register Address” ->….)  
Transferred byte number = NumOfData  
Table 3. Access Table for Write (RW = 0)  
SPI setting  
DevAddr  
Access to devices  
For All device  
For single  
device  
Acceptable(Note 1)  
B
0
S
0
1
0
1
NumOfData  
0x02 to 0x48  
Same  
Different  
data  
data  
0x00  
0x01 to 0x3E  
0x3F  
0x00  
0x01 to 0x3E  
0x3F  
0x00  
0x01 to 0x3E  
0x3F  
0x00  
0x01 to 0x3E  
0x3F  
-
O
-
-
O
-
-
-
-
-
-
-
-
-
X
O
X
X
O
X
O
X
O
O
X
O
-
-
-
-
Not sending  
this data  
-
-
-
-
O
-
-
-
0x02 to 0x48  
-
O
-
O
-
-
1
Not sending  
this data  
-
-
-
O
(Note 1) X: This setting isn’t acceptable. Don’t set this condition.  
Table 4. Access Table for Read (RW = 1)  
Access to devices  
SPI setting  
DevAddr  
For All device  
Same  
data  
For single  
device  
Acceptable(Note 1)  
B
0
1
S
0
NumOfData  
0x02 to 0x48  
Different  
data  
0x00  
0x01 to 0x3E  
0x3F  
0x00  
0x01 to 0x3E  
0x3F  
0x00  
0x01 to 0x3E  
0x3F  
-
O
-
-
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
O
X
X
O
X
X
X
X
Not sending  
this data  
1
0/1  
0x02 to 0x48  
(Note 1) X: This setting isn’t acceptable. Don’t set this condition.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
17/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(3) Register Address  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
RW RegAddr [6:0]  
Bit  
Parameter  
Function  
RW = 0: Write the registers  
RW = 1: Read the registers  
0x00 to 0x4F  
RW  
Read/Write  
RegAddr [6:0]  
Register Address  
(4) Data  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
Data [7:0]  
Bit  
Parameter  
Value  
Data [7:0]  
Data  
0x00 to 0xFF  
(5) Single device, 1 byte Write (Write to Device #1)  
B:  
0
Target Device receives the data  
S:  
1
Single byte  
DevAddr[5:0]:  
NumOfData[6:0]:  
RW:  
0x01  
-
0
Target Device Address  
1 byte Write mode  
Write  
RegAddr[6:0]:  
0x02  
Address  
SDI  
: Transfer in the order of DevAddr, RegAddr, and Data.  
SDO : The data input to SDI is output with a 1 byte shift.  
SCSB  
SCSB = H stop the output  
of this data.  
SCLK  
B S DevAddr[5:0] RW RegAddr[6:0]  
01 0x01  
0
0x02  
1 byte shift  
01 0x01  
Data1 [7:0]  
SDI  
SDO  
0x01  
0
0x02  
Ex) Detail of Timing Chart  
SCSB  
SCLK  
B
S
DevAddr[5:0]  
RW  
RegAddr[6:0]  
Data1[7:0]  
SDI  
8 bit shift every Device  
SDO  
Device #1  
Register  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Data1  
Figure 19. SPI Protocol of the 1 Byte Write to Device #1  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
18/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(6) Single device, 1 byte Write (Write to Device #3)  
B:  
S:  
0
1
Target Device receives the data  
Single byte  
DevAddr[5:0]:  
NumOfData[6:0]:  
RW:  
0x03  
-
0
Target Device Address  
1 byte Write mode  
Write  
RegAddr[6:0]:  
0x02  
Address  
SDI  
: Transfer in the order of DevAddr, RegAddr, and Data.  
SDO : Output the transferred data to the next device after SDI input by 1 byte.  
DevAddr of each device will be calculated by counting the number of byte of 0x00 data after the fall-edge of  
SCSB.  
DevAddr = (Number of byte of 0x00 data) + 1  
SCSB  
SCLK  
B S DevAddr[5:0] RW RegAddr[6:0]  
0 1  
0x03  
0
0x02  
Data1 [7:0]  
0x00  
0x00  
0x00  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x00  
0 1 0x03  
0x00  
0
0x02  
Data1 [7:0]  
Device #2 SDO  
(Device #3 SDI)  
0x00  
0x00  
0 1 0x03  
0x00  
0
0x02  
Data1 [7:0]  
0x00  
0 1 0x03  
0
0x02  
Device #3 SDO  
2 byte 00h after SCSB↓  
DevAddr of Device#3 = 2 + 1 = 0x03  
Match to the DevAddr  
of Device#3  
This data will be written to  
RegAddr02h, Device#3  
Device #1  
Register  
Device #2  
Register  
Device #3  
Register  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Data1  
Figure 20. SPI Protocol of the 1 Byte Write to Device #3  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
19/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(7) Single device, “n byte” Write (Write to the consecutive register of Device #1)  
B:  
S:  
0
0
Target Device receives the data  
Single byte  
DevAddr[5:0]:  
NumOfData[6:0]: 0x03  
RW:  
0x01  
Target Device Address  
3 byte Write mode  
Write  
0
RegAddr[6:0]:  
0x02  
Address  
SDI  
: Transfer in the order of DevAddr, NumOfData, RegAddr, and Data.  
SDO : Output the transferred data to the next device after SDI input by 1 byte.  
SCSB  
SCLK  
B S DevAddr[5:0] NumOfData[6:0] RW RegAddr[6:0]  
0 1  
0x01  
0
0x03  
0
0x02  
Data1 [7:0] Data2 [7:0] Data3 [7:0]  
0x02  
Data1 [7:0] Data2 [7:0]  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0
0x00  
0 0 0x01  
0x00  
0
0x03  
Device #2 SDO  
(Device #3 SDI)  
0x00  
0x00  
0 0 0x01  
0x00  
0
0x03  
0
0x02  
Data1 [7:0]  
0x00  
0 0 0x01  
0
0x03  
0
0x02  
Device #3 SDO  
2byte 00h after SCSB↓  
DevAddr of Device#3=2+1=0x03  
Match to the DevAddr  
of Device#3  
This data will be written to  
RegAddr02h, Device#3  
Device #1  
Device #2  
Device #3  
Register  
Register  
Register  
0x07  
0x06  
0x05  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x04  
Data3  
0x03  
Data2  
0x02  
Data1  
0x01  
0x00  
Figure 21. SPI Protocol of the n Byte Write to Device #1  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
20/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(8) All device, different “1 byte” Write (Write the same 1 byte data to the same RegAddr of all Devices)  
B:  
S:  
1
1
All device receive data  
Single byte  
DevAddr[5:0]:  
NumOfData[6:0]:  
RW:  
0x3F  
-
0
All device different data  
1 byte Write mode  
Write  
RegAddr[6:0]:  
0x02  
Address  
SDI  
: Transfer in the order of DevAddr, RegAddr, and Data.  
SDO : Output the transferred data to the next device after SDI input by 1 byte.  
SCSB  
SCLK  
B S DevAddr[5:0] RW RegAddr[6:0]  
1 1  
0x3F  
0
0x02  
Data1 [7:0]  
0x02  
Data2 [7:0]  
Data1 [7:0]  
Data3 [7:0]  
Data2 [7:0]  
0x00  
0x00  
0x00  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x00  
1 1  
0x3F  
0
Data3 [7:0]  
Device #2 SDO  
(Device #3 SDI)  
0x00  
0x00  
0x00  
0x00  
1 1  
0x3F  
0
0x02  
Data1 [7:0]  
0 0x02  
Data2 [7:0]  
Data1 [7:0]  
Data3 [7:0]  
Data2 [7:0]  
0x00  
1 1  
0x3F  
Device #3 SDO  
Device #1  
Device #2  
Device #3  
Register  
Register  
Register  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
Data1  
Data2  
Data3  
0x01  
0x00  
0x01  
0x00  
Figure 22. SPI Protocol of the 1 Byte Distinct Data Write to All Devices  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
21/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(9) All device, same “1 byte” Write (Write the same 1 byte data to the same RegAddr of all Devices)  
B:  
S:  
1
1
All device receive data  
Single byte  
DevAddr[5:0]:  
NumOfData[6:0]:  
RW:  
0x00  
-
0
All device same data  
1 byte Write mode  
Write  
RegAddr[6:0]:  
0x02  
Address  
SDI  
: Transfer in the order of DevAddr, RegAddr, and Data.  
SDO : Output the transferred data to the next device after SDI input by 1 byte.  
SCSB  
SCLK  
B S DevAddr[5:0] RW RegAddr[6:0]  
0 1  
0x00  
0
0x02  
Data1 [7:0]  
0x02  
0x00  
0x00  
0x00  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x00  
1 1 0x00  
0x00  
0
Data1 [7:0]  
Device #2 SDO  
(Device #3 SDI)  
0x00  
0x00  
1 1 0x00  
0x00  
0
0x02  
Data1 [7:0]  
0x00  
1 1  
0x00  
0
0x02  
Device #3 SDO  
Device #1  
Device #2  
Device #3  
Register  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Register  
Register  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
Data1  
Data1  
Data1  
0x01  
0x00  
Figure 23. SPI Protocol of the 1 Byte Distinct Data Write to All Devices  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
22/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(10) All device, different “n byte” Write (Write the different n byte data to the same RegAddr of all Devices)  
B:  
S:  
1
0
All device receive data  
multi byte  
DevAddr[5:0]:  
NumOfData[6:0]: 0x02  
RW:  
0x3F  
All device different data  
2 byte Write mode  
Write  
0
RegAddr[6:0]:  
0x02  
Address  
SDI  
: Transfer in the order of DevAddr, NumOfData, RegAddr, and Data.  
SDO : Output the transferred data to the next device after SDI input by 1 byte.  
SCSB  
SCLK  
B S DevAddr[5:0] NumOfData[6:0] RW RegAddr[6:0]  
1 1  
0x3F  
0
0x02  
0
0x02  
Data1 [7:0]  
0x02  
Data2 [7:0]  
Data1 [7:0]  
Data3 [7:0]  
Data2 [7:0]  
Data4 [7:0]  
Data3 [7:0]  
Data5 [7:0]  
Data4 [7:0]  
Data6 [7:0]  
Data5 [7:0]  
0x00  
0x00  
0x00  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x00  
1 0  
0x3F  
0
0x02  
0
0
Data6 [7:0]  
Device #2 SDO  
(Device #3 SDI)  
0x00  
0x00  
0x00  
0x00  
1 0  
0x3F  
0x02  
0
0
0x02  
0x02  
Data1 [7:0]  
0 0x02  
Data2 [7:0]  
Data1 [7:0]  
Data3 [7:0]  
Data2 [7:0]  
Data4 [7:0]  
Data3 [7:0]  
Data5 [7:0]  
Data4 [7:0]  
Data6 [7:0]  
Data5 [7:0]  
Device #3 SDO  
0x00  
1 0  
0x3F  
Device #1  
Device #2  
Device #3  
Register  
Register  
Register  
0x07  
0x06  
0x05  
0x04  
0x03  
0x07  
0x06  
0x05  
0x04  
0x03  
0x07  
0x06  
0x05  
0x04  
0x03  
Data2  
Data4  
Data3  
Data6  
Data5  
0x02  
0x01  
0x00  
0x02  
0x01  
0x00  
0x02  
0x01  
0x00  
Data1  
Figure 24. SPI Protocol of the n Byte Distinct Data Write to All Devices  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
23/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(11) All device, same “n byte” Write (Write the same n byte data to the same RegAddr of all Devices)  
B:  
S:  
1
0
All device receive data  
multi byte  
DevAddr[5:0]:  
NumOfData[6:0]: 0x03  
RW:  
0x00  
All device same data  
3 byte Write mode  
Write  
0
RegAddr[6:0]:  
0x02  
Address  
SDI  
: Transfer in the order of DevAddr, NumOfData, RegAddr, and Data.  
SDO : Output the transferred data to the next device after SDI input by 1 byte.  
SCSB  
SCLK  
B S DevAddr[5:0] NumOfData[6:0] RW RegAddr[6:0]  
1 0  
0x00  
0
0x03  
0
0x02  
Data1 [7:0]  
0x02  
Data2 [7:0]  
Data1 [7:0]  
Data3 [7:0]  
Data2 [7:0]  
0x00  
0x00  
0x00  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x00  
1 0  
0x00  
0
0x03  
0
0
Data3 [7:0]  
Device #2 SDO  
(Device #3 SDI)  
0x00  
0x00  
0x00  
0x00  
1 0  
0x00  
0x00  
0x03  
0
0
0x02  
0x03  
Data1 [7:0]  
0 0x02  
Data2 [7:0]  
Data1 [7:0]  
Data3 [7:0]  
Data2 [7:0]  
1 0  
0x00  
Device #3 SDO  
Device #1  
Device #2  
Device #3  
Register  
Register  
Register  
0x07  
0x06  
0x05  
0x04  
0x07  
0x06  
0x05  
0x04  
0x07  
0x06  
0x05  
0x04  
Data3  
Data2  
Data1  
Data3  
Data2  
Data1  
Data3  
Data2  
Data1  
0x03  
0x02  
0x01  
0x00  
0x03  
0x02  
0x01  
0x00  
0x03  
0x02  
0x01  
0x00  
Figure 25. SPI Protocol of the n Byte Same Data Write to All Devices  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
24/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(12) Single device, “1 byte” Read (Read the 1 byte data from Device #2)  
B:  
S:  
0
1
Target device receive each data  
single byte  
DevAddr[5:0]:  
NumOfData[6:0]:  
RW:  
0x02  
-
1
Target Device Address  
1 byte Read mode  
Read  
RegAddr[6:0]:  
0x03  
Address  
SDI  
: Transfer in the order of DevAddr and RegAddr.  
SDO : Output the transferred data to the next device after SDI input by 1 byte.  
SCSB  
SCLK  
B S DevAddr[5:0] RW RegAddr[6:0]  
01  
0x02  
1
0x03  
0x00  
0x03  
0x00  
0x00  
0x00  
0x00  
0x00  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x00  
0 1  
0x02  
1
0x00  
Read Data[7:0]  
Data1 [7:0]  
Device #2 SDO  
(Device #3 SDI)  
0x00  
0x00  
0x00  
0x00  
0 1  
0x02  
0x00  
1
0x03  
0x02  
0x00  
0 1  
1
0x03  
Data1 [7:0]  
Device #3 SDO  
Device #1  
Register  
0x07  
Device #2  
Register  
0x07  
Device #3  
Register  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x06  
0x05  
0x04  
0x03  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Data1  
0x02  
0x01  
0x00  
Figure 26. SPI Protocol of the 1 Byte Read from Device #2  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
25/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(13) Single device, “n byte” Read (Read the n byte data from Device #2)  
B:  
S:  
0
0
Target device receive each data  
multi byte  
DevAddr[5:0]:  
NumOfData:  
RW:  
0x02  
0x02  
1
Target Device Address  
1 byte Read mode  
Read  
RegAddr[6:0]:  
0x03  
Address  
SDI  
: Transfer in the order of DevAddr, NumOfData, and RegAddr.  
SDO : Output the transferred data to the next device after SDI input by 1 byte.  
SCSB  
SCLK  
B S DevAddr[5:0] NumOfData[6:0]  
RW RegAddr[6:0]  
0 0  
0x02  
0
0x02  
1
0x03  
0x00  
0x03  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x00  
0 0  
0x02  
0
0x02  
1
0
Device #2 SDO  
(Device #3 SDI)  
0x00  
0x00  
0x00  
0x00  
0 0  
0x02  
0x00  
0x02  
0x02  
1
0
0x03  
0x02  
Data1 [7:0]  
0x03  
Data2 [7:0]  
Data1 [7:0]  
0x00  
0 0  
1
Data2 [7:0]  
Device #3 SDO  
SCSB = H stop the output  
of this data  
Device #1  
Device #2  
Device #3  
Register  
Register  
Register  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x07  
0x06  
0x05  
0x04  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Data2  
Data1  
0x03  
0x02  
0x01  
0x00  
Figure 27. SPI Protocol of the n Byte Read from Device #2  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
26/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. SPI Protocol - continued  
(14) Example of n byte Write (Write the n byte data to Device #1 and #2)  
Example of the transfer of 2 device Cascade Connection.  
DevAddr  
1 byte  
Transfer setting  
Number of transferred byte  
RegAddr  
1 byte  
1 byte  
2 byte x 16 channel x 2 device  
= 64 byte  
Data  
Data for the duty setting of Duty  
Dummy clock  
for multi device transfer  
SUM  
1 byte  
68 byte  
DevAddr[5:0]  
1 0 0x3F  
NumOfData[6:0] RegAddr[6:0]  
Date[7:0] x 2 x 16 ch  
device #1  
device #1  
device #1  
device #1  
DTYCNT01L  
0
0x20  
0
0x18  
DTYCNT01U  
DTYCNT16L  
DTYCNT16U  
Number of  
RegAddr of  
transferred byte  
for each device  
DTYCNT01L  
Dummy byte  
Date[7:0] x 2 x 16 ch  
device #2  
device #2  
DTYCNT16U  
device #2  
DTYCNT01L  
device #2  
DTYCNT01U  
0x00  
Dummy Clocks  
DTYCNT16L  
Figure 28. Transfer Byte Number for Multi Access  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
27/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Functions of Logic Blocks - continued  
6. Register Map  
Each registers is updated at the 3 timings.  
Provided for Type B and Type C, the registers are not updated when the update timing and SCSB = ‘Low’ are the same, and  
wait for the next update timing when SCSB = ‘High’.  
Reset Condition: “UVLO” condition = VREG33UVLO or VCCUVLO or TSD or EN is detected.  
Register Update timing for control data  
Type A : Updated to the newest data immediately when the data is written.  
Type B : Updated to the newest data when the next VSYNC timing.  
(rise-edge trigger) after the data is written.)  
Type C : Updated to the newest data when the next VSYNC and PWM (PWM is internal signal) timing.  
(rise-edge trigger of VSYNC, then rise-edge trigger of PWM (first PWM pulse when PWMFREQ[1:0] = 01h to 11h)  
after the data is written.  
Note: Don’t access (Write) register except for following register and write ‘0’ in ‘-’.  
register  
A
SPI Write  
(update timing  
"Immediately")  
VSYNC rising edge  
Control  
Data  
B
Analog  
Circuit  
MCU  
(update timing  
"VSYNC")  
SPI Read  
PWM rising  
Control  
Data  
buffer  
C
(update timing  
"PWM")  
Figure 29. SPI Data Flow  
Address 0x01 to 0x16 (1/3)  
Register  
Access  
Reset  
Condition  
Update  
Timing  
Register Name  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
-
Bit[0]  
-
Initial  
0x00  
0x00  
0x0F  
0x3C  
0x29  
0x07  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Comments  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UVLO  
Type A Blank  
PWMFREQ[1:0]  
PWMFREQ  
ERRSET1  
SSMASK  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
Type A PWM output frequency setting  
Type A LED short voltage setting  
SCPTIME[1:0]  
LEDSH[3:0]  
SSMASK[7:0]  
ERRMASK[7:0]  
Type B SS mask time  
ERRMASK  
ERREN  
Type B error mask time  
-
-
-
-
-
-
-
TSDWEN  
-
LEDSHEN  
-
LEDOPEN  
Type B error enable setting  
ERRLAT  
(Note 1)  
ERRSET2  
DLYCNT01  
DLYCNT02  
DLYCNT03  
DLYCNT04  
DLYCNT05  
DLYCNT06  
DLYCNT07  
DLYCNT08  
DLYCNT09  
DLYCNT10  
DLYCNT11  
DLYCNT12  
DLYCNT13  
DLYCNT14  
DLYCNT15  
DLYCNT16  
FAILTEST  
FAILCNT  
ERRCLR  
DLY01[7:0]  
Type A Error controlling  
Type B LED1 PWM Delay setting upper 8bit  
Type B LED2 PWM Delay setting upper 8bit  
Type B LED3 PWM Delay setting upper 8bit  
Type B LED4 PWM Delay setting upper 8bit  
Type B LED5 PWM Delay setting upper 8bit  
Type B LED6 PWM Delay setting upper 8bit  
Type B LED7 PWM Delay setting upper 8bit  
Type B LED8 PWM Delay setting upper 8bit  
Type B LED9 PWM Delay setting upper 8bit  
Type B LED10 PWM Delay setting upper 8bit  
Type B LED11 PWM Delay setting upper 8bit  
Type B LED12 PWM Delay setting upper 8bit  
Type B LED13 PWM Delay setting upper 8bit  
Type B LED14 PWM Delay setting upper 8bit  
Type B LED15 PWM Delay setting upper 8bit  
Type B LED16 PWM Delay setting upper 8bit  
DLY02[7:0]  
DLY03[7:0]  
DLY04[7:0]  
DLY05[7:0]  
DLY06[7:0]  
DLY07[7:0]  
DLY08[7:0]  
DLY09[7:0]  
DLY10[7:0]  
DLY11[7:0]  
DLY12[7:0]  
DLY13[7:0]  
DLY14[7:0]  
DLY15[7:0]  
DLY16[7:0]  
(Note) WO: Write Only, RO: Read Only, R/W: Read and Write  
(Note 1) Update timing of ERRLAT is Type B.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
28/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
6. Register Map – continued  
Address 0x17 to 0x47 (2/3)  
Register  
Access  
Reset  
Condition  
Update  
Timing  
Register Name  
Address  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
Bit[7]  
Bit[6]  
Bit[5]  
-
Bit[4]  
Bit[3]  
-
Bit[2]  
-
Bit[1]  
Bit[0]  
Initial  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Comments  
PWMPLS  
-
-
PLSSET  
PLSNUM[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
Type C PWM pulse number setting  
Type C LED1 PWM ON duty Lower 8bit  
Type C LED1 PWM ON duty Upper 5bit  
Type C LED2 PWM ON duty Lower 8bit  
Type C LED2 PWM ON duty Upper 5bit  
Type C LED3 PWM ON duty Lower 8bit  
Type C LED3 PWM ON duty Upper 5bit  
Type C LED4 PWM ON duty Lower 8bit  
Type C LED4 PWM ON duty Upper 5bit  
Type C LED5 PWM ON duty Lower 8bit  
Type C LED5 PWM ON duty Upper 5bit  
Type C LED6 PWM ON duty Lower 8bit  
Type C LED6 PWM ON duty Upper 5bit  
Type C LED7 PWM ON duty Lower 8bit  
Type C LED7 PWM ON duty Upper 5bit  
Type C LED8 PWM ON duty Lower 8bit  
Type C LED8 PWM ON duty Upper 5bit  
Type C LED9 PWM ON duty Lower 8bit  
Type C LED9 PWM ON duty Upper 5bit  
Type C LED10 PWM ON duty Lower 8bit  
Type C LED10 PWM ON duty Upper 5bit  
Type C LED11 PWM ON duty Lower 8bit  
Type C LED11 PWM ON duty Upper 5bit  
Type C LED12 PWM ON duty Lower 8bit  
Type C LED12 PWM ON duty Upper 5bit  
Type C LED13 PWM ON duty Lower 8bit  
Type C LED13 PWM ON duty Upper 5bit  
Type C LED14 PWM ON duty Lower 8bit  
Type C LED14 PWM ON duty Upper 5bit  
Type C LED15 PWM ON duty Lower 8bit  
Type C LED15 PWM ON duty Upper 5bit  
Type C LED16 PWM ON duty Lower 8bit  
Type C LED16 PWM ON duty Upper 5bit  
Type C LED1 local DAC setting  
DTYCNT01L  
DTYCNT01U  
DTYCNT02L  
DTYCNT02U  
DTYCNT03L  
DTYCNT03U  
DTYCNT04L  
DTYCNT04U  
DTYCNT05L  
DTYCNT05U  
DTYCNT06L  
DTYCNT06U  
DTYCNT07L  
DTYCNT07U  
DTYCNT08L  
DTYCNT08U  
DTYCNT09L  
DTYCNT09U  
DTYCNT10L  
DTYCNT10U  
DTYCNT11L  
DTYCNT11U  
DTYCNT12L  
DTYCNT12U  
DTYCNT13L  
DTYCNT13U  
DTYCNT14L  
DTYCNT14U  
DTYCNT15L  
DTYCNT15U  
DTYCNT16L  
DTYCNT16U  
LCDAC1  
DTY01[7:0]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DTYEN01  
DTYEN02  
DTYEN03  
DTYEN04  
DTYEN05  
DTYEN06  
DTYEN07  
DTYEN08  
DTYEN09  
DTYEN10  
DTYEN11  
DTYEN12  
DTYEN13  
DTYEN14  
DTYEN15  
DTYEN16  
DTY01[12:8]  
DTY02[12:8]  
DTY03[12:8]  
DTY04[12:8]  
DTY05[12:8]  
DTY06[12:8]  
DTY07[12:8]  
DTY08[12:8]  
DTY09[12:8]  
DTY10[12:8]  
DTY11[12:8]  
DTY12[12:8]  
DTY13[12:8]  
DTY14[12:8]  
DTY15[12:8]  
DTY16[12:8]  
DTY02[7:0]  
DTY03[7:0]  
DTY04[7:0]  
DTY05[7:0]  
DTY06[7:0]  
DTY07[7:0]  
DTY08[7:0]  
DTY09[7:0]  
DTY10[7:0]  
DTY11[7:0]  
DTY12[7:0]  
DTY13[7:0]  
DTY14[7:0]  
DTY15[7:0]  
DTY16[7:0]  
LCDAC1[7:0]  
LCDAC2[7:0]  
LCDAC3[7:0]  
LCDAC4[7:0]  
LCDAC5[7:0]  
LCDAC6[7:0]  
LCDAC7[7:0]  
LCDAC8[7:0]  
LCDAC9[7:0]  
LCDAC2  
Type C LED2 local DAC setting  
LCDAC3  
Type C LED3 local DAC setting  
LCDAC4  
Type C LED4 local DAC setting  
LCDAC5  
Type C LED5 local DAC setting  
LCDAC6  
Type C LED6 local DAC setting  
LCDAC7  
Type C LED7 local DAC setting  
LCDAC8  
Type C LED8 local DAC setting  
LCDAC9  
Type C LED9 local DAC setting  
LCDAC10  
LCDAC10[7:0]  
LCDAC11[7:0]  
LCDAC12[7:0]  
LCDAC13[7:0]  
LCDAC14[7:0]  
LCDAC15[7:0]  
LCDAC16[7:0]  
Type C LED10 local DAC setting  
LCDAC11  
Type C LED11 local DAC setting  
LCDAC12  
Type C LED12 local DAC setting  
LCDAC13  
Type C LED13 local DAC setting  
LCDAC14  
Type C LED14 local DAC setting  
LCDAC15  
Type C LED15 local DAC setting  
LCDAC16  
Type C LED16 local DAC setting  
(Note) WO: Write Only, RO: Read Only, R/W: Read and Write  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
29/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
6. Register Map - continued  
Address 0x48 to 0x4F (3/3)  
Register  
Access  
Reset  
Condition  
Update  
Timing  
Register Name  
Address  
Bit[7]  
Bit[6]  
Bit[5]  
-
Bit[4]  
-
Bit[3]  
-
Bit[2]  
-
Bit[1]  
-
Bit[0]  
-
Initial  
-
Comments  
-
0x48  
-
-
-
-
-
blank  
error flag LEDn open  
(n = 1 to 8)  
ERLOP[7:0]  
ERRLEDOPA  
ERRLEDOPB  
ERRLEDSHA  
ERRLEDSHB  
ERRISETSCP  
ERRTSDA  
0x49  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
Type A  
Type A  
Type A  
Type A  
(Note 2)  
error flag LEDn open  
(n = 9 to 16)  
ERLOP[15:8]  
(Note 2)  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
error flag LEDn short  
(n = 1 to 8)  
ERLSH[7:0]  
(Note 2)  
error flag LEDn short  
(n = 9 to 16)  
ERLSH[15:8]  
(Note 2)  
WARSCP  
(Note 3)  
WARISET  
(Note 2)  
-
-
-
-
-
-
Type A error flag ISET short and SCP  
error flag TSD warning  
(n = 1 to 8)  
WARTSD[7:0]  
(Note 2)  
Type A  
error flag TSD warning  
Type A  
WARTSD[15:8]  
(Note 2)  
ERRTSDB  
(n = 9 to 16)  
(Note) WO: Write Only, RO: Read Only, R/W: Read and Write  
(Note 2) Released condition is referred in description of register.  
(Note 3) Released condition is only reset.  
7. Description of Registers  
Address 0x01: PWMFREQ  
Output PWM frequency setting [Read/Write]  
Initial value 0x00  
Bit No  
Name  
Bit[7]  
-
Bit[6]  
-
Bit[5]  
-
Bit[4]  
-
Bit[3]  
-
Bit[2]  
-
Bit[1]  
PWMFREQ[1:0]  
Bit[0]  
Initial value  
0
0
0
0
0
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
Regarding EXTCLK frequency, refer to the following list.  
If it is different from relation of PWMFREQ and EXTCLK frequency, it can’t control LED normally.  
Don’t change value during dimming. (only initial setting before PWM setting)  
PWMFREQ[1:0]  
PWM Frequency  
VSYNC x 1  
VSYNC x 2  
VSYNC x 4  
VSYNC x 8  
EXTCLK Frequency  
VSYNC x 8,192  
VSYNC x 16,384  
VSYNC x 32,768  
VSYNC x 65,536  
0
1
2
3
Example of EXTCLK setting is referred. This IC can be acceptable to input EXTCLK under 5 MHz.  
(Refer to frequency range of electric characteristics)  
(Example) EXTCLK frequency and PWM frequency  
VSYNC Frequency [Hz]  
PWMFREQ[1:0]  
60  
491,520  
60  
983,040  
120  
1,966,080  
240  
3,932,160  
480  
120  
983,040  
120  
240  
1,966,080  
480  
3,932,160  
0
1
2
3
240  
480  
-
-
-
-
-
-
1,966,080  
240  
3,932,160  
480  
3,932,160  
480  
-
-
-
-
-
-
[Hz]  
Upper: EXTCLK frequency  
Lower: PWM frequency  
‘-’ is not acceptable to set this value in PWMFREQ register.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
30/65  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers - continued  
PWMFREQ[1:0] = 0  
VSYNC  
EXTCLK  
EXTCLK = VSYNC x 8,192(213)[Hz]  
PWM:VSYNCx1[Hz]  
PWMn  
resolution:213  
PWMFREQ[1:0] = 1  
VSYNC  
EXTCLK  
PWMn  
EXTCLK = VSYNC x 16,384(214)[Hz]  
PWM:VSYNCx2[Hz]  
resolution:213  
PWMFREQ[1:0] = 2  
VSYNC  
EXTCLK = VSYNC x 32,768(215)[Hz]  
EXTCLK  
PWM:VSYNCx4[Hz]  
PWMn  
resolution:213  
PWMFREQ[1:0] = 3  
VSYNC  
EXTCLK = VSYNC x 65,536(216)[Hz]  
EXTCLK  
PWM:VSYNCx8[Hz]  
PWMn  
resolution:213  
Figure 30. PWMFREQ Setting  
LED short detection voltage setting  
Address 0x02: ERRSET1  
[Read/Write]  
Bit[2]  
Initial value 0x0F  
Bit No  
Name  
Bit[7]  
-
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[1]  
Bit[0]  
-
SCPTIME[1:0]  
LEDSH[3:0]  
Initial value  
0
0
0
0
1
1
1
1
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
Bit[5:4]  
SCPTIME  
This register controls MASK time for SCP detected.  
SCPTIME[1:0]  
MASK Time  
0
1
2
3
1 VSYNC cycle  
2 VSYNC cycle  
4 VSYNC cycle  
8 VSYNC cycle  
Bit[3:0] LEDSH[3:0]  
This register controls detection voltage LED short protection.  
LEDSH[3:0]  
0x0 to 0x8  
0x9  
Detection Voltage [V]  
Not available  
3.00  
0xA  
3.30  
0xB  
3.60  
0xC  
3.90  
0xD  
4.20  
0xE  
4.50  
0xF  
4.80  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
31/65  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers – continued  
Address 0x03: SSMASK  
Soft start mask register  
[Read/Write]  
Bit[3]  
SSMASK[7:0]  
Initial value 0x3C  
Bit[1]  
Bit No  
Name  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
Bit[4]  
1
Bit[2]  
1
Bit[0]  
0
Initial value  
1
1
0
Update: VSYNC  
The register data is updated to the newest data when the next VSYNC signal rises up after the data is written.  
Set value more than 0x02.  
It controls protect function (LED open protection, LED short protection, SCP, ISET short warning, TSD warning) after  
SSMASK time. So, it is not available to operate protection function during SSMASK time.  
The time of mask of ERROR detection is set by counting the number of VSYNC.  
Time of mask = SSMASK x VSYNC  
(except for waiting time until 1st VSYNC pulse)  
VSYNC [Hz]  
60  
120  
240  
480  
Max Mask time [ms]  
4,250  
2,125  
1,062.5  
531.3  
Address 0x04: ERRMASK  
ERROR output mask time setting register  
[Read/Write]  
Bit[2]  
Initial value 0x29  
Bit No  
Name  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[1]  
Bit[0]  
ERRMASK[7:0]  
Initial value  
0
0
1
0
1
0
0
1
Update: VSYNC  
The register data is updated to the newest data when the next VSYNC signal rises up after the data is written.  
When 0 to 2 is written to this register, the register value becomes 3.  
When over 3 is written to this register, writing value becomes register value.  
This IC has mask function for “LED open protection” and “LED short protection”. It can’t detect these errors during this time.  
ERROR mask time is set by counting the number of EXTCLK.  
Mask time = ERRMASK x EXTCLK  
Example) ERRMASK = 3: mask 3 clock to 4 clock (PWM = H and error signal (after synchronizing))  
‘-’ column is not acceptable setting.  
VSYNC/EXTCLK condition vs “Maximum Mask time” (Default 0x29 (41))  
VSYNC [Hz]  
PWMFREQ[1:0]  
60  
519  
259  
130  
65  
120  
259  
130  
65  
240  
130  
65  
-
480  
65  
-
-
-
0
1
2
3
-
-
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
32/65  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers – continued  
Address 0x05: ERREN  
Error enable setting  
[Read/Write]  
Initial value 0x07  
Bit No  
Name  
Initial value  
Bit[7]  
-
0
Bit[6]  
-
0
Bit[5]  
-
0
Bit[4]  
-
0
Bit[3]  
-
0
Bit[2]  
TSDWEN  
1
Bit[1]  
LEDSHEN  
1
Bit[0]  
LEDOPEN  
1
Update: VSYNC  
This register is updated to the newest data when the next VSYNC signal rises up after the data is written.  
Bit[2]:  
0:  
1:  
TSDWEN  
disable (error register and error output (FAIL) is initial condition if “TSD warning” is occurred  
enable (135 deg (Typ))  
Bit[1]  
0:  
1:  
LEDSHEN  
disable (error register and error output (FAIL) is initial condition if “LED short protection” is occurred  
enable  
Bit[0]  
0:  
1:  
LEDOPEN  
disable (error register and error output (FAIL) is initial condition if “LED open protection” is occurred  
enable  
“LED open function” effects SCP detection. So, it is not available to change this enable during operation.  
Address 0x06: ERRSET2  
Error Latch mode setting  
[Read/Write]  
Bit[3]  
Initial value 0x00  
Bit[1]  
Bit No  
Name  
Bit[7]  
FAILTEST  
0
Bit[6]  
FAILCNT  
0
Bit[5]  
-
0
Bit[4]  
ERRCLR  
0
Bit[2]  
-
0
Bit[0]  
ERRLAT  
0
-
0
Initial value  
0
Update: FAILTEST, FAILCNT, ERRCLR: Immediately, ERRLAT: VSYNC  
The data (ERRCLR) in register is updated to the newest data immediately when the new data is written.  
The register data (ERRLAT) is updated to the newest data when the next VSYNC signal rises up after the data is written.  
Bit[7]  
0:  
FAILTEST  
normal operation  
1:  
It available to control the FAIL pin output by FAILCNT register.  
Bit[4]  
0:  
1:  
FAILCNT  
It outputs Low from the FAIL pin when FAILTEST = 1  
It outputs High from the FAIL pin when FAILTEST = 1  
Bit[4]  
0:  
ERRCLR  
no operation  
1:  
clear error register and return Hi-Z in FAIL output when ERRLAT = 1  
ERRCLR return ‘0’ automatically. So, it can’t read ‘1’.  
Bit[0]  
0:  
1:  
ERRLAT  
error register and FAIL output are returned to initial condition when error is released.  
error register and FAIL output are kept until writing ‘1’ in ERRCLR.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
33/65  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers - continued  
Address 0x07: DLYCNT01 (LED1 PWM Delay setting register) [Read/Write]  
Initial value 0x00  
Bit[2]  
Bit No  
Name  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
Bit[4]  
Bit[3]  
Bit[1]  
0
Bit[0]  
DLY01[7:0]  
Initial value  
0
0
0
0
0
Update: VSYNC  
The register data is updated to the newest data when the next VSYNC signal rises up after the data is written.  
This register is used to make setting of delay width for PWM light modulation in a total of 8 bits,  
i.e., Bit[7:0] when Address = 0x07.  
LED Delay Width (clock width@EXTCLK)  
DLY01[7:0]  
PWMFREQ[1:0]  
= 0  
PWMFREQ[1:0]  
= 1  
PWMFREQ[1:0]  
= 2  
PWMFREQ[1:0]  
= 3  
0x00  
0x01  
0x02  
0x03  
0xXX  
0xFC  
0xFD  
0xFE  
0xFF  
4 clock to 5 clock width@EXTCLK from posedge of VSYNC (*)  
(*) + 0x01 x 25  
(*) + 0x02 x 25  
(*) + 0x03 x 25  
...  
(*) + 0x01 x 26  
(*) + 0x02 x 26  
(*) + 0x03 x 26  
...  
(*) + 0x01 x 27  
(*) + 0x02 x 27  
(*) + 0x03 x 27  
...  
(*) + 0x01 x 28  
(*) + 0x02 x 28  
(*) + 0x03 x 28  
...  
(*) + 0xXX x 25  
...  
(*) + 0xXX x 26  
...  
(*) + 0xXX x 27  
...  
(*) + 0xXX x 28  
...  
(*) + 0xFC x 25  
(*) + 0xFD x 25  
(*) + 0xFE x 25  
(*) + 0xFF x 25  
(*) + 0xFC x 26  
(*) + 0xFD x 26  
(*) + 0xFE x 26  
(*) + 0xFF x 26  
(*) + 0xFC x 27  
(*) + 0xFD x 27  
(*) + 0xFE x 27  
(*) + 0xFF x 27  
(*) + 0xFC x 28  
(*) + 0xFD x 28  
(*) + 0xFE x 28  
(*) + 0xFF x 28  
Decide “DLY01 setting” in VSYNC and EXTCLK jitter of MCU. Refer to “PWM behavior at close VSYNC interval”.  
Address 0x08 to 0x16: DLYCNTn (n = 2 to 16)  
This register is used to make PWM delay width setting for LED2 to LED16. The setting procedure is the same as that for  
LED1 with Address set to 0x07.  
The register data is updated to the newest data when the next VSYNC signal rises up after the data is written.  
Address 0x17: PWMPLS (PWM pulse number setting)  
[Read/Write]  
Initial value 0x00  
Bit No  
Name  
Initial value  
Bit[7]  
-
0
Bit[6]  
-
0
Bit[5]  
-
0
Bit[4]  
PLSSET  
0
Bit[3]  
-
0
Bit[2]  
-
0
Bit[1]  
PLSNUM[1:0]  
0
Bit[0]  
0
Update: PWM  
The register data is updated to the newest data when the next PWM signal rises up after the data is written.  
PLSNUM (PWM pulse number)  
PWMFREQ[1:0]  
0
1
2
3
0
1
2
3
1
2
1
4
8
3
6
2
4
1
2
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
34/65  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers - continued  
It outputs PWM pulse in Head position When PLSSET = 0  
Example) PWMFREQ[1:0] = 3, PLSSET = 0  
PLSNUM[1:0] = 0  
VSYNC  
PWMn  
PLSNUM[1:0] = 1  
VSYNC  
OFF  
PWMn  
PLSNUM[1:0] = 2  
VSYNC  
OFF  
PWMn  
PLSNUM[1:0] = 3  
VSYNC  
OFF  
OFF  
PWMn  
Figure 31. PWM Pulse Number Setting (Tail OFF)  
It outputs PWM pulse in Tail position When PLSSET = 1.  
Example) PWMFREQ[1:0] = 3, PLSSET = 1  
PLSNUM[1:0] = 0  
VSYNC  
PWMn  
PLSNUM[1:0] = 1  
VSYNC  
OFF  
OFF  
PWMn  
PLSNUM[1:0] = 2  
VSYNC  
OFF  
OFF  
PWMn  
PLSNUM[1:0] = 3  
VSYNC  
OFF  
OFF  
PWMn  
Figure 32. PWM Pulse Number Setting (Head OFF)  
DLY = 0x7F, PWMFREQ = 3, PLSNUM[1:0] = 2, PLSSET = 0  
VSYNC  
EXTCLK = VSYNC x 65,536[Hz]  
EXTCLK  
SPI  
delay  
OFF  
PWMn  
update  
LCDAC setting  
analog signal(image)  
Figure 33. PWM Pulse Number Setting  
35/65  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers - continued  
Address 0x18: DTYCNT01L (LED1 PWM duty setting register - lower 8 bits)  
[Read/Write]  
Bit[2]  
Initial value 0x00  
Bit No  
Name  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
Bit[4]  
Bit[3]  
0
Bit[1]  
Bit[0]  
DTY01[7:0]  
Initial value  
0
0
0
0
0
Update: PWM  
The register data is updated to the newest data when the next PWM signal rises up after the data is written.  
Address 0x19: DTYCNT01U (LED1 PWM duty setting register - upper 5 bits)  
[Read/Write]  
Bit[2]  
DTY01[12:8]  
0
Initial value 0x00  
Bit No  
Name  
Bit[7]  
-
Bit[6]  
-
Bit[5]  
DTYEN01  
0
Bit[4]  
Bit[3]  
Bit[1]  
Bit[0]  
Initial value  
0
0
0
0
0
0
Update: PWM  
The register data is updated to the newest data when the next PWM signal rises up after the data is written.  
This register is used to make setting of pulse duty for PWM light modulation in a total of 13 bits,  
i.e., Bit[7:0] when Address = 0x18 and Bit[4:0] when Address = 0x19.  
DTYEN01  
DTY01[12:0]  
0x000 to 0x1FFF  
0x0000  
LED Pulse Width  
0 clock width@EXTCLK  
1 clock width@EXTCLK  
2 clock width@EXTCLK  
3 clock width@EXTCLK  
4 clock width@EXTCLK  
...  
0
1
1
1
1
1
1
1
1
1
0x0001  
0x0002  
0x0003  
...  
0x1FFC  
0x1FFD  
0x1FFE  
0x1FFF  
8189 clock width@EXTCLK  
8190 clock width@EXTCLK  
8191 clock width@EXTCLK  
Normally set to High (Duty 100 %)  
If DTYEN01 = 0 is set when it detects LED open/LED short in channel 1, Error register (ERLOP[0]/ERLSH[0]) and FAIL turn  
normal condition.  
Address 0x1A to 0x37: DTYCNTn (n = 2 to 16)  
This register is used to make setting of PWM pulse width for LED2 to LED16. The setting procedure is the same as that for  
LED1 with Address set to 0x1A and 0x37.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
36/65  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers - continued  
Address 0x38: LCDAC1 (Analog light modulation setting for LED1)  
[Read/Write]  
Bit[3]  
Initial value 0xFF  
Bit[1]  
Bit No  
Name  
Bit[7]  
1
Bit[6]  
1
Bit[5]  
Bit[4]  
Bit[2]  
1
Bit[0]  
LCDAC1[7:0]  
Initial value  
1
1
1
1
1
Update: PWM  
The register data is updated to the newest data when the next PWM signal rises up after the data is written.  
Address 0x39 to 0x47: LCDACn (n = 2 to 16)  
This register is used to make setting of PWM pulse width for LED2 to LED16. The setting procedure is the same as that for  
LED1 with Address set to 0x38.  
This register can be written 0x00 to 0xFF value.  
The DAC setting is possible, but the guarantee levels become more than 20 mA.  
LCDACn[7:0]  
ILEDn  
(Write value)  
0x00  
0x01  
...  
ILEDMAX x 1/256  
ILEDMAX x 2/256  
0xXX  
...  
ILEDMAX x (LCDACn +1)/256  
0xFF  
ILEDMAX x 256/256  
(n = 1 to 16)  
퐿퐸퐷푀퐴푋 = 757/푅ꢀ푆퐸푇  
{(  
[A]  
[
]
)
}
퐿퐸퐷푛 = 퐼퐿퐸퐷푀퐴푋 × ꢁ퐶ꢂꢃ퐶ꢄ 7: 0 + 1 /256  
>
0.02  
[A] (ꢄ = 1 푡표 16)  
[A] (ꢄ = 1 푡표 16)  
{(  
[
]
)
}
퐿퐸퐷푛_퐴푉퐸 = 퐼퐿퐸퐷푛 × ꢂꢅ푌ꢄ 12: 0 + 1 / 8,192  
LED Current  
Maximum setting  
130 mA  
ILEDMAX  
Variable Range  
ILEDn  
ILEDn_AVE  
Minimum Setting  
20 mA  
t
PWM Duty  
Figure 34. Current Setting Image  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
37/65  
TSZ22111 • 15 • 001  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers - continued  
Address 0x49: ERRLEDOPA (LED1 to LED8 pin open ERROR monitor)  
[Read]  
Bit[2]  
Initial value 0x00  
Bit[1]  
Bit No  
Name  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
0
Bit[0]  
0
ERLOP[7:0]  
Initial value  
0
0
0
0
0
0
Update: Immediately  
The register data is updated to the newest data immediately when the data (“LED open protection”) is detected.  
Address 0x4A: ERRLEDOPB (LED8 to LED16 pin open ERROR monitor)  
[Read]  
Bit[2]  
Initial value 0x00  
Bit[1]  
Bit No  
Name  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
0
Bit[0]  
0
ERLOP[15:8]  
Initial value  
0
0
0
0
0
0
Update: Immediately  
The register data is updated to the newest data immediately when the data (“LED open protection”) is detected.  
ERLOP[n-1]  
Status  
Normal  
0
1
Detect protection(Note 1)  
(n = 1 to 16 channel)  
(Note 1) ERRLAT = 0: ERLOP[n-1] turns 0, if Error is released or “DTYENn = 0” is set or “LEDOPEN = 0” is set.  
ERRLAT = 1: ERLOP[n-1] turns 0, if “ERRCLR = 1” is set.  
Address 0x4B: ERRLEDSHA (LED1 to LED8 short ERROR monitor)  
[Read]  
Bit[2]  
Initial value 0x00  
Bit No  
Name  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
0
Bit[1]  
Bit[0]  
ERLSH[7:0]  
Initial value  
0
0
0
0
0
0
0
Update: Immediately  
The register data is updated to the newest data immediately when the data (“LED short protection”) is detected.  
Address 0x4C: ERRLEDSHB (LED8 to LED16 short ERROR monitor)  
[Read]  
Bit[2]  
Initial value 0x00  
Bit No  
Name  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
0
Bit[1]  
Bit[0]  
ERLSH[15:8]  
Initial value  
0
0
0
0
0
0
0
Update: Immediately  
The register data is updated to the newest data immediately when the data (“LED short protection”) is detected.  
ERLSH[n-1]  
Status  
Normal  
0
1
Detect protection(Note 2)  
(n = 1 to 16 channel)  
(Note 2) ERRLAT = 0: ERLSH[n-1] turns 0, if Error is released or “DTYENn = 0” is set or “LEDSHEN = 0” is set.  
ERRLAT = 1: ERLSH[n-1] turns 0, if “ERRCLR = 1” is set.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
38/65  
10.May.2021 Rev.001  
BD12801MUF-M  
7. Description of Registers - continued  
Address 0x4D: ERRISETSCP (ISET short warning and SCP)  
[Read]  
Initial value 0x00  
Bit No  
Name  
Initial value  
Bit[7]  
-
0
Bit[6]  
-
0
Bit[5]  
-
0
Bit[4]  
-
0
Bit[3]  
-
0
Bit[2]  
-
0
Bit[1]  
WARSCP  
0
Bit[0]  
WARISET  
0
Update: Immediately  
Bit[1]  
The register data is updated to the newest data immediately when the data (“SCP”) are detected.  
WARSCP  
Status  
Normal  
0
1
Detect SCP(Note 1)  
(Note 1) WARSCP turns 0 by only reset. It operates SCP circuit using “LED open circuit”.  
Don’t change LEDOPEN = 0.  
Bit[0]  
The register data is updated to the newest data immediately when the data (“ISET short warning”) are detected.  
WARISET  
0
Status  
Normal  
Detect ISET short  
1
(ISET resistor is under 2.5 kΩ)(Note 2)  
(Note 2) ERRLAT = 0: WARISET turns 0, if Error is released.  
ERRLAT = 1: WARISET turns 0, if “ERRCLR = 1” is set.  
Address 0x4E: ERRTSDA (TSD warning)  
[Read]  
Initial value 0x00  
Bit No  
Name  
Initial value  
Bit[7]  
Bit[6]  
Bit[5]  
0
Bit[4]  
WARTSD[7:0]  
0
Bit[3]  
Bit[2]  
Bit[1]  
0
Bit[0]  
0
0
0
0
0
Update: Immediately  
The register data is updated to the newest data immediately when the data (“TSD warning”) are detected.  
Address 0x4F: ERRTSDB (TSD warning)  
[Read]  
Initial value 0x00  
Bit No  
Name  
Initial value  
Bit[7]  
Bit[6]  
Bit[5]  
0
Bit[4]  
WARTSD[15:8]  
0
Bit[3]  
Bit[2]  
Bit[1]  
0
Bit[0]  
0
0
0
0
0
Update: Immediately  
The register data is updated to the newest data immediately when the data (“TSD warning”) are detected.  
WARTSD[n-1]  
Status  
Normal  
0
1
Detect protection(Note 3)  
(n = 1 to 16 channel)  
(Note 3) ERRLAT = 0: WARTSD[n-1] turns 0, if Error is released or “TSDWEN = 0” is set.  
ERRLAT = 1: WARTSD[n-1] turns 0, if “ERRCLR = 1” is set.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
39/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Timing Chart  
1. PWM Delay and ON Duty Setting Procedure Each Dimming Mode  
Available to access register for next frame  
SPI  
VSYNC  
register  
DLYn  
DTYn  
update at next VSYNC  
DLYCNTn  
DTYn_buf  
update at next PWM output  
DTYCNTn  
DLYCNTn  
DTYCNTn  
DLYCNTn  
PWMn  
Figure 35. Head Control(PWMFREQ[1:0] = 0)  
ex) DLY01[7:0] = 0x01,DTY01[12:0] = 0x05  
VSYNC  
1st 2nd 3rd 4th 5th  
EXTCLK  
r_vsync_ext_q  
(internal signal)  
r_vsync_ext_qq  
(internal signal)  
w_vsync_pls  
(internal signal)  
0 x 020  
dly counter  
0
1
2
3
4
5
6
0
1
2
3
(internal signal)  
dly counter1  
0
1
2
3
4
5
6
7
(internal signal)  
dly complh  
(internal signal)  
dly comphl  
(internal signal)  
PWM1 L->H : 0  
H->L : DTY01+1  
(when max value : 0)  
DLY01[7:0]x32  
DTY01[11:0]+1  
PWM1  
(internal signal)  
Figure 36. Setting for PWM Delay and ON Duty for Head Control  
By making register setting, PWM output delay and ON duty time counts of LED1 to LED16 can be controlled.  
The above timing chart shows an example for LED1.  
(Example) To make delay time count setting, write “delay time” in Address 0x07.  
To make ON duty time count setting, write “duty time” in Address 0x18 and 0x19.  
The delay counter starts counting after 4 to 5 EXTCLKs from the rise-edge of VSYNC signal due to internal signal’s timing.  
When the counter reaches the set delay value (0x07), the duty counter starts counting, also PWM1 signal is set to ‘High’.  
Subsequently, when the duty counter reaches the set duty value (0x18 and 0x19), PWM1 signal is set to ‘Low’.  
The sequence is continuously repeated. The procedure for LED2 to LED16 is the same as LED1.  
It can set delay of 256 resolution of VSYNC period.  
ntn frrame  
(n+1)th frame  
PWMFREQ[1:0] = 3  
VSYNC  
EXTCLK = VSYNC × 65,536 (216) [Hz]  
EXTCLK  
SPI  
setting for (n+1)th frame  
256 clock (28)/bit  
delay  
ntn frrame  
PWMn  
Figure 37. PWM Delay (PWMFREQ[1:0] = 3)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
40/65  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
Timing Chart - continued  
2. PWM Behavior at Close VSYNC Interval  
Basically, the frequency of EXTCLK pulse is 8,192(PWMFREQ[1:0] = 0) times of that of VSYNC.  
Close-interval VSYNC up to 8,192 can make the stick to ‘High’/‘Low’ of PWM signals.  
Example of PWM behavior for LED1 is shown as follows.  
(1) Stick to High of PWM  
Example: Delay = 0, Duty = 75 %  
VSYNC: 8,192 divided  
VSYNC: under 8,192 divided  
VSYNC  
EXTCLK  
main counter  
compdly  
Duty counter  
(each LED  
Channel)  
compdly  
PWMn  
PMW is stick to High  
Figure 38. Waveform Function when PWM is Fixed to High  
PWM is sets to ‘High’ at the trigger of compdly (internal signal that shows the arrival of Delay set value) = ‘High’, also is set  
to ‘Low’ at the trigger of compdty (internal signal that shows the arrival of Duty set value) = ‘Low’.  
“Main counter” is reset and starts counting up at the rise-edge of VSYNC. If it counts up until 8,191, it keeps 8,191 until  
VSYNC pulse.  
“duty counter” is reset and starts counting up at trigger of compdly. If trigger of compdty is generated, it keeps counter  
value until next trigger of compdly.  
For this example, compdly just after the rise-edge of VSYNC sets PWM = ‘High’ because Delay = 0 %.  
“Duty counter” is reset and starts counting up at the pulse of compdly. For this example, as long as VSYNC is divided by  
8,192 EXTCLK, PWM is set to ‘Low’ at the trigger of compdty after the arrival of Duty set value. While, If VSYNC is less  
than 8,192 EXTCLK, PWM is stick to ‘High’. Because the counter is reset since VSYNC is input before the arrival of Duty  
set value, and the trigger compdty to set PWM to ‘Low’ is not provided.  
(2) Stick to Low of PWM  
Example: Delay = 75 %, Duty = 50 %  
VSYNC: 8,192 divided  
VSYNC: under 8,192 divided  
VSYNC  
EXTCLK  
main counter  
compdly  
no compdly pulse  
duty counter  
(each LED  
Channel)  
compdly  
PWMn  
PMW is stick to Low  
Figure 39. Waveform Function when PWM is Fixed to Low  
When the setting of Delay is not 0, PWM is also set to ‘High’ at the trigger of compdly and is set to L at the trigger of  
compdty. When VSYNC is divided by up to 8,192 EXTCLK, PWM is also set to L after the arrival of Duty set value. But  
when the interval of VSYNC is less than the setting of Delay, PWM is stick to ‘Low’. Because the counter is reset since  
VSYNC is input before the arrival of Delay set value, and the trigger compdly to set PWM to ‘High’ is not provided.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
41/65  
10.May.2021 Rev.001  
BD12801MUF-M  
2. PWM Behavior at Close VSYNC Interval - continued  
(3) Lower PWM duty  
Example: Delay = 0, Duty = 75 %  
VSYNC: 8,192 divided  
VSYNC: over 8,192 divided  
VSYNC  
EXTCLK  
main counter  
compdly  
duty counter  
(each LED  
channel)  
compdly  
PWMn  
lower PWM duty  
Figure 40. Waveform Function when PWM Duty is Low  
For this example, compdly just after the rise-edge of VSYNC sets PWM = ‘High’ because Delay = 0 %.  
“Duty counter” is reset and starts counting up at the pulse of compdly. For this example, If VSYNC is more than 8,192  
EXTCLK, PWM is set to ‘Low’ at the trigger of compdty after the arrival of Duty set value. Counter keep 8,191 after count =  
8,191 until next rise-edge of VSYNC. So PWM is lower than target duty in this case.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
42/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Timing Chart - continued  
3. ERROR Control  
There are the following internal signals on timing chart:  
PWM_OH[n-1] (n = 1 to 16)  
LOPDET_ID[n-1] (n = 1 to 16)  
LSPDET_ID[n-1] (n = 1 to 16)  
WARTSD_ID[n-1] (n = 1 to 16)  
WARISET_IL  
PWM signal for LEDn (high: LED ON, low: LED OFF)  
LED open error signal (low: error)  
LED short error signal (low: error)  
TSD warning signal (low: error)  
ISET short warning (low: error)  
Soft start mask signal (low: mask)  
retiming signal  
SSEND  
r_lopdet, r_lspdet, r_vsync  
r_wartsd, r_wariset  
err_mskcnt  
retiming signal  
error mask counter  
Timing chart of each ERROR detection is as follows  
(1) LED Short Protection  
It operates as following when it detects (The LED pin voltage is over setting value) or released “LED short Error“.  
(Example) Register setting: DLY02[7:0] = 0x00, ERRMASK[7:0] = 0x03, ERRLAT = 0  
Enlarged view B  
Enlarged view A  
VSYNC  
EXTCLK  
PWM_OH[1]  
LED2  
VSHDET  
VSHDET  
LSPDET_ID[1]  
r_lspdet[1]  
SSEND  
err_mskcnt[7:0]  
ERRMASK register  
Error register  
FAIL  
0 x 00  
0 x 03  
All '0'  
0 x 00  
LED2 : 1 , other : 0  
Figure 41. LED Short Protection  
(a) Enlarged chart (A)  
VSYNC  
EXTCLK  
PWM_OH[1]  
LED2  
VSHDET  
LSPDET_ID[1]  
mask  
2clock delay  
(synchronize)  
r_lspdet[1]  
SSEND  
0 x 02 0 x 03 0 x 00  
0 x 01  
0 x 00  
0 x 03  
All '0'  
err_mskcnt[7:0]  
ERRMASK register  
LED2 : '1' , other : '0'  
Error register  
FAIL  
Figure 42. LED Short Protection (Enlarged View A)  
(b) Enlarged chart (B)  
VSYNC  
EXTCLK  
PWM_OH[1]  
 High  
VSHDET  
LED2  
LSPDET_ID[1]  
 High  
mask  
r_lspdet[1]  
SSEND  
 High  
0 x 02 0 x 03  
0 x 01  
0 x 00  
All '0'  
0 x 00  
0 x 03  
err_mskcnt[7:0]  
ERRMASK register  
LED2 : '1' , other : '0'  
Error register  
FAIL  
Figure 43. LED Short Protection (Enlarged View B)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
43/65  
10.May.2021 Rev.001  
BD12801MUF-M  
3. ERROR Control – continued  
(2) LED Open Protection  
It operates as following when it detects (The LED pin voltage is under 0.2 V) or released “LED open Error“.  
(Example) Register setting: DLY02[7:0] = 0x00, ERRMASK[7:0] = 0x03, ERRLAT = 0  
Enlarged view B  
Enlarged view A  
VSYNC  
EXTCLK  
PWM_OH[1]  
LED2  
VOPDET  
VOPDET  
LOPDET_ID[1]  
r_lopdet[1]  
SSEND  
err_mskcnt[7:0]  
ERRMASK register  
Error register  
FAIL  
0 x 00  
0 x 03  
All '0'  
0 x 00  
LED2 :  1 , other :  0  
Figure 44. LED Open Protection  
(a) Detail of Enlarged chart (A)  
VSYNC  
EXTCLK  
PWM_OH[1]  
LED2  
VOPDET  
LOPDET_ID[1]  
mask  
2 clock delay  
(synchronize)  
r_lopdet[1]  
SSEND  
0 x 02 0 x 03 0 x 00  
0 x 01  
0 x 00  
0 x 03  
All '0'  
err_mskcnt[7:0]  
ERRMASK register  
LED2 : '1' , other : '0'  
Error register  
FAIL  
Figure 45. LED Open Protection (Enlarged View A)  
(b) Detail of Enlarged chart (B)  
VSYNC  
EXTCLK  
LED2  
VOPDET  
PWM_OH[1]  
 High  
LOPDET_ID[1]  
 High  
mask  
r_lopdet[1]  
SSEND  
 High  
0 x 02 0 x 03  
0 x 01  
0 x 00  
All '0'  
0 x 00  
err_mskcnt[7:0]  
0 x 03  
ERRMASK register  
LED2 : '1' , other : '0'  
Error register  
FAIL  
Figure 46. LED Open Protection (Enlarged View B)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
44/65  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
(2) LED Open Protection – continued  
[Operation]  
When PWM_OH[1] = ‘High’ and LOPDET_ID[1] = ‘Low’ with SSEND = ‘High’ (Soft Start end), ERRMASK starts counting  
with EXTCLK (err_mskcnt_r) from the rise-edge of PWM_OH[1]. At the arriving to the set value (0x03), FAIL is set to  
‘Low’, i.e. ERROR is started to be detected. When ERROR is detected and PWM_OH[1] = ‘High’ and LOPDET_ID[1] =  
High, ERRMASK starts counting with EXTCLK (err_mskcnt_r) from the rise-edge of PWM_OH[1]. At the arriving to the  
set value (0x03), FAIL is set to ‘High’, i.e. It released ERROR condition.  
(Example) low width error case,  
Register setting: DLY02[7:0] = 0x00, ERRMASK[7:0] = 0x03, ERRLAT = 0  
Enlarged view B  
Enlarged view A  
VSYNC  
EXTCLK  
r_vsync  
PWM_OH[1]  
LED2  
VOPDET  
VOPDET  
LOPDET_ID[1]  
r_lopdet[1]  
SSEND  
err_mskcnt[7:0]  
ERRMASK register  
Error register  
FAIL  
0 x 00  
0 x 00  
0 x 03  
Figure 47. LED Open Protection Mask Function  
(a) Enlarged chart (A)  
VSYNC  
1st  
2nd  
3rd  
EXTCLK  
r_vsync  
PWM_OH[1]  
LED2  
VOPDET  
LOPDET_ID[1]  
2clock delay  
(synchronize)  
mask(3 to 4 clock)  
r_lopdet[1]  
SSEND  
0 x 02 0 x 03 0 x 00  
0 x 01  
0 x 00  
0 x 03  
err_mskcnt[7:0]  
ERRMASK register  
All '0'  
Error register  
FAIL  
 high  
Figure 48. LED Open Protection Masked (Enlarged View A)  
(b) Enlarged chart (B)  
VSYNC  
1st 2nd 3rd 4th 1st 2nd 3rd 4th  
EXTCLK  
r_vsync  
PWM_OH[1]  
LED2  
VOPDET  
LOPDET_ID[1]  
 High  
 High  
mask  
r_lopdet[1]  
SSEND  
 High  
0 x 02 0 x 03 0 x 00  
0 x 01  
0 x 02 0 x 03  
0 x 00  
0 x 01  
0 x 00  
All '0'  
err_mskcnt[7:0]  
0 x 03  
All '0'  
ERRMASK register  
LED2 : '1' , other : '0'  
Error register  
FAIL  
Figure 49. “LED Open Protection” (Enlarged View B)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
45/65  
10.May.2021 Rev.001  
BD12801MUF-M  
3. ERROR Control – continued  
(3) TSD Warning  
If It heats over 135 deg, it detects “TSD warning” (WARTSD_ID[1] = Low).  
It update error register (WARTSD[1] = 1) and FAIL = Low after detection.  
If it releases error condition, it updates error register (WARTSD[1] = 0) and FAIL = High.  
This function has enabled (TSDWEN). If TSDWEN = 0, it doesn’t detect “TSD warning protection”  
PWM_OH[n-1] signal don’t effect “TSD warning protection”.  
Enlarged view A  
Enlarged view B  
VSYNC  
EXTCLK  
PWM_OH[1]  
Temp.  
tMON  
tMON - tMONHYS  
WARTSD_ID[1]  
r_wartsd[1]  
WARTSD[1] register  
FAIL  
Figure 50. “TSD Warning”  
(a) Enlarged chart (A)  
VSYNC  
EXTCLK  
PWM_OH[1]  
Temp.  
High  
High  
tMON  
WARTSD_ID[1]  
r_wartsd[1]  
2 clock delay  
(synchronize)  
WARTSD[1] register  
FAIL  
Figure 51. “TSD Warning” Detected (Enlarged View A)  
(b) Enlarged chart (B)  
VSYNC  
Low  
EXTCLK  
PWM_OH[1]  
Temp.  
Low  
tMON - tMONHYS  
WARTSD_ID[1]  
r_wartsd[1]  
2 clock delay  
(synchronize)  
WARTSD[1] register  
FAIL  
Figure 52. “TSD Warning” Released (Enlarged View B)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
46/65  
10.May.2021 Rev.001  
BD12801MUF-M  
3. ERROR Control – continued  
(4) ISET Short Warning  
If It set ISET resistor under 2.5 kΩ, it detect “ISET short warning” (WARISET_IL = Low).  
It update error register (WARISET = 1) and FAIL = Low after detection.  
If it release error condition, it update error register (WARISET = 0) and FAIL = High.  
ERRMASK doesn’t effect this protection.  
Enlarged view A  
Enlarged view B  
VSYNC  
EXTCLK  
PWM_OH[1]  
RSETSCP  
ISET resistor value  
WARISET_IL  
r_wariset  
WARISET[0] register  
FAIL  
Figure 53. “ISET Short Warning”  
(a) Enlarged chart (A)  
VSYNC  
High  
EXTCLK  
PWM_OH[1]  
High  
RSETSCP  
ISET resistor value  
WARISET_IL  
r_wariset  
2 clock delay  
(synchronize)  
WARISET[0] register  
FAIL  
Figure 54. “ISET Short Warning” Detected (Enlarged View A)  
(b) Enlarged chart (B)  
VSYNC  
Low  
EXTCLK  
PWM_OH[1]  
ISET resistor value  
WARISET_IL  
r_wariset  
Low  
RSETSCP  
2 clock delay  
(synchronize)  
WARISET[0] register  
FAIL  
Figure 55. “ISET Short Warning” Released (Enlarged View B)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
47/65  
10.May.2021 Rev.001  
BD12801MUF-M  
3. ERROR Control – continued  
(5) TSD  
If It heat over 175 deg, it detect “TSD” (TSD_IL = Low).  
It update FAIL = Low and initialized all circuit after detection.  
It update FAIL = High after released.  
ERRMASK and SSMASK don’t effect this protection.  
Enlarged view (A)  
Enlarged view (B)  
VSYNC  
EXTCLK  
TSD_IL  
PWM_OH[1]  
SSEND  
FAIL  
Figure 56. TSD  
(a) Enlarged chart (A)  
VSYNC  
EXTCLK  
TSD_IL  
PWM_OH[1]  
SSEND  
FAIL  
High  
High  
asynchronous reset  
Figure 57. “TSD” Detected (Enlarged View A)  
(b) Enlarged chart (B)  
VSYNC  
EXTCLK  
TSD_IL  
PWM_OH[1]  
SSEND  
FAIL  
Low  
reset released  
Low  
Low  
Figure 58. “TSD” Released (Enlarged View B)  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
48/65  
10.May.2021 Rev.001  
BD12801MUF-M  
3. ERROR Control – continued  
(6) Soft-Start Masking Function  
The time of mask of ERROR detection at starting of IC is set by counting the number of VSYNC.  
Time of mask = set value x VSYNC  
(Example) Address = 0x03(SSMASK), DATA = 0x3C:  
internal reset  
VSYNC  
EXTCLK  
PWM  
LOPDET_ID[0]  
SSMASK[7:0]  
r_sscnt[7:0]  
0x3C  
0x00 0x01 0x02 0x03 0x04 0x05 0x06  
0x3A 0x3B 0x3C  
0xFF  
0x00  
released "soft start mask"  
SSEND  
FAIL  
mask  
Figure 59. Setting for Soft Start Mask  
(7) LED SCP  
LED SCP is operated after detecting “LED open error” and writing DTYENn = 0.  
MASK time can be controlled by SCPTIME register.  
FAIL outputs VSYNC pulse after the MASK time.  
SPI  
VSYNC  
EXTCLK  
LED1  
LOPDET_ID[0]  
DTYEN01 register  
ledscp_det (internal signal)  
SCPTIME register  
'1'  
PWM  
FAIL  
MASK time  
2VSYNC cycle  
Figure 60. SCP Function  
(Note) It can’t detect “SCP error” if LEDn (n = 1 to 16) pin shorts GND before setting DTYEN = 1 and detecting LED open error”. This function is available  
after detecting “LED open error”.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
49/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Timing Chart - continued  
4. Boot Sequence  
(1) Normal Boot  
(1)  
VCC  
(2)  
EN  
VREG33  
VSYNC  
EXTCLK  
SPI  
UVLO  
(3)  
(4)  
PWM  
standby  
dimming  
IC condition  
OFF  
OFF  
Enlarged view  
Enlarged view  
#all device  
address  
#device 1  
address  
#device N  
address  
#device1  
address  
#device N  
address  
SPI  
SPI  
Register  
PWMFREQ  
DLYCNTn  
PWMPLS  
DTYCNTn  
LCDACn  
DLYCNTn  
PWMPLS  
DTYCNTn  
LCDACn  
Register  
DTYCTn  
LCDACn  
(n = 1 to 16)  
DTYCTn  
LCDACn  
(n = 1 to 16)  
ERRSET1  
SSMASK  
ERRMASK  
ERREN  
(n = 1 to16)  
(n = 1 to 16)  
ERRSET2  
Figure 61. Starting Sequence for Normal Operation  
When you light the LED by general SPI control, follow the sequence below.  
(1) Input the power supply of VCC.  
(2) Launch the EN from ‘Low’ to ‘High’.  
(3) Write the data to the register by SPI control, then set the LED driver.  
(4) Input the VSYNC, EXTCLK signal and set register for PWM dimming.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
50/65  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
Timing Chart - continued  
5. PWM Dimming Sequence  
It has “register”, “buffer” and “control data” for DTYCNTn and LCDACn. 1st “register” are updated by SPI. 2nd “buffer” are  
updated at VSYNC pulse, 3rd “control data” are updated at PWM timing as following for keeping data until finishing output.  
(1) PWM Duty (DTYCNTn)/Local DAC (LCDACn) Control  
VCC  
EN  
VREG33  
Current VSYNC  
Next VSYNC cycle  
cycle  
VSYNC  
EXTCLK  
(1)  
SCSB  
SPI  
dimming  
(2)  
register  
Update data at VSYNC  
buffer  
(3)  
Update data at PWM timing  
control data  
output  
PWM  
Enlarged view  
#device 1  
address  
#device N  
address  
SPI  
……  
DTYCNTn  
LCDACn  
(n = 1 to 16)  
DTYCNTn  
LCDACn  
(n = 1 to 16)  
Register  
Figure 62. Dimming Sequence for Normal Operation  
When the LEDs are controlled by general SPI control, the sequence is the following.  
(1) “SPI write sequence” should be finished in “current VSYNC cycle” until next VSYNC pulse.  
(2) The buffer value is updated at VSYNC timing.  
(3) The control data (DTYCNTn, LCDACn) are updated and PWM is updated at the same time.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
51/65  
10.May.2021 Rev.001  
BD12801MUF-M  
5. PWM Dimming Sequence – continued  
(2) PWM Duty (DTYCNTn)/Local DAC (LCDACn) Control (Wrong SPI Access)  
If MCU access at VSYNC pulse, it don’t update buffer data for any register (update timing VSYNC, PWM)  
VCC  
EN  
VREG33  
Current VSYNC  
Next VSYNC cycle  
cycle  
VSYNC  
EXTCLK  
(1)  
SCSB  
SPI  
dimming  
(2)  
register  
not update data at VSYNC  
Update data at VSYNC  
(3)  
buffer  
update data at PWM timing  
(same data)  
Update data at PWM timing  
control data  
PWM  
output  
Enlarged view  
#device 1  
address  
#device N  
address  
SPI  
……  
DTYCNTn  
LCDACn  
( n =1 to 16)  
DTYCNTn  
LCDACn  
(n = 1 to 16)  
Register  
Figure 63. Dimming Sequence for Normal Operation (Wrong SPI Access)  
When the LEDs are controlled by general SPI control, the sequence is the following.  
(1) “SPI write sequence” is not finished in “current VSYNC cycle” until next VSYNC pulse.  
(2) The buffer value is not updated at VSYNC timing. (because it occurred SCSB = Low and VSYNC pulse condition)  
(3) The control data (DTYCNTn, LCDACn) are not updated, because buffer value is not updated.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
52/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Timing Chart - continued  
6. Error Sequence  
(1) Error Sequence for “LED Open Protection” without ERRLAT  
Example) It detects “LED open error” in LED1  
VSYNC  
(5)  
LED1  
Error  
condition  
nomal  
LED1;LED open  
(3)  
(4)  
SPI  
ERRLAT(register)  
ERRCLR(register)  
 Low  
 Low  
 High  
LEDOPEN(register)  
SCPTIME(register)  
0
ERRLEDOPA(register)  
ERRLEDOPB(register)  
ERRLEDSHA(register)  
0×00  
0×00  
0×00  
0×00  
0×01  
0×00  
ERRLEDSHB(register)  
WARSCP(register)  
DTYEN01(register)  
DTYENn(other)  
 High  
leden[0](LED1)  
(internal signal)  
PWM OFF  
(6)  
(7)  
PWMn  
FAIL  
(1)  
(2)  
Enlarged view  
Enlarged view  
SPI  
Register  
SPI  
Register  
Read:  
Write:  
ERRLEDOPA,B  
ERRLEDSHA,B  
ERRISETSCP  
ERRTSD  
DTYEN01  
Figure 64. Error Sequence for “LED OPEN Error” without ERRLAT  
(1) If it detects “LED OPEN error”, it outputs Low from FAIL after ERRMASK time.  
(2) If Error condition is released in this timing, it outputs high from FAIL after ERRMASK.  
(3) MCU read “Error register” after MCU receiving FAIL = Low condition.  
(4) MCU write “DTYEN01 = 0” of “Error Channel” for protection.  
(5) It pulls up the LED1 pin after DTYEN01 = 0. So LED1 voltage is over 0.2 V for LED1 open.  
(6) PWM output is OFF after next VSYNC and PWM timing.  
(7) “Error register” and FAIL return normal condition after next VSYNC and PWM timing.  
MCU can’t detect Error condition if “error condition” is cleared before reading “error register”.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
53/65  
10.May.2021 Rev.001  
BD12801MUF-M  
6. Error Sequence – continued  
(2) Error Sequence for SCP without ERRLAT  
Example) It detects “SCP Error” in LED1.  
VSYNC  
(5)  
LED1  
(2)  
Error  
condition  
nomal  
LED1;LED pin GND short  
(3)  
(4)  
SPI  
ERRLAT(register)  
ERRCLR(register)  
 Low  
 Low  
 High  
LEDOPEN(register)  
SCPTIME(register)  
0
ERRLEDOPA(register)  
ERRLEDOPB(register)  
ERRLEDSHA(register)  
0×00  
0×00  
0×00  
0×00  
0×01  
0×00  
ERRLEDSHB(register)  
WARSCP(register)  
DTYEN01(register)  
DTYENn(other)  
 High  
leden[0](LED1)  
(internal signal)  
(6)  
(7)  
PWM OFF  
PWMn  
FAIL  
(1)  
(8)  
Enlarged view  
Enlarged view  
SPI  
SPI  
Register  
Register  
Read:  
Write:  
DTYEN01  
ERRLEDOPA,B  
ERRLEDSHA,B  
ERRISETSCP  
ERRTSD  
Figure 65. Error Sequence for SCP without ERRLAT  
(1) If it detecs “LED OPEN error” after ERRMASK time, it outputs Low from FAIL.  
(2) If Error condition is released in this timing, it outputs high from FAIL after ERRMASK.  
(3) MCU read “Error register” after MCU receiving FAIL = Low condition.  
(4) MCU write “DTYEN01 = 0” of “Error Channel” for protection.  
(5) It pulls up the LED1 pin after DTYEN01 = 0. But it can’t be over 0.3 V because LED1 shorts to GND.  
(6) It doesn’t outputs PWM after next VSYNC and PWM timing.  
(7) It releases “Error register” and FAIL after next VSYNC and PWM timing.  
(8) It outputs VSYNC pulse from the FAIL pin after detecting SCP.  
MCU can’t detect Error condition if “error condition” is cleared before reading “error register”.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
54/65  
10.May.2021 Rev.001  
BD12801MUF-M  
6. Error Sequence – continued  
(3) Error Sequence for “LED Open Protection” with ERRLAT  
Example) It detects “LED open error” in LED1  
VSYNC  
LED1  
(2)  
Error  
Error  
condition  
nomal  
nomal  
(3)  
(4)  
(5)  
SPI  
ERRLAT(register)  
ERRCLR(register)  
 Low  
 Low  
 High  
LEDOPEN(register)  
SCPTIME(register)  
0
ERRLEDOPA(register)  
ERRLEDOPB(register)  
ERRLEDSHA(register)  
0×00  
0×00  
0×00  
0×01  
0×00  
ERRLEDSHB(register)  
WARSCP(register)  
DTYEN01(register)  
0×00  
 Low  
DTYENn(other)  
 High  
leden[0](LED1)  
(internal signal)  
(7)  
PWMn  
FAIL  
(1)  
(6)  
Enlarged view  
Enlarged view  
SPI  
Register  
SPI  
Register  
Read:  
Write:  
DTYEN01  
Write:  
ERRCLR  
ERRLEDOPA,B  
ERRLEDSHA,B  
ERRISETSCP  
ERRTSD  
Figure 66. Error Sequence for “LED Open Protection” with ERRLAT  
(1) If it detects “LED open error”, it outputs Low from FAIL after ERRMASK time.  
(2) If Error condition is released in this timing, it keeps Low in FAIL and “Error register”.  
(3) MCU read “Error register” after MCU receiving FAIL = Low condition.  
(4) MCU write “DTYEN01 = 0” of “Error Channel” for protection condition released.  
(5) MCU write “ERRCLR = 1” for releasing “Latch condition”.  
(6) “Error register” and FAIL return normal condition after ERRCLR = 1.  
(7) PWM is OFF after next VSYNC and PWM timing.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
55/65  
10.May.2021 Rev.001  
BD12801MUF-M  
6. Error Sequence – continued  
(4) Error Sequence SCP with ERRLAT  
Example) It detects “SCP Error” in LED1.  
VSYNC  
(7)  
LED1  
Error  
nomal  
LED1:LED pin GND short  
condition  
(2)  
(3)  
(4)  
SPI  
ERRLAT(register)  
ERRCLR(register)  
 High  
 Low  
 High  
LEDOPEN(register)  
SCPTIME(register)  
0
ERRLEDOPA(register)  
ERRLEDOPB(register)  
ERRLEDSHA(register)  
0×00  
0×00  
0×00  
0×01  
0×00  
ERRLEDSHB(register)  
WARSCP(register)  
DTYEN01(register)  
0×00  
 Low  
DTYENn(other)  
 High  
leden[0](LED1)  
(internal signal)  
(6)  
PWMn  
FAIL  
(5)  
(1)  
(8)  
Enlarged view  
Enlarged view  
SPI  
Register  
SPI  
Register  
Read:  
Write:  
Write:  
ERRLEDOPA,B  
ERRLEDSHA,B  
ERRISETSCP  
ERRTSD  
DTYEN01  
ERRCLR  
Figure 67. Error Sequence for SCP with ERRLAT  
(1) If it detects “LED open error”, it outputs Low from FAIL after ERRMASK time.  
(2) MCU read “Error register” after MCU receiving FAIL = Low condition.  
(3) MCU write “DTYEN01 = 0” of “Error Channel” for protection condition released.  
(4) MCU write “ERRCLR = 1” for releasing “Latch condition”.  
(5) “Error register” and FAIL return normal condition after ERRCLR = 1  
(6) PWM is OFF after next VSYNC and PWM timing.  
(7) It pulls up LED1 pin. But it can’t be over 0.3 V because LED1 shorts to GND.  
(8) It detects SCP. So output VSYNC input from the FAIL pin.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
56/65  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
Timing Chart - continued  
7. FAIL Control Sequence  
FAIL output can be controlled by register setting.  
(1)  
(2)  
(3)  
SPI  
FAILTEST(register)  
FAILCNT(register)  
 High  
 Low  
FAIL  
Enlarged view  
Enlarged view  
Enlarged view  
SPI  
Register  
SPI  
Register  
SPI  
Register  
Write  
Write  
Write  
FAILTEST  
FAILCNT  
FAILCNT  
Figure 68. FAIL Control Sequence  
(1) It is available to control FAIL output by FAILTEST = 1  
(2) FAILCNT = High, so it outputs High from the FAIL pin.  
(3) FAILCNT = Low, so it outputs Low from the FAIL pin.  
(1) LED Open Protection  
When PWMn = high, If the LEDn pin becomes 0.1 V (Typ) or lower, FAIL = ‘Low’ is outputted and “LED open error” will  
be detected. (n = 1 to 16)  
VSYNC  
EXTCLK  
PWMn  
(internal)  
LEDn  
0.2 V  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
FAIL  
ERRMASK time  
Figure 69. LED Open Protection  
(1) When PWMn = ‘High’, “LED open error” is detected. FAIL outputs ‘Low’ after ERRMASK time.  
(2) If LEDn pin voltage is release condition, FAIL outputs ‘High’ after ERRMASK.  
(3) If LEDn pin voltage is release condition when PWMn = ‘Low’, it keeps FAIL condition (High).  
(4) When PWMn = ‘High’, “LED open error” is detected. FAIL outputs ‘Low’ after ERRMASK time.  
(5) If LEDn pin voltage is release condition when PWMn = ‘Low’, it keeps FAIL condition (Low).  
(6) If LEDn pin voltage is release condition, FAIL outputs ‘High’ after ERRMASK.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
57/65  
10.May.2021 Rev.001  
BD12801MUF-M  
7. FAIL Control Sequence – continued  
(2) LED Short Protection  
If LEDn pin becomes LEDSH[3:0](Address 0x02) when PWMn = high, FAIL = ‘Low’ is outputted and “LED short error”  
will be detected. (n = 1 to 16)  
VSYNC  
EXTCLK  
PWMn  
(internal)  
4.8 V (default)  
LEDn  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
FAIL  
ERRMASK time  
Figure 70. LED Short Protection  
(1) When PWMn = ‘High’, “LED short error” is detected. FAIL outputs ‘Low’ after ERRMASK time.  
(2) If LEDn pin voltage is release condition, FAIL outputs ‘High’ after ERRMASK.  
(3) If LEDn pin voltage is release condition when PWMn = ‘Low’, it keeps FAIL condition (High).  
(4) When PWMn = ‘High’, “LED short error” is detected. FAIL outputs ‘Low’ after ERRMASK time.  
(5) If LEDn pin voltage is release condition when PWMn = ‘Low’, it keeps FAIL condition (Low).  
(6) If LEDn pin voltage is release condition, FAIL outputs ‘High’ after ERRMASK.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
58/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Application Examples  
1. External Component Setting Example  
CVOUT  
10 μF  
DC/DC  
CVCC  
2.2 μF  
VCC  
5 V  
VCC  
LED1  
LED2  
VREG33  
CVREG33  
LED3  
2.2 μF  
LED4  
LED5  
RFAIL  
100 kΩ  
LED6  
FAIL  
LED7  
SCSB  
SDI  
LED8  
BD12801MUF- M  
LED9  
LED10  
LED11  
LED12  
LED13  
LED14  
LED15  
LED16  
SCLK  
SDO  
MCU  
VSYNC  
EXTCLK  
EN  
TEST1  
TEST2  
GND ISET  
LGND  
RISET  
7.5 kΩ  
Figure 71. External Component Setting Example  
2. Cascade Connection Application  
DC/DC  
Backlight  
LED101 LED102 LED103  
LED115 LED116 LED201 LED202 LED203  
LED215 LED216  
LED1 to LED24  
LED1 to LED24  
VCC  
EN  
VSYNC  
EXTCLK  
SCSB  
SCLK  
MOSI  
VCC  
VCC  
EN  
EN  
VSYNC  
VSYNC  
EXTCLK  
VREG33  
VREG3 3  
MCU  
EXTCLK  
BD12801MUF-M  
BD12801MUF-M  
SCSB  
SCSB  
(#2)  
(#1)  
SCLK  
SCLK  
SDI  
SDO  
FAIL  
SDI  
SDO  
FAIL  
FAIL  
MISO  
Figure 72. Cascade Connection Application  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
59/65  
***-1-  
10.May.2021 Rev.001  
BD12801MUF-M  
I/O Equivalence Circuit  
VCC  
EXTCLK, VSYNC, SCLK, SDI, SCSB  
FAIL  
VREG33  
EXTCLK  
VSYNC  
SCLK  
SDI  
VCC  
FAIL  
SCSB  
GND  
GND  
GND  
GND  
GND  
GND  
LED1 to LED16  
TEST1  
SDO  
VCC  
LED1  
to LED16  
VREG33  
TEST1  
SDO  
ꢀꢀꢀ  
LGND  
GND  
GND  
LGND  
LGND  
GND  
GND  
EN  
TEST2  
GND,LGND  
VCC  
VCC  
GND  
EN  
TEST2  
200 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
30 kΩ  
70 kΩ  
LGND  
GND  
GND  
GND  
GND  
GND  
GND  
ISET  
VREG33  
VCC  
ꢀꢀꢀ  
ꢀꢀꢀ  
GND  
VREG33  
GND  
GND  
ISET  
GND  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
60/65  
10.May.2021 Rev.001  
BD12801MUF-M  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
61/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
Operational Notes – continued  
10.  
Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 73. Example of Monolithic IC Structure  
11.  
12.  
Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls  
below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13.  
Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
62/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
BD12801MUF-M  
Ordering Information  
B D 1 2 8 0 1 M U F  
-
ME2  
Package  
MUF: VQFN48FAV070  
Product Rank  
M: for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
VQFN48FAV070 (TOP VIEW)  
Part Number Marking  
D 1 2 8 0 1  
LOT Number  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
63/65  
TSZ22111 • 15 • 001  
10.May.2021 Rev.001  
Daattaasshheeeett  
BD12801MUF-M  
Physical Dimension and Packing Information  
Package Name  
VQFN48FAV070  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
©2017 ROHM Co., Ltd. All rights reserved.  
64/65  
TSZ22111 • 15 • 001  
***-1-  
10.May.2021 Rev.001  
 
BD12801MUF-M  
Revision History  
Date  
Revision  
001  
Changes  
10.May.2021  
New Release  
www.rohm.com  
TSZ02201-0V1V0B200010-1-2  
***-1-  
©2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
65/65  
10.May.2021 Rev.001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD129

TRANSISTOR | BJT | NPN | 350V V(BR)CEO | 500MA I(C) | TO-126
ETC

BD12AV

Standard Profile DIP Switches
ITT

BD12AV

Standard Profile DIP Switches
CK-COMPONENTS

BD12AV2

Standard Profile DIP Switches
ITT

BD12IA5MEFJ-LB

0.5A Variable Output Industrial LDO Regulator
ROHM

BD12IA5MEFJ-LBH2

0.5A Variable Output Industrial LDO Regulator
ROHM

BD12IA5MEFJ-M

BDxxIA5MEFJ-M系列是可提供0.5A输出电流的稳压器。输出精度为±1%。有可使用外接电阻在0.8V~4.5V范围内任意设置输出电压的可变型以及1.0V/1.2V/1.5V/1.8V/2.5V/3.0V/3.3V固定输出型两种。封装组件采用散热性优良的HTSOP-J8。本机型内置用于防止因输出短路等发生IC破坏的过电流保护电路、关断时使电路电流为0µA的ON/OFF开关、以及防止因过负荷状态等使IC发生热破坏的温度保护电路。另外,采用了陶瓷电容器,有助于整机的小型化和长寿化。
ROHM

BD12IA5VEFJ-M (新产品)

BDxxIA5VEFJ-M is a LDO regulator with output current 0.5A. The output accuracy is ±1% of output vo
ROHM

BD12IA5WEFJ

500mA Variable Fixed Output LDO Regulators
ROHM

BD12IA5WEFJ-E2

500mA Variable Fixed Output LDO Regulators
ROHM

BD12IC0MEFJ-LB

1.0A Variable Output Industrial LDO Regulator
ROHM

BD12IC0MEFJ-LBH2

1.0A Variable Output Industrial LDO Regulator
ROHM