BD18397RUV-M [ROHM]

BD18397RUV-M是一款双通道同步降压型DC-DC LED驱动器,采用ON-Time拓扑结构支持接近恒定的开关频率和快速开关占空比调节,并采用平均LED电流反馈降压拓扑结构在更宽输入和LED输出范围内实现更出色的LED电流调节系统。;
BD18397RUV-M
型号: BD18397RUV-M
厂家: ROHM    ROHM
描述:

BD18397RUV-M是一款双通道同步降压型DC-DC LED驱动器,采用ON-Time拓扑结构支持接近恒定的开关频率和快速开关占空比调节,并采用平均LED电流反馈降压拓扑结构在更宽输入和LED输出范围内实现更出色的LED电流调节系统。

开关 驱动 驱动器
文件: 总87页 (文件大小:5027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Buck LED Driver  
2 ch/3 ch Current LED Driver with  
SPI for Automotive  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
General Description  
Key Specifications  
The BD18397/98xxx-M are 2 ch/3 ch synchronous buck  
DC/DC LED drivers with using on-time topology  
supporting near fixed switching frequency and fast  
switching duty regulation and with using average LED  
current feed buck topology for more accreted LED current  
regulation system over wide input, LED output range.  
The BD18397/98xxx-M can support individual 10-bit  
analog dimming and 10-bit PWM dimming for LED current  
by programing the 10-bit register via SPI.  
The BD18397/98xxx-M will support LIMP-HOME mode, if  
SPI communication has an error. In the LIMP-HOME  
mode, individual LED current can be set by the external  
pins and can keep LED current sourcing during applying  
input power without SPI communication.  
Continuous Input Voltage Range  
VIN:  
PIN:  
5VEXT:  
5 V to 45 V  
5 V to 65 V  
4.5 V to 5.5 V  
2.5 V to 60 V  
2.0 A  
±3 %  
5 % to 100 %  
LED Output Voltage Range:  
Maximum Output LED Current/Channel:  
LED Average Current Accuracy:  
10-bit Analog Dimming Range:  
Programmable Switching Frequency Range:  
200 kHz to 2.25 MHz  
Junction Temperature Range: -40 °C to +150 °C  
Applications  
Automotive Exterior Lamps  
Rear, Turn, DRL/Position, Fog, High/Low Beam etc.  
Features  
AEC-Q100 Qualified(Note 1)  
Packages  
W (Typ) x D (Typ) x H (Max)  
12.5 mm x 8.1 mm x 1.0 mm  
12.5 mm x 8.1 mm x 1.0 mm  
ISO 26262 Process Compliant to Support ASIL-B  
On-time Topology for Near Fixed Frequency Switching  
Average LED Current Regulation  
Protection Diodes Less for Current Sense Pins  
Cycle-by-cycle Switch Over Current Protection  
Thermal Shutdown (TSD)  
HTSSOP-C48R  
HTSSOP-C48  
Thermal Sensor Reading  
Serial Peripheral Interface (SPI)  
LIMP-HOME Mode  
(Note 1) Grade1.  
Typical Application Circuit  
CPINx  
VPIN  
Boost  
DC/DC  
PIN  
PGND  
+B  
VIN  
CVIN  
GND  
RISN1  
GND  
GND  
SNSN1  
RISP1  
C5VEXT  
C5VREG  
SNSP1  
RBT1  
COUT1  
Optional  
External  
5 V  
CBT1  
5VREG  
5VEXT  
BOOT1  
SW1  
・・・  
・・・  
・・・  
L1  
RSNS1  
RSNS2  
RSNS3  
LED1+  
RTON  
ROUT1  
GND  
TON  
COMP1  
RISN2  
CCOMP1 RCOMP1  
CCOMP2 RCOMP2  
CCOMP3 RCOMP3  
SNSN2  
RISP2  
COMP2  
COMP3  
SNSP2  
RBT2  
COUT2  
CBT2  
BOOT2  
V5VREG  
SW2  
RIS12  
RIS22  
LED2+  
ROUT2  
GND  
RIS11  
L2  
ISET/PWM1  
ISET/PWM2  
ISET/PWM3  
RIS21  
RSO  
RISN3  
RIS31  
RIS32  
SNSN3  
RISP3  
SNSP3  
RBT3  
5 V  
COUT3  
CBT3  
BOOT3  
SW3  
SO/FAULT_B  
LED3+  
ROUT3  
L3  
D3  
CSB  
SCK  
MCU  
SI  
EXP_PAD  
Figure 1. Typical Application Circuit  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
1/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Pin Configurations  
(TOP VIEW)  
GND  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIN  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIN  
SNSN2  
SNSP2  
SO/FAULT_B  
CSB  
PGND  
PGND  
3
3
4
4
SCK  
SI  
SW1  
5
5
SW2  
SW2  
SW1  
COMP1  
6
6
BD18397RUV-M  
HTSSOP-C48R  
BD18397EUV-M  
HTSSOP-C48  
BOOT2  
BOOT1  
7
7
SNSN1  
SNSP1  
8
8
COMP2  
9
9
5VEXT  
PGND  
ISET/PWM 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
ISET/PWM2  
VIN  
5VREG  
TON  
PIN  
TOP-EXP-PAD  
(GND)  
BOTTOM-EXP-PAD  
PIN  
TON  
VIN  
5VREG  
ISET/PWM2  
GND  
PGND  
5VEXT  
ISET/PWM 1  
COMP2  
SNSP1  
SNSN1  
BOOT1  
SW1  
BOOT2  
SW2  
SW2  
COMP1  
SW1  
SI  
21  
22  
21  
22  
SCK  
PGND  
PIN  
PGND  
PIN  
CSB  
SO/FAULT_B  
GND  
23  
24  
23  
24  
SNSP2  
SNSN2  
Figure 2. BD18397RUV/EUV-M Pin Configuration  
(TOP VIEW)  
GND  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIN  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIN  
SNSN2  
SNSP2  
2
SO/FAULT_B  
CSB  
PGND  
PGND  
3
3
4
4
SCK  
SI  
SNSN3  
SNSP3  
SW1  
5
5
SW2  
SW2  
SW1  
COMP1  
6
6
BD18398RUV-M  
HTSSOP-C48R  
BD18398EUV-M  
HTSSOP-C48  
BOOT2  
BOOT1  
7
7
SNSN1  
SNSP1  
COMP3  
COMP2  
8
8
BOOT3  
SW3  
9
9
5VEXT  
PGND  
ISET/PWM 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
ISET/PWM3  
ISET/PWM2  
GND  
SW3  
5VREG  
TON  
VIN  
PIN  
TOP-EXP-PAD  
(GND)  
BOTTOM-EXP-PAD  
PIN  
TON  
VIN  
5VREG  
SW3  
ISET/PWM2  
ISET/PWM 3  
SW3  
GND  
PGND  
5VEXT  
BOOT3  
ISET/PWM1  
COMP2  
SNSP1  
SNSN1  
COMP3  
BOOT1  
SW1  
BOOT2  
SW2  
SW2  
COMP1  
SW1  
SNSP3  
SNSN3  
SI  
21  
22  
21  
22  
SCK  
PGND  
PIN  
PGND  
PIN  
CSB  
SO/FAULT_B  
GND  
23  
24  
23  
24  
SNSP2  
SNSN2  
Figure 3. BD18398RUV/EUV-M Pin Configuration  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
2/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Pin Descriptions  
Pin Name  
HTSSOP- HTSSOP-  
C48R C48  
Function  
Unused Pin Setting  
BD18397xxx-M  
BD18398xxx-M  
27, 34, 46 27, 39, 46  
25, 36, 48 25, 37, 48  
PGND  
PGND  
Power ground (channel common). Not unused  
Supply input voltage for power  
Not unused  
PIN  
PIN  
stage (channel common).  
18  
21  
7
4
SNSN1  
N.C.  
SNSN1  
SNSN3  
SNSN2  
SNSP1  
SNSP3  
SNSP2  
BOOT1  
BOOT3  
BOOT2  
SW1  
LED current sense input -  
Open  
(channel x).  
24  
1
SNSN2  
SNSP1  
N.C.  
17  
8
LED current sense input +  
Open  
20  
5
(channel x).  
23  
2
SNSP2  
BOOT1  
N.C.  
42  
31  
Connecting series resister and  
40  
33  
boot strap capacitor for high side  
gate drive (channel x).  
Open  
Open  
31  
42  
BOOT2  
SW1  
Switched output connecting the  
inductor (channel x).  
Connecting schottky barrier diode  
to the SW3 pin.  
43, 44  
38, 39  
29, 30  
9
29, 30  
34, 35  
43, 44  
16  
N.C.  
SW3  
SW2  
SW2  
ISET/PWM1  
N.C.  
ISET/PWM1  
ISET/PWM3  
ISET/PWM2  
COMP1  
COMP3  
COMP2  
LED current setting in the LIMP-  
HOME mode / PWM dimming  
(channel x).  
Pulled down by  
external resister  
10  
15  
11  
14  
ISET/PWM2  
COMP1  
N.C.  
6
19  
Connecting compensation  
capacitor (channel x).  
7
18  
Open  
8
17  
COMP2  
Supply input voltage for signal  
block.  
Regulator on-time setting resister  
pin. Connect a resistor between  
the TON pin and GND to set the  
switching frequency.  
12  
13  
VIN  
VIN  
Not unused  
Not unused  
13  
12  
TON  
TON  
Internal 5 V regulator output  
connecting 4.7 µF capacitor.  
14  
1, 15  
33  
11  
10, 24  
40  
5VREG  
GND  
5VREG  
GND  
Not unused  
Not unused  
Signal ground.  
5 V input power supply for the  
internal gate drive's connecting 4.7 Not unused  
µF capacitor.  
5VEXT  
5VEXT  
Open for  
STNAD-ALONE  
5
4
3
20  
21  
22  
SI  
SI  
Serial data input for SPI.  
Open for  
STNAD-ALONE  
SCK  
CSB  
Serial clock input for SPI.  
Chip select input for SPI.  
SCK  
CSB  
GND for  
STNAD-ALONE  
Serial data open drain output for  
SPI.  
In LIMP-HOME mode, fault  
condition output (open drain  
output and low level active)  
Connecting pulled-up resister.  
Exposed pad for thermal cooling  
and internal connected to  
GND.(Note 1)  
2
23  
SO/FAULT_B  
SO/FAULT_B  
Open  
TOP-EXP- BOTTOM-  
PAD  
(GND)  
-
EXP-PAD  
(GND)  
-
-
-
N.C.  
Non wire connecting.  
Open  
(x = 1, 2, 3)  
(Note 1) Exposed PAD is signal ground (connecting to the GND pin internally). The exposed pad should not be connecting to Power-supply or any signal nodes.  
www.rohm.com  
TSZ02201-0T1T0B400410-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
3/84  
TSZ22111 • 15 • 001  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Block Diagram  
PIN  
Release  
Hiccup  
Time  
+B  
VIN  
CVIN  
PINUVLO  
UVLO  
PIN  
PIN  
UVLO  
RST  
SWOCPx  
CPINx  
CBTx  
RST  
SWOCPx  
BG  
TSD  
5V_LD O  
TSD  
3VIO  
5VEXT  
RST  
RST  
BOOTx  
UVLO  
Blanking  
Time  
5VREG  
C5VREG  
GND  
TSD  
DRVH  
DRVL  
Q
Lx  
PWMONx  
CHONx  
LOCPx  
SWx  
SYSCLK  
VTEMP  
PO R  
3VIO  
OSC  
2.5 MHz  
Thermal  
Sensor  
POR  
5VEXT  
On time control  
NLOCPx  
C5VEX T  
Q
VPIN  
VSNSPx  
RST  
SET  
PGND  
TON  
Inductor current ramp slope  
ONTIME  
VCSOx  
2.5 V  
TONx[4:0]  
SSCG[2:0]  
VCOMPx  
RTON  
Spread  
Spectrum  
x1  
2.5 V  
KSNSNx  
SNSPx  
SNSNx  
COMP Clamp  
Valley Inductor  
current detect  
GM error amplifire  
L
sink current  
H
L
VCOMPx  
GM[1:0]  
VSNSx  
COMPx  
x 4  
RSNSx  
H
CCOMPx  
Rail to Rail  
current sense  
PWMONx  
LODx  
VMODEx  
2.55 V  
0.2 V  
VCOMPxSG  
H
L
H
ISET/PWMx  
MIN  
SEL  
VIV  
-
VDCDIMx  
VISETx  
convertor  
1 / 12  
L
COUTx  
EXTPWM x  
5VREG  
H
L
0.15 V/0.17 V  
0.44 V/0.46 V  
H
L
LIMPH  
VPWMx  
PWMONx  
LED short to  
ground detect  
LSDx  
INTPWMx  
LIMPH  
1.95 V  
VLSDx  
SYSCLK  
PO R  
ISETDIMx  
LIMPH  
TSD  
Positive LED over  
current detect  
PINUVLO  
UVLO  
SWOCP x  
VCSOx  
ISETx[9:0]  
VMODEx  
10 bit  
D/A  
3VIO  
I/O  
LOCPx  
4 x ΔVSNSLOC  
CSB  
SCK  
LOGIC  
LOCPx  
Negative LED over  
current detect  
TONx[4:0]  
SSCG[2:0]  
GMx[1:0]  
LODx  
VCSOx  
SI  
NLOCPx  
4 x ΔVSNSNLOC  
VFSRADC = 2.5 V  
LSDx  
VIN  
VPIN  
SO/FAULT_B  
LOCPx  
V5VEXT  
VSNSNx  
VISETx  
VTEMP  
ADMON[9:0]  
MUX  
A/D  
10 bit A/D  
Figure 4. Block Diagram  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
4/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
VIN  
Rating  
-0.3 to +50  
-0.3 to +70  
-0.3 to +7  
-0.3 to +7  
-0.3 to VPIN  
-0.3 to VPIN  
-0.8 to +0.8  
-0.3 to +7  
-0.3 to VIN  
-0.3 to +7  
-0.3 to +50  
-0.3 to +7  
-0.3 to +7  
150  
Unit  
V
VIN Supply Voltage  
PIN Supply Voltage  
VPIN  
V
5VEXT Supply Voltage  
BOOTx to SWx Voltage  
SWx to PGND Voltage  
SNSPx, SNSNx Voltage  
SNSPx to SNSNx Voltage  
ISET/PWMx Input Voltage  
TON Input Voltage  
V5VEXT  
V
VBTSWx  
V
VSWx_PGND  
VSNSPx, VSNSNx,  
VSNSx  
V
V
V
VISET/PWMx  
VTON  
V
V
5VREG Output Voltage  
VIN to 5VREG Voltage  
SI, SCK, CSB Input Voltage  
SO/FAULT_B Output Voltage  
Maximum Junction Temperature  
V5VREG  
V
VVIN_5VREG  
VSI, VSCK, VCSB  
VSO/FAULT_B  
Tjmax  
V
V
V
°C  
°C  
Storage Temperature Range  
(x = 1, 2, 3)  
Tstg  
-55 to +150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
www.rohm.com  
TSZ02201-0T1T0B400410-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
5/84  
TSZ22111 • 15 • 001  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Thermal Resistance  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
JEDEC 2s2p  
JEDEC 2s2p(Note 5)  
+ Heat sink(Note 3)  
HTSSOP-C48R  
Junction to Ambient(Note 1)  
Junction to Case-top(Note 2)  
Junction to Board Characterization Parameter(Note 1) (Note 4)  
θJA  
θJC_TOP  
ΨJB  
54  
1.12  
31  
13.3  
°C/W  
°C/W  
°C/W  
-
7
(Note 1) θJA, ΨJB is measured with JEDEC 2s2p mounted.  
(Note 2) θJC-TOP is measured with the IC pressed against the cold plate. The result of N = 1 pc.  
For more information about traditional and new thermal metrics, see the Measurement Method and Usage of Thermal Resistance RthJC application  
note.  
(Note 3) Heat sink: 57 mm x 50 mm x 30 mmt, Number of FINs is 6, FIN width 1 mm, Thermal interface material thickness is 1 mm and Thermal conductivity 3.2  
W/mK.  
(Note 4) The thermal characterization parameter to report the difference between junction temperature and the temperature at the board located within 1 mm  
from the IC.  
(Note 5) Using a PCB board based on JESD51-5, 7.  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 8)  
2s2p(Note 9)  
HTSSOP-C48  
Junction to Ambient(Note 6)  
Junction to Top Characterization Parameter(Note 6) (Note 7)  
θJA  
62  
3
22  
2
°C/W  
°C/W  
ΨJT  
(Note 6) Based on JESD51-2A(Still-Air).  
(Note 7) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 8) Using a PCB board based on JESD51-3.  
(Note 9) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Thermal Via(Note 10)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 10) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
6/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VIN Continuous Supply Voltage(Note 1)  
PIN Continuous Supply Voltage(Note 1)  
5VEXT Continuous Supply Voltage(Note 1)  
SNSNx LED Output Voltage  
VIN  
VPIN  
5
13  
-
45  
65  
5.5  
60  
V
V
V
V
5
V5VEXT  
VOUTx  
4.5  
2.5  
5.0  
Bootstrap Voltage between the BOOTx Pin and the  
SWx Pin  
Continuous Average LED Current  
for channel 1, channel 2  
VBTSWx  
ILED1, ILED2  
ILED3_SBD  
3.5  
-
-
-
-
V
A
A
-
-
1.6  
1.6  
Continuous Average LED Current  
for channel 3 with the SBD(Note2)  
fPWM = 200 Hz  
-
-
-
-
-
-
0.8  
1.1  
1.4  
A
A
A
Continuous Average LED  
Current for channel 3  
without the SBD (Note3)  
fPWM = 400 Hz  
ILED3_NO_SBD  
fPWM = 800 Hz  
fPWM = 1200 Hz  
-
-
-
-
1.6  
A
(external PWM only)  
PWM Dimming Frequency for all channel  
Channel 3 is disable  
fPWM_CH3OFF  
fPWM_SBD  
200  
200  
-
-
Hz  
Hz  
PWM Dimming Frequency for all channel  
Channel 3 is enabled with the SBD(Note2)  
ILED3_NO_SBD = 0.8 A  
200  
400  
800  
1200  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Hz  
Hz  
Hz  
Hz  
A
PWM Dimming Frequency for  
all channel without the  
SBD(Note3)  
ILED3_NO_SBD = 1.1 A  
ILED3_NO_SBD = 1.4 A  
ILED3_NO_SBD = 1.6 A  
BD18397RUV-M  
BD18398RUV-M  
BD18397EUV-M  
BD18398EUV-M  
fPWM_NO_SBD  
-
-
3.2  
4.8  
2.7  
2.7  
2250  
-
-
A
Continuous Total Average LED  
Current(Note 4)  
ILED_TOTAL  
-
A
-
A
Setting Switching Frequency  
fSWx  
TPWMONx  
TPWMOFFx  
Topr  
200  
50  
50  
-40  
kHz  
μs  
μs  
°C  
PWM Dimming on Pulse Width(Noet5)  
PWM Dimming off Pulse Width(Noet6)  
-
Operating Temperature  
+125  
(Note 1) ASO should not be exceeded.  
(Note 2) For the BD18398xxx-M only, Schottky Barrier Diodes should be needed between the SW3 Pin and the PGND Pin can support higher current setting for  
the channel 3 and using lower PWM frequency, the forward drop voltage of required SBD is less than 0.81 V at the forward current 2 A.  
(Note 3) For the BD18398xxx-M only, without Schottky Barrier Diodes between the SW3 Pin and the PGND Pin, minimum PWM frequency for all channel and  
maximum current setting for channel 3 should be limited.  
(Note 4) Set LED current for each channel less than total LED current: ILED_TOTAL for the BD18397xxx-M = ILED1 + ILED2, ILED_TOTAL for the BD18398xxx-M = ILED1  
ILED2 + ILED3.  
+
(Note 5) Set PWM dimming on pulse width higher than TPWMONx for stable average LED current regulation and detecting LED open.  
(Note 6) Set PWM dimming off pulse width higher than TPWMOFFx for stable average LED current regulation. TPWMOFFx should be set higher than following condition:  
TPWMOFFx > ILEDx / (VOUTx / L).  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
7/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Recommended Setting Parts Range  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Coupling Capacitor Connecting to the VIN Pin(Note 1)  
Coupling Capacitor Connecting to the PIN Pin(Note 1)  
Coupling Capacitor Connecting to the 5VEXT Pin(Note 1)  
CVIN  
CPINx  
0.2  
1.0  
2.0  
1
-
-
-
μF  
μF  
μF  
4.7  
4.7  
C5VEXT  
Compensation Capacitor Connecting to the 5VREG  
Pin(Note 1)  
C5VREG  
CCOMPx  
2.0  
0.01  
-
4.7  
0.10  
0
-
-
μF  
μF  
kΩ  
Switching Compensation Capacitor Connecting to the  
COMPx Pin(Note 1)  
Switching Compensation Series Resistor  
for CC Mode Connecting to the COMPx Pin  
RCOMPx_CC  
1
Switching Compensation Series Resistor  
for CV Mode Connecting to the COMPx Pin  
RCOMPx_CV  
COUTx  
-
-
4.7  
-
kΩ  
μF  
μF  
Coupling Capacitor Connecting to the SNSNx Pin  
0.10  
1.0  
0.47  
2.2  
Boot Strap Capacitor Connection between the BOOTx  
CBTx  
4.7  
Pin and the SWx Pin(Note 1)  
Series Resistor Connecting to the BOOTx Pin(Note 2)  
Total Coupling Output Capacitor for CV Mode  
Resistor Connecting to the TON Pin  
RBTx  
COUTx_cv  
RTON  
0.0  
10  
9.1  
1
4.7  
22.0  
-
Ω
μF  
kΩ  
kΩ  
mΩ  
kΩ  
kΩ  
-
-
100  
-
Pulled-up Resistor Connecting to the SO/FAULT_B Pin  
Current Sense Resister  
RSO  
-
RSNSx  
91  
0.82  
-
-
1.00  
-
-
Resistor Connecting to the SNSPx Pin, the SNSNx Pin  
Pulled-down Resistor Connecting to Output(Note 3)  
RISPx, RISNx  
ROUTx  
1.50  
100  
(Note 1) Set the capacitor taking temperature characteristics, DC bias characteristics, etc. into consideration.  
(Note 2) Set the series resister to improve electromagnetic interference performance.  
(Note 3) Set the resister to discharge output capacitor during corresponding channel disable.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
8/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Electrical Characteristics  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = -40 °C to +150 °C)  
Limit  
Unit  
Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
[Total]  
VIN Sleep Circuit Current  
IINSLP  
IINSTB  
-
0.65  
1.8  
1.20  
3.3  
3.6  
80  
mA  
mA  
mA  
BD18397xxx-M  
BD18398xxx-M  
-
VIN STANDBY  
Circuit Current  
-
2.0  
PIN STANDBY Circuit Current  
IPINSTB  
-
43  
μA No-Switching  
μA No-Switching  
5VEXT STANDBY Circuit Current  
I5VEXTSTB  
-
-
65  
130  
-
BD18397xxx-M  
BD18398xxx-M  
4.2  
mA  
mA  
V
5VEXT Switching  
Circuit Current  
All Channels Switching  
fSWx = 400 kHz  
I5VEXTSW  
-
6.3  
-
3.80  
4.15  
-
4.10  
4.50  
0.40  
4.10  
4.50  
0.40  
4.10  
4.20  
0.10  
2.70  
2.90  
0.20  
4.30  
4.73  
-
VINUVD  
VINUVR  
Falling Detect Threshold  
Rising Release Threshold  
Hysteresis  
VIN UVLO Threshold  
PIN UVLO Threshold  
V
VINUVHYS  
VPINUVD  
V
3.80  
4.15  
-
4.30  
4.73  
-
V
Falling Detect Threshold  
Rising Release Threshold  
Hysteresis  
VPINUVR  
V
VPINUVHYS  
V5VUVD  
V
3.80  
3.90  
-
4.30  
4.40  
-
V
Falling Detect Threshold  
Rising Release Threshold  
Hysteresis  
5VREG, 5VEXT  
UVLO Threshold  
V5VUVR  
V
V5VUVHYS  
V5VRPORD  
V5VRPORR  
V5VRPORHYS  
V
2.50  
2.70  
-
2.90  
3.10  
-
V
Falling Detect Threshold  
Rising Release Threshold  
Hysteresis  
5VREG POR Threshold  
V
V
[Reference Voltage]  
C5VREG = 4.7 μF  
I5VREG = 0 mA to 25 mA  
5VREG Reference Voltage  
V5VR  
4.85  
5.00  
5.15  
V
VIN = 4.75 V  
I5VREG = 25 mA  
5VREG Drop Voltage  
V5VRDP  
I5VRLM  
-
0.15  
0.35  
V
5VREG Output Current Limit  
100  
-
-
mA  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
9/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Electrical Characteristics - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[DCDC Convertor Switching]  
ISWx = -10 mA,  
Tj = -40 °C to +25 °C  
-
360  
-
470  
720  
340  
550  
4.2  
mΩ  
mΩ  
mΩ  
mΩ  
A
SWx ON Resistor High Side  
SWx ON Resistor Low Side  
RSWxONH  
-
-
ISWx = -10 mA, Tj = 150 °C  
ISWx = 10 mA,  
Tj = -40 °C to +25 °C  
260  
-
RSWxONL  
-
ISWx = 10 mA, Tj = 150 °C  
SWx Over Current Protection  
Threshold  
ISWxOCP  
tSWxOCPBLK  
tHICCUPx  
tOCPx  
3.0  
3.6  
SWx Over Current Protection  
Blanking Time  
-
80  
128  
1.0  
1.0  
-
ns  
μs  
SWx Over Current Protection  
Hiccup Time  
-
-
SWx Over Current Protection  
Flag Set Delay Time  
0.7  
0.7  
1.3  
1.3  
ms  
ms  
SWx Over Current Protection  
Flag Release Delay Time  
tOCPxR  
SWx Minimum On Time  
SWx Minimum Off Time  
[On Time]  
tSWxONMIN  
tSWxOFFMIN  
-
-
90  
145  
150  
ns  
ns  
VSNSNx = 0 V  
100  
VSNSPx - VSNSNx = 0 V  
VSNSPx = 30 V, RTON = 51 kΩ  
TONx[5:0] = 7 (default)  
tONx1  
tONx2  
tONx3  
1.120  
0.219  
0.214  
1.250  
0.243  
0.237  
1.380  
0.267  
0.260  
μs  
μs  
μs  
VSNSPx = 30 V, RTON = 51 kΩ  
TONx[5:0] = 43  
VSNSPx = 30 V, RTON = 9.1 kΩ  
TONx[5:0] = 7 (default)  
On Time Setting  
-
-
-
-
1044  
536  
-
-
Hz  
Hz  
Hz  
Hz  
-
SSCG[2:0] = 7  
SSCG[2:0] = 5  
283  
-
fSSFM  
SSCG[2:0] = 3  
155  
--  
SSCG[2:0] = 1  
Not applicable  
SSCG[2:0] = 0 (default)  
On Time Spread Spectrum  
Width  
tONSSFMW  
-
±6  
-
%
[GM Error Amplifier]  
-
-
-
-
-
-
-
-
-
-
-
-
1360  
870  
530  
300  
240  
120  
60  
-
-
-
-
-
-
-
-
-
-
-
-
GMx[1:0] = 0 (default)  
GMx[1:0] = 1  
Trans Conductance  
gm  
μS  
GMx[1:0] = 2  
GMx[1:0] = 3  
GMx[1:0] = 0 (default)  
GMx[1:0] = 1  
COMP Source Current  
COMP Sink Current  
ICOMPSO  
μA  
μA  
GMx[1:0] = 2  
30  
GMx[1:0] = 3  
240  
120  
60  
GMx[1:0] = 0 (default)  
GMx[1:0] = 1  
ICOMPSI  
GMx[1:0] = 2  
30  
GMx[1:0] = 3  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
10/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Electrical Characteristics - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[Current Sense Amplifier]  
VSNSxAVE  
100%H  
VSNSNx = 4 V, RISNx = 1 kΩ  
ISETx[9:0] = 1023  
184.7  
160.6  
90.7  
15.1  
153.3  
-
191.5  
166.6  
95.6  
19.1  
166.6  
0.203  
±2  
198.2  
172.6  
100.5  
23.1  
179.9  
-
mV  
mV  
mV  
mV  
mV  
mV  
LSB  
mV  
V/V  
μA  
VSNSxAVE  
87%H  
VSNSNx = 4 V, RISNx = 1 kΩ  
ISETx[9:0] = 901 (default)  
SNSPx to SNSNx  
Total Average Current Sense  
Threshold Voltage  
Including SNSPx and SNSNx  
Differential Input Current  
Voltage Drop Over RISNx = 1 kΩ  
VSNSxAVE  
50%H  
VSNSNx = 4 V, RISNx = 1 kΩ  
ISETx[9:0] = 552  
VSNSxAVE  
10%H  
VSNSNx = 4 V, RISNx = 1 kΩ  
ISETx[9:0] = 176  
VSNSxAVE  
87%L  
VSNSNx = 0 V, Low-side-sense  
ISETx[9:0] = 901 (default)  
Current Sense Threshold  
Resolution  
ΔVSNSxLSB  
ΔVSNSxDNL  
VSNSxD  
GSNS  
Current Sense Threshold  
Differential Non-Linearity  
-
-
Input Differential Sense Voltage  
Dynamic Range  
-200  
-
-
+200  
-
VSNSx Voltage  
Input Differential Sense Voltage  
Output Gain  
VSNSx Input to Output for GM  
Error Amplifier Gain  
4
VSNSx = 191.5 mV  
VSNSNx = 4 V  
38.0  
38.0  
-1.5  
-1.0  
1.80  
7
54.5  
54.5  
0
85.0  
85.0  
+1.5  
+1.0  
2.10  
13  
SNSPx Input Current  
SNSNx Input Current  
ISNSPx  
VSNSx = 191.5 mV  
VSNSNx = 4 V  
ISNSNx  
μA  
IDIF_SNSx  
_100%H  
VSNSx = 191.5 mV  
VSNSNx = 4 V  
μA  
SNSPx and SNSNx Differential  
Input Current  
IDIF_SNSx  
_10%H  
VSNSx = 19.1 mV  
VSNSNx = 4 V  
0
μA  
LED Short to Ground Detect  
Status Set Threshold  
1.95  
10  
VLSDx  
V
VSNSNx Falling  
LED Short to Ground Flag Set  
Delay Time  
tSNSxLVD  
tSNSxLVDR  
ms  
ms  
LED Short to Ground Flag  
Release Delay Time  
0.7  
1
1.3  
VSNSx Rising  
ISETx[9:0] = 82 Rising  
or VMODEx = 1  
LED Over Current Protection  
Threshold  
320  
390  
500  
ΔVSNSxLOCP  
mV  
mV  
VSNSx falling  
ISETx[9:0] = 82 Rising,  
or VMODEx = 1  
Negative LED Over Current  
Protection Threshold  
ΔVSNSxNLOCP  
-500  
-390  
-320  
LED Over Current Protection  
Blanking Time  
-
-
120  
80  
-
-
tSNSxLOCBLK  
tSNSxNLOCBLK  
VCOMPxSG  
tSNSxSG  
ns  
ns  
V
Negative LED Over Current  
Protection Blanking Time  
LED Status Good COMP Over  
Threshold  
-
2.55  
10  
-
LED Status Good Flag Set  
Delay Time  
7
13  
1.3  
ms  
ms  
LED Status Good Flag Release  
Delay Time  
0.7  
1
tSNSxSGR  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
11/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Electrical Characteristics - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[Voltage Sense]  
SNSNx Voltage Sense Resistor  
Divider Ratio  
-
0.037  
-
KSNSNx  
-
VSNSNx_1  
VSNSNx_2  
VSNSNx_3  
VSNSNx_4  
VSNSNx_5  
46.5  
23.5  
14.1  
6.60  
4.75  
50.0  
25.0  
15.0  
7.00  
5.00  
53.5  
26.5  
15.9  
7.40  
5.25  
V
V
V
V
V
ISETx[9:0] = 758  
ISETx[9:0] = 379  
ISETx[9:0] = 227  
ISETx[9:0] = 106  
ISETx[9:0] = 76  
SNSNx  
Voltage Sense Threshold  
SNSNx Voltage Sense  
Threshold Resolution  
-
0.066  
-
ΔVSNSNxLSB  
V
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
12/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Electrical Characteristics - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[A/D Convertor]  
A/D Resolution  
RESADC  
tADC  
-
-
10  
-
-
bit  
μs  
A/D Conversion Time  
11.2  
A/D Full Scale  
Reference Voltage  
2.43  
2.50  
2.57  
VFSRADC  
V
Integral Nonlinearity  
INL  
-
-
-
-
-
-
-
±2  
±2  
-
-
-
-
-
-
-
LSB  
LSB  
V
Differential Nonlinearity  
DNL  
VFSR1  
VFSR2  
VFSR3  
VFSR4  
VFSR5  
48  
VIN  
70  
V
VPIN  
ADC Monitoring Nodes  
Full Scale Range  
67.5  
5.5  
V
VSNSNx  
V5VEXT  
VISET/PWMx  
V
VFSRADC  
V
ADC Monitoring Nodes  
Read Values Total Accuracy  
-6  
-
+6  
ΔADC  
%
394  
577  
418  
602  
442  
627  
ADCTEMP25  
ADCTEMP150  
-
-
Tj = 25 °C  
Thermal Sensor Voltage ADC  
Read Value  
Tj = 150 °C  
[PWM Dimming]  
ISET/PWMx Input for DC/DC  
Switching On Threshold 1  
Rising  
In the LEDACTIVE  
VPWMxH1  
VPWMxL1  
0.42  
0.40  
0.46  
0.44  
0.50  
0.48  
V
V
ISET/PWMx Input for DC/DC  
Switching Off Threshold 1  
Falling  
In the LEDACTIVE  
Rising  
In the LIMP-HOME  
or STAND-ALONE  
ISET/PWMx Input for DC/DC  
Switching On Threshold 2  
0.15  
0.13  
0.17  
0.15  
0.19  
0.17  
VPWMxH2  
V
V
Falling  
In the LIMP-HOME  
or STAND-ALONE  
ISET/PWMx Input for DC/DC  
Switching Off Threshold 2  
VPWMxL2  
ISET/PWMx to DC/DC  
Switching On Transition Delay  
-
-
0.1  
0.2  
1.0  
1.0  
tPWMxH  
tPWMxL  
μs  
μs  
ISET/PWMx to DC/DC  
Switching Off Transition Delay  
-
-
-
-
203  
407  
610  
814  
-
-
-
-
Hz  
Hz  
Hz  
Hz  
PWMDIV[2:0] = 1 (default)  
PWMDIV[2:0] = 4  
Internal PWM Frequency  
fPWM  
PWMDIV[2:0] = 6  
PWMDIV[2:0] = 7  
[LOGIC I/O SCK, CSB, SI, SO/FAULT_B]  
Internal Oscillator Frequency  
Input Voltage High  
fOSC  
VIHxx  
2.0  
2.2  
-
2.5  
-
3.0  
-
MHz  
V
SCK, CSB, SI pins  
Input Voltage Low  
VILxx  
-
0.6  
1000  
-
V
Input Pull-down Resister  
CSB Pull-up Current  
RINxx_PD  
ICSBOL  
250  
-
500  
10  
kΩ  
μA  
SCK, SI pins  
VCSB = 0 V  
SO/FAULT_B Output Low  
Voltage  
SO/FAULT_B Output Leakage  
Current  
VSO/FAULT_  
B_OL  
-
-
-
-
0.6  
1
V
ISO/FAULT_B_O = 10 mA  
VSO/FAULT_B = 5 V  
ISO/FAULT_  
B_LEAK  
μA  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
13/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks  
1
Buck Converter LED Current Regulation  
The BD18397/98xxx-M is synchronous buck converter with nearly fixed switching frequency and provides stable LED current  
over wide input and output voltage dynamic range. The BD18397/98xxx-M is using average inductor current regulation by  
control inductor valley current in average inductor current sensing feedback loop. In buck convertor topology, Inductor current  
is same with LED current, so that this inductor valley current control can be used for accurate LED current regulation loop.  
The BD18397/98xxx-M are using constant on time topology supporting nearly fixed switching frequency over input and  
output voltage change. The internal on-time generator supporting nearly fixed switching frequency makes timing for the buck  
converter SW output tuned off (“RST”) based on desired switching on-duty calculated by the real time sensing VPIN and  
VSNSPx voltage.  
The internal valley current detector makes timing for the buck converter SW output turned on (“SET”) compared with inductor  
valley current and integrated error output signal VCOMPx of the GM amplifier inputs between LED current regulation reference  
voltage VDCDIMx and LED current sensing differential voltage VSNSx between the SNSPx pin and the SNSNx pin.  
PIN  
BOOTx  
ILEDxAVE  
Q
DRVH  
On time control  
RST  
SNSP x  
ILEDx  
SWx  
ONTIME  
TON  
CBTx  
5VEX T  
5VEXT  
DRVL  
BOOTx  
Average LED current control  
SET  
Q
PGND  
VCOMPx  
x 1  
VCSOx  
Rail to Rail  
current sense  
Valley Inductor  
current detect  
GM error amplifire  
SNSPx  
SNSNx  
COMPx  
VCOMPx  
RSNSx  
x 4  
VSNSx  
GM[1:0]  
VFSRADC  
0.2 V  
-
VISETx_DAC  
VDCDIMx  
VIV  
convertor  
10 bit  
D/A  
ISETx[9:0]  
COUTx  
1 / 12  
Figure 5. Buck Converter LED Current Regulation  
On Time (TONx) control  
Inductor current ripple(ΔILEDxcontrol  
ILEDx  
ΔILEDx  
ILEDxAVE  
TONx  
Average LED current (ILEDxAVEcontrol  
Inductor bottom current control  
0
T
VSWx  
0
T
Figure 6. Buck Converter LED Current Regulation Waveforms  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
14/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
2
LED Current Setting (Current Sense)  
Full-scale LED average current can be set by resistor RSNSx connected between the SNSPx pin and the SNSNx pin and can  
be programmable by SPI register ISETx[9:0]. The internal Rail-to-Rail current sense amplifier is monitoring LED current by  
differential voltage (VSNSx) over RSNS between the SNSPx pin and SNSNx pin and generating an error output voltage  
compared between the VSNSx and the scaled reference voltage (VDCDIMx / 12). This error output will be integrated by the  
compensation capacitor CCOMPX connecting to the COMPx pin.  
The Internal reference voltage VDCDIMx is defined by the fixed internal offset voltage (-0.2 V) and the programable Voltage  
VISETx_DAC set by the ISETx[9:0]. The 10-bit DAC convertor full scale range is 2.5 V (VFSRADC) same with the internal 10-bit  
ADC .Programmable LED average current can be calculated by as following formula.  
퐷퐶퐷ꢁ푀푥  
− 0.2 ꢀ  
푆푁푆푥퐴푉퐸  
ꢁ푆퐸푇푥_퐷퐴퐶  
퐿퐸퐷푥퐴푉퐸  
=
=
=
푆푁푆푥  
12 × 푅푆푁푆푥  
12 × 푅푆푁푆푥  
[
]
퐼ꢂꢃꢄꢅ 9: 0  
1
= (  
× 퐹푆ꢆ퐴퐷퐶 − 0.2 ꢀ ) ×  
1024  
12 × 푅푆푁푆푥  
Where:  
is the average current sense regulation voltage.  
푆푁푆푥퐴푉퐸  
퐷퐶퐷ꢁ푀푥 is the internal reference voltage before scaling (1 / 12) for the Rail-to-Rail current sense amplifier.  
[
]
is the 10-bit DAC outputs set by the 퐼ꢂꢃꢄꢅ 9: 0 to define the 퐷퐶퐷ꢁ푀푥  
.
ꢁ푆퐸푇푥_퐷퐴퐶  
퐹푆ꢆ퐴퐷퐶 is the reference voltage of the 10-bit DAC outputs for the ꢀ  
.
ꢁ푆퐸푇푥_퐷퐴퐶  
2.5 V  
VCOMPx  
x 1  
VCSOx  
Rail to Rail  
current sense  
Valley Inductor  
current detect  
SNSPx  
GM error amplifire  
VCOMPx  
RSNSx  
VSNSx  
x 4  
ILEDxAVE  
SNSNx  
COMPx  
GMx[1:0]  
VFSRADC  
0.2 V  
ISETx[9:0]  
-
VISETx_DAC  
VDCDIMx  
VIV  
convertor  
1 / 12  
10 bit  
D/A  
COUTx  
Figure 7. LED Current Setting  
VSNSxAVE  
191.5 mV  
Constant Ripple Voltage  
ΔVSNSx  
VSNSx_PK  
VSNSxAVE = VDCDIMx / 12  
VSNSx_VAL  
Dis-continuous  
VFSRADC  
0 mV  
0
2.5 V VISETx_DAC  
0.2 V  
0 %  
VDCDIMx  
100 %  
1024  
ISETx[9:0]  
0
82  
1023  
Figure 8. Current Sense Regulation Voltage Setting  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
15/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
3
DCDC Switching Frequency  
The buck converter switching on-duty (DONx) and frequency (fSWx) is defined as following.  
푂푁푥  
푂푁푥  
1
푆푁푆푃푥  
푆푁푆푃푥  
푂푁푥  
=
,
푂푁푥  
=
→ 푓  
=
=
×
푆푊푥  
푃ꢁ푁  
푆푊푥  
푂푁푥 푂푁푥  
푃ꢁ푁  
The buck converter switching frequency (fSWx) can be nearly fixed by the adapting constant on time, this on-time TONx will be  
proportional to switching on-duty DONx by monitoring the buck converter input voltage as the VPIN and output voltage as the  
VSNSPx as following formula.  
1
푆푁푆푃푥  
푆푁푆푃푥  
푆푊푥  
×
≒ ꢈ표푛푠푡푎푛푡 푂푁푥 ∝  
푂푁푥  
푃ꢁ푁  
푃ꢁ푁  
The BD18397/98xxx-M has the individual on-time circuit in channels generating adapting constant on time TONx set by the  
SPI. The On time itself will be changed over switching on-duty changed for fixed switching frequency so that the buck  
converter switching frequency is set by the SPI register TONx[5:0] and the external resistor (RTON).  
푆푁푆푃푥  
푂푁푥  
× 푅푇푂푁  
×
× 10ꢋ6 + 20 × 10ꢋꢌ, ꢍ푘 = 0.00038ꢎꢏ  
[
]
ꢄꢉꢊꢅ 5: 0 + 1  
푃ꢁ푁  
1
푆푁푆푃푥  
푆푊푥  
×
푆푁푆푃푥  
푃ꢁ푁  
푃ꢁ푁  
× 푅푇푂푁  
×
× 10ꢋ6 + 20 × 10ꢋꢌ  
[
]
ꢄꢉꢊꢅ 5: 0 + 1  
*More than 2.25 MHz setting cannot be used.  
Figure 9. DCDC Switching Frequency vs TONX[5:0] (DONx = 0.5, RTON = 51 kΩ)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
16/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
3
DCDC Switching Frequency - continued  
2800  
2400  
2000  
1600  
1200  
800  
400  
0
0
20  
40  
60  
80  
100  
120  
RTON[kΩ]  
Figure 10. Switching Frequency vs RTON (DONx = 0.5, TONx[5:0] = 7)  
The BD18397/98xxx-M has built-in spread spectrum function and the modulation switching frequency is ± 6% (Typ) around  
the setting frequency fSWx. The spread spectrum modulation frequency can be programmable by the register SSCG[2:0].  
When SSCG[2:0] is set to 0, spread spectrum modulation is not applicable. When enable the SSCG function, all channels  
of ON time generator use same modulation frequency (fSSFM) to make spread on time based on monitoring on-duty.  
SSCG[2:0]  
0x0  
fSSFM[Hz]  
SSCG Not applicable  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
155  
185  
283  
361  
536  
763  
1044  
fSWx ± 6 %  
fSWx  
fSSFM = 0 %  
fSSFM  
T
Figure 11. Spread Spectrum  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
17/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
4
Internal PMW Dimming Setting (In the LEDACTIVE Mode)  
The BD18397/98xxx-M has an internal 10-bit PWM dimming generator to make timing for individual buck converter switching  
on/off. The internal PWM dimming (INTPWMx) ON duty cycle (DPWMx) set by SPI register the DPWMx[9:0].  
PWM dimming frequency fPWM can be set by SPI register the PWMDIV[2:0] and this PWM dimming frequency setting is  
commonly used in all buck channels for synchronous PMW dimming within the device itself.  
[
]
ꢇꢐꢑꢒꢅ 9: 0 + 1  
푃푊푀푥  
푃푊푀푥  
=
, 푃푊푀푂푁푥 =  
1024  
푃푊푀  
fPWM[Hz]  
PWMDIV[2:0]  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
153  
203  
244  
305  
407  
488  
610  
814  
Minimum PWM dimming pulse width is depends on using inductor and average current setting because of inductor current  
charge per one DCDC switching on cycle limited.  
ILEDx  
ILEDxAVE  
ILEDx_VAL  
TONx  
0
T
TPWMONx  
PWMONx  
T
Figure 12. PWM Dimming Waveform  
5
External PWM Dimming Setting (In the LEDACTIVE Mode)  
PWM Dimming on Pulse Width TPWMONx is controlled by internal PWM dimming generator or external PWM dimming control  
by the ISET/PWMx pin when the ISETDIMx bit is set in the LEDDC register. If the ISET/PWMx pin is set to high level, TPWM  
is equal with internal PWM on cycle (DPWMx). If the ISET/PWMx pin is set to low level, TPWM goes low and LED current  
force turned off. In case of PMM dimming setting DPWMx100% (default), the ISET/PWMx pin can be used for external PWM  
dimming control for LED current on/off same with internal PWM dimming use case. Minimum PWM dimming pulse width is  
depends on using inductor and average current setting because of inductor current charge per one DCDC switching on  
cycle limited.  
PWMONx Definition for channel x  
ISETDIMx  
LEDACTIVE  
DPWMx[9:0]  
ISET/PWMx pin & DPWMx[9:0]  
LIMP-HOME or STAND-ALONE  
0
1
ISET/PWMx pin  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
18/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
6
Hybrid External Analog and PWM Dimming Setting (In the LIMP-HOME and STAND-ALONE Mode)  
The BD18397/98xxx-M supports “External Analog Dimming mode when the IC state is into the LIMP-HOME or STAND-  
ALONE mode.  
In the external analog dimming mode, internal reference voltage for current regulation can be defined by the ISET/PWMx  
pin voltage (VISET/PWMx). When the external input voltage VISET/PWMx pin voltage is less than internal reference voltage  
VISETx_DAC, feed-back voltage VSNSx will be regulated by external pin voltage setting.  
In case of using analog dimming and PWM dimming by the ISET/PWMx pin, applying PWM peak voltage defines analog  
dimming level ILEDxAVE and PWM duty (DPWMx) defines PWM dimming ON time TPWMONx. The analog dimming peak voltage  
VPWMx_PK can be set by the voltage divider (RISX1 and RISX2) and PWM duty (DPWMx) control by external NPN transistor by  
applying invert PWM signals (PWMx_B).  
Current Setting Definition for channel x  
LEDACTIVE  
LIMP-HOME or STAND-ALONE  
ISETx[9:0]  
ISETx[9:0] & ISET/PWMx pin  
if ꢀ  
> ꢀ  
ꢁ푆퐸푇/푃푊푀푥  
ꢁ푆퐸푇푥_퐷퐴퐶  
퐷퐶퐷ꢁ푀푥 = ꢀ  
− 0.2 ,  
ꢁ푆퐸푇/푃푊푀푥  
퐷퐶퐷ꢁ푀푥 = ꢀ  
− 0.2 ꢀ  
ꢁ푆퐸푇푥_퐷퐴퐶  
if ꢀ  
< ꢀ  
ꢁ푆퐸푇푥_퐷퐴퐶  
ꢁ푆퐸푇/푃푊푀푥  
퐷퐶퐷ꢁ푀푥 = ꢀ  
− 0.2 ꢀ  
ꢁ푆퐸푇푥_퐷퐴퐶  
Rail to Rail  
current sense  
GM error amplifire  
SNSPx  
SNSNx  
VCOMPx  
V5VREG  
VISET/PWMx  
x 4  
VSNSx  
RISx1  
RISx2  
0.2 V  
VISET/PWMx  
ISET/PWMx  
H
t
t
-
VDCDIMx  
VIV  
MIN  
SEL  
convertor  
1 / 12  
L
PWMx_B  
H
EMHx  
PWMONx  
5VREG  
L
0.17 V / 0.15 V  
VPWMx  
INTPWMx  
LIMPH-HOME  
or  
STAND-ALONE  
VFSRADC  
10bit  
LOGIC  
D/A  
VISETx_DAC  
ISETx[9:0]  
Figure 13. Hybrid External Analog and PWM Dimming  
TPWMONx  
ILEDxAVE  
VDCDIMx = VISETx_DAC  
VISETx_DAC  
VDCDIMx = VPWMx_PK  
VDCDIMx = VPWMx_PK  
T
0
VISET/PWMx  
DPWMx  
VISETx_DAC  
VPWMx_PK  
VPWMx  
T
T
VPWMx_B  
Figure 14. Hybrid External Analog and PWM Dimming Waveforms  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
19/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
7
Bootstrap Charge  
The BD18397/98xxx-M is synchronous buck DC/DC LED drivers and contains high side and low side N-channel FETs.  
The high side gate driver can be working by proper power supply voltage input between the BOOTx pin and the SWx pin.  
The connecting bootstrap capacitor CBTx can be charged from the 5VEXT pin supply through the internal diode during the  
SWx pin is pull-down. During the SWx pin switching, corresponding channel bootstrap voltage can maintain by refreshed  
capacitor energy. When the SWx pin is Hi-z (CHONx = 0 or corresponding channel PWM dimming off time), the bootstrap  
voltage cannot maintain and becomes lower voltage than recommended bootstrap voltage (VBTSWx > 3.5 V). Alarge bootstrap  
capacitor is required to prevent lower bootstrap voltage operation when using lower PWM frequency. An external bleeder  
resistor ROUTx connecting to the output is required to charge the bootstrap capacitor during the SWx pin is Hi-z (CHONx =  
0) and to reduce negative inductor current energy from the output by the SWx pin pulled-down for bootstrap charged at  
channel turned on. In case of an adding bleeder resistor is not enough off time (CHONx = 0) for completely discharging  
output capacitor energy, the output capacitor can be fast discharged by the negative inductor current regulation setting  
(recommended ISETx[9:0] = 57) before channel turned off (CHONx = 0). When turning on the corresponding channel, the  
output voltage must be sufficiently discharged (VOUTx < 1.5 V) before turning on the corresponding channel (CHONx = 1) to  
ensure that the bootstrap voltage is above the recommended operating voltage (VBTSWx > 3.5 V).  
ILEDxAVE  
TPWMONx  
PWM dimming off  
0
T
refresh bootstrap  
capcitor energy  
VBTSWx  
large bootstrap capacitor reuqired  
Recommended bootstrap voltage  
3.5 V  
small bootstrap  
capacitor  
T
Figure 15. Bootstrap Charge During PWM Dimming Waveforms  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
20/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
7
Bootstrap Charge - continued  
ILEDxAVE  
CHONx = 1  
ISETx[9:0] = 901 ISETx[9:0] = 57  
CHONx = 0  
CHONx = 1  
ISETx[9:0] = 901  
Negative LED  
current regulation  
Start-up  
0
T
VOUTx  
witout negative LED current regulation  
fast dischaged by negative LED  
current regulation  
Compltely dischaged  
T
refresh bootstrap capcitor energy  
VBTSWx  
3.5 V  
Recommended bootstrap voltage  
T
Figure 16. Bootstrap Charge During Channel Off Waveforms  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
21/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
8
Voltage Regulation (In the LEDACTIVE Mode)  
The BD18397/98xxx-M supports “Voltage regulation mode when the VMODEx bit is set in the DCDCSET4 register.  
In the voltage mode, the BD18397/98xxx-M regulates the SNSNx pin voltage (VSNSNx) by control inductor valley current in  
average voltage sensing feedback loop. In the voltage mode, The BD18397/98xxx-M are using constant on time topology  
supporting nearly fixed switching frequency over input and output voltage change. The internal on-time generator supporting  
nearly fixed switching frequency makes timing for the buck converter SW output tuned off (“RST”) based on desired switching  
on-duty calculated by the real time sensing VPIN and VSNSNx voltage.  
The internal valley current detector makes timing for the buck converter SW output turned on (“SET”) compared with inductor  
valley current and integrated error output signal VCOMPx of the GM amplifier inputs between reference voltage VDCDIMx and  
output voltage VSNSNx pin.  
For soft-output-start to reduce rush charge output current, programmed soft-ramp-up reference voltage (VDCDIMx) or soft-  
ramp-up the COMP pin voltage by more compensation capacitor (CCOMPx).  
The voltage regulation mode setting is only activated in LEDACTIVE MODE. In case of LIMP-HOME or STAND-ALONE  
mode, DCDC coveter should be disabled by corresponding the ISET/PWMx pin pulled down.  
=
퐼ꢂꢃꢄꢅ_ꢇꢓꢈ = (퐼ꢂꢃꢄꢅ9:0× ꢀꢖꢂ푅ꢓꢇꢈ) ×  
1
ꢂꢊꢂꢊꢅ  
ꢂꢊꢂꢊꢅ  
1024  
ꢂꢊꢂꢊꢅ  
Where:  
ꢂꢊꢂꢊꢅ is the output regulation voltage.  
ꢂꢊꢂꢊꢅ is the internal voltage divider. ꢂꢊꢂꢊꢅ = 1 / 27.  
[
]
퐼ꢂꢃꢄꢅ_ꢇꢓꢈ is the 10-bit DAC outputs set by the 퐼ꢂꢃꢄꢅ 9: 0 for the internal reference voltage  
of the GM amplifier to define the ꢂꢊꢂꢊꢅ  
ꢖꢂ푅ꢓꢇꢈ is the reference voltage of the 10-bit DAC outputs the 퐼ꢂꢃꢄꢅ_ꢇꢓꢈ  
.
.
PIN  
BOOTx  
ILEDxAV E  
Q
DRVH  
On time control  
RST  
ILEDx  
SNSPx  
SWx  
TON  
ONTIME  
CBTx  
5VEXT  
5VEXT  
DRVL  
BOOTx  
Average LED current control  
SET  
Q
PGND  
VCOMPx  
x 1  
CC  
VCSOx  
Rail to Rail  
current sense  
Valley Inductor  
current detect  
SNSPx  
SNSNx  
GM error amplifire  
COMPx  
CV  
CC  
CV  
VCOMPx  
RSNSx  
x 4  
VSNSNx  
0.2 V  
VIV  
convertor  
1 / 12  
10 bit  
D / A  
COUTx  
ISETx [9:0]  
VDCDIMx  
Voltage sense divider  
kVSNSNx  
KSNSNx  
Figure 17. Buck Converter Voltage Regulation  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
22/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
8
Voltage Regulation (In the LEDACTIVE Mode) - continued  
VSNSNx  
VSNSNxAVE  
T
On Time (TONx) control  
Inductor current ripple(ΔILEDxcontrol  
ILEDx  
ΔILEDx  
TONx  
Average Voltage (VSNSNxAVEcontrol  
Inductor bottom current control  
0
T
VSWx  
0
T
Figure 18. Buck Converter Voltage Regulation Waveforms  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
23/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
9
Abnormal Detection/Protection Function  
Detecting Condition  
(all the value is typical)  
Detection/  
Description in Detecting  
SO/FAULT_B  
Output  
Protection  
Function  
Detection  
Release  
Buck DCDC  
Register  
ADC  
STAND-  
ALONE  
MODE  
5VREG  
POR  
V5VREG  
2.7 V  
V5VREG  
2.9 V  
All channels  
SWx = Hi-Z  
All registers  
initialized.  
Not  
Available  
Hi-Z  
Hi-Z  
5VREG off  
All channels  
SWx = Hi-Z  
Not updated  
All registers will  
be initialized by  
5VREG POR.  
Not  
Available  
VIN UVLO  
VIN ≤ 4.1 V  
VIN ≥ 4.5 V  
COMPx discharged  
5VREG  
5VEXT  
UVLO  
V5VREG ≤ 4.1 V  
or  
V5VEXT ≤ 4.1 V  
V5VREG ≥ 4.2 V  
or  
V5VEXT ≥ 4.2 V  
All channels  
SWx = Hi-Z  
COMPx discharged  
UVLO bit is set in  
the Status  
Not  
Available  
Hi-Z  
Hi-Z  
register.  
All channels  
SWx = Hi-Z  
COMPx discharged  
PIN UVLO bit is  
set in the Status  
register.  
Not  
Available  
PIN UVLO  
VPIN ≤ 4.1 V  
VPIN ≥ 4.5 V  
Corresponding  
channel  
SWx = Pull-down  
COMPx discharged  
with  
Corresponding the  
SWOCPERRx bit  
is set in the status  
register and  
will be reset after  
10 ms counts by  
SWOCPx release.  
SWx Over  
Current  
Protection  
(SWOCPx)  
ISWx > 3.6 A  
ISWx < 3.6 A  
Available  
Low  
Hiccup time (128  
μs)  
Corresponding  
channel  
SWx = Pull-down  
COMPx  
LED Over  
Current  
Protection  
(LOCPx)  
Corresponding the  
LEDOCPERRx bit  
is set in the status  
register.  
VSNSx  
VSNSxAVE  
390 mV  
>
VSNSx  
VSNSxAVE  
390 mV  
<
+
+
Available  
Available  
Low  
Low  
Low  
discharged.  
Negative  
LED Over  
Current  
Protection  
(NLOCPx)  
Corresponding the  
LEDOCPERRx bit  
is set in the status  
register.  
VSNSx  
VSNSxAVE  
390 mV  
<
VSNSx  
VSNSxAVE  
390 mV  
>
Corresponding  
channel  
SWx = Pull-up  
-
-
Corresponding the  
LODx bit is set in  
LED Open  
Detection  
(LODx)  
VCOMPx  
2.55 V and  
PWMONx = H  
>
VCOMPx <  
2.55 V and  
PWMONx = H  
Continue switching. the status register Available  
after 10 ms  
counts.  
Continue switching  
Corresponding the  
and common mode  
LSDx bit is set in  
input range (SNSPx  
the status register Available  
and SNSNx)  
LED Short  
to ground  
Detection  
(LSDx)  
VSNSNx  
1.95 V  
<
VSNSNx  
1.95 V  
>
Hi-Z  
after 10 ms  
switched to low-  
counts.  
side-sense.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
24/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
10 5VREG, 5VEXT  
The 5VREG voltage 5.0 V (Typ) is generated from the VIN pin voltage. This voltage is used as the internal power supply of  
the IC. 5VEXT is external power supply input for the Gate Driver. The 5VREG can be used for connecting to the 5VEXT for  
the power supply. 5 V external power supply can be connecting to the 5VEXT for internal gate drive power supply to reduce  
power loss with high frequency switching in the device. The total current supplied for the internal gate driving should not  
exceed I5VRLM. The current supplied to the internal gate driving per channel can be calculated by the following formula.  
퐹퐸/푐ℎ푎푛푛푒푙 = 푄× 푓  
= 4.8 [푛ꢈ] × 푓  
푆푊푥  
푆푊푥  
Where:  
is the internal gate charge of the MOSFETs per channel (in case of applying VPIN = 60 V).  
is the DC/DC switching frequency.  
푆푊푥  
Connect C5VREG = 4.7 µF as phase compensation capacitor to the 5VREG pin. Connect C5VEXT = 4.7 µF as Coupling capacitor  
to the 5VEXT pin. Place ceramic capacitor close to the IC to minimize trace length to the 5VREG pin and 5VEXT pin to the  
IC ground. The 5VREG pin will not be used for as a power supply other than this IC.  
11 Power on Reset (POR)  
The BD18397/98xxx-M has a POR circuit monitoring the internal power supply output V5VREG. When detecting POR, Internal  
all circuits and logic registers will be initialized. POR circuit main purpose is internal logic initialized in POR condition by  
reset signal. Between the POR detection threshold and UVLO detection threshold of the 5VREG pin, internal register values  
will not be reset and can be read by SPI.  
12 Under Voltage Locked Out (UVLO)  
The BD18397/98xxx-M has UVLO circuits monitoring the input power supplies VIN for the internal reference circuits including  
TSD circuit and V5VREG for the internal 5 V LDO output, and V5VEXT for the internal gate drives and Logic and POR and analog  
circuits includes thermal sensor, and VPIN for drain node of high-side FET and SWOCPx circuit in all channels.  
When detecting a UVLO by the VIN or V5VREG or V5VEXT or VPIN, all buck DC/DC converter, including ADC convertor are  
immediately shutdown and all SW outputs are Hi-Z. Internal analog circuits are initialized so that all COMP pins will be  
discharged. When detecting a UVLO by the VPIN, corresponding buck DC/DC converter is disabled immediately and SWx  
output is off and the COMPx pin will be discharged. When recover a UVLO, buck DC/DC converter needs wait time for start-  
up until the COMPx pin charged up and reach to desired inductor valley regulation voltage.  
in start-up  
after UVLO release  
in UVLO  
detecting  
in UVLO  
detecting  
ILEDx  
ILEDxAVE  
0
T
VCOMPx  
2.5 V  
0
T
VSWx  
0
T
Figure 19. Buck Converter Start-up Waveform  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
25/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
13 Thermal Shutdown (TSD)  
In case of a TSD as Tj > 175 °C (Typ), all the buck DC/DC converters will be disable immediately and Internal all circuits  
and logic registers will be initialized and the SO/FAULT_B pin goes low level output. When TSD recovered at Tj < 150 °C  
(Typ), the SO/FAULT_B pin goes high level output, the DC/DC converters will be in the SPIWAIT state until start-up sequence  
trigger happened.  
14 SW Over Current Protection (SWOCPx)  
The device has a SWOCPx circuit monitoring the output current of the SWx pin. In case of inductor peak current is not  
limited during the internal high side FET switched on, the internal OCP is detected when the SWx output current exceeds  
3.6 A typical. The corresponding channel SWx output will be immediately switched off, and the COMPx pin will be discharged  
and the SWOCPERRx bit is set in status register. After recovery switching during TOCPRx (10 ms) counts without detecting  
SWOCPx, the SWOCPERRx bit is reset (set flag latched in case of SWOCPLAT = 1).  
ISWx  
SWx short to GND  
THICCUPx  
in start-up  
in start-up  
in start-up  
THICCUPx  
THICCUPx  
ISWOCPx  
0
SWOCPx  
reg SWOCPx  
TOCPRx = 10 ms  
Figure 20. SW Over Current Protection Waveform  
15 LED Over Current Protection and Negative LED Over Current Protection (LOCPx and NLOCPx)  
The device has LOCPx and NLOCPx circuits and are monitoring LED current by output of the internal Rail-to-Rail current  
sense amplifier sensing differential voltage over RSNSx between the SNSPx pin and SNSNx pin.  
Internal LOCPx is detected when the VSNSx voltage exceeds ΔVSNSxLOCP (390 mV fixed value) from setting regulation voltage.  
The corresponding channel the SWx pin output will be immediately switched off, and the COMPx pin will be discharged until  
LOCPx detecting release. In detecting the LOCPx, corresponding channel of the LEDOCPERRx bit is set in status register  
(set flag latched in case of LEDOCPLAT = 1).  
Internal NLOCPx is detected when the negative VSNSx voltage exceeds ΔVSNSxNLOCP (-390 mV fixed value) from setting  
regulation voltage. The corresponding channel the SWx pin output will be immediately switched on (cycle by cycle). In  
detecting the NLOCPx, corresponding channel of the LEDOCPERRx bit is set in status register (set flag latched in case of  
LEDOCPLAT = 1).  
www.rohm.com  
TSZ02201-0T1T0B400410-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
26/84  
TSZ22111 • 15 • 001  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
16 LED Open Detection  
LED open detection will happen in a LED open failure, a connector to a LED’s boars opened. When a LED opened, a LED  
current is not flowing through the shunt resistor RSNSx between the SNSPx pin and SNSNx pin so that its differential average  
voltage VSNSxAVE goes zero level input for average current regulation loop. Internal average LED current regulation loop get  
feed-back of lower current compared with desired LED current setting. So that the internal error GM amplifier output as the  
COMP pin output voltage VCOMPx will be increased and clamp to the COMPx pin over voltage detect level VCOMPxSG. This  
clamp level is optimized, and clamp level is much closed to regulation DC voltage. This technology will help eliminating LED  
over current incase of LED open failure recovery or lower input voltage recovery. In detecting LED open, corresponding  
channel of the LODx bit is set in status register after tSNSxSG (10 ms) counts. When LED open detect release by average  
current sense voltage VSNSxAVE goes high level, the LODx bit is reset after tSNSxSGR (1 ms) counts.  
in LED Open  
detecting  
in start-up  
after LED Open release  
VLEDx  
VPIN  
LED Open  
ILEDxAVE  
Continue switching  
0
VCOMPx  
VCOMPxSG  
COMP clamp  
LODx  
tSNSxSG  
tSNSxSGR  
reg LODx  
Figure 21. LED Open Detection Waveform  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
27/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
17 LED Short to GND Detection  
LED short can be detected by a LED anode voltage at the SNSNx pin less than VLSDx (1.95 V). In case of a LED short to  
ground condition time is more than tSNSxLVD (10 ms), the corresponding channel of the LSDx bit is set in status register. When  
a LED short to ground release by the SNSNx pin voltage higher than the VLSDx, the corresponding channel of LSDx bit is  
reset after tSNSxLVDR (1 ms) counts. In a LED short to ground, the device will continue LED average current regulation and  
buck DC/DC on time is limited by internal minimum on time tSWxONMIN (90 ns) .and LED ripple current ΔILED_ON (regulated  
LED ON current) during tSWxONMIN will be higher than expected LED ripple. In addition, LED current down slope is more less  
than LED minimum output connecting case and the LED valley detect comparator (for sending ON signal) will wait long off  
time (TOFFx) until inductor current going down to desired bottom (Valley) current based on regulation loop.  
LED short detection is activated by corresponding channel of the CHONx bit is set in CHEN register, including PMWOFF  
condition so that long PWM off condition will be results in LED short detection flag set in the status register and depends on  
remaining output capacitor at the SNSNx pin.  
in LED Short to Ground  
ΔILED_ON  
ILEDx ΔILEDx  
ILEDxAVE  
TONx  
tSWxONMIN  
TOFFx  
0
T
VSNSNx  
VLSDx  
0
T
LSDx  
tSNSxLVD  
reg LSDx  
Figure 22. LED Short to GND Detection Waveform  
www.rohm.com  
TSZ02201-0T1T0B400410-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
28/84  
TSZ22111 • 15 • 001  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
18 State Machine  
Low quiescent current mode  
(no oscillation)  
RESET  
release POR & TSD  
automatic  
operation  
CSB pin = low > 0.8 ms  
SPI  
WAIT  
STAND  
ALONE  
CSB pin = high  
WDTEN = 1 &  
No SPI Access > 1 s  
SPI Access  
STAND  
BY  
released  
UVLOVIN &  
SLEEP = 0  
WDTEN = 1 &  
No SPI Access > 1 s  
ALL  
CHONx = 0  
ANY  
LIMP  
HOME  
CHONx = 1  
SLEEP  
SPI Access  
detecting  
UVLOVIN ||  
SLEEP = 1  
LED  
ACTIVE  
SPI Access: SPI access and CRC OK  
No SPI Access: no access or access but CRC NG  
Figure 23. State Machine  
Table 1. State Machine Description  
Quiescent  
Current  
SO/FAULT_B  
(Operation)  
State  
LED Lighting  
Description  
RESET  
Low  
OFF  
OFF  
Hi-Z  
All internal block is initialized.  
Dimming mode is selected in this state. IC  
can enter STAND-ALONE mode by CSB =  
Low for 0.8 ms. This feature can only be used  
in this state. If not used, this feature can be  
available after POR or TSD.  
SPIWAIT  
Normal  
Hi-Z  
During setting register or turn off  
A/D conversion is available.  
STANDBY  
LEDACTIVE  
SLEEP  
Normal  
Normal  
Low  
OFF  
SO  
SO  
SO  
Lighting  
(Programmed by  
SPI)  
Dimming is programmed by SPI setting.  
A/D conversion is available. Protection status  
can be checked by Register polling.  
Keep Low quiescent current until SLEEP = 0.  
All register value is kept (not initialized).  
OFF  
When MCU cannot communicate with this IC,  
This IC keeps lighting by external resistor  
setting. No communication includes CRC NG  
SPI Communication.  
When CSB = Low for 0.8 ms, This IC keeps  
lighting by external resistor setting. Protection  
can be checked by monitoring SO/FAULT_B  
= Low.  
Lighting  
(Programmed by  
external resistor)  
LIMP-HOME  
Normal  
Normal  
SO  
Lighting  
(Programmed by  
external resistor)  
STAND-ALONE  
FAULT_B  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
29/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
18 State Machine - continued  
Table 2. State Machine Description for Dimming  
ISETDIM  
(Register)  
State  
RESET  
LED Lighting  
LED Current Setting  
PWM Dimming Setting  
-
-
-
0
-
-
-
SPIWAIT  
0
0/1  
0
OFF  
STANDBY  
DPWMx[9:0] register  
LEDACTIVE  
Lighting  
ISETx[9:0] register  
-
DPWMx[9:0] register  
& ISET/PWMx pin  
1
SLEEP  
0/1  
OFF  
-
LIMP HOME  
STAND-ALONE  
ISETx[9:0] register &  
ISET/PWMx pin  
0/1  
Lighting/OFF  
ISET/PWMx pin  
*ISETDIMx initial value = 0  
Ex1. ) LED ON in LIMP-HOME/STAND-ALONE  
with ISETDIMx = 0  
Ex2. ) LED OFF in LIMP-HOME/STAND-ALONE  
with ISETDIMx = 0  
ISET/PWMx pin > VPWMx  
RESET  
ISET/PWMx pin < VPWMx  
RESET  
STAND-ALONE  
STAND-ALONE  
LED ON  
LED OFF  
write ISETDIMx = 0  
DPWMx = 50 %  
write ISETDIMx = 0  
DPWMx = 50 %  
LEDACTIVE  
LED ON  
DPWMx = 50 %  
LEDACTIVE  
LED ON  
DPWMx = 50 %  
LIMP-HOME  
LED ON  
DPWMx = 100 %  
LIMP-HOME  
LED OFF  
Ex3. ) LED ON in LIMP-HOME/STAND-ALONE  
with ISETDIMx = 1  
Ex4. ) LED OFF in LIMP-HOME/STAND-ALONE  
with ISETDIMx = 1  
ISET/PWMx pin > VPWMx  
RESET  
ISET/PWMx pin < VPWMx  
RESET  
STAND-ALONE  
STAND-ALONE  
LED OFF  
LED ON  
write ISETDIMx = 1  
DPWMx = 50 %  
write ISETDIMx = 1  
DPWMx = 50 %  
LEDACTIVE  
LED ON  
DPWMx = 50 %  
LIMP-HOME  
LED ON  
DPWMx = 100 %  
LEDACTIVE  
LED OFF  
STAND-ALONE  
LED OFF  
Figure 24. Example of Operation Flow  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
30/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Blocks - continued  
19 SPI Protocol and AC Electrical Characteristics  
This IC can be accessed via SPI using CSB, SCK, SI, SO/FAULT_B terminals as shown in.  
CSB  
– Chip Select  
SCK  
– Serial Clock  
SI  
– Serial Data input  
– Serial Data output  
SO/FAULT_B  
CSB  
SCLK  
MOSI  
BD18397/98xxx-M  
SO/FAULT_B  
MCU  
MISO  
Figure 25. MCU Connection  
Select the IC to be accessed by setting the CSB to low. Send the data based on the format as shown in. Data to be sent  
follow a MSB first 24-bit data format for write: 1-bit RW (read or write), 7-bit register address, 8-bit register data (to be written)  
and 8-bit CRC. SPI can be accessed in daisy chain connection or parallel connection. There is no multiple bytes write/read  
feature. After each command, fix SI to low and CSB to high. SI data is outputted with 24 bits shift from SO/FAULT_B.  
SO/FAULT_B keeps Hi-z when CSB = high.  
CSB  
SCK  
Address  
Data  
CRC  
AD AD AD AD AD AD AD WD WD WD WD WD WD WD WD WC WC WC WC WC WC WC WC  
[6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
RW  
SI  
SO/FAULT_B  
w_crc_ok  
(internal signal)  
update  
Register  
Figure 26. Data Format (Write)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
31/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
19 SPI Protocol and AC Electrical Characteristics - continued  
Read Command data format is sent as follows: 1-bit RW, 7-bit register address, fixed 0xFF for register data and 8-bit CRC.  
When CRC is OK (w_crc_ok = high) after the Read command as shown in, it is necessary to toggle CSB (low -> high ->  
low) to store the read data.  
To output the data, it is necessary to send 24-bit High input data (Dummy Data).  
MCU must calculate CRC using 0 as initial value.  
For input data: use 16-bit data for calculation. 16-bit data = (RW, Address[6:0], Data[7:0])  
For output data: use 15-bit data for calculation.  
<RDMODE = 0> 15-bit data = (Address[6:0], Data[7:0]) Not including MSB.  
<RDMODE = 1> 15-bit data = (5-bit (blank data), Data0[7:0], Data1[1:0]) Not including MSB.  
RDMODE = 0  
CSB  
SCK  
Address  
Data(fixed high)  
CRC  
AD AD AD AD AD AD AD  
WC WC WC WC WC WC WC WC  
RW  
SI  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
24-bit input data high (dummy data )  
Data from Register  
w_crc_ok  
(internal signal)  
Address  
CRC  
AD AD AD AD AD AD AD RD RD RD RD RD RD RD RD RC RC RC RC RC RC RC RC  
SO/FAULT_B  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
RDMODE = 1  
CSB  
SCK  
SI  
Address  
Data(fixed high)  
CRC  
AD AD AD AD AD AD AD  
[6] [5] [4] [3] [2] [1] [0]  
WC WC WC WC WC WC WC WC  
[7] [6] [5] [4] [3] [2] [1] [0]  
RW  
24-bit input data high (dummy data )  
1
w_crc_ok  
(internal signal)  
Data from Register 1  
(next address)  
Data from  
Register 0  
CRC  
RD1 RD1 RC RC RC RC RC RC RC RC  
RD0 RD0 RD0 RD0 RD0 RD0 RD0  
RD0  
[7]  
[1]  
[0]  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
SO/FAULT_B  
Figure 27. Data Format (Read)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
32/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
19 SPI Protocol and AC Electrical Characteristics - continued  
SPI AC Timing  
SPI AC characteristics is as shown in.  
tcsbh  
ffreq  
VIHxx  
CSB  
VILxx  
tcsbSCK  
VIHxx  
tSCKcsb  
VILxx  
SCK  
SI  
tsetup1  
thold1  
tsetup2  
VIHxx  
thold2  
VILxx  
tsodelay2  
tsodelay1  
SO/FAULT_B  
VSO/FAULT_B_OL  
Figure 28. SPI AC Timing  
Table 3. SPI AC Timing  
Recommended Operation Condition  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = -40 °C to +150 °C)  
Item  
SPI Frequency  
Symbol  
ffreq  
Unit  
MHz  
ns  
Min  
0.1  
Typ  
Max  
-
-
-
-
-
-
-
-
-
-
1.0  
CSB - SCK Timing  
tcsbSCK  
tSCKcsb  
tsetup1  
tsetup2  
thold1  
1,000  
500  
200  
200  
200  
200  
-
-
SCK - CSB Timing  
ns  
-
Setup Time1 (low -> high)  
Setup Time2 (high -> low)  
Hold Time1 (low -> high)  
Hold Time2 (high -> low)  
SO Delay (low -> high)  
SO Delay (high -> low)  
CSB High Pulse  
ns  
-
ns  
-
ns  
-
-
thold2  
ns  
tsodelay1  
tsodelay2  
tcsbh  
ns  
200  
200  
-
ns  
-
ns  
1,000  
(Output load capacitance: 15 pF)  
NOTE (Countermeasure of Noise)  
The CSB is used for resetting, clock and enable in SPI and register circuit. If this signal includes glitch around CSB to "high ->  
low" by communication path noise, internal noise or more, SPI mistake to operate register. Because this condition is not approved  
in this product. But there is countermeasure for this issue. SPI receives at least one SCK clock pulse (maximum clock pulse is no  
limitation) during CSB = high after writing data until next writing command. This SPI can protect this wrong operation. Because  
register return to "no update condition" with SCK clock during CSB = high.  
next writing command  
more than one clock  
tcsbh + tcsbsck  
CSB  
SCK  
Address  
Data(fixed high)  
CRC  
Address  
Data(fixed high)  
CRC  
AD AD AD AD AD AD AD  
WC WC WC WC WC WC WC WC  
[7] [6] [5] [4] [3] [2] [1] [0]  
AD AD AD AD AD AD AD  
WC WC WC WC WC WC WC WC  
[7] [6] [5] [4] [3] [2] [1] [0]  
RW  
RW  
SI  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Figure 29. Countermeasure of Noise  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
33/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
19 SPI Protocol and AC Electrical Characteristics - continued  
SPI Protocol  
Write/Read, Address  
bit 7  
RW  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
AD[6:0]  
bit  
Parameter  
Function  
AD[6:0]  
Register Address  
0x00 to 0x1B  
Note: There is no access to addresses that are not between the specified range.  
bit  
Parameter  
Read/Write  
Function  
0: read access  
1: write access  
RW  
Data  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WD/RD[7:0]  
bit  
Parameter  
Value  
WD/RD[7:0]  
Data of Write/Read  
0x00 to 0xFF  
CRC  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WC/RC[7:0]  
bit  
Parameter  
CRC data of Write/Read  
Value  
WC/RC[7:0]  
0x00 to 0xFF  
This IC has a CRC (cyclic redundancy check) function for detecting errors in the SPI communication.  
CRC for write command is calculated using RW bit, 7-bit register address and 8-bit register data and is calculated MSB first.  
Read output is calculated the same.  
CRC formula is” x8+x5+x4+1” which is translated as the circuit as shown in. Initial value of CRC is 0x00.  
(It doesn't change value until '1' input because initial 0. (The result of "011111111111111111111111" (binary) is same as result  
of "111111111111111111111111".))  
Input Bit  
XOR  
XOR  
XOR  
0
1
2
3
4
5
6
7
Figure 30. CRC Circuit  
NOTE (SPI Restrictions):  
Command with the following input is not valid RW = 0, Address = 0x00, Data = 0x00, CRC = 0x00.  
SPI will not execute the read command it is treated as dummy and will only shift the input by 24-bit.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
34/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
SPI Protocol – continued  
SPI Protocol – Daisy-chain Connection  
This IC has daisy chain function for SPI communication. Total of 8 devices can be connected in daisy-chain as shown in.  
Select the device address by controlling CSB input see.  
CSB  
SCK  
write  
Address  
Data  
CRC  
SI  
SO/FAULT_B  
w_crc_ok  
(internal signal)  
ADTRG  
register  
0
1
Figure 31. Example of Daisy-chain  
When there is a total of N number of devices in the daisy-chain and M is the target device to be written/read, to execute  
write command, it is necessary to input dummy data (M - 1) to propagate the write command to the desired device in a daisy-  
chain connection as shown in.  
N – Total number of devices connected in daisy-chain  
M – Target device to be written/read  
SI  
0
1
M - 1  
M
M + 1  
N - 1  
N
SO  
Figure 32. Data Input Image in a Daisy-chain Connection  
Device 1  
CSB  
SCK  
24-bit data  
WRITE CMD  
DUMMY 1  
DUMMY 2  
DUMMY M - 1  
WRITE CMD  
SI (1)  
Device M  
"High"  
"High"  
"High"  
shift data  
SI (M)  
SO/FAULT_B(M)  
Device N  
SO/FAULT_B (N)  
Figure 33. SPI Write in Daisy-chain Connection  
Likewise, in Read command, it is necessary to input dummy data (M-1) to propagate the read command to the desired  
device toggle CSB and input the rest of the dummy data (total of N dummy data) to propagate the Read data output up to  
the last device in the daisy chain connection. Dummy is 24-bit low data input.  
Device 1  
CSB  
SCK  
24-bit data  
SI (1)  
READ CMD  
DUMMY 1  
DUMMY 2  
DUMMY M -1 DUMMY M  
DUMMY M+1  
DUMMY  
DUMMY N  
DUMMY  
Device M (target)  
READ CMD  
DUMMY  
SI (M)  
SO/FAULT_B (M)  
READ DATA  
DUMMY  
DUMMY  
Device N  
SO/FAULT_B (N)  
READ DATA  
Figure 34. SPI Read in Daisy-chain Connection  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
35/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
SPI Protocol – Daisy-chain Connection – continued  
In Daisy-chain connection, writing to multiple devices is possible; refer to the timing chart. In this SPI transaction, Set CSB  
to “low”, send the write command consecutively for the target devices starting from Target device M up to Dev 1, Set CSB  
to “high” to trigger writing to the target registers in the corresponding device number.  
N – Total Device in Daisy-chain connection  
Dev M to Dev 1 – Target Device to be written (Dev M is between Dev N and Dev 1)  
Device 1  
CSB  
SCK  
24-bit data  
WRITE to Dev M  
WRITE to Dev M - 1  
WRITE to Dev M - 2  
WRITE to Dev M - 2  
WRITE to Dev M  
WRITE to Dev 2  
WRITE to Dev 3  
WRITE to Dev M  
WRITE to Dev 1  
WRITE to Dev 2  
WRITE to Dev M-1  
WRITE to Dev M  
SI (1)  
Update  
Update  
Update  
Update  
REGISTER (1)  
Device 2  
SI (2)  
WRITE to Dev M  
REGISTER (2)  
Device M - 1  
S1 (3)  
REGISTER (3)  
Device M  
S1 (3)  
REGISTER (3)  
Figure 35. Writing Protocol for Multiple Devices  
Reading for multiple devices is also possible in a daisy-chain connection; refer to the timing chart. In this SPI Transaction,  
Set the CSB to “low”, send the Read Command consecutively starting from target Device M up to Device 1, toggle the CSB  
to “low -> high -> low”, send total DUMMY data based on total Number of devices (N). It is necessary to input this much  
DUMMY data to be able to propagate the Read Data output up to the last device in the daisy chain connection.  
N – Total Device in Daisy-chain connection  
Dev M to Dev 1 – Target Device to be read (Dev M is between Dev N and Dev 1)  
Device 1  
CSB  
SCK  
input N total dummy data  
SI (1)  
READ to Dev M  
READ to Dev M-1  
READ to Dev 3  
READ to Dev 3  
READ to Dev 2  
READ to Dev 3  
READ to Dev 3  
READ to Dev 1  
READ to Dev 2  
READ to Dev 2  
READ to Dev M  
READ to Dev M  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
SO/FAULT_B (1)  
READ data Dev 1  
READ data Dev 1  
READ data Dev 2  
Device 2  
SI (2)  
DUMMY  
DUMMY  
DUMMY  
READ data Dev 1  
DUMMY  
DUMMY  
SO/FAULT_B (2)  
Device M  
READ data Dev M- READ data Dev M-  
S1 (M)  
DUMMY  
DUMMY  
READ data Dev M-  
SO/FAULT_B (M)  
Device N  
READ data Dev M  
DUMMY  
DUMMY  
SO/FAULT_B (N)  
READ data Dev 2  
READ data Dev 1  
Figure 36. Reading Protocol for Multiple Devices  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
36/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
SPI Protocol – Daisy-chain Connection – continued  
Example 1)  
Writing data for 1 device  
Address = 0x15 (ADTRG)  
Data = 0x80  
CRC = 0x40  
CSB  
SCK  
write  
Address  
Data  
CRC  
SI  
SO/FAULT_B  
w_crc_ok  
(internal signal)  
ADTRG  
register  
0
1
Figure 37. SPI Protocol of the 1 byte Write to Device #1  
Example 2)  
Reading data for 1 device (RDMODE = 1)  
Address = 0x16 (VMON)  
Data = 0xFF (dummy)  
CRC = 0x98 (MCU -> this device)  
Read data = 0x05  
CRC = 0x59 (this device -> MCU)  
Device 1  
CSB  
SCK  
Dummy data  
CRC  
Address  
Read  
SI  
Read data  
CRC  
SO/FAULT_B  
w_crc_ok  
(internal signal)  
VMON  
Register  
0x05  
Figure 38. SPI Protocol of the 1 byte Read to Device #1  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
37/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
SPI Protocol – continued  
SPI Protocol – Parallel Connection  
This IC can be connected in Parallel for SPI connection as shown in. In this connection, each device has separate CSBx.  
SI and SO connection are shared. User can choose which DUT to write based on CSBx as shown in.  
V5VEXT  
Device 2  
R
SO  
SI  
MOSI  
BD18397/98xxx-M  
SO/FAULT_B  
CSB SCK  
Device 1  
SO/FAULT_B  
SI  
BD18397/98xxx-M  
SCK  
CSB  
MCU  
CSB1  
CSB2  
SCLK  
MISO  
Figure 39. SPI Parallel Connection  
Device 1  
CSB  
high  
SCK  
SI  
AD AD AD AD AD AD AD WD WD WD WD WD WD WD WD WC WC WC WC WC WC WC WC  
[6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
RW  
high(Hi-z)  
SO/FAULT_B  
w_crc_ok  
(internal signal)  
not update  
Register  
Device 2  
CSB  
SCK  
SI  
AD AD AD AD AD AD AD WD WD WD WD WD WD WD WD WC WC WC WC WC WC WC WC  
[6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
RW  
SO/FAULT_B  
high(Hi-z)  
w_crc_ok  
(internal signal)  
update  
Register  
Figure 40. SPI Write to Device #2 in Parallel Connection  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
38/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
SPI protocol – Parallel Connection – continued  
Device 1  
CSB  
"high"  
SCK  
R
W
AD AD AD AD AD AD AD  
[6] [5] [4] [3] [2] [1] [0]  
WC WC WC WC WC WC WC WC  
[7] [6] [5] [4] [3] [2] [1] [0]  
SI  
w_crc_ok  
(internal signal)  
SO/FAULT_B  
"high"(Hi-z)  
Device 2  
CSB  
SCK  
Address  
CRC  
Data(fixed "high")  
AD AD AD AD AD AD AD  
WC WC WC WC WC WC WC WC  
[7] [6] [5] [4] [3] [2] [1] [0]  
RW  
SI  
[5]  
[6]  
[4] [3] [2] [1] [0]  
w_crc_ok  
(internal signal)  
Address  
CRC  
Data from Register  
AD AD AD AD AD AD AD RD RD RD RD RD RD RD RD RC RC RC RC RC RC RC RC  
[6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]  
SO/FAULT_B  
Figure 41. SPI Read to Device #2 in Parallel Connection  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
39/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
20 Register  
Register MAP(Address 0x00 to 0x1B)  
This is register MAP of BD18398xxx-M. The channel 3 setting is not included in BD18397xxx-M. (ex, ISETSDIM3, VMODE3,  
CHON3, ERRDET3, address 0x08-0x09, 0x0E to 0x0F, 0x12, 0x1B), These registers is blank (0x00). If you read these data,  
it returns 0.  
Register  
RegisterNam e  
Address  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
initial  
com m ents  
Access  
register access control  
sleep setting, software reset  
NOTE : POR/TSD for reset of SWRST  
SYSSET  
-
0x00  
0x01  
W
LOCK  
-
W
DTEN  
-
RDM ODE  
SLEEP  
-
-
-
-
-
-
-
SW RST  
-
R/W  
-
0x40  
-
-
Notused  
protectionlatchsettingandlatchreleased  
setting  
ERRSET1  
0x02  
-
-
-
-
-
-
FLTRST  
LEDOCPLAT  
ISETDIM 2  
SW OCPLAT  
ISETDIM 1  
R/W  
0x00  
0x00  
ISET settingselection,outputPW  
M
PW M DIV[2:0]  
DIM SET  
ISET1H  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
PHEN  
ISETDIM 3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
frequencysetting,settingofPhaseshift  
ISET1[9:2]  
ISET2[9:2]  
0xE1 Currentsettingforchannel1  
0x01 Currentsettingforchannel1  
0xE1 Currentsettingforchannel2  
0x01 Currentsettingforchannel2  
0xE1 Currentsettingforchannel3  
0x01 Currentsettingforchannel3  
ISET1[1:0]  
ISET1L  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ISET2H  
ISET2[1:0]  
ISET3[1:0]  
ISET2L  
ISET3[9:2]  
ISET3H  
ISET3L  
DPW M 1[9:2]  
DPW M 2[9:2]  
DPW M 3[9:2]  
DPW M 1H  
DPW M 1L  
DPW M 2H  
DPW M 2L  
DPW M 3H  
DPW M 3L  
0xFF PW  
0x03 PW  
0xFF PW  
0x03 PW  
0xFF PW  
0x03 PW  
M
M
M
M
M
M
ON Dutyforchannel1  
ON Dutyforchannel1  
ON Dutyforchannel2  
ON Dutyforchannel2  
ON Dutyforchannel3  
ON Dutyforchannel3  
DPW M 1[1:0]  
DPW M 2[1:0]  
DPW M 3[1:0]  
switchingfrequencysettingforchannel1  
varycurrentdetectorripplegain  
GM 1[1:0]  
GM 2[1:0]  
GM 3[1:0]  
TON1[5:0]  
DCDCSET1  
DCDCSET2  
DCDCSET3  
0x10  
0x11  
0x12  
R/W  
R/W  
R/W  
0x07  
0x07  
0x07  
switchingfrequencysettingforchannel2  
varycurrentdetectorripplegain  
TON2[5:0]  
TON3[5:0]  
switchingfrequencysettingforchannel3  
varycurrentdetectorripplegain  
SSCG[2:0]  
DCDCSET4  
CHEN  
0x13  
0x14  
-
-
VM ODE3  
PW M DIM 3  
VM ODE2  
VM ODE1  
-
-
R/W  
R/W  
0x00 SSCG setting,Voltagem odesetting  
0x00 DC/DC enable,PW Dim m ingenable  
PW M DIM 2  
PW M DIM 1  
CHON3  
CHON2  
CHON1  
M
VIN,PIN,V5VEXT,V SNSN1,V SNSN2,V SNSN3  
therm al,ISET1,ISET2,ISET3voltage  
,
VM ONSEL[3:0]  
ADSEL  
0x15  
ADTRG  
-
-
ADM ODE  
R/W  
0x10  
m onitor,A/D convertertriggerinm anual  
m ode  
VM ON[9:2]  
VM ONH  
0x16  
0x17  
0x18  
RO  
RO  
RO  
0x00 Voltagem onitorbyA/D,  
0x00 Voltagem onitorbyA/D,  
0x00 Errorstatusregistertotal  
VM ON[1:0]  
VM ONL  
-
DTERR  
-
-
-
-
-
-
ERRSTALL  
W
CRCERR  
PINUVLO  
UVLO  
ERRDET3  
ERRDET2  
LOD1  
ERRDET1  
LSD1  
Errorstatusregister  
0x00 LED openerror,LED shorterror  
SW OCP1,LOCP1  
ERRST1  
ERRST2  
ERRST3  
0x19  
0x1A  
0x1B  
-
-
-
-
-
-
-
-
-
-
LEDOCPERR1  
LEDOCPERR2  
LEDOCPERR3  
SW OCPERR1  
RO  
RO  
RO  
Errorstatusregister  
-
-
SW OCPERR2  
SW OCPERR3  
LOD2  
LOD3  
LSD2  
LSD3  
0x00 LED openerror,LED shorterror  
SW OCP2,LOCP2  
Errorstatusregister  
0x00 LED openerror,LED shorterror  
SW OCP3,LOCP3  
WO: Write Only, RO: Read Only, R/W: Read and Write  
SWRST register reset condition is POR/TSD. All other registers reset condition is POR/TSD/SWRST.  
(Note 1) SWRST, FLTRST and ADTRG are “write only”, and reset condition of SWRST is only “POR/TSD”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
40/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
20 Register - continued  
Description of Registers  
Address 0x00: SYSSET  
System setting  
[Read/Write]  
initial value 0x40  
bit No  
Name  
Initial value  
bit[7]  
WLOCK  
0
bit[6]  
WDTEN  
1
bit[5]  
RDMODE  
0
bit[4]  
SLEEP  
0
bit[3]  
-
0
bit[2]  
-
0
bit[1]  
-
0
bit[0]  
SWRST  
0
The data in register is updated to the newest data immediately when the new data is written.  
Set these registers in initial setting.  
bit[0]  
SWRST  
SWRST register return ‘0’ automatically. Hence, this register is “Write only”.  
Set this register when you want to reset digital circuit.  
Table 4. SWRST Operation  
SWRST  
Reset  
0
1
Normal  
Reset for digital circuit (return ‘0’ automatically)  
bit[4]  
SLEEP  
This IC has sleep mode which stops internal clock, so this IC is in low “quiescent current” condition. This IC  
keeps register value when SLEEP = 1.  
Table 5. SLEEP Operation  
SLEEP  
0
Operation  
Normal  
Low “quiescent current” condition.  
1
Oscillator is stopped. So, DC/DC and Current Driver are  
OFF. Only internal regulator is available.  
bit[5]  
RDMODE  
This register controls Read protocol. If RDMODE = 1, it outputs Read Data (target address 8-bit + next  
address bit[1:0]). The detail of protocol can be referred in "SPI Protocol" section.  
Table 6. RDMODE Operation  
RDMODE  
Operation  
Outputs target address data  
Outputs target address data + next address data bit [1:0]  
0
1
CSB  
SCK  
RDMODE = 0  
SO/FAULT_B  
AD  
[6]  
AD  
[5]  
AD  
[4]  
AD  
[3]  
AD  
[2]  
AD  
[1]  
AD  
[0]  
RD  
[7]  
RD  
[6]  
RD  
[5]  
RD  
[4]  
RD  
[3]  
RD  
[2]  
RD  
[1]  
RD  
[0]  
RC  
[7]  
RC  
[6]  
RC  
[5]  
RC  
[4]  
RC  
[3]  
RC  
[2]  
RC  
[1]  
RC  
[0]  
ex.) VMON [9:2]  
target address  
VMON [9:2]  
RDMODE = 1  
SO/FAULT_B  
RD  
[7]  
RD  
[6]  
RD  
[5]  
RD  
[4]  
RD  
RD  
[2]  
RD  
[1]  
RD  
[0]  
RD  
[1]  
RD  
[0]  
RC  
[7]  
RC  
[6]  
RC  
[5]  
RC  
[4]  
RC  
[3]  
RC  
[2]  
RC  
[1]  
RC  
[0]  
[3]  
ex.) VMON [9:2] + VMON [1:0]  
target address  
VMON [9:2]  
next address  
VMON [1:0]  
Figure 42. RDMODE Operation  
bit[6]  
WDTEN  
This register is “Watchdog timer” function enable. If WDTEN = 1, LIMP-HOME function is available by “Watch  
Dog Timer error” when state is “LEDACTIVE” or “STANDBY”.  
Table 7. “Watch Dog Timer” Enable  
WDTEN  
Enable  
“Watch Dog Timer” is not available  
“Watch Dog Timer” is available  
0
1
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
41/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
bit[7]  
WLOCK  
DPWMx registers are split into two registers (higher and lower byte). Normally, whenever a byte (higher or  
lower) is written, it will immediately be reflected in PWM dimming control. If WLOCK function is used, PWM  
dimming control will not be updated until the two bytes (higher and lower) are written.  
Note that it doesn't matter whether the higher or lower byte is written first.  
Table 8. WLOCK Function  
WLOCK  
Operation  
0
1
Normal update  
PWM dimming control is not updated until writing the other address. (0x0A to 0x0F)  
SPI  
WLOCK  
write DPWMxH  
write DPWMxL  
"Low"  
DPWMx[9:2] register  
DPWMx[1:0] register  
update  
update  
update  
update  
PWM dimming control  
for channel x  
SPI  
write DPWMxH  
write DPWMxL  
WLOCK  
"High"  
DPWMx[9:2] register  
DPWMx[1:0] register  
update  
update  
update  
not updated  
PWM dimming control  
for channel x  
Figure 43. WLOCK Function Example  
Address 0x01: Not Used  
Address 0x02: ERRSET1  
protection setting  
[Read/Write]  
bit[2]  
FLTRST  
0
initial value 0x00  
bit No  
Name  
bit[7]  
-
bit[6]  
bit[5]  
bit[4]  
-
0
bit[3]  
-
0
bit[1]  
bit[0]  
SWOCPLAT  
0
-
-
LEDOCPLAT  
0
Initial value  
0
0
0
The data in register is updated to the newest data immediately when the new data is written.  
Set these registers in initial setting.  
bit[0]  
SWOCPLAT  
The releasing function of “SWx over current error protection” is programmed by this register. If SWOCPLAT  
= ‘1’, The SWOCPERRx register doesn't become '0' until writing FLTRST = '1'. If SWOCPLAT = '0', The  
SWOCPERRx becomes '0' by "SWx over current error" released.  
Table 9. “SWx Over Current error protection” Latch Operation Setting  
SWOCPLAT  
Operation  
If this error condition is released, error status register and FAULT_B returns normal  
condition.  
0
1
This IC keeps error condition until writing FLTRST = 1.  
(x = 1, 2, 3)  
bit[1]  
LEDOCPLAT  
The releasing function of “LED over current error protection” is programmed by this register. If LEDOCPLAT  
= ‘1’, The LEDOCPERRx register doesn't become '0' until writing FLTRST = '1'. If LEDOCPLAT = '0', The  
LEDOCPERRx becomes '0' by "LED over current error" released.  
Table 10. “LED Over Current error protection” Latch Operation Setting  
LEDOCPLAT  
Operation  
If this error condition is released, error status register and FAULT_B returns normal  
condition.  
0
1
This IC keeps error condition until writing FLTRST = 1.  
(x = 1, 2, 3)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
42/84  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
bit[2]  
FLTRST  
The error status registers are initialized by this register. If each protection is latched, its condition is released.  
Table 11. Error Status Reset  
FLTRST  
0
Operation  
Normal  
Initialize error status for LEDOCPERRx and SWOCPERRx, CRCERR and  
WDTERR. This register is auto return to “0” (Address 0x19 to 0x1B)  
1
(x = 1, 2, 3)  
Address 0x03: DIMSET  
Dimming setting  
[Read/Write]  
bit[2]  
initial value 0x00  
bit No  
Name  
bit[7]  
PHEN  
0
bit[6]  
bit[5]  
bit[4]  
0
bit[3]  
-
0
bit[1]  
bit[0]  
ISETDIM1  
0
PWMDIV[2:0]  
0
ISETDIM3  
0
ISETDIM2  
0
Initial value  
0
The data in register is updated to the newest data immediately when the new data is written.  
Set these registers in initial setting.  
bit[2:0]  
ISETDIMx  
(ISETDIM3 is only used for the BD18398xxx-M)  
This register selects the LED DC current setting data for channel x (x = 1, 2, 3). If ISETDIMx = 1, the ISETx  
pin setting is available. If ISETDIMx = 0, LED DC current is programmed by ISETx register.  
Table 12. ISET Select  
ISETDIMx  
0
PWMONx Definition  
LED DC current is programmed by Selected by corresponding VMONSEL  
ISETx[9:0] register [3:0] bit setting  
ADC Monitor Select  
LED DC current is programmed by Not applicable  
ISETx[9:0] & ISET/PWMx pin  
1
(x = 1, 2, 3)  
bit[6:4]  
PWMDIV  
The output frequency is programmed for PWM dimming LED by this register. A/D conversion frequency  
(ADMODE = 1) is also programed by this register.  
Table 13. PWM Output Frequency Setting  
PWMDIV[2:0]  
Output Frequency [Hz]  
0
1
2
3
4
5
6
7
153  
203  
244  
305  
407  
488  
610  
814  
bit[7]  
PHEN  
PWM dimming phase of channel 1 is programmed by this register as shown in Figure 44.  
Table 14. PWM Phase Setting  
Phase Setting  
PHEN  
BD18398xxx-M  
All Channel: No Phase shift  
Channel 1: no shift  
Channel 2: 120 degree  
Channel 3: 240 degree  
BD18397xxx-M  
All Channel: No Phase shift  
Channel 1: no shift  
Channel 2: 180 degree  
-
0
1
PHEN = 1  
OFF  
Lighting  
120 degree  
240 degree  
OFF  
Lighting  
LED current for channel 1  
LED current for channel 2  
LED current for channel 3  
Figure 44. PWM Phase Shift Setting (for BD18398xxx-M)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
43/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
Address 0x04: ISET1H  
ISET setting for channel 1  
[Read/Write]  
bit[2]  
initial value 0xE1  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
ISET1 [9:2]  
0
bit[3]  
0
bit[1]  
bit[0]  
Initial value  
1
1
1
0
0
1
Address 0x05: ISET1L  
ISET setting for channel 1  
[Read/Write]  
initial value 0x01  
bit[1] bit[0]  
ISET1[1:0]  
bit No  
Name  
bit[7]  
-
bit[6]  
bit[5]  
bit[4]  
bit[3]  
-
bit[2]  
-
-
-
-
Initial value  
0
0
0
0
0
0
0
1
The data in register is updated to the newest data immediately when the new data is written.  
Set these registers in initial setting.  
ISET1H  
bit[7:0]:  
ISET1L  
bit[1:0]:  
ISET1[9:2]  
ISET1[1:0]  
LED DC current is programmed by this register as following formula.  
Formula  
[
]
퐼ꢂꢃꢄꢅ 9: 0  
1
퐿퐸퐷푥퐴푉퐸 = (  
× 2.5 ꢀ − 0.2 ꢀ) ×  
1024  
12 × 푅푆푁푆푥  
Address 0x06 to 0x09: ISETx[9:0] (x = 2 to 3)  
This register is used to make setting of LED current for channel 2 and channel 3. The setting procedure is the same as that  
for channel 1 with Address set to 0x04 and 0x05.  
ISET3[9:0] is only used for the BD18398xxx-M.  
Address 0x0A: DPWM1H  
PWM setting  
bit[6]  
[Read/Write]  
bit[2]  
initial value 0xFF  
bit No  
Name  
bit[7]  
bit[5]  
1
bit[4]  
DPWM1 [9:2]  
1
bit[3]  
1
bit[1]  
bit[0]  
1
1
1
1
1
Initial value  
Address 0x0B: DPWM1L  
PWM setting  
bit[6]  
[Read/Write]  
initial value 0x03  
bit[1] bit[0]  
DPWM1 [1:0]  
bit No  
Name  
bit[7]  
-
bit[5]  
-
bit[4]  
-
bit[3]  
-
bit[2]  
-
-
0
0
0
0
0
0
1
1
Initial value  
The data in register is updated to the newest data immediately when the new data is written.  
Set these registers in initial setting. If you want to change value during dimming, WLOCK function can be used.  
DPWM1H  
bit[7:0]:  
DPWM1L  
bit[1:0]:  
DPWM1[9:2]  
DPWM1[1:0]  
LED average current in PWM is programmed by this register. The dimming ratio is calculated as following  
formula.  
[
]
ꢇꢐꢑꢒꢅ 9: 0 + 1  
푃푊푀푥  
=
1024  
PWM frequency by PWMDIV setting  
ON Duty  
LED current for channel x  
OFF  
Lighting  
OFF  
Lighting  
Figure 45. PWM Dimming  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
44/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
Address 0x0C to 0x0F: DPWMx (x = 2 to 3)  
This register is used to make setting of PWM for channel 2 and channel 3. The setting procedure is the same as that for  
channel 1 with Address set to 0x0A and 0x0B  
DPWM3 is only used for the BD18398xxx-M.  
Address 0x10: DCDCSET1  
DC/DC setting for channel 1  
[Read/Write]  
bit[2]  
TON1[5:0]  
initial value 0x07  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
bit[3]  
0
bit[1]  
bit[0]  
GM1[1:0]  
Initial value  
0
0
0
0
1
1
1
The data in register is updated to the newest data immediately when the new data is written.  
Set these registers in initial setting.  
bit[7:6]  
GM1[1:0]  
GM Amplifier Gain Setting  
Table 15. DC/DC GM Amplifier Trans Conductance Setting  
GM1[1:0] (Dec)  
GM Amplifier Gain Setting [µS]  
0
1
2
3
1360  
870  
530  
300  
bit[5:0]  
TON1[5:0]  
DC/DC Frequency setting is programmed for channel 1 by this register.  
It is available to use DC/DC frequency setting under 2.25 MHz. (over 2.25 MHz setting is prohibited.)  
Table 16. DC/DC Frequency Setting for Reference (RTON = 51 kΩ)  
TON1[5:0] (Dec)  
DCDC Frequency [kHz]  
0
1
2
3
4
5
6
7
8
10  
12  
14  
16  
18  
30  
42  
50  
100  
150  
200  
250  
300  
350  
400  
450  
550  
650  
750  
850  
950  
1,550  
2,150  
Table 17. DC/DC Frequency Setting for Reference (RTON = 9.1 kΩ)  
TON1[5:0] (Dec)  
DCDC Frequency [kHz]  
0
1
2
3
4
5
6
7
280  
560  
841  
1,121  
1,401  
1,681  
1,962  
2,242  
Address 0x11 to 0x12: DCDCSETx(x = 2 to 3)  
This register is used to make setting of DC/DC setting and GM amplifier gain setting for channel 2 and channel 3. The setting  
procedure is the same as that for channel 1 with Address set to 0x10.  
DCDCSET3 is only used for the BD18398xxx-M.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
45/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
Address 0x13: DCDCSET4 SSCG and Voltage control mode setting for DC/DC  
[Read/Write] initial value 0x00  
bit No  
Name  
Initial value  
bit[7]  
-
0
bit[6]  
VMODE3  
0
bit[5]  
VMODE2  
0
bit[4]  
VMODE1  
0
bit[3]  
-
0
bit[2]  
bit[1]  
SSCG[2:0]  
0
bit[0]  
0
0
The data in register is updated to the newest data immediately when the new data is written.  
Set these registers in initial setting.  
bit[2:0]  
SSCG[2:0]  
The modulation DC/DC switching frequency is programmed for all channel by this register.  
Table 18. SSCG Modulation Setting  
SSCG[2:0]  
SSCG Modulation Ratio [Hz]  
0
1
2
3
4
5
6
7
SSCG OFF (Fixed frequency of DC/DC)  
155  
185  
283  
361  
536  
763  
1,044  
bit[6:4]  
VMODEx  
“Voltage control mode” for DC/DC is programmed by this register.  
(VMODE3 is only used for the BD18398xxx-M)  
Table 19. Voltage Control Mode Setting  
VMODEx  
Controlled Mode  
Current control mode for channel x  
Voltage control mode for channel x  
0
1
(x = 1, 2, 3)  
In the Voltage mode setting (VMODEx = 1), SNSN1 pin voltage is regulated by as following.  
[
]
퐼ꢂꢃꢄꢅ 9: 0  
푆푁푆푁푥  
=
× ꢎ7.5 ꢀ ꢍ@ꢀꢒꢉꢇꢃꢅ = 1ꢏ  
1024  
Address 0x14: CHEN  
Channel enable and Dimming enable  
[Read/Write]  
bit[2]  
initial value 0x00  
bit No  
Name  
bit[7]  
-
bit[6]  
PWMDIM3  
0
bit[5]  
PWMDIM2  
0
bit[4]  
PWMDIM1  
0
bit[3]  
-
0
bit[1]  
CHON2  
0
bit[0]  
CHON1  
0
CHON3  
0
Initial value  
0
The data in register is updated to the newest data immediately when the new data is written.  
bit[2:0] CHONx (CHON3 is only used for the BD18398xxx-M)  
Each channel starts-up by this register. If CHONx = 1, LED dimming is available for channel x. (x = 1, 2, 3)  
CHONx = 0, LED dimming is not available for channel x. Protection such as “LED short to ground error  
protection”, “LED open error protection”, “SW Over Current error protection” and “LED Over Current error  
protection” in the target channel is not available when CHONx = 0.  
Table 20. Channel Enable  
CHONx  
Enable  
0
1
Channel x is disable.  
Channel x is enable.  
(x = 1, 2, 3)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
46/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
bit[6:4]  
PWMDIMx  
The internal PWM dimming duty is programmed by this register. It is available to dim by the DPWMx[9:0]  
register when the PWMDIMx = 1. The internal PWM duty can be set to 100 % when the PWMDIMx = 0.  
Table 21. PWM Dimming Enable  
PWMDIMx  
0
Operation  
PWM Duty is 100 % fixed.  
PWM Dimming enable.  
Dimming ratio is programmed by the DPWMx[9:0] register.  
1
(x = 1, 2, 3)  
Table 22. How to Dim by PWM  
CHONx  
PWMDIMx  
DC/DC  
OFF  
OFF  
ON  
Internal PWM Dimming for Channel x  
OFF  
OFF  
0
0
1
1
0
1
0
1
100 %  
ON  
Programmed by the DPWMx[9:0]  
(x = 1, 2, 3)  
Address 0x15: ADSEL  
A/D monitor channel select  
[Read/Write]  
bit[2]  
initial value 0x10  
bit No  
Name  
bit[7]  
ADTRG  
0
bit[6]  
bit[5]  
bit[4]  
ADMODE  
1
bit[3]  
0
bit[1]  
bit[0]  
-
-
VMONSEL[3:0]  
0
Initial value  
0
0
0
0
The data in register is updated to the newest data immediately when the new data is written.  
bit[3:0] VMONSEL[3:0]  
VMON register is shared in for monitoring below node. This register should be programmed before reading  
VMON register when target node voltage is need.  
Register  
ISETDIMx  
PWMDIV[2:0]  
PWM generator  
ADTRG  
1
0
s
ADMODE  
VMONSEL[3:0]  
VSNSN3  
VSNSN2  
VSNSN1  
VFSRADC = 2.5 V  
VPIN  
V5VEXT  
10  
VMON[9:0]  
A/D  
SEL  
VIN  
share one A/D  
1
0
VISET3  
SEL  
ISET3  
ISET2  
1
0
VISET2  
1
0
VISET1  
VTEMP  
ISET1  
Thermal  
Figure 46. A/D System Structure  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
47/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
Table 23. VMONSEL Status  
VMONSEL  
0x0  
Monitor Node  
Thermal (default)  
ISET1  
Other Register Set Needed  
-
0x1  
ISETDIM1 = 0  
0x2  
ISET2  
ISETDIM2 = 0  
0x3  
ISET3  
ISETDIM3 = 0  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
VIN  
V5VEXT  
VPIN  
VSNSN1  
VSNSN2  
VSNSN3  
Not Used  
-
-
-
-
-
-
-
0xA to 0xF  
bit[4]  
ADMODE  
There are two A/D converting modes.  
When ADMODE = 1, A/D converter is operated automatically. Conversion frequency is determined by  
PWMDIV register and is operational only in LEDACTIVE state.  
When ADMODE = 0, A/D converter is operated manually by ADTRG. A/D converter becomes sleep condition  
(low current consumption) after 1 conversion.  
Table 24. ADMODE Operation  
ADMODE  
0
Operation  
A/D conversion for only target node by ADTRG register  
A/D conversion repeatedly. This period is programmed by  
PWMDIV register.  
1
bit[7]  
ADTRG  
A/D starts to convert the data selected by VMONSEL register after writing ADTRG = 1 during ADMODE = 0.  
This register will return to ‘0’ after writing ‘1’. Updated data is available less than 24 µs.  
Table 25. ADTRG  
ADTRG  
Operation  
0
1
No conversion  
Starts to convert data in ADMODE = 0  
Address 0x16: VMONH  
common voltage monitor by A/D  
[Read]  
bit[2]  
initial value 0x00  
bit No  
Name  
bit[7]  
bit[6]  
0
bit[5]  
0
bit[4]  
bit[3]  
0
bit[1]  
bit[0]  
VMON[9:2]  
Initial value  
0
0
0
0
0
Address 0x17: VMONL  
common voltage monitor by A/D  
[Read]  
initial value 0x00  
bit No  
Name  
bit[7]  
-
bit[6]  
-
bit[5]  
-
bit[4]  
-
bit[3]  
-
bit[2]  
-
bit[1]  
bit[0]  
VMON[1:0]  
Initial value  
0
0
0
0
0
0
0
0
The register data is updated to the newest data immediately when the data are updated by A/D converting.  
VMONH  
bit[7:0]  
VMONL  
bit[1:0]:  
VMON[9:2]  
VMON[1:0]  
This register is used for monitoring the thermal sensor voltage (VTEMP), VISET/PWMx, VIN, V5VEXT, VPIN or VSNSNx  
node (x = 1, 2, 3). This operation is programmed by VMONSEL register.  
This data is divided into two register address. If all of 10-bit data is required when ADMODE = 1, or RDMODE  
function is available.  
Formula 1 for thermal sensor voltage  
Thermal sensor voltage ADC read value = 418 @25 deg  
Thermal sensor voltage ADC read value = 602 @150 deg  
1.472 count/temp (1 degree)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
48/84  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
Formula 2 for external input pin nodes  
Monitor voltage 1 [V] = “X” x (VMON + 1) / 1024  
VIN: “X” = 48, VPIN: “X” = 70, and VSNSNx: “X” = 67.5, V5VEXT: “X” = 5.5, VISET/PWMx: “X” = 2.5  
Address 0x18: ERRSTALL All error status each protection  
[Read]  
bit[2]  
ERRDET3  
0
initial value 0x00  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
UVLO  
0
bit[3]  
-
0
bit[1]  
bit[0]  
ERRDET1  
0
WDTERR CRCERR PINUVLO  
ERRDET2  
0
Initial value  
0
0
0
The register data is updated to the newest data immediately when the data (one or more error/protection) is detected.  
bit[2:0]  
ERRDETx(ERRDET3 is only used for the BD18398xxx-M)  
This register is error status each channel.  
Table 26. Error Status of Each Channel  
ERRDETx  
0
Status  
Normal  
Detects error  
LSDx || LODx || SWOCPERRx || LEDOCPERRx  
1
(x = 1, 2, 3)  
bit[4]  
bit[5]  
bit [6]  
UVLO  
This register is error status for UVLO.  
Table 27. UVLO  
UVLO  
Status  
0
1
Normal  
Detects under voltage error for V5VEXT or V5VREG  
PINUVLO  
This register is error status for PINUVLO.  
Table 28. PINUVLO  
Status  
PINUVLO  
0
1
Normal  
Detects under voltage error for PIN  
CRCERR  
This register is error status for CRC. If CRC error is detected, this register becomes 1. This register becomes  
0 by FLTRST = 1. If CRC Error occurred to the SPI command sent after to sending FLTRST, this will not be  
detected, for more details refer to Error sequence for “CRC Error”.  
Table 29. CRC Error Status  
CRCERR  
Status  
0
1
Normal  
Detects CRC error  
bit[7]  
WDTERR  
This register is error status for “Watch Dog Timer”. If “Watch Dog Timer error” is detected, this register  
becomes 1. This register becomes 0 by FLTRST = 1.  
Table 30. “Watch Dog Timer error” Status  
WDTERR  
Status  
0
1
Normal  
Detects “Watch Dog Timer error”  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
49/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Description of Registers – continued  
Address 0x19: ERRST1  
channel 1 error status  
[Read]  
initial value 0x00  
bit No  
Name  
Initial value  
bit[7]  
-
0
bit[6]  
-
0
bit[5]  
-
0
bit[4]  
-
0
bit[3]  
LEDOCPERR1  
0
bit[2]  
SWOCPERR1  
0
bit[1]  
LOD1  
0
bit[0]  
LSD1  
0
The register data is updated to the newest data immediately when the data (“LED open error”, “LED short to ground error”,  
“SW1 Over Current”, “LED Over Current”) is detected.  
bit[0]  
bit[1]  
bit[2]  
bit[3]  
LSD1  
This register is “LED short to ground error” status for channel 1. LSD1 becomes “1” when “LED short to  
ground error” is detected, and LSD returns “0” when “LED short to ground error” is released.  
There is filter for detecting (10 ms) and releasing (1 ms) each channel. This filter is shared for “LED short to  
ground protection” and “LED open protection”.  
Table 31. “LED short to ground error” Status Register  
LSD1  
0
1
Status  
Normal  
Detects LED short to ground error  
LOD1  
This register is “LED open error” status for channel 1. LOD1 becomes “1” when “LED open error” is detected,  
and LOD1 returns “0” when “LED open error” is released.  
There is filter for detecting (10 ms) and releasing (1 ms) each channel. This filter is shared for “LED short to  
ground protection” and “LED open protection”.  
Table 32. “LED open error” Status Register  
LOD1  
0
1
Status  
Normal  
Detects LED open error  
SWOCPERR1  
This register is “SW Over Current error” status for channel 1. If SWOCPLAT = 0, SWOCPERR1 becomes  
“1” when “SW Over Current” is detected, and SWOCPERR1 returns “0” when “SW Over Current error” is  
released. If SWOCPLAT = 1, SWOCPERR1 becomes “1” when “SW over current error” is detected, and  
SWOCPERR1 becomes “0” by FLTRST = 1.  
Table 33. SW Over Current Error Status  
SWOCPERR1  
Status  
0
1
Normal  
Detects SW Over Current error  
LEDOCPERR1  
This register is “LED Over Current error” status for channel 1. If LEDOCPLAT = 0, LEDOCPERR1 becomes  
“1” when “LED Over Current” is detected, and LEDOCPERR1 returns “0” when “LED Over Current error” is  
released. If LEDOCPLAT = 1, LEDOCPERR1 becomes “1” when “LED over current error” is detected, and  
LEDOCPERR1 becomes “0” by FLTRST = 1.  
Table 34. LED Over Current Error Status  
LEDOCPERR1  
Status  
0
1
Normal  
Detects LED Over Current error  
Address 0x1A to 0x1B: ERRSTx (x = 2 to 3)  
These registers are error status for channel 2 and channel 3. These functions are the same as that for channel 1 with  
Address set to 0x19. ERRST3 is only used for the BD18398xxx-M.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
50/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Sequence  
1
Start-up and Turn-off Sequence  
Normal Start-up (No SPI Communication)  
1
5
VINUVD  
VINUVR  
VIN  
2
3
4
CSB  
SPI (SCK, SI)  
V5VUVR  
V5VRPORR  
V5VUVD  
V5VRPORD  
V5VREG  
,
V5VEXT  
state  
RESET  
SPI WAIT  
STANDBY  
LED ACTIVE  
STANDBY  
RESET  
internal OSC  
CHONx  
"ALL 0"  
"NOT ALL 0"  
"ALL 0"  
(register)  
OFF  
Lighting  
OFF  
LED condition  
Enlarged view  
SPI  
register Write:  
Address 0x00 to 0x13  
SPI  
SPI  
register Write:  
CHONx  
register Write:  
CHONx  
Figure 47. Start-up Sequence for Normal Operation  
When you light the LED by general SPI control, follow the sequence below.  
Input the power supply of VIN.  
MCU starts communicating with SPI after waiting internal regulator to be stable.  
Start dimming LED by CHONx = 1 (channel x).  
Stop dimming LED by CHONx = 0.  
Stop the input power supply of VIN.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
51/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
1 Start-up and Turn-off Sequence - continued  
LIMP-HOME Start-up (No SPI Communication)  
1
3
VINUVD  
VINUVR  
VIN  
CSB  
"high"  
SPI (SCK, SI)  
V5VUVR  
V5VRPORR  
V5VUVD  
V5VRPORD  
V5VREG  
V5VEXT  
,
1 s  
2
state  
RESET  
SPI WAIT  
LIMP HOME  
RESET  
internal OSC  
CHONx  
(register)  
"ALL 0"  
OFF  
LED condition  
Lighting  
Figure 48. Start-up Sequence for LIMP-HOME  
When you light the LED by LIMP-HOME mode, follow the sequence below.  
OFF  
Input the power supply of VIN.  
Start lighting (by external resistor) after waiting 1 s from UVLO release.  
Stop the input power supply of VIN.  
STAND-ALONE Start-up (CSB = Low)  
1
4
VINUVD  
VINUVR  
VIN  
3
CSB  
"low"  
SPI (SCK, SI)  
V5VUVR  
V5VRPORR  
V5VUVD  
V5VRPORD  
V5VREG  
V5VEXT  
,
0.8 ms(typ)  
SPI WAIT  
2
state  
RESET  
STANDALONE  
SPIWAIT  
RESET  
internal OSC  
CHONx  
"ALL 0"  
(register)  
LED condition  
OFF  
Figure 49. Start-up Sequence for STAND-ALONE  
When you light the LED by STAND-ALONE mode, follow the sequence below.  
Lighting  
OFF  
Input the power supply of VIN with CSB = low.  
Start lighting (by external resistor) after waiting 0.8 ms from UVLO release.  
Input CSB = high and stop lighting. From this point, dimming can be operated by register setting.  
Stop to input the power supply of VIN.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
52/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
1 Start-up and Turn-off Sequence - continued  
LIMP-HOME during SPIWAIT (Release by SPI Communication)  
1
4
VINUVR  
VINUVD  
VIN  
3
CSB  
"high"  
SPI (SCK, SI)  
V5VUVR  
V5VRPORR  
V5VUVD  
V5VRPORD  
V5VREG  
V5VEXT  
,
1 s  
2
state  
RESET  
SPI WAIT  
LIMP HOME  
LED ACTIVE  
RESET  
internal OSC  
CHONx  
(register)  
"ALL 0"  
"NOT ALL 0"  
Lighting  
"ALL 0"  
OFF  
LED condition  
OFF  
Lighting  
Enlarged view  
SPI  
register Write:  
CHONx  
Figure 50. Start-up Sequence for LIMP-HOME  
When you light the LED by LIMP-HOME mode then MCU sends SPI commands, follow the sequence below.  
Input the power supply of VIN.  
Start lighting based on external resistor after waiting 1 s from UVLO release.  
After SPI Access (CRC OK), it triggers LIMP-HOME to LEDACTIVE. Lighting is changed from “based on external  
resistor” to SPI register controlled. If the previous state is SPIWAIT it returns to STANDBY or LEDACTIVE. In the  
case above it returns to LEDACTIVE after writing on CHONx register.  
Stop the input power supply of VIN.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
53/84  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
1 Start-up and Turn-off Sequence - continued  
LIMP-HOME during LEDACTIVE (Release by SPI Communication)  
1
5
VINUVD  
VINUVR  
VIN  
2
4
CSB  
"high"  
V5VUVR  
SPI (SCK, SI)  
V5VUVD  
V5VRPORR  
V5VRPORD  
3
V5VREG  
,
1 s  
V5VEXT  
SPI WAIT  
state  
RESET  
LED ACTIVE  
LIMP HOME  
LED ACTIVE  
RESET  
STANDBY  
internal OSC  
CHONx  
(register)  
"ALL 0"  
OFF  
"NOT ALL 0"  
"ALL 0"  
OFF  
LED condition  
Lighting  
Lighting  
Lighting  
Enlarged view  
SPI  
register Write:  
Address 0x00 to 0x13  
SPI  
register Write:  
CHONx  
SPI  
register Write:  
CHONx  
Figure 51. Start-up Sequence for LIMP-HOME  
When you light the LED by LIMP-HOME mode, follow the sequence below.  
Input the power supply of VIN.  
MCU starts communicating with SPI after waiting internal regulator to be stable.  
Start dimming LED by CHONx = 1 (channel x).  
Start lighting based on external resistor after waiting 1 s from UVLO release.  
After SPI Access (CRC OK), it triggers LIMP-HOME to LEDACTIVE. Lighting is changed from “based on external  
resistor” to SPI register controlled. If the previous state is LEDACTIVE, it returns to LEDACTIVE and continue  
dimming by Register Setting.  
Stop the input power supply of VIN.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
54/84  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
1 Start-up and Turn-off Sequence - continued  
Sleep Mode  
VIN  
CSB  
1
2
3
4
SPI (SCK, SI)  
V5VREG,V5VEXT  
supply power  
state  
LED ACTIVE  
STANDBY  
SLEEP  
stop  
STANDBY  
LED ACTIVE  
internal  
oscillator  
clock is generated  
clock is generated  
CHONx  
(register)  
"ALL 0"  
OFF  
"NOT ALL 0"  
Lighting  
"NOT ALL 0"  
LED condition  
Lighting  
Enlarged view  
Enlarged view  
SPI  
register  
SPI  
Write:  
Write:  
register  
Write:  
Write:  
ALL CHONx = 0 SLEEP = 1  
SLEEP = 0  
CHONx = 1  
Figure 52. Sequence for SLEEP Mode  
When you use SLEEP mode by SPI control, follow the sequence below.  
If ALL CHONx = 0, this IC stop lighting and go “STANDBY” state.  
If SLEEP = 1, internal oscillator stops. (Low quiescent current by stopping internal clock.)  
If SLEEP = 0, internal oscillator starts.  
If ANY CHONx = 1, this IC starts lighting and go “LEDACTIVE” state.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
55/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
1 Start-up and Turn-off Sequence - continued  
Cold Cranking Mode (Sleep by UVLO)  
1
2
VINUVD  
VINUVR  
VIN  
CSB  
"high"  
no access  
SPI (SCK, SI)  
"low"  
V5VREG  
,
supply power  
V5VEXT  
state  
LED ACTIVE  
SLEEP  
LED ACTIVE  
internal  
oscillator  
CHONx  
(register)  
"NOT ALL 0"  
Lighting  
LED condition  
OFF  
Figure 53. Start-up Sequence for Cold Cranking Mode  
When this IC is in “cold cranking” condition, sequence of operation is as follows.  
Lighting  
If this IC detects “VIN UVLO”, internal oscillator is stop and stop lighting. (Low quiescent current condition.)  
When “VIN UVLO” is released, the internal oscillator starts, and this IC starts lighting with the same register  
settings as before detecting “VIN UVLO”. However, when this IC detects "POR", it is initialized.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
56/84  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
1 Start-up and Turn-off Sequence - continued  
Error Sequence for “CRC Error”  
1
2
3
CSB  
SPI input  
state  
"SLEEP", " STANDBY", "LED ACTIVE"  
FLTRST register  
CRCERR register  
SO/FAULT_B  
Figure 54. CRC Error Detection  
CRC error is detected when data sent does not match the CRC value in the SPI command. This mismatch can be  
caused by wrong data or noise in the SPI line. Write operation is not executed in the IC. Target Register is not updated.  
In this case, CRC Error status register is updated to High. Protection is latched automatically, sending SPI command  
with correct CRC does not clear CRCERR status register.  
MCU sends Read Command to status registers to confirm CRC status register.  
MCU sends FLTRST and dummy SPI (data 0x00) to release the status register.  
Error Sequence for “WDT Error”  
1
3
4
CSB  
CRC NG  
SPI input  
WDTEN register  
"1"  
2
WDT counter  
(internal signal)  
state  
"STANDBY or LED ACTIVE"  
"LIMPHOME"  
"STANDBY or LED ACTIVE"  
No activity in the SPI > 1sec  
FLTRST register  
WDTERR register  
SO/FAULT_B  
Figure 55. WDT Error Detection  
Watch Dog Timer starts to count at STANDBY or LEDACTIVE state. When there is no "CRC OK" detected in more  
than 1 s, IC detects WDT Error.  
WDT is detected, it sets the corresponding status register WDTERR to High and state changes from  
STANDBY/LEDACTIVE/SPIWAIT to LIMP-HOME.  
MCU sends Read command to Status register to confirm WDT status. This event releases LIMP-HOME mode.  
WDT detection is latches automatically, MCU must send FLTRST to clear the WDTERR status register and  
SO/FAULT_B output.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
57/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Sequence - continued  
2
A/D Control Sequence  
ADMODE = 1 (Auto Mode)  
PWMDIV setting  
1
3
SPI  
state machine  
LEDACTIVE  
PWM signal  
(inernal)  
2
A/D conversion  
VMONSEL (register)  
VMON [9:0] (register)  
0x0  
Enlarged view  
Enlarged view  
SPI  
SPI  
register write  
VMONSEL  
register Read:  
VMON  
Figure 56. A/D Control (ADMODE = 1)  
If you want to know VIN voltage, VMON register is available by setting VMONSEL register.  
A/D conversion is executed every PWM timing (internal signal). This period is programmed by PWMDIV register. It is  
necessary to set CHONx = 1 to go to LEDACTIVE state to operate this.  
You should wait to access register after this period.  
ADMODE = 0 (Manual Mode)  
over 1 us  
1
2
SPI  
A/D conversion  
VMONSEL (register)  
VMON[9:0] (register)  
0x0  
VIN data  
Enlarged view  
Enlarged view  
SPI  
register write  
VMONSEL ADTRG  
SPI  
write  
register Read:  
VMON  
Figure 57. A/D Control (ADMODE = 0)  
If you want to know VIN voltage, VMON register is available by setting ADSEL register, and A/D starts to convert by  
ADTRG = 1.  
You should wait to access register after changing ADSEL. VMON register is available after 1 µs (include margin).  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
58/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Typical Performance Curves  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = 25 °C)  
Figure 58. Total Average Current Sense Threshold Voltage  
vs Temperature  
Figure 59. Total Average Current Sense Threshold Voltage  
Error vs ISET Count  
Figure 60. Total Average Current Sense Threshold Voltage  
vs ISET Count  
Figure 61. SNSPx Input Current vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
59/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = 25 °C)  
Figure 62. SNSNx Input Current vs Temperature  
Figure 63. SNSPx And SNSNx Differential Input Current vs  
Temperature  
Figure 64. SWx ON Resistor High Side vs Temperature  
Figure 65. SWx ON Resistor Low Side vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
60/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = 25 °C)  
Figure 66. SWx Minimum ON Time vs Temperature  
Figure 67. SWx Minimum OFF Time vs Temperature  
Figure 68. VIN UVLO Threshold vs Temperature  
Figure 69. 5VREG UVLO Threshold vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
61/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = 25 °C )  
Figure 70. 5VEXT UVLO Threshold vs Temperature  
Figure 71. 5VREG POR Threshold vs Temperature  
Figure 72. PIN UVLO Threshold vs Temperature  
Figure 73. VIN Sleep Circuit Current vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
62/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = 25 °C )  
Figure 74. Switching Frequency vs Temperature  
(DONx = 0.5, RTON = 51 kΩ)  
Figure 75. Switching Frequency vs RTON  
(DONx = 0.5)  
Figure 76. Switching Frequency vs TON Count  
(DONx = 0.5, RTON = 51 kΩ)  
Figure 77. Internal Oscillator Frequency vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
63/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V, Tj = 25 °C)  
Figure 78. Thermal Sensor ADC Read Value vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
64/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Design Requirements  
Parameter  
VIN Continuous Supply Voltage  
PIN Continuous Supply Voltage  
SNSNx LED Output Voltage  
Symbol  
VIN  
Min  
Typ  
13  
60  
-
Max  
Unit  
V
-
58  
3
0.2  
-
-
62  
54  
2.0  
1
VPIN  
V
VOUTx  
ILEDx  
V
Continuous Average LED Current  
ΔPeak LED Current  
-
A
ΔILEDx_PEAK  
RLEDx  
fSWx  
-
A
LED String Series Resister at VOUTx = 30 V  
Setting Switching Frequency  
-
2.4  
400  
54  
25  
25  
-
Ω
-
-
kHz  
V
Dynamic Voltage Changed of LEDs  
Transition Time for Dynamic Voltage Change of LEDs  
Ambient Temperature  
ΔVLEDx  
TLEDx  
-
-
-
-
µs  
°C  
Topr  
-
-
Design Procedure  
1 Calculating Duty Cycle  
Solve for the buck converter switching on-duty (DONx) and Max-on-duty (DONx_MAX) and Minimum-on-duty (DONx_MIN).  
SNSPx voltage is almost same with SNSNx voltage.  
푆푁푆푃푥  
푂푁푥  
푂푁푥  
=
,
푃ꢁ푁  
=
54  
58  
3
푆푁푆푃푥  
ꢗꢘ푋  
=
= 0.931,  
= 0.0483  
ꢗꢘ푋  
푃ꢁ푁  
ꢗꢙꢚ  
푆푁푆푃푥_푀ꢁ푁  
푂푁푥_푀ꢁ푁  
=
=
푃ꢁ푁_푀퐴ꢛ  
ꢎ2  
2
Calculating Minimum on-time and Minimum off-time  
Solve for the buck converter switching on-time (TONx) and Minimum-on-time (TONx_MIN) and Minimum-off-time (TOFFx_MIN).  
푂푁푥  
푂푁푥  
=
,
푆푊푥  
푂푁푥_푀ꢁ푁  
0.0483  
400 × 10ꢜ  
푂푁푥_푀ꢁ푁  
=
=
= 121 × 10ꢋꢌ,  
푆푊푥  
1 − ꢇ푂푁푥_푀퐴ꢛ  
0.0ꢎ9  
400 × 10ꢜ  
푂퐹퐹푥_푀ꢁ푁  
=
=
= 173 × 10ꢋꢌ  
푆푊푥  
If TONx_MIN ≤ tSWxONMIN  
Desired switching frequency (fSWx) will be less than setting frequency and desired Average LED current (ILEDxAVE) can be  
regulated.  
If TOFFx_MIN ≤ tSWxOFFMIN  
Desired switching frequency (fSWx) can be nearly fixed value and desired Average LED current (ILEDxAVE) will be less than  
setting value.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
65/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Design Procedure – continued  
3
4
5
LED Current Setting  
Average LED current setting (ILEDxAVE) should be lower than maximum average LED current (ILEDxAVE_MAX) 2 A.  
0.1915  
푆푁푆푥  
푆푁푆푥퐴푉퐸ꢝꢞꢞ%퐻  
퐿퐸퐷푥퐴푉퐸  
푆푁푆푥  
=
=
≤ 퐼퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ = 2  
푆푁푆푥  
0.1915  
푆푁푆푥퐴푉퐸ꢝꢞꢞ%퐻  
=
= 0.0958  
퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ  
2
Average LED current setting in the LIMP-HOME or STAND-ALONE mode should be lower than 2 A.  
퐿퐸퐷푥퐴푉퐸 ꢟ푛 푡ℎ푒 ꢠ퐼ꢒꢐ‐ ꢡꢉꢒꢃ 표푟 푡ℎ푒 ꢂꢄꢓꢊꢇ‐ ꢓꢠꢉꢊꢃ  
0.1ꢎꢎꢎ  
푆푁푆푥퐴푉퐸ꢢꢣ%퐻  
=
=
≤ 퐼퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ = 2  
푆푁푆푥  
푆푁푆푥  
Total LED Current Setting  
Recommended Average LED current setting is less than 1.6 A, so that recommended tola LED current (ILEDxAVE_TOTAL) is less  
than 4.8 A for the BD18398RUV-M and 3.2 A for the BD18397RUV-M.  
Recommended tola LED current (ILEDxAVE_TOTAL) is less than 2.7 A for the BD18397/98EUV-M.  
퐿퐸퐷푥퐴푉퐸_푇푂푇퐴퐿 푓표푟 푡ℎ푒 퐵ꢇ18397푅푈ꢀ‐ ꢒ = 퐼퐿퐸퐷ꢝ퐴푉퐸 + 퐼퐿퐸퐷ꢤ퐴푉퐸 ≤ 3.2  
퐿퐸퐷푥퐴푉퐸_푇푂푇퐴퐿 푓표푟 푡ℎ푒 퐵ꢇ18398푅푈ꢀ‐ ꢒ = 퐼퐿퐸퐷ꢝ퐴푉퐸 + 퐼퐿퐸퐷ꢤ퐴푉퐸 + 퐼퐿퐸퐷ꢜ퐴푉퐸 ≤ 4.8  
퐿퐸퐷푥퐴푉퐸_푇푂푇퐴퐿 푓표푟 푡ℎ푒 퐵ꢇ18397ꢃ푈ꢀ‐ ꢒ = 퐼퐿퐸퐷ꢝ퐴푉퐸 + 퐼퐿퐸퐷ꢤ퐴푉퐸 ≤ 2.7  
푓표푟 푡ℎ푒 퐵ꢇ18398ꢃ푈ꢀ‐ ꢒ = 퐼퐿퐸퐷ꢝ퐴푉퐸 + 퐼퐿퐸퐷ꢤ퐴푉퐸 + 퐼퐿퐸퐷ꢜ퐴푉퐸 ≤ 2.7  
퐿퐸퐷푥퐴푉퐸  
ꢥꢦꢥꢘꢧ  
If Average LED current setting of the CH 1 for the BD18398RUV-M is 2.0 A, Average LED current setting of the CH 2 and  
CH 3 needs lower setting than 1.4 A/channel.  
Inductor Selection  
The inductor is selected to meet recommended inductor peak to peak ripple (ΔILPP / ILEDxAVE_MAX) range (10 % to 100 %). For  
a stable LED current regulation, required minimum inductor ripple (ΔILPP_MINx) is more than 10 % (results in 19.1 mV ripple  
voltage between the SNSPx and SNSNx) to detect inductor bottom current, and required maximum inductor ripple current  
(ΔILPP_MAX) is less than 100 % (results in 200 mV ripple voltage between the SNSPx and the SNSNx) for nominal operation  
without detecting switch-overcurrent-protection (SWOCPx) and LED-current-protection (LOCPx).  
훥퐼퐿푃푃_푀퐴ꢛ  
푃ꢁ푁_푀퐴ꢛ  
4 × ꢠ × 푓 × 퐼퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ  
=
=
퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ  
푆푊푥  
ꢎ2  
= 0.587 ≤ 1  
4 × 33 × 10ꢋ6 × 400 × 10× 2  
In case of the minimum off time.  
훥퐼퐿푃푃_푀ꢁ푁ꢝ  
푆푁푆푃푥_푀퐴ꢛ  
=
× 푂퐹퐹푥_푀ꢁ푁  
퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ  
ꢠ × 퐼퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ  
54  
=
× 173 × 10ꢋꢌ = 0.141 ≥ 0.10  
33 × 10ꢋ6 × 2  
In case of the minimum on time.  
훥퐼퐿푃푃_푀ꢁ푁ꢤ  
푃ꢁ푁_푀퐴ꢛ − ꢀ  
푆푁푆푃푥_푀ꢁ푁  
=
=
× 푂푁푥_푀ꢁ푁  
퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ  
ꢠ × 퐼퐿퐸퐷푥퐴푉퐸_푀퐴ꢛ  
ꢎ2 − 3  
× 121 × 10ꢋꢌ = 0.108 ≥ 0.10  
33 × 10ꢋ6 × 2  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
66/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Design Procedure - continued  
6
Output Capacitor Selection  
The minimum output capacitor (COUTx_MIN) is selected to meet continuous LED current (ILEDx) over LEDs itself to fulfill the  
LED peak to peak current (ILEDx_PP) is not more than twice the minimum LED current (ILEDx_MIN). The maximum output  
capacitor (COUTx_MAX) will be selected to reduce LED peak current (ΔILEDx_PEAK) into LEDs by discharged capacitor energy  
over dynamic LED voltage changed (ΔVLEDx).  
퐿퐸퐷푥_푃푃 ≤ 2 × 퐼퐿퐸퐷푥_푀ꢁ푁_ = 2 × 0.2 = 0.4  
훥퐼퐿푃푃_푀퐴ꢛ  
0.587 × 2  
8 × 400 × 10× 0.4 × 2.4  
푂ꢨ푇푥_푀ꢁ푁  
=
=
8 × 푓  
× 퐼퐿퐸퐷푥_푃푃 × 푅퐿퐸퐷푥  
푆푊푥  
= 0.38 × 10ꢋ6  
훥퐼퐿퐸퐷푥_푃퐸퐴ꢩ  
1
푂ꢨ푇푥_푀퐴ꢛ  
=
× 퐿퐸퐷푥  
=
× 25 × 10ꢋ6 = 0.4ꢎ × 10ꢋ6  
훥ꢀ  
54  
퐿퐸퐷푥  
→ ꢈ푂ꢨ푇푥 = 0.47 × 10ꢋ6  
7
Compensation Capacitor for Constant Current Mode (CC)  
Recommended compensation capacitor (CCOMPx) and compensation network resister (RCOMPx) are selected for fast response  
against PWM dimming and dynamic voltage changed.  
In case of 400 kHz switching frequency.  
퐶푂푀푃푥 = 0.1 × 10ꢋ6  
퐶푂푀푃푥 = 1 × 10ꢜ  
In case of 2 MHz switching frequency, compensation network resister should not be used.  
퐶푂푀푃푥 = 0.022 × 10ꢋ6  
퐶푂푀푃푥 = 0  
8
Compensation Capacitor for Constant Voltage Mode (CV)  
Recommended compensation capacitor (CCOMPx) and compensation network resister (RCOMPx) are selected for fast response  
against load changed and total output capacitor (COUTx) should be increased to reduce voltage drop by load response.  
In case of 400 kHz switching frequency.  
푂ꢨ푇푥 = 10 × 10ꢋ6  
퐶푂푀푃푥 = 0.1 × 10ꢋ6  
퐶푂푀푃푥 = 1 × 10ꢜ  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
67/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Typical Application Examples  
CPIN5  
CPIN1  
CPIN4  
CPIN6  
CPIN7  
CPIN2 CPIN3  
PIN  
VIN  
GND  
PGND  
LED Board  
+B  
RISN1  
RISP1  
GND  
CVIN  
SNSN1  
SNSP1  
GND  
COUT1  
RBT1  
RBT2  
RBT3  
CBT1  
C5VREG  
C5VEXT  
BOOT1  
SW1  
0
5VREG  
5VEXT  
・・・  
L1  
RSNS1  
RSNS2  
RSNS3  
LED1+  
ROUT1  
for PWM dimming  
PWM1_B  
PWM2_B  
PWM3_B  
RTON  
TON  
COMP1  
EMH1  
RCOMP1  
CCOMP1  
CCOMP2  
CCOMP3  
RISN2  
RISP2  
GND  
RCOMP2  
RCOMP3  
COMP2  
COMP3  
SNSN2  
SNSP2  
COUT2  
CBT2  
BOOT2  
SW2  
EMH2  
EMH3  
RIS21 RIS11  
RIS31  
・・・  
ISET/PWM1  
ISET/PWM2  
ISET/PWM3  
LED2+  
ROUT2  
L2  
RIS32  
RIS22 RIS12  
RSO  
RISN3  
RISP3  
GND  
SI  
SNSN3  
SNSP3  
SCK  
COUT3  
CBT3  
CSB  
BOOT3  
SW3  
・・・  
SO/FAULT_B  
LED3+  
ROUT3  
L3  
D3  
EXP_PAD  
Figure 79. Application Circuit  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
68/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Application Parts Choice Examples  
Component  
Component Value  
Product Name  
Manufacturer  
Name  
CPIN1  
CPIN2  
CPIN3  
CPIN4  
CPIN5  
CPIN6  
CPIN7  
CVIN  
4.7 µF  
4.7 µF  
GCM32DC72A475KE02#_X7S_±10 %  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
GCM32DC72A475KE02#_X7S_±10 %  
4.7 µF  
GCM32DC72A475KE02#_X7S_±10 %  
4.7 µF  
GCM32DC72A475KE02#_X7S_±10 %  
0.1 µF  
GCJ188R72A104KA01#_X7R_±10 %  
0.1 µF  
GCJ188R72A104KA01#_X7R_±10 %  
0.1 µF  
GCJ188R72A104KA01#_X7R_±10 %  
1.0 µF  
GCM21BR71H105KA01#_X7R_±10 %  
C5VREG  
C5VEXT  
CCOMPx  
CBTx  
4.7 µF  
GCM21BR71C475KA67#_X7R_±10 %  
4.7 µF  
GCM21BR71C475KA67#_X7R_±10 %  
0.1 µF  
GCM188L81H104KA57#_X8L_±10 %  
2.2 µF  
GCM188C71A225KE01#_X7S_±10 %  
0.22 µF x 2 (CC mode)  
4.7 µF x 2 (CV mode)  
51 kΩ  
GCM31MR72A224KA01#_X7R_±10 %  
COUTx  
RTON  
GCM32DC72A475KE02#_X7S_±10 %  
MCR03  
MCR03  
0 Ω (CC mode)  
4.7 kΩ (CV mode)  
4.7 kΩ  
RCOMPx  
MCR03  
RSO  
MCR03  
RISNx  
RISPx  
RSNSx  
RBTx  
1 kΩ  
MCR03  
1 kΩ  
MCR03  
0.091 Ω  
LTR18  
4.7 Ω  
MCR03  
ROUTx  
47 kΩ  
MCR03  
Open (CC mode)  
47 kΩ (CV mode)  
10 kΩ (CC mode)  
Open (CV mode)  
22 µH  
-
RISx1  
MCR03  
ROHM  
ROHM  
-
MCR03  
RIsx2  
-
Lx  
XAL5050-223ME  
RB068MM100TF  
DTC144EE  
Coil Craft  
ROHM  
ROHM  
D3  
100 V, 2A  
-
EMHx  
(x = 1, 2, 3)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
69/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Application Typical Waveforms  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V)  
COMPx [2 V/div.]  
SWx [30 V/div.]  
COMPx [2 V/div.]  
SWx [30 V/div.]  
ILx [1 A/div.]  
ILx [1 A/div.]  
ILEDx [1 A/div.]  
ILEDx [1 A/div.]  
Time [200 µs/div.]  
Time [200 µs/div.]  
Figure 80. ON Sequence  
(CCOMPx = 0.1 µF)  
Figure 81. OFF Sequence  
(CCOMPx = 0.1 µF)  
COMPx [2 V/div.]  
COMPx [2 V/div.]  
SWx [30 V/div.]  
SWx [30 V/div.]  
ILx [1 A/div.]  
ILx [1 A/div.]  
ILEDx [1 A/div.]  
ILEDx [1 A/div.]  
Time [200 µs/div.]  
Time [200 µs/div.]  
Figure 82. ON Sequence  
(CCOMPx = 10 nF)  
Figure 83. OFF Sequence  
(CCOMPx = 10 nF)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
70/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Application Typical Waveforms - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V)  
VOUTx [30 V/div.]  
VOUTx [10 V/div.]  
SWx [10 V/div.]  
SWx [30 V/div.]  
ILx [1 A/div.]  
ILEDx [1 A/div.]  
Time [1 µs/div.]  
ILx [1 A/div.]  
Time [500 µs/div.]  
ILEDx [1 A/div.]  
Figure 84. Normal Operation  
Figure 85. PWM Dimming Operation  
VOUTx [10 V/div.]  
VOUTx [10 V/div.]  
SWx [50 V/div.]  
SWx [50 V/div.]  
ILx [1 A/div.]  
ILx [1 A/div.]  
ILEDx [1 A/div.]  
ILEDx [1 A/div.]  
Time [5 µs/div.]  
Time [5 µs/div.]  
Figure 86. Internal PWM Dimming (Rising Edge)  
Figure 87. Internal PWM Dimming (Falling Edge)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
71/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Application Typical Waveforms - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V)  
VOUTx [30 V/div.]  
SWx [30 V/div.]  
VOUTx [30 V/div.]  
SWx [30 V/div.]  
ILx [1 A/div.]  
ILx [1 A/div.]  
ILEDx [1 A/div.]  
ILEDx [1 A/div.]  
Time [50 µs/div.]  
Time [50 µs/div.]  
Figure 88. Output Short Circuit Fault  
(CCOMPx = 0.1 µF)  
Figure 89. Output Short Circuit Fault Recovery  
(CCOMPx = 0.1 µF)  
VOUTx [30 V/div.]  
SWx [30 V/div.]  
VOUTx [30 V/div.]  
SWx [30 V/div.]  
ILx [1 A/div.]  
ILx [1 A/div.]  
ILEDx [1 A/div.]  
ILEDx [1 A/div.]  
Time [50 µs/div.]  
Time [50 µs/div.]  
Figure 90. Output Short Circuit Fault  
(CCOMPx = 10 nF)  
Figure 91. Output Short Circuit Fault Recovery  
(CCOMPx = 10 nF)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
72/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Application Typical Waveforms - continued  
(Unless otherwise specified VIN = 13 V, VPIN = 60 V, V5VEXT = 5 V)  
VOUTx [50 V/div.]  
SWx [50 V/div.]  
VOUTx [50 V/div.]  
SWx [50 V/div.]  
ILx [1 A/div.]  
ILx [1 A/div.]  
ILEDx [1 A/div.]  
Time [50 µs/div.]  
ILEDx [1 A/div.]  
Time [50 µs/div.]  
Figure 92. Output Open Circuit Fault  
(CCOMPx = 0.1 µF)  
Figure 93. Output Open Circuit Fault Recovery  
(CCOMPx = 0.1 µF)  
VOUTx [50 V/div.]  
SWx [50 V/div.]  
VOUTx [50 V/div.]  
SWx [50 V/div.]  
ILx [1 A/div.]  
ILx [1 A/div.]  
ILEDx [1 A/div.]  
Time [50 µs/div.]  
ILEDx [1 A/div.]  
Time [50 µs/div.]  
Figure 94. Output Open Circuit Fault  
(CCOMPx = 10 nF)  
Figure 95. Output Open Circuit Fault Recovery  
(CCOMPx = 10 nF)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
73/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Layout Example  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
74/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
I/O Equivalence Circuits  
Pin No.  
Pin No.  
Pin  
Name  
Pin  
Name  
I/O Equivalence Circuit  
I/O Equivalence Circuit  
HTSSOP HTSSOP  
HTSSOP HTSSOP  
-C48R  
-C48  
-C48R  
-C48  
5VREG  
SO/FAULT_B  
SO/  
FAULT_  
B
CSB  
2
23  
3
22  
CSB  
GND  
GND  
SCK  
SI  
4
21  
SCK  
5
20  
SI  
GND  
GND  
5VREG  
6
7
8
19  
18  
17  
COMP1  
ISET/  
PWM1  
9
16  
15  
ISET/  
PWM1,  
ISET/  
PWM3  
(Note 1)  
COMPx  
COMP3  
(Note 1)  
ISET/  
PWM3  
10  
COMP2  
GND  
GND  
VIN  
5VREG  
ISET/  
PWM2  
ISET/  
PWM2  
11  
14  
13  
12  
TON  
TON  
GND  
GND  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
75/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
I/O Equivalence Circuits – continued  
Pin No.  
Pin No.  
Pin  
Name  
Pin  
Name  
I/O Equivalence Circuit  
I/O Equivalence Circuit  
HTSSOP HTSSOP  
HTSSOP HTSSOP  
-C48R  
-C48  
-C48R  
-C48  
17  
20  
23  
8
5
2
SNSP1  
(Note 1)  
PIN  
VIN  
SNSP3  
SNSPx  
SNSP2  
5VREG  
GND  
14  
11  
5VREG  
SNSNx  
GND  
18  
21  
24  
7
4
1
SNSN1  
(Note1)  
SNSN3  
SNSN2  
5VEXT  
BOOTx  
29,30  
38,39  
43,44  
43,44  
34,35  
29,30  
SW2  
(Note 1)  
5VEXT  
SW3  
PIN  
SW1  
33  
40  
5VEXT  
31  
40  
42  
42  
33  
31  
BOOT2  
(Note 1) SWx  
BOOT3  
PGND  
PGND  
BOOT1  
(Note 1) BD18397: COMP3, ISET/PWM3, SNSP3, SNSN3, SW3, BOOT3 = N.C.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
76/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
77/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 96. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
14. Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the  
functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
78/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Ordering Information  
B D 1  
8
3
9
x
x
x
x
-
M E 2  
Output  
Package  
Product Rank  
Channel  
7: 2 channel  
8: 3 channel  
RUV: HTSSOP-C48R  
EUV: HTSSOP-C48  
M: for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagrams  
HTSSOP-C48R (TOP VIEW)  
Part Number Marking  
LOT Number  
Pin 1 Mark  
HTSSOP-C48 (TOP VIEW)  
Part Number Marking  
LOT Number  
Pin 1 Mark  
Lineup  
Output Channel  
Part Number Marking  
BD18397  
Package  
Orderable Part Number  
HTSSOP-C48R  
HTSSOP-C48  
HTSSOP-C48R  
HTSSOP-C48  
BD18397RUV-ME2  
BD18397EUV-ME2  
BD18398RUV-ME2  
BD18398EUV-ME2  
2 ch  
3 ch  
BD18397EUV  
BD18398  
BD18398EUV  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
79/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-C48R  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
80/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Physical Dimension and Packing Information – continued  
Package Name  
HTSSOP-C48  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
01.Mar.2023 Rev.002  
81/84  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Revision History  
Date  
Revision  
001  
Changes  
15.Feb.2022  
New Release  
Adding Lineup  
Before: BD18397RUV-M, BD18398RUV-M  
After: BD18397RUV-M, BD18398RUV-M, BD18397EUV-M, BD18398EUV-M  
P1 updating Key Specification  
LED Output Voltage Range  
Before: 2 V to 60 V  
After: 2.5 V to 60 V  
P1 updating Typical Application Circuit  
Figure 1. Typical Application Circuit  
P3 updating Pin Descriptions  
BOOT1, BOOT2, BOOT3  
Before: Connecting boot strap capacitor  
After: Connecting series resister and boot strap capacitor  
SW1, SW2, SW3  
Adding description: Connecting schottky barrier diode to the SW3 pin.  
5VREG  
Before: 2.2 μF  
After: 4.7 μF  
5VEXT  
Before: 2.2 μF  
After: 4.7 μF  
P4 updating Bock Diagram  
Figure 4. Block Diagram  
01.Mar.2023  
002  
P6 updating Thermal Resistance  
Adding item: HTSSOP-C48 for BD1839xEUV-M  
P7 updating Recommended Operating Conditions  
Note 2  
Before: Schottky Barrier Diodes between  
After: Schottky Barrier Diodes should be needed between  
Adding item: PWM Dimming off Pulse Width and Note 6  
Adding item: Continuous Total Average LED Current for BD1839xEUV-M  
P8 updating Recommended Setting Parts Range  
Adding item: RBTx and Note 2  
P14 updating Description of Blocks > Buck Converter LED Current Regulation  
Before: by the real time sensing VPIN and VSNSNx voltage.  
After: by the real time sensing VPIN and VSNSPx voltage.  
P15 updating Description of Blocks > LED Current Setting (Current Sense)  
Figure 7. LED Current Setting  
P16 updating Description of Blocks > DCDC Switching Frequency  
TONx  
Before: k / (TONx[5:0] +1) x RTON x VSNSPx / VPIN + 20 x 10-9  
After: k / (TONx[5:0] +1) x RTON x VSNSPx / VPIN x 10-6 + 20 x 10-9  
fswx  
Before: 1 / (k / (TONx[5:0] +1) x RTON x VSNSPx / VPIN + 20 x 10-9) x VSNSPx / VPIN  
After: 1 / (k / (TONx[5:0] +1) x RTON x VSNSPx / VPIN x 10-6 + 20 x 10-9) x VSNSPx / VPIN  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
82/84  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Revision History – continued  
Date  
Revision  
Changes  
P20 updating Description of Blocks > Bootstrap Charge  
Adding description: When turning on the corresponding channel, the output voltage  
must be sufficiently discharged (VOUTx < 1.5 V) before turning on the corresponding  
channel (CHONx = 1) to ensure that the bootstrap voltage is above the recommended  
operating voltage (VBTSWx > 3.5 V).  
P24 updating Description of Blocks > Abnormal Detection/Protection Function  
5VREG 5VEXT UVLO  
Before: V5VREG ≥ 4.5 V or V5VEXT ≥ 4.5 V  
After: V5VREG ≥ 4.2 V or V5VEXT ≥ 4.2 V  
P25 updating Description of Blocks > Under Voltage Locked Out (UVLO)  
Before: When detecting a UVLO by the VIN or V5VREG or V5VEXT  
After: When detecting a UVLO by the VIN or V5VREG or V5VEXT or VPIN  
,
,
P26 updating Description of Blocks > SW Over Current Protection (SWOCPx)  
Figure 20. SW Over Current Protection Waveform  
P27 updating Description of Blocks > LED Open Detection  
Figure 21. LED Open Detection Waveform  
P28 updating Description of Blocks > LED Short to GND Detection  
Figure 22. LED Short to GND Detection Waveform  
P31 updating Description of Blocks > SPI Protocol and AC Electrical Characteristics  
Adding description: SI data is outputted with 24 bits shift from SO/FAULT_B.  
SO/FAULT_B keeps Hi-z when CSB = high.  
01.Mar.2023  
002  
P33 updating Description of Blocks > SPI Protocol and AC Electrical Characteristics  
> SPI AC Timing  
Adding item: NOTE (Countermeasure of Noise)  
Adding item: Figure 29. Countermeasure of Noise  
P34 updating Description of Blocks > SPI Protocol and AC Electrical Characteristics  
> SPI Protocol > CRC  
Adding description: (It doesn't change value until '1' input because initial 0. (The result  
of "011111111111111111111111" (binary) is same as result of "111111111111111111111111".))  
P41 updating Description of Blocks > Register > Description of Registers  
initial value of Address 0x00: SYSSET  
Before: initial value 0x00  
After: initial value 0x40  
P43 updating Description of Blocks > Register > Description of Registers  
Description of Address 0x03: DIMSET bit[7] PHEN  
Before: as shown in Figure 41.  
After: as shown in Figure 44.  
P44 updating Description of Blocks > Register > Description of Registers  
Description of Address 0x04 & 0x05  
Removing description: If you want to change value during dimming, WLOCK function  
can be used.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
83/84  
01.Mar.2023 Rev.002  
BD18397RUV-M BD18398RUV-M BD18397EUV-M BD18398EUV-M  
Revision History – continued  
Date  
Revision  
Changes  
P45 updating Description of Blocks > Register > Description of Registers  
Table 15. DC/DC GM Amplifier Trans Conductance Setting  
GM1[1:0] = 0  
Before: 1200  
After: 1360  
GM1[1:0] = 1  
Before: 750  
After: 870  
GM1[1:0] = 2  
Before: 430  
After: 530  
GM1[1:0] = 3  
Before: 240  
After: 300  
P57 updating Sequence > Start-up and Turn-off Sequence > Error Sequence for “WDT  
Error”  
Description of Error Sequence for “WDT Error” ①  
Removing description: and SO/FAULT_B output is set to low  
P66 updating Design Procedure > Total LED Current Setting  
Adding description and formula for BD1839xEUV-M  
P66 updating Design Procedure >Inductor Selection  
Before: in case of the minimum on time  
After: in case of the minimum off time  
01.Mar.2023  
002  
Before: in case of the maximum on time  
After: in case of the minimum on time  
P68 updating Typical Application Examples  
Figure 79. Application Circuit  
P69 updating Application Parts Choice Example  
COUTx  
Before: 10 μF, GCM31MR72A224KA01#_X7R_±10 %  
After: 4.7 μF x 2, GCM32DC72A475KE02#_X7S_±10 %  
Lx  
Before: XAL8050-223ME  
After: XAL5050-223M  
D3  
Before: RB068LAM100  
After: RB068MM100TF  
Adding item: RBTx  
P74 updating Layout Example  
P75 updating I/O Equivalence Circuits  
Adding item: New package Pin No.  
P79 updating Ordering Information and Marking Diagram and Lineup  
Adding item: HTSSOP-C48 for BD1839xEUV-M  
P81 updating Physical Dimension and Packing Information  
Adding item: HTSSOP-C48 for BD1839xEUV-M  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400410-1-2  
84/84  
01.Mar.2023 Rev.002  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD18398EUV-M (开发中)

The BD18398EUV-M is 3ch synchronous buck DC/DC LED driver with using on-time topology supporting near fixed switching frequency and fast switching duty regulation and with using average LED current feed buck topology for more accreted LED current regulation system over wide input, LED output range.
ROHM

BD18398RUV-M

BD18398RUV-M是一款三通道同步降压型DC-DC LED驱动器,采用ON-Time拓扑结构支持接近恒定的开关频率和快速开关占空比调节,并采用平均LED电流反馈降压拓扑结构在更宽输入和LED输出范围内实现更出色的LED电流调节系统。
ROHM

BD185

TECHNICAL DATA
MOTOROLA

BD186

PLASTIC MEDIUM POWER SILICON PNP TRANSISTOR
MOTOROLA

BD187

TECHNICAL DATA
MOTOROLA

BD188

PLASTIC MEDIUM POWER SILICON PNP TRANSISTOR
MOTOROLA

BD189

TECHNICAL DATA
MOTOROLA

BD18BC0FP

Fixed Positive LDO Regulator, 1.8V, PSSO3, ROHS COMPLIANT, TO-252, 3 PIN
ROHM

BD18BC0FPE2

Fixed Positive LDO Regulator, 1.8V, PSSO3, ROHS COMPLIANT, TO-252, 3 PIN
ROHM

BD18BC0T

Fixed Positive LDO Regulator, 1.8V, PSFM3, ROHS COMPLIANT, TO-220FP, 3 PIN
ROHM

BD18BC0WFP

Fixed Positive LDO Regulator, 1.8V, PSSO5, ROHS COMPLIANT, TO-252, 5 PIN
ROHM

BD18BC0WFPE2

Fixed Positive LDO Regulator, 1.8V, PSSO5, ROHS COMPLIANT, TO-252, 5 PIN
ROHM