BD2808MUV-M [ROHM]

BD2808MUV-M是高耐压(20V)带2线串行接口、内置PWM调光功能的24ch恒电流LED驱动器。以RGB LED的驱动为假想,搭载了3组独立灰度控制的6bit电流DAC和各信道独立PWM占空比控制8bit(模拟Log曲线),可实现精细的色彩控制。由于是小型封装,适合省空间用途。;
BD2808MUV-M
型号: BD2808MUV-M
厂家: ROHM    ROHM
描述:

BD2808MUV-M是高耐压(20V)带2线串行接口、内置PWM调光功能的24ch恒电流LED驱动器。以RGB LED的驱动为假想,搭载了3组独立灰度控制的6bit电流DAC和各信道独立PWM占空比控制8bit(模拟Log曲线),可实现精细的色彩控制。由于是小型封装,适合省空间用途。

驱动 驱动器
文件: 总33页 (文件大小:950K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Serial-in Parallel-out LED Driver  
24ch Constant Current LED Driver IC  
with 2-line Serial Interface  
BD2808MUV-M  
General Description  
Key Specifications  
BD2808MUV-M is 24ch Constant current sink LED Driver  
with a high output voltage capability.  
This device is optimized for driving RGB LEDs featuring a  
6bit Current DAC for each color.  
Input Voltage Range:  
3.0V to 5.5V  
20V (Max)  
50mA (Max)  
Output Voltage Range:  
DC Output Current (per ch):  
Operating Temperature Range:  
-40°C to +105°C  
8bit PWM control is integrated for each channel.  
Small VQFN48MCV070 package.  
.
Package  
W (Typ) x D (Typ) x H (Max)  
7.00mm x 7.00mm x 1.00mm  
VQFN48MCV070  
Features  
AEC-Q100 Qualified (Note 1)  
2-Line Serial Control + Enable Signal  
VQFN48 Package  
24 channel constant current LED driver (max  
50mA / channel)  
Independent PWM control for each channel  
6 bit current DAC for RGB  
Protection features  
Equipped with PWM phase shift function to reduce  
EMI  
(Note1: Grade 2)  
VQFN48MCV070  
Applications  
Instrument Cluster  
LED status indicators  
Instrument backlighting  
LED Interior illumination  
VLED  
(Max=20V )  
Typical Application Circuit  
CVLED  
VCC  
RXERR  
A5  
OUTG5  
OUTR5  
PGND  
SDI  
TEST2  
Micro-  
computer  
AGND  
OUTB4  
OUTG4  
OUTR4  
OUTB3  
OUTG3  
OUTR3  
PGND  
CLK  
TEST3  
BD2808MUV  
OE  
RISET  
ISET  
AGND  
VCC  
TEST1  
A0  
Fuse  
VCC  
3.0~5.5V  
CVCC  
OUTB2  
OUTG2  
ROUTR07  
ROUTG07  
ROUTB07  
Figure 1. Typical Application Circuit  
Product structure: Silicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
1/30  
4.Jun.2015 Rev.002  
Daattaasshheeeett  
BD2808MUV-M  
Pin Configuration  
Pin Descriptions  
36  
25  
Pin No.  
1
Pin Name  
Functions  
A1  
Device-address bit  
Device-address bit  
Serial data output  
Ground  
2
A2  
37  
24  
OUTG5  
OUTR5  
PGND  
3
SDO  
A5  
4
PGND  
OUTR0  
OUTG0  
OUTB0  
PGND  
OUTR1  
OUTG1  
OUTB1  
OUTR2  
OUTG2  
OUTB2  
PGND  
OUTR3  
OUTG3  
OUTB3  
OUTR4  
OUTG4  
OUTB4  
PGND  
OUTR5  
OUTG5  
OUTB5  
OUTR6  
OUTG6  
OUTB6  
PGND  
OUTR7  
OUTG7  
OUTB7  
PGND  
XERR  
A3  
SDI  
5
R0 constant-current output  
G0 constant-current output  
B0 constant-current output  
Ground  
TEST3  
AGND  
CLK  
6
OUTB4  
OUTG4  
OUTR4  
OUTB3  
OUTG3  
OUTR3  
PGND  
7
8
TEST2  
OE  
9
R1 constant-current output  
G1 constant-current output  
B1 constant-current output  
R2 constant-current output  
G2 constant-current output  
B2 constant-current output  
Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
ISET  
AGND  
VCC  
TEST1  
A0  
OUTB2  
OUTG2  
13  
R3 constant-current output  
G3 constant-current output  
B3 constant-current output  
R4 constant-current output  
G4 constant-current output  
B4 constant-current output  
Ground  
48  
1
12  
Figure 2. Pin Configuration  
R5 constant-current output  
G5 constant-current output  
B5 constant-current output  
R6 constant-current output  
G6 constant-current output  
B6 constant-current output  
Ground  
R7 constant-current output  
G7 constant-current output  
B7 constant-current output  
Ground  
Error output  
Device-address bit  
A4  
Device-address bit  
A5  
Device-address MSB  
Serial data input  
SDI  
TEST3  
AGND  
CLK  
Test terminal  
Analog Ground  
Serial data clock input  
Test terminal  
TEST2  
OE  
Output enable  
ISET  
Constant-current value setting  
Analog Ground  
AGND  
VCC  
Power supply  
TEST1  
A0  
Test terminal  
Device-address LSB  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
2/30  
Daattaasshheeeett  
BD2808MUV-M  
Block Diagram  
VCC  
VCC  
OSC  
TSD  
1µF/10V  
VLED  
VREF  
OUTR0  
OUTG0  
OUTB0  
CLK  
PWM 8bit-Log  
for each Channel  
SDI  
OUTR1  
OUTG1  
OUTB1  
Digital  
Control  
SDO  
I/O  
6bit  
DAC  
OE  
A0  
A1  
6bit  
DAC  
A2  
6bit  
A3  
A4  
DAC  
OUTR6  
OUTG6  
OUTB6  
A5  
OUTR7  
OUTG7  
OUTB7  
XERR  
TEST1  
TEST2  
TEST3  
ISET  
Figure 3. Block Diagram  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
3/30  
Daattaasshheeeett  
BD2808MUV-M  
Description of Blocks  
(1) Power Supply Start-up  
The rise and fall time of a power supply can be from 10us to 1s.  
Allow at least 0.1ms after VCC exceeds VUVLORise UVLO before commencing communication.  
Input pin voltages must not exceed VCC or LED flicker may occur at start-up.  
VCCmin=3.0V  
VCC  
TrVCC  
TACSS=min 0.1ms  
TfVCC  
Register  
access  
Possible  
Impossible  
Impossible  
(2) LED Driver operation  
Maximum LED current can be set by selecting the value of RISET  
.
The following formula gives the required value of RISET  
.
ꢀꢁꢂꢃ_ꢄꢅꢆ ꢄꢈ ꢊ ꢋꢌ ꢍ ꢎꢋ/ꢏꢀꢐꢂꢑꢇꢒꢓꢉꢔ  
(Typ)  
(3) Reset  
Power on reset occurs when VCC voltage falls below VUVLOFall  
.
Software reset is by command. If reset occurs, all registers are cleared (set to 0)  
(4) Protection function (XERR output)  
When thermal shutdown, channel open, or ISET terminal short to ground are detected, the XERR terminal is pulled LOW.  
All protection functions incorporate noise rejection. The XERR terminal output is low only during detection. (Latch and  
intentional delay time are not provided.) These signals are also written into a register. The flag returns to “0” only when  
the register is read.  
The thermal shutdown operates at 175°C typically with 10°C of hysteresis, release therefore occurring at 165°C  
typically. All the channels of are turned OFF automatically when thermal shut down operates.  
When the RISET is out of range RISETSHT, a short to ground function prevents large current from flowing into the LEDs.  
All channels of LED driver are turned OFF automatically.  
A Channel OPEN is detected when VLED < VLOD.  
The individual channel is turned OFF automatically and VLED becomes high impedance.  
OPEN detection is not active if Brightness is set to 0.  
The Error flag output pin (XERR pin) is in the same period with the OUT** pin and outputs a flag.  
The flag stored in register retains the state once detected and is not changed until register is read.  
VOUT*  
VXERR  
Register  
(LEDOPEN)  
It returns to "0" when the register is read.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
4/30  
Daattaasshheeeett  
BD2808MUV-M  
Description of Blocks – Continued  
(5) LED Current ON/OFF Function by External Pin (OE terminal)  
All channels can be controlled by the external pin. If OE pin is HIGH, the LED drivers are active.  
The internal PWM control circuit becomes asynchronous.  
(6) Unused Pins  
Set up the test terminals and the unused terminals as follows.  
Pin Name  
OUT**  
Connection  
Reason  
To avoid uncertain/unfixed state.  
(Brightness setting of unused channel should be set  
to zero.)  
Short to GND  
SDO  
Open  
CMOS output terminal  
Open or  
Short to GND  
Open drain output terminal.  
When XERR is shorted to GND, noise is avoided.  
XERR  
Voltage clamp is necessary for CMOS input terminal.  
When OE is set to “LOW”, LED current is OFF.  
OE  
Short to VCC  
Short to GND  
TESTx  
To avoid test mode functionality.  
(7) LED Current Waveform  
To reduce EMI, the on-timing and off-timing of LED are shifted in 8 groups and simultaneous ON or OFF are avoided.  
The rise tr and tf fall time of the output current is also limited to further reduce EMI noise.  
OUTR0  
OUTG0  
OUTB0  
OUTR1  
OUTG1  
OUTB1  
t
r
tf  
1/8 × 4ms  
1/8 × 4ms  
OUTR7  
OUTG7  
OUTB7  
Figure 4. PWM phase-shift (8 groups)  
(8) Diming function (PWM and DAC diming)  
This IC has 2 diming functions which are PWM and DAC.  
It is possible to set independent PWM control for each channel.  
DAC diming is made 3 groups(R: Red, G: Green, B: Blue).  
There are these detail at page 18, 19.  
(9) Others(VREF and OSC)  
There are VREF and OSC block for reference voltage and moving digital block.  
(10) Test Processing  
Test 1-3 are pins that are used for testing.  
These pins are not used in normal operations, therefore connect it to ground.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
5/30  
Daattaasshheeeett  
BD2808MUV-M  
Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Value  
-0.3 to +7 (Note 1)  
-0.3 to +20 (Note 1)  
-0.3 to VCC  
-0.3 to VCC  
4.09 (Note 2)  
5.20 (Note 3)  
-40 to +105  
-55 to +150  
150  
Unit  
V
Power Supply Voltage  
Output Voltage 1 (Pin No: Pin No: 5-7, 9-14, 16-21, 23-28, 30-32)  
Output Voltage 2 (Pin No: 34)  
VLEDmax  
VXERR  
VIN  
V
V
Input Voltage (Pin No: 1-3, 35-38, 41, 43-44, 48)  
Power Dissipation1  
V
Pd1  
W
W
°C  
°C  
°C  
mA  
Power Dissipation2  
Pd2  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
Junction Temperature  
Tjmax  
IomaxD  
Drive Current (DC)  
50  
(Note 1) Pd should not be exceeded.  
(Note 2) Pd1 is decreased by 32.7mW/°C for temperatures above Ta=25°C, mounted on 114.3mm x76.2mm x1.6mm Glass-epoxy PCB.  
(Note 3) Pd2 is decreased by 41.6mW/°C for temperatures above Ta=25°C, mounted on 114.3mm x76.2mm x1.6mm Glass-epoxy PCB.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Recommended Operating Conditions (Ta=-40°C to 105°C)  
Item  
Symbol  
VCC  
Min  
3.0  
-
Typ  
3.3  
-
Max  
5.5  
50  
Unit  
V
Power Supply Voltage  
IMAX  
mA  
LED Maximum Output Current  
Application Conditions (External Constant Range)  
Parameters  
VCC Capacitor  
Symbols  
Min  
1.0  
10  
Max  
-
Unit  
µF  
CVCC  
CVLED  
RISET  
RXERR  
VLED Capacitor  
ISET Resistor  
XERR Resistor  
-
µF  
50  
200  
100  
kΩ  
k  
10  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
6/30  
Daattaasshheeeett  
BD2808MUV-M  
Electrical Characteristics  
(Unless specified, Ta=-40 to 105°C VCC=3.0 to 5.5V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
Circuit Current】  
RESET state (all registers have default  
values)  
Standby VCC Circuit  
Current  
ISTB  
-
0.4  
2.7  
20  
µA  
LED terminal leak current is excluded  
All Ch=ON, PWM=100%  
VCC Circuit Current  
IVCC  
5.0  
mA  
I
LED=17.9mA setting, ISET=56k(Note1)  
LED driver】  
Current DAC  
LED Current Step  
ILEDSTP  
IMAX  
64  
50  
step  
mA  
LED Maximum Setup  
Current  
ISET=50k(Note2)  
-
-
Terminal voltage=1V, Current accuracy of  
each OUT terminal  
LED Current Accuracy  
ILED  
-5  
0
0
+5  
+5  
%
%
ILED=17.9mA setting, ISET=56k(Note1)  
An error with the average value of output  
current,  
LED Current Matching  
ILEDMT  
-5  
Terminal voltage=1V  
ILED=17.9mA setting, ISET=56k(Note1)  
LED Current Matching  
between RGB terminal  
Terminal voltage=1V  
ILEDMT_RGB  
-5  
-5  
0
0
+5  
+5  
%
%
ILED=17.9mA setting, ISET=56k(Note1)  
LED Current Matching  
between devices  
Terminal voltage=1V  
ILEDMT_DEV  
I
LED=17.9mA setting, ISET=56k(Note1)  
V
CC from 3V to 5.5V  
OUT from 1V to 20V  
Line Regulation  
Load Regulation  
ILIN  
IRO  
-
-
-
-
2
1
%/V  
%/V  
V
Current Linearity at PWM  
Control  
PWM Duty over 3%  
ILINPWM  
ILKL  
-
-
-
1.5  
3
%
μA  
V
LED OFF Leak Current  
-
0.96  
-
Terminal voltage =20V  
ISET Terminal Output  
Voltage  
VISET  
RISET  
-
-
ISET Resistance  
50  
200  
kꢀ  
OSC】  
OSC Frequency  
PWM Frequency  
fOSC  
0.82  
200  
1.02  
250  
1.23  
300  
MHz  
Hz  
fPWM  
UVLO】  
When power supply voltage falls  
When power supply voltage rises  
UVLO Detection Voltage  
VUVLOFall  
2.0  
2.4  
-
V
UVLO Release Voltage  
VUVLORise  
VUVLOHYS  
-
-
-
2.7  
-
V
Hysteresis Voltage  
50  
mV  
Protection Function】  
LED Terminal Open  
Detection Voltage  
VLOD  
-
0.2  
20  
0.3  
40  
V
ISET Short Detection  
Resistance  
RISETSHT  
5.0  
kꢀ  
(Note1) At DAC Setting R: ad03, data=18h, DAC Setting G: ad04, data=18h, DAC Setting B: ad05, data=18h  
(R=56k: IMAX=40*64/56k=45.7mA)  
(Note2) IMAX=40*64/50k=50mA  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
7/30  
4.Jun.2015 Rev.002  
Daattaasshheeeett  
BD2808MUV-M  
Electrical Characteristics - continued  
(Unless specified, Ta=-40 to 105°C VCC=3.0 to 5.5V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
CLK, SDI】  
0.25 ×  
VCC  
Input L Level Voltage  
Input H Level Voltage  
Input Hysteresis Voltage  
Input Current  
VILI1  
VIHI1  
VHYSI1  
lINI1  
-0.3  
-
-
-
-
V
V
0.75 ×  
VCC  
VCC  
+0.3  
0.05 ×  
VCC  
-
V
-1  
1
μA  
Input voltage= 3.3V  
SDO(CMOS Output Pin)  
Output L Level Voltage  
Output H Level Voltage  
VOLSDO  
VOHSDO  
-
-
-
V
V
IOL=1mA  
IOH=1mA  
0.2  
-
VCC  
-0.2  
XERR(Open Drain Output Pin)  
Output L Level Voltage  
A0-5, OE(CMOS input pin)  
Input L Level Voltage  
VOLXE  
-
-
V
IOL=1mA  
0.2  
0.25 ×  
VCC  
VILI2  
VIHI2  
VHYSI2  
lINI2  
-0.3  
-
-
-
-
V
V
0.75 ×  
VCC  
VCC  
+0.3  
Input H Level Voltage  
0.05 ×  
VCC  
Input Hysteresis Voltage  
Input Current  
-
V
-1  
1
μA  
Input voltage= 3.3V  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
8/30  
Daattaasshheeeett  
BD2808MUV-M  
Typical Performance Curves  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
105°C  
5.5V  
25°C  
3.3V  
-40°C  
3.0V  
35  
0.0  
-40  
-15  
10  
60  
85  
110  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage: VCC [V]  
Ambient Temperature: Ta []  
Figure 5. Standby Current  
(VCC characteristic)  
Figure 6. Standby Current  
(Temperature characteristic)  
4.0  
4.0  
5.5V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
105°C  
-40°C  
25°C  
3.0V  
3.3V  
-40  
-15  
10  
35  
60  
85  
110  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta []  
Supply Voltage: VCC [V]  
Figure 8. Circuit Current  
(Temperature characteristic @ ALL OUTn=ON  
Figure 7. Circuit Current  
(VCC characteristic @ All OUTn=ON  
PWM=100% ILED=17.9mA ISET=56kΩ)  
PWM=100% ILED=17.9mA ISET=56k)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
9/30  
Daattaasshheeeett  
BD2808MUV-M  
Typical Performance Curves – continued  
18.6  
18.4  
18.2  
18.0  
17.8  
17.6  
17.4  
17.2  
17.0  
18.6  
18.4  
5.5V  
105°C  
18.2  
18.0  
25°C  
-40°C  
17.8  
3.3V  
3.0V  
17.6  
17.4  
17.2  
17.0  
-40  
-15  
10  
35  
60  
85  
110  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Ambient Temperature: Ta []  
Supply Voltage: VCC [V]  
Figure 9. LED Current  
Figure 10. LED Current  
(Temperature characteristic @ ISET=56k)  
(VCC characteristic @ ISET=56k)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
105°C  
-40°C  
105°C  
-40° C  
25°C  
25°C  
0
16  
32  
48  
64  
0
64  
128  
192  
256  
Code: ILEDSTP [step]  
Code: ILEDSTP [step]  
Figure 11. LED Current DAC Step  
(VCC=3.3V)  
Figure 12. LED Current PWM Step  
(VCC=3.3V)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
10/30  
Daattaasshheeeett  
BD2808MUV-M  
Typical Performance Curves – continued  
1.2  
300  
280  
260  
240  
220  
200  
3.3V  
5.5V  
1.1  
1.0  
0.9  
0.8  
0.7  
5.5V  
3.3V  
3.0V  
3.0V  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
Ambient Temperature: Ta []  
Ambient Temperature: Ta []  
Figure 14. PWM Frequency  
(Temperature characteristic)  
Figure 13. Oscillation Frequency  
(Temperature characteristic)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
11/30  
Daattaasshheeeett  
BD2808MUV-M  
Bus Format  
Device Address  
A7  
0
A6  
1
A5  
A5  
*
A4  
A4  
*
A3  
A3  
*
A2  
A2  
*
A1  
A1  
*
A0  
A0  
*
Device control mode  
Bus control mode  
0
0
Device control mode: Data is dependent on the A0 to A5 terminal settings.  
Bus control mode: Data can be received without being dependent on A0 to A5 terminal settings.  
START Condition  
At STARTUP, the device enters WAIT mode when “1” is written 16 times or more, and a device address is recognized  
after writing “0”.  
WRITE PROTOCOL  
Data is shifted in the internal shift register on the rising edge CLK. MSB is entered first. The command format is: writing  
command “00” (2bit), device address (6bit), register address (8bit) and data (8bit).  
Register address is incremented after the fourth byte automatically.  
Device enters Sleep state when “1” is written eight times.  
Sleep condition  
A7A6A5A4 A3A2A1A0D7D6D5D4D3D2D1D0  
1 0 X  
X X X X X X  
D7D6D5D4D3D2D1D0 1  
Data  
1 1 1 1 1 1 1  
1
“1”16 回  
Device Address(DAD)  
Register Address(RAD)  
Data  
“FF”  
CLK  
SDI  
・・  
・・  
・・  
H
L
H
X
X
X
X
X
X
X
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
“1”16 times  
“FF”  
READ PROTOCOL  
Read from the next byte after register address “WRITE data” for “READ data” and device address.  
READ data is output on the SDO pin. For a READ command 8 clocks cycles are necessary. At the 8th clock of last bit of  
the specified register address, it becomes Sleep state, and the SDO pin becomes “L” output.  
The last bit (D0) is outputted 7 clocks.  
0 X X X X X X X A7A6A5A4 A3A2A1 A0D7D7D7D7D7D7D7D7D6D6D6D6D6D6D6D6  
D0D0D0D0D0D0D0  
Data  
Device Address(DAD)  
Register Address(RAD)  
Data  
Data  
CLK  
・・  
・・  
SDI  
A7 A6 A5 A4 A3 A2 A1 A0  
SDO  
L
D7  
D6  
D5  
D0  
L
8 clocks  
7 clocks  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
12/30  
Daattaasshheeeett  
BD2808MUV-M  
Protocol  
Sleep  
Input “1” 16 times in a row  
“1”input  
Start standby  
“0” input  
Receive device  
address  
Different device address  
Input device address  
(1)  
Receive device  
address  
Input inexistent  
register address  
“FF” input  
Data  
1) Condition becomes START standby in any condition, if “1” is detected more  
than 16 times. For example, Sleep condition starts if “1” is received 8 times while  
waiting for register address. Moreover, the condition becomes START standby  
after receiving “1” 8 times.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
13/30  
Daattaasshheeeett  
BD2808MUV-M  
Timing Diagram  
tSP  
SDI  
t sh  
t whc  
t ss  
t wlc  
CLK  
tSP  
tdodl  
SDO  
Timing Characteristics (Ta=-40 to 105 °C VCC=3.0 to 5.5V)  
Standard value  
Item  
Symbol  
Unit  
Min  
Typ  
Max  
Interface】  
CLK cycle time  
tscyc  
twhc  
twlc  
100  
50  
50  
45  
45  
5
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK cycle “H” period  
CLK cycle “L” period  
SDI setup time  
-
-
tss  
-
SDI hold time  
tsh  
-
-
Pulse width of spike removed by input filter  
of CLK and SDI  
tSP  
SDO Output Delay (CL = 1,000pF)  
Tdodl  
-
500  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
14/30  
Daattaasshheeeett  
BD2808MUV-M  
Register Map  
Write  
Register  
Or  
Register data  
Function  
Address  
Read  
D7  
D6  
D5  
A5  
D4  
A4  
D3  
A3  
-
D2  
A2  
D1  
A1  
D0  
A0  
Device address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
R
-
-
-
-
-
-
-
-
-
-
-
-
R
-
-
ISETSH  
-
LEDOPN Error condition detection  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
-
-
SFTRST ENMD  
MD1  
DAR1  
DAG1  
DAB1  
MD0  
DAR0  
DAG0  
DAB0  
Mode setup  
DAR5  
DAG5  
DAB5  
DAR4  
DAG4  
DAB4  
DAR3  
DAG3  
DAB3  
DAR2  
DAG2  
DAB2  
DAC setting for OUTRx terminal  
DAC setting for OUTGx terminal  
DAC setting for OUTBx terminal  
BRR0(7) BRR0(6) BRR0(5) BRR0(4) BRR0(3) BRR0(2) BRR0(1) BRR0(0) OUTR0 PWM Setting  
BRG0(7) BRG0(6) BRG0(5) BRG0(4) BRG0(3) BRG0(2) BRG0(1) BRG0(0) OUTG0 PWM Setting  
BRB0(7) BRB0(6) BRB0(5) BRB0(4) BRB0(3) BRB0(2) BRB0(1) BRB0(0) OUTB0 PWM Setting  
BRR1(7) BRR1(6) BRR1(5) BRR1(4) BRR1(3) BRR1(2) BRR1(1) BRR1(0) OUTR1 PWM Setting  
BRG1(7) BRG1(6) BRG1(5) BRG1(4) BRG1(3) BRG1(2) BRG1(1) BRG1(0) OUTG1 PWM Setting  
BRB1(7) BRB1(6) BRB1(5) BRB1(4) BRB1(3) BRB1(2) BRB1(1) BRB1(0) OUTB1 PWM Setting  
BRR2(7) BRR2(6) BRR2(5) BRR2(4) BRR2(3) BRR2(2) BRR2(1) BRR2(0) OUTR2 PWM Setting  
BRG2(7) BRG2(6) BRG2(5) BRG2(4) BRG2(3) BRG2(2) BRG2(1) BRG2(0) OUTG2 PWM Setting  
BRB2(7) BRB2(6) BRB2(5) BRB2(4) BRB2(3) BRB2(2) BRB2(1) BRB2(0) OUTB2 PWM Setting  
BRR3(7) BRR3(6) BRR3(5) BRR3(4) BRR3(3) BRR3(2) BRR3(1) BRR3(0) OUTR3 PWM Setting  
BRG3(7) BRG3(6) BRG3(5) BRG3(4) BRG3(3) BRG3(2) BRG3(1) BRG3(0) OUTG3 PWM Setting  
BRB3(7) BRB3(6) BRB3(5) BRB3(4) BRB3(3) BRB3(2) BRB3(1) BRB3(0) OUTB3 PWM Setting  
BRR4(7) BRR4(6) BRR4(5) BRR4(4) BRR4(3) BRR4(2) BRR4(1) BRR4(0) OUTR4 PWM Setting  
BRG4(7) BRG4(6) BRG4(5) BRG4(4) BRG4(3) BRG4(2) BRG4(1) BRG4(0) OUTG4 PWM Setting  
BRB4(7) BRB4(6) BRB4(5) BRB4(4) BRB4(3) BRB4(2) BRB4(1) BRB4(0) OUTB4 PWM Setting  
BRR5(7) BRR5(6) BRR5(5) BRR5(4) BRR5(3) BRR5(2) BRR5(1) BRR5(0) OUTR5 PWM Setting  
BRG5(7) BRG5(6) BRG5(5) BRG5(4) BRG5(3) BRG5(2) BRG5(1) BRG5(0) OUTG5 PWM Setting  
BRB5(7) BRB5(6) BRB5(5) BRB5(4) BRB5(3) BRB5(2) BRB5(1) BRB5(0) OUTB5 PWM Setting  
BRR6(7) BRR6(6) BRR6(5) BRR6(4) BRR6(3) BRR6(2) BRR6(1) BRR6(0) OUTR6 PWM Setting  
BRG6(7) BRG6(6) BRG6(5) BRG6(4) BRG6(3) BRG6(2) BRG6(1) BRG6(0) OUTG6 PWM Setting  
BRB6(7) BRB6(6) BRB6(5) BRB6(4) BRB6(3) BRB6(2) BRB6(1) BRB6(0) OUTB6 PWM Setting  
BRR7(7) BRR7(6) BRR7(5) BRR7(4) BRR7(3) BRR7(2) BRR7(1) BRR7(0) OUTR7 PWM Setting  
BRG7(7) BRG7(6) BRG7(5) BRG7(4) BRG7(3) BRG7(2) BRG7(1) BRG7(0) OUTG7 PWM Setting  
BRB7(7) BRB7(6) BRB7(5) BRB7(4) BRB7(3) BRB7(2) BRB7(1) BRB7(0) OUTB7 PWM Setting  
-
-
-
-
-
-
-
EN  
Brightness reflection (latch)  
Assume that the input of “-“is “0”.  
An undefined address may be assigned for test purposes. Access to undefined register is prohibited.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
15/30  
4.Jun.2015 Rev.002  
Daattaasshheeeett  
BD2808MUV-M  
Register Description  
Register address 00h < Read Device address>  
Address  
(Index)  
R/W  
R
Bit7  
Bit6  
Bit5  
A5  
0
Bit4  
A4  
0
Bit3  
A3  
0
Bit2  
A2  
0
Bit1  
A1  
0
Bit0  
A0  
0
00h  
-
-
Initial  
value  
(Arbitrary)  
0
0
Bit [5: 0]: Device address (Read only)  
Device address set by external terminal (A0 – A5) is returned.  
Register address 01h <Read Error condition detection>  
Address  
(Index)  
R/W  
R
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
ISETSH  
0
Bit1  
Bit0  
LEDOPN  
01h  
-
-
-
-
-
-
Initial  
Value  
(Arbitrary)  
0
0
0
0
0
0
0
Bit 2: ISETSH ISET terminal short detection  
“0”: Normal operation  
“1”: ISET terminal GND short-circuit is detected  
Bit 0: LEDOPN LED open detect  
“0”: Normal operation  
“1”: Detect LED open on any channel  
(At LED is ON, detect LED terminal < 0.2V (Typ))  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
16/30  
Daattaasshheeeett  
BD2808MUV-M  
Register address 02h <Write Mode setup>  
Address  
(Index)  
R/W  
W
Bit7  
-
Bit6  
-
Bit5  
-
Bit4  
-
Bit3  
Bit2  
Bit1  
Bit0  
MD0  
02h  
SFTRST  
ENMD  
MD1  
Initial  
value  
00h  
0
0
0
0
0
0
0
0
Bit 3: SFTRST Soft reset  
“0”: Release reset  
“1”: Reset (Auto return zero)  
Sleep condition starts after soft reset.  
Bit 2: ENMD Enable mode  
“0”: Brightness register is latched on edge of EN  
“1”: Ignore EN (brightness register is updated immediately)  
Bit [1: 0]: MD(1: 0) Mode setup  
“00”: Increment mode0  
Sleep after register address 1Eh.  
Example) 1Ch1Dh1EhSleep  
“01”: Increment mode1  
“10”: Increment mode2  
“11”: Prohibited command  
Return to 03h after register address 1Eh. (Round)  
Example) 1Ch1Dh1Eh03h04h→・・・  
Return to 06h after register address 1Eh. (Round)  
Example) 1Ch1Dh1Eh06h07h→・・・  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
17/30  
Daattaasshheeeett  
BD2808MUV-M  
Register address 03h-05h < Write RGB DAC setup>  
Address  
(Index)  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
03h  
W
-
-
DACR5  
DACR4  
DACR3  
DACR2  
DACR1  
DACR0  
04h  
05h  
W
W
-
-
-
-
DACG5  
DACB5  
0
DACG4  
DACB4  
0
DACG3  
DACB3  
0
DACG2  
DACB2  
0
DACG1  
DACB1  
0
DACG0  
DACB0  
0
Initial  
value  
00h  
0
0
DAC (R, G, B) deserve for changing OUT (R, G, B) current.  
Bit [5: 0]: RGB DAC setup  
“000000”: Maximum LED current × 1/64  
“000001”: Maximum LED current × 2/64  
“000010”: Maximum LED current × 3/64  
“000011”: Maximum LED current × 4/64  
“000100”: Maximum LED current × 5/64  
“000101”: Maximum LED current × 6/64  
“000110”: Maximum LED current × 7/64  
(Maximum LED current × 1/64 step)  
“111000”: Maximum LED current × 57/64  
“111001”: Maximum LED current × 58/64  
“111010”: Maximum LED current × 59/64  
“111011”: Maximum LED current × 60/64  
“111100”: Maximum LED current × 61/64  
“111101”: Maximum LED current × 62/64  
“111110”: Maximum LED current × 63/64  
“111111”: Maximum LED current × 64/64  
Maximum LED current : ILED_max [mA] = 40 x 64 / RISET [k] (Typ)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
18/30  
Daattaasshheeeett  
BD2808MUV-M  
Register address 06h-1Dh <Write OUT** brightness setup>  
Address  
(Index)  
R/W  
W
Bit7  
BR**(7)  
0
Bit6  
BR**(6)  
0
Bit5  
BR**(5)  
0
Bit4  
BR**(4)  
0
Bit3  
BR**(3)  
0
Bit2  
BR**(2)  
0
Bit1  
BR**(1)  
0
Bit0  
BR**(0)  
0
06h –  
1Dh  
Initial  
value  
00h  
Bit [7: 0]: OUT** brightness setup  
“00000000” : PWM Duty 0/512 LED driver OFF setting (OUT terminal open detect function OFF)  
“00000001” : PWM Duty 1/512 1/512 step setting  
“00000010” : PWM Duty 2/512 1/512 step setting  
“00000011” : PWM Duty 3/512 1/512 step setting  
(1/512 step)  
“01111101” : PWM Duty 125/512 1/512 step setting  
“01111110” : PWM Duty 126/512 1/512 step setting  
“01111111” : PWM Duty 128/512 2/512 step setting  
“10000000” : PWM Duty 130/512 2/512 step setting  
(2/512 step)  
“10111100” : PWM Duty 250/512 2/512 step setting  
“10111101” : PWM Duty 252/512 2/512 step setting  
“10111110” : PWM Duty 256/512 4/512 step setting  
“10111111” : PWM Duty 260/512 4/512 step setting  
“11000000” : PWM Duty 264/512 4/512 step setting  
(4/512 step)  
“11111101” : PWM Duty 508/512 4/512 step setting  
“11111110” : PWM Duty 512/512 DC setting  
It is possible to control PWM brightness by individual channels.  
[Duty]  
100.00%  
90.00%  
80.00%  
70.00%  
60.00%  
50.00%  
40.00%  
30.00%  
20.00%  
10.00%  
0.00%  
0
50  
100  
150  
200  
250  
Figure 15. Register setup  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
19/30  
Daattaasshheeeett  
BD2808MUV-M  
Register address 1Eh <Write Enable>  
Address  
(Index)  
R/W  
W
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
EN  
0
1Eh  
-
-
-
-
-
-
-
Initial  
value  
00h  
0
0
0
0
0
0
0
Bit 0: EN enable control  
“0”: No reflect  
“1”: Reflect into output data of 03h to 1Dh (Auto return zero)  
However, this bit is ignored at ENMD=1.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
20/30  
Daattaasshheeeett  
BD2808MUV-M  
Timing Diagram  
Vcc > 3.  
Vcc > 2.  
Vcc < 3.0V  
Vcc < 2.4V  
Vcc > 1.  
Vcc < 1.65V  
Vcc  
POR  
10µs to 1s  
10µs to 1s  
0.1ms  
0.1ms  
CLK/SDA  
REF  
B12RST  
UVLO  
ILED  
Hi_Z  
Hi_Z  
GATE  
Normal Operation  
Power ON Release  
UVLO Release  
Figure 16. Timing Diagram  
The Power supply Rise and Fall time should be in the range of 10μs to 1s.  
Digital communication can only start 0.1ms after VCC exceeds 3V.  
Always set the register voltage lower than VCC voltage.  
Otherwise, when it is driven with more than the VCC, LED may flicker at the start.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
21/30  
Daattaasshheeeett  
BD2808MUV-M  
Application Example  
VLED  
(Max=20V )  
CVLED13  
Vcc  
RXERR  
A5  
OUTG5  
OUTR5  
PGND  
SDI  
TEST3  
AGND  
CLK  
Micro-  
computer  
OUTB4  
OUTG4  
OUTR4  
OUTB3  
OUTG3  
OUTR3  
PGND  
TEST2  
OE  
BD2808MUV  
RISET  
ISET  
AGND  
VCC  
TEST1  
A0  
Fuse  
Vcc  
3.0~5.5V  
CVCC  
OUTB2  
OUTG2  
ROUTR0-7  
ROUTG0-7  
ROUTB0-7  
Figure 17. Application Circuit diagram  
Component  
Name  
Component  
Product  
Name  
No.  
Company  
Value  
1
2
3
4
5
6
CVCC  
RISET  
1μF  
GCM188R71C105KA49  
Murata  
Rohm  
56kꢀ  
10kꢀ  
4.7μF  
4.7μF  
4.7μF  
MCR03 Series  
RXERR  
CVLED1  
CVLED2  
CVLED3  
MCR03 Series  
Rohm  
GCM31CR71E475KA40  
GCM31CR71E475KA40  
GCM31CR71E475KA40  
Murata  
Murata  
Murata  
ROUTR0-7/ROUTG0-7  
/ROUTB0-7  
7
-
ESR25 Series  
Rohm  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
22/30  
Daattaasshheeeett  
BD2808MUV-M  
OUT pin and selection of external resistor  
(a) Loss on OUT pin  
The LED current is controlled by the driver.  
However to limit the power dissipation of the IC an external resistor can be used. This resistor limits the Vout seen by the  
IC, to reduce the power dissipation of the IC.  
VLED  
The power dissipation of each channel is given by:  
LED  
ꢕ ꢊ ꢗꢁꢂꢃ ꢘ ꢗꢙ ꢍ ꢀꢛꢜꢝ  
Vf  
IC  
Iout  
R
ꢊ ꢗꢞꢟꢑ ꢍ ꢀꢛꢜꢝꢔꢔꢔꢔꢔꢔꢔꢔꢔꢔ  
VBAT  
OUT  
There are 24 channels and W of total must be less than the  
power dissipation limit Pd of the IC. Then, the following  
expression holds true.  
M1  
Vout  
ꢠꢋ ꢍ ꢕ ꢡ ꢕꢢꢔꢔꢔꢔꢔꢔꢔꢔꢔꢔ  
V1  
・・・①  
ꢗꢛꢜꢝ ꢡ ꢕꢢ/ ꢀꢛꢜꢝ ꢍ ꢠꢋ ꢔ  
PGND  
For correct operation the following expression must be  
satisfied  
ꢗꢛꢜꢝ ꢣ ꢗꢞꢟꢑꢄꢤꢥꢔ・・・②  
Figure 18. OUT terminal Output Circuit Diagram  
From  
and , Vout voltage must meet the following  
ranges  
ꢔ  
ꢗꢞꢟꢑꢄꢤꢥ ꢡ ꢗꢛꢜꢝ ꢡ ꢕꢢ/ ꢀꢛꢜꢝ ꢍ ꢠꢋ  
・・・③  
( if all 24 channels are active)  
When  
is not satisfied, a resistor is required between  
OUT pin and LED of the IC to reduce the power dissipation  
of the IC by dropping the voltage seen by OUT pin.  
Figure 19. OUT terminal Limit Voltage  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
23/30  
Daattaasshheeeett  
BD2808MUV-M  
(b) OUT pin and GND short  
When OUT pin is shorted to GND, high current may flow VLED to GND through the LED.  
It is recommended to insert a resistor in the path so that current can be restricted, similar to that of Figure 20.  
(c) Constant resistance of OUT pin and setting of LED voltage  
Set the value of R by this formula:  
ꢏ ꢡ ꢖꢗꢁꢂꢃ ꢘ ꢗꢙ ꢘ ꢗꢞꢟꢑꢚ/ꢀꢛꢜꢝ  
If there is a maximum current, Imax, then the resistor value must meet the following equation:  
ꢗꢁꢂꢃ ꢘ ꢗꢙ ꢘ ꢗꢞꢟꢑ/ꢀꢦꢈꢧ ꢡ ꢏ ꢡ ꢖꢗꢁꢂꢃ ꢘ ꢗꢙ ꢘ ꢗꢞꢟꢑꢚ/ꢀꢛꢜꢝ  
Power Dissipation  
6.0  
(2) Pd=5.20W  
5.0  
(1) Pd=4.09W  
4.0  
3.0  
2.0  
1.0  
0.0  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE: Ta []  
Figure 20. VQFN48MCV070 Power Dissipation  
Note 1: Power dissipation is calculated when mounted on 114.3mm X 76.2mm X 1.6mm glass epoxy substrate.  
Note 2: Connect the back exposure cooling body of package and board.  
Board(1): 2 Layer Board (Back Copper foil 74.2mm × 74.2mm)  
θja = 30.5 °C/W  
θja = 24.0 °C/W  
Pd = 2.13W (Ta=85°C)  
Pd = 2.71W (Ta=85°C)  
Board(2): 4 Layer Board (2,3 Cu Layer, Back Copper foil 74.2mm × 74.2mm)  
Power dissipation changes with copper foil density of the board. This value represents only observed values, not guaranteed values.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
24/30  
Daattaasshheeeett  
BD2808MUV-M  
I/O Equivalence Circuits  
Pin4,8,15,22,29,33 (PGND),  
Pin40,45(AGND)  
Pin46(VCC)  
Pin44(ISET)  
VCC  
VCC  
Pin1(A1),Pin2(A2),Pin35(A3),  
Pin36(A4),Pin37(A5),Pin38(SDI)  
Pin43(OE),Pin41(CLK),Pin48(A0)  
Pin3(SDO)  
Pin34(XERR)  
VCC  
VCC  
VCC  
VCC  
VCC  
Pin5,9,12,16,19,23,26,30 (OUTR[0:7]),  
Pin6,10,13,17,20,24,27,31(OUTG[0:7]),  
Pin7,11,14,18,21,25,28,32 (OUTB[0:7])  
( ) – Pin Name  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
25/30  
Daattaasshheeeett  
BD2808MUV-M  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current  
may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more  
than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring,  
width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
26/30  
Daattaasshheeeett  
BD2808MUV-M  
Operational Notes – continued  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 21. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be  
within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the  
TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
27/30  
Daattaasshheeeett  
BD2808MUV-M  
Ordering Information  
M U  
V
B D 2  
8
0
8
-
M E 2  
Package  
MUV : VQFN48MCV070  
Packaging and forming specification  
M: High reliability  
Part Number  
E2: Embossed tape and reel  
Marking Diagram  
VQFN48MCV070 (TOP VIEW)  
Part Number Marking  
LOT Number  
B D 2 8 0 8  
1PIN MARK  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
28/30  
Daattaasshheeeett  
BD2808MUV-M  
Physical Dimension, Tape and Reel Information  
Package Name  
VQFN48MCV070  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
29/30  
Daattaasshheeeett  
BD2808MUV-M  
Revision History  
Date  
Revision  
001  
Changes  
2014.12.12  
2015.06.04  
New Release  
Page11 Delete Figure 13, 14  
Page23 Add Figure 19  
002  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T3T0C500040-1-2  
4.Jun.2015 Rev.002  
30/30  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD2808MUV-ME2

LED Driver, PQCC48,
ROHM

BD2812GU

RGB Illumination LED Driver for mobile phone
ROHM

BD2812GU-E2

LED Driver, PBGA32
ROHM

BD28412MUV

9W9W Analog Input Class D Speaker Amplifier
ROHM

BD28412MUV-E2

9W9W Analog Input Class D Speaker Amplifier
ROHM

BD28623MUV-E2

Audio Amplifier,
ROHM

BD287

PNP SILICON PLANAR TRANSISTORS
INFINEON

BD288

PNP SILICON PLANAR TRANSISTORS
INFINEON

BD28TD2WNVX

Fixed Positive LDO Regulator, 2.8V, 0.5V Dropout, CMOS, PDSO4, 1 X 1 MM, 0.60 MM PITCH, ROHS COMPLIANT, SSON-4
ROHM

BD28TD2WNVX-TL

Ultra Small Package CMOS LDO Regulators suitable for High-density Mounting
ROHM

BD29TD2WNVX

Fixed Positive LDO Regulator, 2.9V, 0.46V Dropout, CMOS, PDSO4, 1 X 1 MM, 0.60 MM PITCH, ROHS COMPLIANT, SSON-4
ROHM

BD29TD2WNVX-TL

Fixed Positive LDO Regulator, 2.9V, 0.46V Dropout, CMOS, PDSO4, 1 X 1 MM, 0.60 MM PITCH, ROHS COMPLIANT, SSON-4
ROHM