BD37069FV-ME2 [ROHM]

Sound Processor for Car Audio with Built-in High-Voltage Amplifier;
BD37069FV-ME2
型号: BD37069FV-ME2
厂家: ROHM    ROHM
描述:

Sound Processor for Car Audio with Built-in High-Voltage Amplifier

文件: 总41页 (文件大小:2840K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Sound Processor for Car Audio  
with Built-in High-Voltage Amplifier and  
2nd Order Post Filter  
BD37069FV-M  
General Description  
Key Specifications(Note2)  
TotalHarmonic Distortion:  
BD37069FV-M is a sound processor developed for car  
audio with built-in selector of six stereo inputs and output  
interfaced to ADC after adjusting signal level.  
BD37069FV-M has a 6-channel volume circuit and  
built-in 2nd order post filter which reduces the out-of  
-band noise. The High-Voltage function is capable to  
reach up to 5.2VRMS maximum output. Furthermore, the  
IC is simple to design due to the built-in TDMA noise  
reduction systems.  
0.003%(Typ)  
2.1VRMS(Typ)  
55dB(Min)  
Maximum Input Voltage:  
Common Mode Rejection Ratio :  
Maximum Output Voltage:  
Output Noise Voltage:  
Residual Output Noise Voltage:  
Ripple Rejection Ratio:  
5.2VRMS(Typ)  
23μVRMS(Typ)  
10.5μVRMS(Typ)  
-70dB (Typ)  
Operating Temperature Range:  
(Note2)These specifications are High-Voltage mode2.  
-40°C to +85°C  
Features  
AEC-Q100 Qualified (Note1)  
Package  
W(Typ) x D(Typ) x H(Max)  
13.60mm x 7.80mm x 2.00mm  
Built-in differential input selector that can select  
single-ended / differential input  
SSOP-B40  
Reduce switching pop noise of input gain control due  
to the built-in advanced switch circuit  
Less out-of-band noise of DAC by built-in 2nd order  
post filter  
Built-in buffered ground isolation amplifier to achieve  
high CMRR characteristics  
Built-in TDMA noise reduction circuit reduces the  
additional components for external filter  
Available to output 5.2VRMS by High-Voltage function  
(This device is possible to 3.2VRMS output by using  
another High-Voltage mode, VCCH=11.5V)  
Available to control by 3.3V / 5V for I2C-bus  
controller  
The input and output terminals are located together to  
arrange the flow of signal in a same direction making  
the PCB layout easier and PCB area smaller  
(Note 1) Grade 3  
Applications  
Car Audio and Other Audio Equipment  
Typical Application Circuit  
DSP  
ADC  
DAC  
IG1 IG2 INF2 INF1 INR2 INR1  
A1  
INS INC  
BD37069FV-M  
CD  
Main Gain adjust Sub Gain adjust  
A2  
B1  
Fader  
boost  
2nd order  
LPF  
Fader  
Level  
Shift  
OUTC  
OUTS  
USB  
ATT  
B2  
CP1  
CN  
2nd order  
LPF  
Fader  
boost  
Fader  
ATT★  
Sub SEL  
Level  
Shift  
TUN  
AUX  
AUX  
CP2  
DP1  
DN  
Level  
Shift  
Fader  
OUTR1  
OUTR2  
Fader  
2nd order  
LPF  
ATT★  
boost  
Rear SEL  
Front SEL  
DP2  
2nd order  
LPF  
Fader  
Level  
Shift  
Fader  
ATT★  
EP1  
EN  
boost  
EP2  
Fader  
Fader  
Level  
Shift  
2nd order  
LPF  
OUTF1  
OUTF2  
boost  
ATT  
FP1  
FN1  
FN2  
2nd order  
LPF  
Fader  
Level  
Shift  
Fader  
BT  
boost  
ATT  
FP2  
Advanced Switch  
MIN  
NAVI  
Figure 1. Typical Application Circuit  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
1/37  
 
 
 
 
 
 
BD37069FV-M  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Key Specifications(Note2) ..................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................4  
Absolute Maximum Ratings (Ta=25°C)...........................................................................................................................................5  
Thermal Resistance(Note 1) ...............................................................................................................................................................5  
Recommended Operating Condition...............................................................................................................................................5  
Electrical Characteristics.................................................................................................................................................................6  
Typical Performance Curve(s) ........................................................................................................................................................9  
I2C-bus CONTROL SIGNAL SPECIFICATION .............................................................................................................................11  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Electrical specifications and timing for bus lines and I/O stages .....................................................................................11  
I2C-bus FORMAT.............................................................................................................................................................12  
I2C-bus Interface Protocol................................................................................................................................................12  
Slave address..................................................................................................................................................................12  
Select Address & Data.....................................................................................................................................................13  
About power on reset ......................................................................................................................................................21  
About start-up and power off sequence on IC .................................................................................................................21  
About relations of power supply voltage and the DC-bias voltage...................................................................................22  
About advanced switch circuit.......................................................................................................................................................23  
Application Example .....................................................................................................................................................................28  
I/O Equivalence Circuit .................................................................................................................................................................29  
Application Information .................................................................................................................................................................31  
1)  
2)  
3)  
4)  
5)  
6)  
7)  
Absolute maximum rating voltage...................................................................................................................................31  
About a signal input part.................................................................................................................................................31  
About output load characteristics....................................................................................................................................31  
About HIVOLB terminal(20pin) when power supply is off...............................................................................................32  
About signal input terminals ...........................................................................................................................................32  
About changing gain of Input Gain and Fader Volume ...................................................................................................32  
About inter-pin short to VCCH........................................................................................................................................32  
Operational Notes.........................................................................................................................................................................33  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................33  
Power Supply Lines........................................................................................................................................................33  
Ground Voltage...............................................................................................................................................................33  
Ground Wiring Pattern....................................................................................................................................................33  
Thermal Consideration ...................................................................................................................................................33  
Recommended Operating Conditions.............................................................................................................................33  
Inrush Current.................................................................................................................................................................33  
Operation Under Strong Electromagnetic Field ..............................................................................................................33  
Testing on Application Boards ........................................................................................................................................33  
Inter-pin Short and Mounting Errors ...............................................................................................................................34  
Unused Input Pins ..........................................................................................................................................................34  
Regarding the Input Pin of the IC ...................................................................................................................................34  
9.  
10.  
11.  
12.  
Ordering Information.....................................................................................................................................................................35  
Marking Diagram ..........................................................................................................................................................................35  
Physical Dimension, Tape and Reel Information...........................................................................................................................36  
Revision History............................................................................................................................................................................37  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
2/37  
TSZ2211115001  
12. MAY. 2016 Rev.001  
 
BD37069FV-M  
Pin Configuration  
SSOP-B40  
(TOP VIEW)  
A1  
A2  
B1  
1
2
3
40 OUTC  
39 OUTS  
38 OUTR1  
37 OUTR2  
36 OUTF1  
35 OUTF2  
34 INF2  
B2  
4
5
CP1  
CN  
6
7
CP2  
33 INF1  
DP1  
DN  
8
9
32 INR2  
31 INR1  
DP2 10  
EP1 11  
EN 12  
30 INS  
29 INC  
28 IG1  
27 IG2  
26 VCCL  
EP2 13  
FP1 14  
FN1 15  
FN2 16  
FP2 17  
MIN 18  
SEL 19  
HIVOLB 20  
25 VREF  
24 GND  
23 SDA  
22 SCL  
21 VCCH  
Figure 2.Pin Configuration  
Pin Descriptions  
Pin No.  
Pin Name  
Description  
A input terminal of 1ch  
Pin No.  
21  
Pin Name  
VCCH  
Description  
VCCH terminal for power supply  
I2C-bus clock terminal  
I2C-bus data terminal  
1
A1  
A2  
2
3
A input terminal of 2ch  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
SCL  
SDA  
B1  
B input terminal of 1ch  
4
B2  
B input terminal of 2ch  
GND  
GND terminal  
5
CP1  
CN  
C positive input terminal of 1ch  
C negative input terminal  
VREF  
VCCL  
IG2  
BIAS terminal  
6
VCCL terminal for power supply  
Input gain output terminal of 2ch  
Input gain output terminal of 1ch  
Center input terminal  
7
CP2  
DP1  
DN  
C positive input terminal of 2ch  
D positive input terminal of 1ch  
D negative input terminal  
8
IG1  
9
INC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DP2  
EP1  
EN  
D positive input terminal of 2ch  
E positive input terminal of 1ch  
E negative input terminal  
INS  
Subwoofer input terminal  
Rear input terminal of 1ch  
Rear input terminal of 2ch  
Front input terminal of 1ch  
Front input terminal of 2ch  
Front output terminal of 2ch  
Front output terminal of 1ch  
Rear output terminal of 2ch  
Rear output terminal of 1ch  
Subwoofer output terminal  
Center output terminal  
INR1  
INR2  
INF1  
EP2  
FP1  
FN1  
FN2  
FP2  
MIN  
SEL  
HIVOLB  
E positive input terminal of 2ch  
F positive input terminal of 1ch  
F negative input terminal of 1ch  
F negative input terminal of 2ch  
F positive input terminal of 2ch  
Mixing input terminal  
INF2  
OUTF2  
OUTF1  
OUTR2  
OUTR1  
OUTS  
OUTC  
High Voltage output mode Select  
Output Gain control terminal  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
3/37  
TSZ2211115001  
BD37069FV-M  
Block Diagram  
INC  
INS  
IG1  
IG2  
VCCL VREF GND SDA  
SCL VCCH  
OUTC OUTS OUTR1 OUTR2 OUTF1 OUTF2 INF2 INF1 INR2  
INR1  
28  
40  
39  
38  
37  
35  
34  
33  
32  
31  
30  
29  
27  
26  
24  
22  
25  
23  
21  
36  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
100kΩ 100kΩ 100kΩ  
100kΩ 100kΩ 100kΩ  
I2C-bus LOGIC  
REG(4.15V)  
Sub SEL  
Fader : +23dB-79dB-/1dBstep  
Input Gain : +23dB-15dB/1dBstep  
Front Mixing : on/off  
Sub  
Gain adjust  
Main Gain adjust  
2nd order LPF  
Advanced Switch  
2nd order LPF: fc=70kHz  
Main/Sub Gain Adjust 0dB/6dB  
Anti-GSM circuit  
Rear SEL  
High Voltage Output  
Front  
SEL  
Level Shift = 2dB(normal mode)  
Level Shift = 4.6dB(Hi-voltage mode1)  
Level Shift = 8.3dB(Hi-voltage mode2)  
Input Gain  
Input selector (2 single-ended and 4 stereo ISO)  
GND  
ISO  
GND  
amp  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
amp  
amp  
amp  
amp  
amp  
amp  
amp  
100kΩ  
100kΩ  
250kΩ  
250kΩ 250kΩ  
250kΩ 250kΩ  
250kΩ  
100kΩ  
250kΩ 250kΩ 250kΩ  
250kΩ 250kΩ 250kΩ 250kΩ  
250kΩ 250kΩ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MIN  
SEL  
HIVOLB  
A1  
A2  
B1  
B2  
CP1  
CN  
CP2  
DP1  
DP2  
EP1  
EN  
EP2  
FP1  
FN1  
FN2  
FP2  
DN  
Figure 3. Block Diagram  
The outputs of Pin 27 and Pin 28 are selected by the input selector, from the inputs Pin 1 to Pin 17.  
Otherwise, these signals are possible to output directly on Pin 35 to Pin 40.  
6-channel input signals from DSP on Pin 29 to Pin 34 pass through the volume circuit (Fader) and 2nd order post filter to the  
output terminals Pin 35 to Pin 40 .  
It is possible for 6-channel inputs to set the gain up to +6dB by Gain adjust function and to set the gain up to +8.3dB by Level  
Shift Circuit (High-Voltage Mode).  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
4/37  
TSZ2211115001  
12. MAY. 2016 Rev.001  
BD37069FV-M  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
VCCL  
VCCH  
Rating  
10  
18  
GND-0.3 to +7  
GND-0.3 to VCCL+0.3  
-55 to +150  
Unit  
V
V
Power Supply Voltage  
Input Voltage  
SCL, SDA  
Other  
VIN  
V
Storage Temperature  
TSTG  
°C  
°C  
Maximum Junction Temperature  
TJMAX  
+150  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the  
absolute maximum ratings.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
SSOP-B40  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
103.6  
17  
58.8  
10  
°C/W  
°C/W  
ΨJT  
(Note 1)Based on JESD51-2A(Still-Air)  
(Note 2)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3)Using a PCB board based on JESD51-3.  
(Note 4)Using a PCB board based on JESD51-7  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.6mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
.
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2mm x 74.2mm  
Thickness  
Copper Pattern  
Thickness  
35μm  
Thickness  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
70μm  
Recommended Operating Condition (Ta= -40°C to +85°C)  
Parameter  
Symbol  
VCCL  
Min  
7.0  
Typ  
9
Max  
9.5  
Unit  
V
Power Supply Voltage  
VCCH  
VCCL  
17  
17.8  
V
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
5/37  
TSZ2211115001  
BD37069FV-M  
Electrical Characteristics  
Unless otherwise specified, Ta=25°C, VCCL=9V, VCCH=17V, f=1kHz, VIN=1VRMS, RL=10kΩ,  
Input selector A, Input Gain 0dB, Gain Adjust +6dB, High-Voltage ON (High-Voltage mode2), LPF ON, Fader 0dB,  
Input point=A1/A2, Monitor point=IG1/IG2  
Limit  
Parameter  
Symbol  
IQ_VCCL  
Unit  
mA  
Conditions  
Min  
-
Typ  
30  
Max  
43  
Current Consumption (VCCL)  
No signal  
No signal  
Current Consumption (VCCH)  
Input Impedance (A)  
IQ_VCCH  
RIN_S  
-
7
10  
mA  
kΩ  
kΩ  
70  
100  
250  
130  
325  
Input Impedance (B, C, D, E, F)  
RIN_D  
175  
Voltage Gain  
GV  
CB  
-1.5  
-1.5  
-
0
0
1.5  
1.5  
dB  
dB  
%
GV = 20log(VOUT/VIN)  
CB = GV1-GV2  
Channel Balance  
VOUT = 1VRMS  
BW = 400-30kHz  
RG = 0Ω  
BW = IHF-A  
VIM at THD+N(VOUT) = 1%  
BW = 400-30kHz  
RG = 0Ω  
CTC = 20log(VOUT/VOUT)  
BW = IHF-A  
Total Harmonic Distortion  
Output Noise Voltage (Note1)  
THD+N  
0.003  
0.05  
VNO1  
VIM  
-
3.1  
2.2  
8.0  
-
μVRMS  
Maximum Input Voltage  
2.0  
VRMS  
Crosstalk Between Channels (Note1)  
CTC  
CTS  
-
-
-100  
-100  
-90  
-90  
dB  
dB  
RG = 0Ω  
CTS = 20log(VOUT/VOUT)  
Crosstalk Between Selectors(Note1)  
BW = IHF-A  
XP1 and XN input  
XP2 and XN input  
CMRR = 20log(VIN/VOUT  
Common Mode Rejection Ratio  
(C, D, E, F) (Note1)  
CMRR  
55  
65  
-
dB  
)
BW = IHF-A, [X=C,D,E,F]  
Input Gain = -15dB  
VIN = 0.1VRMS  
GIN = 20log(VOUT/VIN)  
Input Gain = 23dB  
VIN = 0.1VRMS  
Minimum Input Gain  
Maximum Input Gain  
GIN_MIN  
-17  
21  
-15  
23  
-13  
25  
dB  
dB  
GIN_MAX  
GIN = 20log(VOUT/VIN)  
Gain Set Error  
GIN_ERR  
ROUT  
-2  
-
0
-
+2  
50  
dB  
Input Gain = -15 to +23dB  
Output Impedance  
Ω
THD+N = 1%  
BW = 400-30kHz  
VOM  
2.0  
2.2  
-
VRMS  
Maximum Output Voltage  
(Note1) VP-9690A (Average value detection, effective value display) filter by Panasonic is used for measurement. Input and output are in-phase.  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
6/37  
TSZ2211115001  
BD37069FV-M  
Unless otherwise specified, Ta=25°C, VCCL=VCCH=9V, f=1kHz, VIN=0.9VRMS, RL=10kΩ,  
Input selector A, Input Gain 0dB, Gain Adjust +6dB, High-Voltage OFF(normal mode), LPF ON, Fader 0dB,  
Input point=INF1/INF2/INR1/INR2/INC/INS, Monitor point=OUTF1/OUTF2/OUTR1/OUTR2/OUTC/OUTS  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Typ  
-
Max  
50  
Output Impedance  
ROUT  
VOM  
Ω
VIN = 1VRMS  
THD+N = 1%  
BW = 400-30kHz  
Maximum Output Voltage  
Output Gain  
2.3  
0.5  
2.5  
2
-
VRMS  
GH(OUT)  
3.5  
dB  
GH(OUT) = 20log(VOUT/VIN)  
This Item is designated by ROHM only to discriminate between other items and it.  
Unless otherwise specified, Ta=25°C, VCCL=9V, VCCH=11.5V, f=1kHz, VIN=0.9VRMS, RL=10kΩ,  
Input selector A, Input Gain 0dB, Gain Adjust +6dB, High-Voltage ON(High-Voltage mode1), LPF ON, Fader 0dB,  
Input point=INF1/INF2/INR1/INR2/INC/INS, Monitor point=OUTF1/OUTF2/OUTR1/OUTR2/OUTC/OUTS  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Typ  
-
Max  
50  
Output Impedance  
ROUT  
VOM  
Ω
VIN=1VRMS  
THD+N=1%  
BW=400-30kHz  
Maximum Output Voltage  
Output Gain  
3.2  
2.6  
3.4  
4.6  
-
VRMS  
GH(OUT)  
6.6  
dB  
GH(OUT)=20log(VOUT/VIN)  
This Item is designated by ROHM only to discriminate between other items and it.  
Unless otherwise specified, Ta=25°C, VCCL=9V, VCCH=17V, f=1kHz, VIN=0.9VRMS, RL=10kΩ,  
Input selector A, Input Gain 0dB, Gain Adjust +6dB, High-Voltage ON(High-Voltage mode2), LPF ON, Fader 0dB,  
Input point=INF1/INF2/INR1/INR2/INC/INS, Monitor point=OUTF1/OUTF2/OUTR1/OUTR2/OUTC/OUTS  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
Typ  
-
Max  
50  
Output Impedance  
ROUT  
VOM  
Ω
VIN=1VRMS  
THD+N=1%  
BW=400-30kHz  
Maximum Output Voltage  
Output Gain  
5.0  
6.3  
5.2  
8.3  
-
VRMS  
GH(OUT)  
10.3  
dB  
GH(OUT)=20log(VOUT/VIN)  
This Item is designated by ROHM only to discriminate between other items and it.  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
7/37  
TSZ2211115001  
BD37069FV-M  
Unless otherwise specified, Ta=25°C, VCCL=9V, VCCH=17V, f=1kHz, VIN=0.9VRMS, RL=10kΩ,  
Input selector A, Input Gain 0dB, Gain Adjust +6dB, High-Voltage ON(High-Voltage mode2), LPF ON, Fader 0dB,  
Input point=INF1/INF2/INR1/INR2/INC/INS, Monitor point=OUTF1/OUTF2/OUTR1/OUTR2/OUTC/OUTS  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
21  
Typ  
23  
0
Max  
25  
Fader Boost Gain = +23dB  
VIN=0.1VRMS  
GF=20log(VOUT/VIN)-GH(OUT)  
Gain Adjust=0dB  
Maximum Boost Gain  
Channel Balance  
GF BST  
dB  
dB  
CB  
-1.5  
1.5  
CB = GV1-GV2  
BW=400-30kHz  
Gain Adjust = 0dB  
RG = 0Ω  
Total Harmonic Distortion  
Output Noise Voltage (Note1)  
THD+N  
VNO1  
0.003  
23  
0.05  
40  
%
μVRMS  
BW = IHF-A  
Fader Attenuation = -dB  
RG = 0Ω  
BW = IHF-A  
VIM at THD+N(VOUT)=1%  
BW=400-30kHz  
Gain Adjust = 0dB  
RG = 0Ω  
Residual Output Noise Voltage  
VNOR  
2.0  
10.5  
2.1  
20  
μVRMS  
VRMS  
dB  
(Note1)  
Maximum Input Voltage  
VIM  
Crosstalk Between Channels (Note1)  
Maximum Attenuation (Note1)  
CTC  
GF MIN  
-100  
-100  
-90  
-90  
CTC=20log(VOUT/VOUT´  
BW = IHF-A  
)
Fader Attenuation = -dB  
GF=20log(VOUT/VIN)  
BW = IHF-A  
dB  
Fader Boost Gain  
Gain Set Error  
GF ERR  
GF ERR1  
GF ERR2  
-2  
-2  
-3  
0
0
0
2
2
3
dB  
dB  
dB  
=
+1 to +23dB  
Fader Attenuation  
0 to -15dB  
Fader Attenuation  
-16 to -47dB  
Fader Attenuation  
-48 to -79dB  
Attenuation Set Error 1  
Attenuation Set Error 2  
=
=
Attenuation Set Error 3  
GF ERR3  
RRVCCL  
-4  
0
4
dB  
dB  
=
VRR=0.1VRMS  
fRR=1kHz  
-70  
-40  
RRVCCL=20log(VOUT /VCCL  
VRR=0.1VRMS  
fRR=1kHz  
)
Power Supply Rejection Ratio  
RRVCCH  
RIN_M  
70  
-70  
100  
2.2  
-40  
130  
-
dB  
kΩ  
RRVCCH=20log(VOUT /VCCH  
)
Input Impedance  
VIM_M at THD+N(VOUT)=1%  
BW=400-30kHz  
Maximum Input Voltage  
VIM_M  
2.0  
VRMS  
Input point=MIN  
Front Mixing=OFF  
GMX=20log( VOUT /VIN)  
BW=IHF-A  
(Note1)  
Maximum Attenuation  
GMX MIN  
-
-100  
-85  
dB  
Input point=MIN  
Front Mixing=ON  
GMX=20log(VOUT/VIN)- GH(OUT)  
Mixing Gain  
GMX  
-2  
0
2
dB  
Input Impedance  
RIN_M  
70  
100  
130  
kΩ  
Gain Adjust=6dB  
VIN=0.1VRMS  
4
6
8
dB  
Boost Gain  
GF BST  
GF=20log(VOUT/VIN)- GH(OUT)  
-1.5  
0
1.5  
dB  
CB = GV1-GV2  
Channel Balance  
CB  
(Note1) VP-9690A (Average value detection, effective value display) filter by Panasonic is used for measurement. Input and output are in-phase.  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
8/37  
TSZ2211115001  
BD37069FV-M  
Typical Performance Curve(s)  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
(VCC=VCCL=VCCH  
)
5
0
0
0
2
4
6
8
10 12 14 16 18  
0
1
2
3
4
5
6
7
8
9
10  
VCCH [V]  
VCC [V]  
Figure 5. VCCH vs. IQ_VCCH  
(High-Voltage mode)  
Figure 4. VCC vs. IQ_VCCL+IQ_VCCH  
10  
8
10  
1
10  
f=10kHz  
High-Voltage mode2  
1
6
f=1k,100Hz  
4
High-Voltage mode1  
Normal mode  
0.1  
0.1  
0.01  
0.001  
2
Normal mode  
0
0.01  
-2  
-4  
0.001  
10  
100  
1k  
10k  
100k  
0.001  
0.01  
0.1  
1
10  
Frequency [Hz]  
VIN [VRMS  
]
Figure 6. Gain vs. frequency  
(Normal / High-Voltage mode)  
Figure 7. THD+N vs. VIN / VO  
(Gain Adjust=+6dB)  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
9/37  
TSZ2211115001  
BD37069FV-M  
0
-20  
0
-20  
-40  
-60  
-80  
RG=1kΩ  
RG=470Ω  
RG=0Ω  
-40  
-60  
-80  
-100  
-120  
-100  
10  
10  
100  
1k  
10k  
100k  
100  
1k  
Frequency [Hz]  
10k  
100k  
Frequency [Hz]  
Figure 9. Crosstalk (between Channels) vs.  
frequency  
Figure 8. CMRR vs. frequency  
5
0
0
-20  
-5  
-40  
-10  
-15  
-20  
-60  
-80  
-100  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Figure 10. PSRR vs. frequency  
Figure 11. Gain(LPF ON/pass) vs. frequency  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
10/37  
TSZ2211115001  
BD37069FV-M  
I2C-bus CONTROL SIGNAL SPECIFICATION  
(1)  
Electrical specifications and timing for bus lines and I/O stages  
SDA  
tBUF  
tHD;STA  
tSP  
tLOW  
SCL  
tSU;STO  
tSU;STA  
tHD;STA  
tSU;DAT  
tHD;DAT  
tHIGH  
S
P
P
Figure 12. Definition of Timing on the I2C-bus  
Table 1 Characteristics of the SDA and SCL bus lines for I2C-bus devices  
Parameter  
Fast-modeI2C-bus  
Symbol  
Unit  
Min  
Max  
400  
kHz  
1
2
SCL Clock Frequency  
fSCL  
tBUF  
0
Bus Free Time between STOP and START Condition  
1.3  
μsec  
Hold Time (repeated) START condition.  
After this period, the first clock pulse is generated  
3
tHD;STA  
0.6  
μsec  
4
5
6
LOW Period of the SCL Clock  
tLOW  
tHIGH  
1.3  
0.6  
0.6  
μsec  
μsec  
μsec  
HIGH Period of the SCL Clock  
Set-up Time for a Repeated START Condition  
tSU;STA  
7
8
9
Data Hold Time  
tHD;DAT  
tSU; DAT  
tSU;STO  
0*  
μsec  
nsec  
μsec  
Data Set-up Time  
100  
0.6  
Set-up Time for STOP Condition  
All values referred to VIH min. and VIL max. Levels (see Table 2).  
Table 2 Characteristics of the SDA and SCL I/O stages for I2C-bus devices  
Fast-modeI2C-bus  
Parameter  
Symbol  
Unit  
Min  
-0.5  
2.3  
Max  
10 LOW level input voltage: Fixed input levels  
11 HIGH level input voltage: Fixed input levels  
VIL  
VIH  
1
-
V
V
12 Pulse width of spikes, which must be suppressed by the input filter.  
tSP  
VOL1  
II  
0
0
50  
0.4  
10  
nsec  
V
LOW level output voltage (open drain or open collector): At 3mA sink  
current  
13  
Input current each I/O pin with an input voltage between 0.4V and 0.9  
VDD max.  
14  
-10  
μA  
HD;STA  
2µsec  
HD;DAT  
1µsec  
SU;DAT  
1µsec  
SU;STO  
2µsec  
SCL  
SDA  
BUF  
4µsec  
LOW  
3µsec  
HIGH  
1µsec  
SCL clock frequency:250kHz  
Figure 13. I2C-bus data transmission timing  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
11/37  
TSZ2211115001  
BD37069FV-M  
(2)  
I2C-bus FORMAT  
MSB  
Slave Address  
8bit  
LSB  
MSB  
Select Address  
8bit  
LSB  
MSB  
LSB  
S
1bit  
A
1bit  
A
1bit  
Data  
8bit  
A
P
1bit 1bit  
S
= Start condition (Recognition of start bit)  
Slave Address = Recognition of slave address. 7 bits in upper order are optional.  
The least significant bit is Ldue to write format.  
A
= ACKNOWLEDGE bit (Recognition of acknowledgement)  
Select Address = Selection of register that contain data on volume, bass and treble settings.  
Data  
P
= Data on every volume and tone to be stored in selected register.  
= Stop condition (Recognition of stop bit)  
(3)  
I2C-bus Interface Protocol  
1)Basic form  
Slave Address  
MSB LSB  
S
A
Select Address  
MSB LSB  
A
Data  
MSB LSB  
A
P
2Automatic increment (Select Address increases (+1) according to the number of data.)  
S
Slave Address  
MSB LSB  
A
Select Address  
MSB LSB  
A
Data1  
MSB  
A
Data2  
A
・・・・  
DataN  
MSB  
A
P
LSB MSB  
LSB  
LSB  
(Example) Data1 shall be set as data of address specified by Select Address.  
Data2 shall be set as data of address specified by Select Address +1.  
DataN shall be set as data of address specified by Select Address +N-1.  
3Configuration unavailable for transmission (In this case, only Select Address1 is set.)  
S
Slave Address  
A
Select Address1  
A
Data  
A
Select Address 2  
A
Data  
A P  
MSB  
LSB  
MSB LSB MSB LSB MSB  
LSB MSB LSB  
(Note)If any data is transmitted as Select Address 2 next to data,  
It is recognized as data, not as Select Address 2.  
(4)  
Slave address  
MSB  
A6  
LSB  
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
R/W  
0
1
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
12/37  
TSZ2211115001  
BD37069FV-M  
(5)  
Select Address & Data  
Select  
Address  
(hex)  
MSB  
D7  
Data  
D3  
LSB  
D0  
Items  
D6  
0
D5  
D4  
D2  
D1  
0
Advanced  
Switch  
ON/OFF  
Advanced Switch  
Time of Input  
Gain/Fader  
High-Voltage  
Mode Select  
Initial Setup 1  
01  
0
0
0
Rear  
Front  
Selector Selector  
Initial Setup 2  
Input Selector  
02  
05  
0
0
Sub Selector  
0
0
0
0
0
0
0
Input Selector  
Input Gain  
Input Gain  
06  
28  
29  
2A  
2B  
2C  
2D  
Fader 1ch Front  
Fader 2ch Front  
Fader 1ch Rear  
Fader 2ch Rear  
Fader Center  
Fader Boost Gain / Attenuation  
Fader Boost Gain / Attenuation  
Fader Boost Gain / Attenuation  
Fader Boost Gain / Attenuation  
Fader Boost Gain / Attenuation  
Fader Boost Gain / Attenuation  
Fader Subwoofer  
Front  
Mixing  
ON/OFF  
Sub  
Gain  
Adjust  
Main  
Gain  
Adjust  
LPF Setup  
Mixing ON/OFF  
30  
LPF fc  
0
0
0
0
Test Mode  
F0  
FE  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
System Reset  
Advanced switch  
Notes on data format  
1. Advanced switchfunction is available for the hatched parts on the above table.  
2. In case of transferring data continuously, Select Address flows by Automatic Increment function, as shown below.  
01(hex)02(hex)05(hex)06(hex)28(hex)29(hex)2A(hex)2B(hex)2C(hex)2D(hex)30(hex)  
3. Input selector that is not corresponded for Advanced switchfunction, cannot reduce the noise caused when  
changing the input selector. Therefore, it is recommended to turn on mute when changing these settings.  
4. In case of setting to infinite -∞” by using Fader when input selector setting is changed, please consider Advanced  
switchtime.  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
13/37  
TSZ2211115001  
BD37069FV-M  
Explanation of each Select Address  
High-Voltage Mode Select  
Level Shift output gain  
Select Address 01(hex)  
Front Mixing  
Select Address 30(hex)  
Main/Sub Gain Adjust  
Select Address 30(hex)  
INC  
INS  
IG1  
IG2  
VCCL VREF GND SDA  
SCL VCCH  
22  
OUTC OUTS OUTR1 OUTR2 OUTF1 OUTF2 INF2 INF1 INR2  
INR1  
28  
40  
39  
38  
37  
35  
34  
33  
32  
31  
30  
29  
27  
26  
24  
25  
23  
21  
36  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
100kΩ 100kΩ 100kΩ  
100kΩ 100kΩ 100kΩ  
I2C-bus LOGIC  
REG(4.15V)  
Sub Selector  
Select Address 02(hex)  
Sub SEL  
Fader : +23dB-79dB-/1dBstep  
Input Gain : +23dB-15dB/1dBstep  
Front Mixing : on/off  
Fader Boost/Attenuation  
Select Address 28-2D(hex)  
Sub  
Gain adjust  
Main Gain adjust  
2nd order LPF  
Advanced Switch  
2nd order LPF: fc=70kHz  
LPF fc  
Select Address 30(hex)  
Main/Sub Gain Adjust 0dB/6dB  
Anti-GSM circuit  
Rear SEL  
High Voltage Output  
Front  
SEL  
Level Shift = 2dB(normal mode)  
Level Shift = 4.6dB(Hi-voltage mode1)  
Level Shift = 8.3dB(Hi-voltage mode2)  
Rear Selector  
Select Address 02(hex)  
Input Gain  
Input selector (2 single-ended and 4 stereo ISO)  
Front Selector  
Select Address 02(hex)  
GND  
ISO  
GND  
amp  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
amp  
amp  
amp  
amp  
amp  
amp  
amp  
100kΩ  
100kΩ  
250kΩ  
250kΩ 250kΩ  
250kΩ 250kΩ  
250kΩ  
100kΩ  
250kΩ 250kΩ 250kΩ  
250kΩ 250kΩ 250kΩ 250kΩ  
250kΩ 250kΩ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FN2  
17  
18  
MIN  
19  
20  
Input Gain  
Select Address 06(hex)  
SEL  
HIVOLB  
A1  
A2  
B1  
B2  
CP1  
CN  
CP2  
DP1  
DP2  
EP1  
EN  
EP2  
FP1  
FN1  
FP2  
DN  
Input Selector  
Select Address 05(hex)  
Figure 14. Block diagram for explanation of Select Address  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
14/37  
TSZ2211115001  
BD37069FV-M  
Command Specification  
Initial Condition,  
1/0  
Fixed value  
Do not send the data not designated  
High-Voltage Mode Select  
Select Address 01 (hex)  
Mode  
MSB  
LSB  
D0  
D7  
D6  
0
D5  
D4  
D3  
D2  
D1  
0
High-Voltage mode2  
(+8.3dB)  
High-Voltage mode1  
(+4.6dB)  
0
0
0
1
MSB  
D7  
Advanced Switch Time of Input Gain/Fader(Note1,2)  
LSB  
D0  
Mode  
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
0
4.7 msec  
7.1 msec  
11.2 msec  
14.4 msec  
0
1
1
0
0
0
1
1
(Note1) Advanced switch time is Typ value. Max value is 1.4 times of Typ value.  
(Note2) If changing Advanced switch time while Advanced switch function is activated, Advance switch time is changed immediately.  
MSB  
D7  
0
Advanced Switch ON/OFF(Note3)  
LSB  
D0  
Mode  
D6  
0
D5  
D4  
D3  
D2  
D1  
0
OFF  
ON  
0
0
1
(Note3) If Advanced switch ON/OFF is changed while Advanced switch function is activated, it will become effective from the next switching operation.  
Select Address 02 (hex)  
MSB  
D7  
Front Selector  
LSB  
D0  
0
Mode  
D6  
0
D5  
D5  
D4  
D3  
D2  
0
D1  
Front  
Inside Through  
0
0
1
MSB  
D7  
Rear Selector  
LSB  
D0  
Mode  
D6  
0
D4  
D3  
D2  
0
D1  
0
Rear  
0
0
Front Copy  
1
MSB  
D7  
Sub Selector  
LSB  
D0  
Mode(Note4)  
D6  
0
D5  
0
0
1
1
D4  
D3  
D2  
0
D1  
OUTC(INS)/OUTS(INS)  
OUTC(INR1)/OUTS(INR2)  
OUTC (INC)/OUTS(INS)  
Prohibition  
0
1
0
1
0
0
(Note4) xxx(INxx) : xxxmeans Output terminal, (INxx)means Output signal”  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
15/37  
TSZ2211115001  
BD37069FV-M  
Command Specification  
Initial Condition,  
1/0  
Fixed value  
Do not send the data not designated  
Input Selector  
Select Address 05(hex)  
Mode  
MSB  
D7  
LSB  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
A
B
0
0
0
1
C single  
D single  
E single  
F single  
C diff.  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
0
1
1
0
0
0
0
0
D diff.  
0
1
1
1
E diff.  
1
0
0
0
F full-diff.  
1
0
0
1
1
1
:
0
0
:
1
1
:
0
1
:
Prohibition  
1
1
1
1
List of active input terminal when set input selector  
Lch positive input  
terminal  
Lch negative input  
terminal  
Rch positive input  
terminal  
Rch negative input  
terminal  
Mode  
A
1pin(A1)  
3pin(B1)  
-
2pin(A2)  
4pin(B2)  
-
B
-
-
C single  
D single  
E single  
F single  
C diff.  
D diff.  
E diff.  
5pin(CP1)  
8pin(DP1)  
11pin(EP1)  
14pin(FP1)  
5pin(CP1)  
8pin(DP1)  
11pin(EP1)  
-
7pin(CP2)  
10pin(DP2)  
13pin(EP2)  
17pin(FP2)  
7pin(CP2)  
10pin(DP2)  
13pin(EP2)  
-
-
-
-
-
-
-
6pin(CN)  
9pin(DN)  
12pin(EN)  
6pin(CN)  
9pin(DN)  
12pin(EN)  
F full-diff.  
14pin(FP1)  
15pin(FN1)  
17pin(FP2)  
16pin(FN2)  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
16/37  
TSZ2211115001  
BD37069FV-M  
Command Specification  
Initial Condition,  
1/0  
Fixed value  
Do not send the data not designated  
Input Gain  
Select Address 06 (hex)  
Mode  
MSB  
D7  
LSB  
D0  
0
D6  
D5  
0
:
D4  
0
:
D3  
0
:
D2  
0
:
D1  
0
:
Prohibition  
:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
:
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
:
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
:
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
:
0
+23dB  
+22dB  
+21dB  
+20dB  
+19dB  
+18dB  
+17dB  
+16dB  
+15dB  
+14dB  
+13dB  
+12dB  
+11dB  
+10dB  
+9dB  
+8dB  
+7dB  
+6dB  
+5dB  
+4dB  
+3dB  
+2dB  
+1dB  
0dB  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
:
0
0
-1dB  
-2dB  
-3dB  
-4dB  
-5dB  
-6dB  
-7dB  
-8dB  
-9dB  
-10dB  
-11dB  
-12dB  
-13dB  
-14dB  
-15dB  
1
:
Prohibition  
1
1
1
1
1
1
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
17/37  
TSZ2211115001  
BD37069FV-M  
Command Specification  
Initial Condition,  
1/0  
Fixed value  
Do not send the data not designated  
Fader Boost / Attenuation  
Select Address 28, 29, 2A, 2B, 2C, 2D (hex)  
MSB  
LSB  
D0  
0
Boost & Attenuation  
D7  
0
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
0
0
:
0
0
0
0
0
0
1
:
Prohibition  
:
:
:
:
:
:
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
+23dB  
+22dB  
+21dB  
+10dB  
+9dB  
+8dB  
+7dB  
+6dB  
+5dB  
+4dB  
+3dB  
+2dB  
+1dB  
0dB  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
-1dB  
-2dB  
-3dB  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
・ ・  
-78dB  
-79dB  
1
1
1
:
1
1
1
:
0
0
0
:
0
0
1
:
1
1
0
:
1
1
0
:
1
1
0
:
0
1
0
:
Prohibition  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
-dB  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
18/37  
TSZ2211115001  
BD37069FV-M  
Details of Fader Boost / Attenuation  
Initial Condition,  
(dB)  
+23  
+22  
+21  
+20  
+19  
+18  
+17  
+16  
+15  
+14  
+13  
+12  
+11  
+10  
+9  
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
D7 D6 D5 D4 D3 D2 D1 D0  
(dB)  
-29  
-30  
-31  
-32  
-33  
-34  
-35  
-36  
-37  
-38  
-39  
-40  
-41  
-42  
-43  
-44  
-45  
-46  
-47  
-48  
-49  
-50  
-51  
-52  
-53  
-54  
-55  
-56  
-57  
-58  
-59  
-60  
-61  
-62  
-63  
-64  
-65  
-66  
-67  
-68  
-69  
-70  
-71  
-72  
-73  
-74  
-75  
-76  
-77  
-78  
-79  
-∞  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
19/37  
TSZ2211115001  
BD37069FV-M  
Command Specification  
Initial Condition,  
1/0  
Fixed value  
Do not send the data not designated  
Main Gain Adjust  
Select Address 30(hex)  
Mode  
MSB  
LSB  
D0  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0dB  
0
0
0
0
+6dB  
1
MSB  
D7  
Sub Gain Adjust  
LSB  
D0  
Mode  
D6  
D5  
0
D4  
D3  
D2  
0
D1  
0
0dB  
0
0
+6dB  
1
MSB  
D7  
LPF fc  
LSB  
D0  
Mode  
D6  
0
1
D5  
0
D4  
0
D3  
D2  
0
D1  
70kHz  
PASS  
0
MSB  
D7  
0
Front Mixing ON/OFF  
LSB  
D0  
Mode  
D6  
D5  
0
D4  
D3  
D2  
0
D1  
OFF  
ON  
0
0
1
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
20/37  
TSZ2211115001  
BD37069FV-M  
(6)  
About power on reset  
It is possible for the reset circuit inside the IC to initialize when supply voltage is turned on. Please send data to all  
address as initial data when the supply is turned on, and turn on mute until all initial data are sent.  
Limit  
Item  
Symbol  
tRISE  
Unit  
Condition  
Min  
250  
Typ  
Max  
Rise time of VCCL  
VCCL voltage of  
release power on  
reset  
µsec VCCL rise time to 5V  
V
VPOR  
4.1  
(7)  
About start-up and power off sequence on IC  
By setting the terminal voltage of HIVOLB and SEL, it is possible to change the output gain.  
At the same time, output DC voltage will also be changed at each mode.  
HIVOLB  
Terminal Voltage  
SEL  
Terminal Voltage  
High-Voltage  
ON  
High-Voltage mode  
GND to 1.0V  
2.3V to VCCL  
GND to 0.5V  
1.5V to VCCL  
High-Voltage mode1  
High-Voltage mode2  
OFF  
Please set HIVOLB terminal voltage between the ranges showed by the above tables. If HIVOLB terminal is open,  
the terminal voltage will be set to 5V due to the pull-up voltage inside the IC. In this case, the IC will be set to  
“High-Voltage OFF” mode. SEL terminal is 4.15V due to the pull-up voltage inside the IC.  
Output DC voltage and Output gain, that are changed by the combination of HIVOLBterminal and SELterminal  
shows as the following table.  
VCCH  
Supplied Voltage  
9 V  
11.5 V  
17 V  
HIVOLB  
Terminal Voltage  
5 V  
0V  
(High-Voltage ON)  
(High-Voltage OFF)  
SEL  
Terminal Voltage  
0V  
(High-Voltage mode1)  
Open (4.15 V)  
(High-Voltage mode2)  
0 V  
Open (4.15 V)  
(High-Voltage mode2)  
(High-Voltage mode1)  
Output DC  
Bias Voltage  
4.35 V  
5.6 V  
8.35 V  
8.3 dB  
Level Shift  
Output gain  
2 dB  
4.6 dB  
If HIVOLB terminal voltage is changed during its operation, Output DC voltage will be also changed shown as  
above. For reducing these variations, turn the power on after setting the status of the HIVOLB and SEL terminal  
according to the output gain. The start-up and power off sequence is shown next.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
21/37  
BD37069FV-M  
VCCH Typ  
VCCL Typ  
t2-t1250µsec  
t1h-t20µsec  
t3-t2h0µsec  
16.7V  
11.3V  
VCCH  
VCCL  
7.0V  
VCC Typ  
t2-t1250µsec  
7.0V  
POR Max.  
5.0V  
VCCL  
5.0V  
3.0V  
POR Min.  
POR Max.  
1.0V  
/VCCH  
OFF Voltage  
POR Min.  
3.0V  
1.0V  
1.0V  
OFF Voltage  
1.0V  
t1 t2  
t1h t2h  
1.0V  
t1 t2  
Mode = High-Voltage ON  
SEL=0V/openHigh-Voltage mode1/mode2  
200msec  
HIVOLB  
SEL  
I2C-bus Select  
Address  
Mode = High-Voltage OFF  
HIVOLB  
20msec  
I2C-bus Select  
Address  
01(hex)  
01(hex)  
t3  
External  
MUTE  
External  
MUTE  
normal term  
power off  
start-up  
normal term  
power off  
start-up  
Figure 15. Normal mode(High-Voltage OFF) operation  
Figure 16. High-Voltage mode operation  
(High-Voltage mode1 and mode2 common)  
HIVOLB in the figure above is used to select the Output gain. This IC will become active-state by sending data of Select Address  
01(hex) on I2C-bus after 20msec from that VCCL reaches over 7.0V. High-Voltage Output gain is selected by setting SEL terminal  
voltage and sending I2C-bus data. Therefore, this command must always be sent in the start-up sequence. In addition, “External  
MUTE” in the figure above is the recommended period that the muting is activated from outside the IC. In addition, the starting  
sequence of VCCL and VCCH does not have the limit, but please start VCCL earlier to reduce a pop noise.  
For HIVOLB terminal, there is countermeasure taken for protection from voltage spikes. But, please take care that the output DC  
voltage may fluctuate, if the period of voltage spike is over 50nsec.  
(8) About relations of power supply voltage and the DC-bias voltage  
Output DC-bias voltage is decided by the regulator that is embedded in this IC, DC-bias does not fluctuate up to a constant level  
even if power supply voltage is lowered. The following graphs show the relationship between DC-bias voltage and power supply  
voltage.  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
High Voltage mode2  
9.3V  
5.5V  
High Voltage mode1  
High Voltage OFF  
5.5V  
6.5V  
5.5V  
5.2V  
VCCH=9.0V(High-Voltage OFF)  
VCCH=11.5V(High-Voltage mode1)  
VCCH=17.0V(High-Voltage mode2)  
VCCL=9.0V  
4
5
6
7
8
9
10  
4
5
6
7
8
9
10  
VCCL [V]  
VCCH [V]  
Figure 17. VCCH vs DC Bias  
Figure 18. VCCL vs DC Bias  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
22/37  
TSZ2211115001  
BD37069FV-M  
About advanced switch circuit  
1Advanced switch technology  
1-1. Advanced switch effects  
Advanced switch technology is ROHM original technology that can prevent from switching pop noise. If changing the gain  
setting (for example Fader) immediatery, the audible signal will become discontinuously and pop noise will be occured.  
This Advanced switch technology will prevent this discontinuous signal by completing the signal waveform and will  
significantly reduce the noise.  
select  
slave  
data  
I2C-bus  
28 86  
80  
If the gain instantly changes after the data is transmitted, the DC  
fluctuation will occur as much as before and after the oscillation  
different. This technology makes this fluctuation changes slow.  
DC level change  
Advanced switch  
waveform  
Figure 19. Advanced switch waveform  
This Advanced switch circuit will start operating when the data is transmitted from microcontroller.  
Advanced switch waveform is shown as the figure above. For preventing switching noise, This IC will operate optimally by  
internal processing after the data is transmitted from microcontroller.  
However, sometimes the switching waveform is not like the intended form depends on the transmission timing.  
Therefore, below is the example of the relationship between the transmission timing and actual switching time. Please  
consider this relationship for the setting.  
1-2. The kind of the Transferring Data  
Data setting that is not corresponded to Advanced switch  
( (5)Select Address & data Data format without hatching)  
There is no particular rule about transferring data.  
Data setting that is corresponded to Advanced switch (Note1)  
((5)Select Address & data Data format with hatching)  
There is no particular rule about transferring data, but Advanced switch must follow the switching sequence as  
mentioned in2as follows.  
(Note1) The blocks that are corresponded Advanced switch are Input Gain,Faderand Front Mixing  
ON/OFF(In detail, please refer to (5) Select Address & data).  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
23/37  
TSZ2211115001  
BD37069FV-M  
2Data transmission that is corresponded to Advanced switch  
2-1. Switching time of Advanced switch  
Switching time includes [Twait(Wait time)], [Tsft(A→B switching time)] and [Tsft(B→A switching time)].  
25msec is needed per 1 switching. (Tsoft = Twait + 2 * Tsft, Twait=2.3msec, Tsft=11.2msec)  
[wait time]  
=Twait  
[AB switching time]  
=Tsft  
[BA switching time]  
=Tsft  
Current XdB  
Send YdB  
Change YdB  
W
A B  
B A  
Advanced Switch Time (Tsoft)  
Figure 20. About Advanced switching time  
In the figure above, Start/Stop state is expressed as Aand temporary state is expressed as B.  
The switching sequence of Advanced switch consists of the cycle A(start)B(temporary)A(stop). Therefore, switching  
sequence will not stop at B state.  
For example, switching is performed from A(Initial gain)B(set gain)A(set gain) when switching from initial gain to set  
gain. And switching time (Tsft) of AB or BA are equal.  
2-2. Explanation on data transmission’s timing and switching operation.  
The following examples show the timing chart from data transmission to starting of switching.  
Definition of example expression :  
F1=Fader 1ch Front, F2=Fader 2ch Front, R1=Fader 1ch Rear, R2=Fader 2ch Rear  
C=Fader Center, S=Fader Subwoofer, MIX=Front Mixing  
Transmission example 1  
This is an example when transmitting data in same block with “enough interval for data transmission”.  
(enough interval for data transmission : 1.4 x Tsoft * 1.4includes tolerance margin.)  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 FF  
(F1 -dB)  
Tsoft * 1.4 msec  
A B B A  
W
W
A B  
B A  
Advanced Switch time  
F1 output  
Figure 21. Transmission example 1  
Transmission example 2  
This is an example when the transmission interval is not enough (smaller than “Transmission example 1”).  
When the data is transmitted during first switching operation, the second data will be reflected after the first switching  
operation. In this case, there is no wait time (Twait) before the second switching operation.  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 FF  
(F1 -dB)  
W
A B  
B A  
A B  
B A  
Advanced Switch time  
F1 output  
Figure 22. Transmission example 2  
24/37  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
BD37069FV-M  
Transmission example 3  
This is an example when transmission interval is smaller than Transmission example 2).  
When the data is transmitted during the first switching operation, and transmission timing is just during AB switching  
operation, the second data will be reflected at BA switching term in case of Fader.  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 FF  
(F1 -dB)  
W
A B  
B A  
Advanced Switch time  
F1 output  
Figure 23. Transmission example 3  
Please take care as follows when transmitting data to multiple channels.  
It is possible that Lch and Rch in same block(Front/Rear/Center,Subwoofer) can be switched at the same timing.  
For example, if the data transmission is set as the figure below, F1 and F2 can be switched at the same timing.  
(Data is sent for F1 (Lch) and data is sent for F2 (Rch).)  
Twait (designed to 2.3 msec) is the wait time for starting switching.  
Twait may change from 1.2msec (Min.) to 4.6msec (Max.) by considering tolerance margin.  
80 28 xx  
80 29 xx  
I2C-bus  
T
ꢀ< Twait  
-①  
W
A B  
B A  
Advanced Switch time  
OutputF1  
Initial  
Initial  
Initial → ①  
Initial → ②  
OutputF2  
Figure 24. The operation during multi-channels (Lch, Rch) data transmission (smaller than Twait interval).  
Next, if data is not transmitted during the Twait, the switching operation will be as the figure below.  
80 28 xx  
80 29 xx  
I2C-bus  
T
ꢀ> Twait  
A B  
-①  
W
B A  
A B  
B A  
Advanced Switch time  
OutputF1  
Initial  
Initial  
Initial → ①  
OutputF2  
Initial → ②  
Figure 25. The operation during multiple channels (Lch, Rch) data transmission (larger than Twait interval).  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
25/37  
TSZ2211115001  
BD37069FV-M  
2-3. Multiple blocks data transmission timing and switching operation.  
In case the data is transmitted to multiple blocks, the processing is performed internally by BS (Block state) unit.  
Starting order of Advanced switch is determined by BS unit.  
Transmission example 1  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 2A 80  
(R1 0dB)  
80 2C 80  
(C 0dB)  
F1 Advanced Switch  
R1 Advanced Switch  
C Advanced Switch  
W
A B  
B A  
A B  
B A  
A B  
B A  
Advanced Switch time  
F1 output  
R1 output  
C output  
Figure 26. Multi-blocks data transmission timing  
There are no timing regulations of I2C-bus data transmission. But next switching will start after the end of the current  
switching. The timing of Advanced switch is depended, not on the order of data transmission, but on the order of the figure  
below. The blocks in the same group (For example, BS1, BS3) can start switching at the same time.  
BS0  
BS3  
BS1  
BS2  
Input  
Gain  
Fader  
Center  
Fader  
1ch Front  
Fader  
1ch Rear  
h06  
h2C  
h28  
h2A  
Fader  
Subwoofer  
Fader  
2ch Front  
Fader  
2ch Rear  
h2D  
h29  
h2B  
Front  
Mixing  
h30  
Select address  
Figure 27. The turn of Advanced switch start  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
26/37  
TSZ2211115001  
BD37069FV-M  
Transmission example 2  
In case of that the transmission order is different with actual switching order.  
ex:①F1 -6dB  
80 xx xx  
ꢀ ②F1 -20dB  
② ③ ④  
ꢀ ③C -6dB  
ꢀ ④R1 -6dB  
I2C-bus  
F1 Advanced Switch  
R1 Advanced Switch  
C Advanced Switch  
F1 Advanced Switch  
W
A B  
B A  
A B  
B A  
A B  
B A  
A B  
B A  
Advanced Switch time  
OutputF1  
Initial Initial → ①  
① → ②  
OutputR1  
OutputC  
Initial  
Initial  
Initial → ④  
Initial → ③  
Figure 28. In case of the transmission order is different with actual switching order  
If the data of Front/Rear/Center setting is transmitted during the switching of Front, Rear and Center switching have  
priority over Front switching. In order to proceeding the switching starts as the data transmission order, please transmit  
the next data after the end of current switching.  
Transmission example 3  
If Refresh data that is same as current setting is transmitted, gain switching operation will not start.  
The below figure shows the case of transmitting data after Refresh data.  
slave select data ack  
I2C-bus  
80 28 80  
(F1 0dB)  
80 28 80  
(F1 0dB)  
80 2A 80  
(R1 0dB)  
Refresh Data  
F1 Advanced Switch  
R1 Advanced Switch  
W
A B  
B A  
A B  
B A  
Advanced Switch time  
Figure 29. In case of the transmission of Refresh data  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
27/37  
TSZ2211115001  
BD37069FV-M  
Application Example  
VCCL=9V  
10µF  
VCCH=11.5V/17V  
10µF  
INC  
INS  
IG1  
IG2  
OUTC OUTS OUTR1 OUTR2 OUTF1 OUTF2 INF2 INF1 INR2  
INR1  
VREF  
SCL  
GND SDA  
10µF 10µF  
10µF  
10µF  
10µF  
10µF  
10µF 10µF 2.2µF  
2.2µF 2.2µF  
2.2µF 2.2µF 2.2µF  
10µF  
28  
40  
39  
38  
37  
35  
34  
33  
32  
31  
30  
29  
27  
26  
24  
22  
25  
23  
21  
36  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
Level  
Shift  
100kΩ 100kΩ 100kΩ  
100kΩ 100kΩ  
100kΩ  
I2C-bus LOGIC  
REG(4.15V)  
Sub SEL  
Fader : +23dB-79dB-/1dBstep  
Input Gain : +23dB-15dB/1dBstep  
Front Mixing : on/off  
Sub  
Gain adjust  
Main Gain adjust  
2nd order LPF  
Advanced Switch  
2nd order LPF: fc=70kHz  
Main/Sub Gain Adjust 0dB/6dB  
Anti-GSM circuit  
Rear SEL  
High Voltage Output  
Front  
SEL  
Level Shift = 2dB(normal mode)  
Level Shift = 4.6dB(Hi-voltage mode1)  
Level Shift = 8.3dB(Hi-voltage mode2)  
Input Gain  
Input selector (2 single-ende- d and 4 stereo ISO)  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
GND  
ISO  
amp  
amp  
amp  
amp  
amp  
amp  
amp  
amp  
100kΩ  
100kΩ  
250kΩ  
250kΩ 250kΩ  
250kΩ  
250kΩ 250kΩ 250kΩ  
250kΩ 250kΩ 250kΩ  
250kΩ 250kΩ 250kΩ  
100kΩ  
250kΩ 250kΩ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
2.2µF  
2.2µF  
2.2µF  
2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 2.2µF 2.2µF 10µF 10µF  
2.2µF 2.2µF  
MIN  
SEL  
HIVOLB  
A1  
A2  
B1  
B2 CP1 CN CP2 DP1 DN DP2 EP1 EN EP2 FP1 FN1 FN2 FP2  
Figure 30. Application Example  
UNIT  
RESISTANCE: Ω  
CAPACITANCE: F  
Notes on wiring  
Please connect the decoupling capacitor of a power supply as close as possible to GND.  
Lines of GND shall be one-point connected.  
Wiring pattern of Digital unit shall be away from that of analog unit and crosstalk shall not be acceptable.  
Lines of SCL and SDA of I2C-bus shall not be parallel if possible. The lines shall be shielded, if they are adjacent  
to each other.  
Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
28/37  
TSZ2211115001  
BD37069FV-M  
I/O Equivalence Circuit  
Terminal  
No  
Terminal  
Name  
Terminal  
Voltage  
Equivalence Circuit  
Terminal Description  
A terminal for signal input  
1
A1  
A2  
4.15V  
VCCL  
2
The input impedance is 100kΩ(Typ).  
29  
30  
31  
32  
33  
34  
18  
INC  
INS  
INR1  
INR2  
INF1  
INF2  
MIN  
100kΩ  
4.15V  
GND  
Input terminal  
3
4
B1  
B2  
4.15V  
Single/Differential mode is selectable.  
The input impedance is 250kΩ(Typ).  
5
CP1  
CN  
VCCL  
6
7
CP2  
DP1  
DN  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
27  
28  
DP2  
EP1  
EN  
250kΩ  
4.15V  
GND  
EP2  
FP1  
FN1  
FN2  
FP2  
IG2  
IG1  
Input gain output terminal  
4.15V  
VCCL  
GND  
Fader Output terminal  
VCCH  
35  
36  
37  
38  
39  
40  
OUTF2  
OUTF1  
OUTR2  
OUTR1  
OUTS  
(1) 4.35V  
(2) 5.6V  
(1) Normal mode : 4.35V  
(2) High-Voltage mode1 : 5.6V  
(3) High-Voltage mode2 : 8.35V  
(3) 8.35V  
OUTC  
GND  
The figures in the pin explanation and input/output Equivalence circuit are reference values, it doesnt guarantee exact values.  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
29/37  
TSZ2211115001  
12. MAY. 2016 Rev.001  
BD37069FV-M  
Terminal  
No  
Terminal  
Name  
Terminal  
Voltage  
Equivalence Circuit  
Terminal Description  
VCCL  
Output gain control terminal  
20  
HIVOLB  
5V  
5V  
Low(0V supply) : High-Voltage ON  
100kΩ  
High(terminal open) : High-Voltage OFF  
1.65V  
GND  
Power supply terminal.  
21  
26  
VCCH  
VCCL  
17/11.5/9V  
9V  
Terminal for clock input of I2C-bus  
communication.  
VCCL  
22  
SCL  
Note: When this pin is shorted to next pin(VCCH), it  
may result in property degradation and destruction of  
the device.  
1.65V  
GND  
Terminal for data input of I2C-bus  
communication.  
VCCL  
23  
SDA  
1.65V  
GND  
Ground terminal.  
BIAS terminal.  
24  
25  
GND  
0V  
VCCL  
VREF  
4.15V  
Voltage for reference bias of analog signal  
system. The simple precharge circuit and  
simple discharge circuit for an external  
capacitor are built in.  
12.5kΩ  
4.15V  
GND  
High Voltage Output Select terminal  
19  
SEL  
4.15V  
VCCL  
Low(0V supply) : High-Voltage mode1  
High(terminal open) : High-Voltage mode2  
250kΩ  
GND  
The figures in the pin explanation and input/output Equivalence circuit are reference values, it doesnt guarantee exact values.  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
30/37  
TSZ2211115001  
12. MAY. 2016 Rev.001  
BD37069FV-M  
Application Information  
1) Absolute maximum rating voltage  
When voltage is impressed to VCCL/VCCH exceeding absolute maximum rating voltage, circuit current increases  
rapidly and it may result in property degradation and destruction of a device. When impressed by a VCCL terminal  
(26pin) especially by surge examination etc., even if it includes an of operation voltage +surge pulse component,  
be careful not to impress voltage (about 14V) much higher than absolute maximum rating voltage. And, be careful  
that there is no more than 18V on the VCCH terminal (21pin).  
2) About a signal input part  
In the signal input terminal, the value of the input coupling capacitor C(F) should be sufficient to match the value  
of input impedance RIN(Ω) inside the IC. The first HPF characteristic of CR is as shown below.  
G[dB]  
C [F]  
0
A(f)  
G
RIN  
Frequency[Hz]  
f
(2πfCRIN)2  
A(f)=  
1+(2πfCRIN)2  
Figure 31. Input Equivalence Circuit  
3) About output load characteristics  
The usages of load for output are below (reference). Please use the load more than 10 (Typ).  
Output terminal  
Terminal  
Terminal  
Name  
IG1  
Terminal  
No.  
Terminal  
Name  
OUTF1  
OUTF2  
Terminal  
No.  
Terminal  
Name  
OUTR1  
OUTR2  
Terminal  
No.  
Terminal  
Name  
OUTC  
OUTS  
No.  
28  
27  
36  
35  
38  
37  
40  
39  
IG2  
3
2.5  
2
6
5
4
3
2
1
1.5  
1
IG1/IG2  
VCCL=9V  
VCCH=17V  
THD+N=1%  
OUTF1/OUTF2  
VCCL=9V  
VCCH=17V  
THD+N=1%  
BW=400 to 30kHz  
BW=400 to 30kHz  
0.5  
0
0
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Load Resistance [Ω]  
Load Resistance [Ω]  
Figure 32. Output load characteristic at VCCL=9V, VCCH=17V(Reference)  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
31/37  
BD37069FV-M  
4) About HIVOLB terminal(20pin) when power supply is off  
Any voltage shall not be supplied to HIVOLB terminal (20pin) when power-supply is off. Please insert a resistor (about  
2.2kΩ) to HIVOLB terminal in series, in case voltage is supplied to HIVOLB terminal. (Please refer Application Circuit  
Diagram.)  
5) About signal input terminals  
Because the inner impedance of the terminal becomes 100 or 250 when the signal input terminal makes a  
terminal open, the plunge noise from outside sometimes becomes a problem.When there is an unused signal input  
terminal, design so it is shorted to ground.  
6) About changing gain of Input Gain and Fader Volume  
When increasing the input gain and fader volume, especially those exceeding 20dB, the switching pop noise sometimes  
becomes big. In this case, we recommend changing the gain in 1 dB steps, without abruptly changing the gain at once.  
Also, the pop noise can sometimes be reduced by increasing the advanced switch time.  
7) About inter-pin short to VCCH  
VCCH terminal(21pin) is assumed at applied high voltage(Max 17.8V) for 5.2VRMS(Max) output. And so, avoid short  
between VCCH and SCL. When Inter-pin shorts occur, circuit current increases rapidly, and it may result in property  
degradation and destruction of a device.  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
32/37  
TSZ2211115001  
12. MAY. 2016 Rev.001  
BD37069FV-M  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may  
result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the  
board size and copper area to prevent exceeding the maximum junction temperature rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
33/37  
BD37069FV-M  
Operational Notes continued  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 33. Example of monolithic IC structure  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
34/37  
TSZ2211115001  
BD37069FV-M  
Ordering Information  
B D 3 7 0 6 9  
F
V -  
ME 2  
Package  
FV: SSOP-B40  
Product Rank  
M: for Automotive  
Part Number  
Packaging and forming specification  
E2: Embossed tape and reel  
(SSOP-B40)  
Marking Diagram  
SSOP-B40(TOP VIEW)  
Part Number Marking  
LOT Number  
BD37069FV  
1PIN MARK  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
35/37  
TSZ2211115001  
BD37069FV-M  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B40  
(Max 13.95 (include. BURR)  
(UNIT ; mm)  
PKG : SSOP-B40  
Drawing No. EX157-5001  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
36/37  
BD37069FV-M  
Revision History  
Date  
Revision  
001  
Changes  
12.MAY.2016  
New Release  
www.rohm.com  
TSZ02201-0C2C0E100270-1-2  
12. MAY. 2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
37/37  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
BD37069FV-M - Web Page  
Part Number  
Package  
Unit Quantity  
BD37069FV-M  
SSOP-B40  
2000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2000  
Taping  
inquiry  
Yes  

相关型号:

BD370A

Medium Power Amplifiers and Switches
ETC

BD370B

暂无描述
NSC

BD370B-16

BD370B-16
NSC

BD370B-25

BD370B-25
NSC

BD370C

Medium Power Amplifiers and Switches
ETC

BD371

1000mA, 45V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-237, TO-237, 3 PIN
TI

BD371/D10Z

1000mA, 45V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-237, TO-237, 3 PIN
TI

BD371/D11Z

1000mA, 45V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-237, TO-237, 3 PIN
TI

BD371/D26Z

1000mA, 45V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-237, TO-237, 3 PIN
TI

BD371/D27Z

1000mA, 45V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-237, TO-237, 3 PIN
TI

BD371/D28Z

1000mA, 45V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-237, TO-237, 3 PIN
TI

BD371/D29Z

1000mA, 45V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-237, TO-237, 3 PIN
TI