BD37503FV [ROHM]

内置4路输入选择器和2频段均衡器。此外,还是可切换使用以衰减响度与DAC输出中产生的多余噪声为目的的二次抗混叠滤波器(anti-aliasing filter)的声音处理器。;
BD37503FV
型号: BD37503FV
厂家: ROHM    ROHM
描述:

内置4路输入选择器和2频段均衡器。此外,还是可切换使用以衰减响度与DAC输出中产生的多余噪声为目的的二次抗混叠滤波器(anti-aliasing filter)的声音处理器。

文件: 总31页 (文件大小:1051K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Sound Processor Series for Car Audio  
Sound processor with Built-in  
2-band Equalizer  
BD37503FV  
General Description  
Key Specifications  
Sound processor which has built-in 4input selector and  
2-band equalizer filter. And, loudness filter and 2nd-order  
anti-aliasing filter which attenuate noise occurs at output  
of DAC are available, either one by switching.  
Total harmonic distortion:  
Maximum input voltage:  
Common mode rejection ratio:  
Maximum output voltage:  
Output noise voltage:  
Residual output noise voltage2.8μVrms (Typ.)  
Ripple rejection:  
Operating temperature range  
0.001%(Typ.)  
2.2Vrms(Typ.)  
50dB(Min.)  
2.1Vrms(Typ.)  
5.8μVrms(Typ.)  
Features  
Built-in differential input selector that can make  
various combination of single-ended / differential  
input.  
-70dB (Typ.)  
-40to +85℃  
Reduce switching noise by using advanced switch  
circuit  
Built-in ground isolation amplifier inputs, ideal for  
external stereo input.  
Package  
SSOP-B20  
W(Typ.) x D(Typ.) x H(Max.)  
6.50mm x 6.40mm x 1.45mm  
Decrease the number of external components by  
built-in 2nd-order anti-aliasing filter  
Decrease the number of external components by  
built-in 2-band equalizer filter and loudness filter.  
A PCB area can be reduced and PCB layouts become  
easy thanks to that signal flow is gathered to one  
direction by arrangement of input and output left side  
and right side separately.  
It is possible to control by 3.3V / 5V for I2C BUS serial  
controller.  
Applications  
It is the optimal for the car audio. Besides, it is  
possible to use for the audio equipment of mini  
Compo, micro Compo, TV etc with all kinds.  
SSOP-B20  
Typical Application Circuit  
lication Circuit Diagram  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
1/28  
TSZ2211114001  
Daattaasshheeeett  
BD37503FV  
SSOP-B20  
(TOP VIEW)  
Pin Configuration  
20 D2  
1
2
3
4
5
6
7
8
9
D1  
CN1  
19  
18  
CN2  
CP2  
CP1  
17 B2  
16 A2  
B1  
A1  
15  
14  
13  
12  
11  
OUTF2  
OUTF1  
OUTR1  
VCC  
OUTR2  
SCL  
SDA  
GND  
VREF 10  
Figure 2. Pin configuration  
Terminal  
Pin Description  
Terminal  
No.  
Symbol  
Description of terminals  
Symbol  
Description of terminals  
GND terminal  
No.  
1
N.C.  
D1  
Non connection terminal  
D input terminal of 1ch  
C negative input terminal of 1ch  
C positive input terminal of 1ch  
B input terminal of 1ch  
A input terminal of 1ch  
Front output terminal of 1ch  
Rear output terminal of 1ch  
Power supply terminal  
11  
GND  
SDA  
SCL  
OUTR2  
OUTF2  
A2  
2
3
12  
13  
14  
15  
16  
17  
18  
19  
20  
I2C Communication data terminal  
I2C Communication clock terminal  
Rear output terminal of 2ch  
Front output terminal of 2ch  
A input terminal of 2ch  
CN1  
CP1  
4
5
B1  
6
A1  
7
OUTF1  
OUTR1  
VCC  
VREF  
B2  
B input terminal of 2ch  
8
CP2  
CN2  
D2  
C positive input terminal of 2ch  
C negative input terminal of 2ch  
D input terminal of 2ch  
9
10  
BIAS terminal  
Block Diagram  
Figure 3. Block Diagram  
www.rohm.co.jp  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
2/28  
Daattaasshheeeett  
BD37503FV  
Absolute Maximum Ratings (Ta=25)  
Item  
Symbol  
VCC  
Rating  
10.0  
Unit  
V
Power supply Voltage  
VCC+0.3 to GND-0.3  
SCL,SDA : 7 to GND-0.3  
937 1  
Input voltage  
Vin  
V
Power Dissipation  
Storage Temperature  
Pd  
Tastg  
mW  
-55 to +150  
1 This value decreases 7.5mW/for Ta=25or more.  
ROHM standard board shall be mounted. Thermal resistance θja = 133.3(/W)  
ROHM Standard board  
size70×70×1.6()  
materialFR4 A FR4 grass epoxy board(3% or less of copper foil area)  
Recommended Operating Rating  
Item  
Symbol  
VCC  
Topr  
MIN.  
7.0  
-40  
TYP.  
8.5  
-
MAX.  
9.5  
+85  
Unit  
V
Power supply Voltage  
Temperature  
www.rohm.co.jp  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
3/28  
Daattaasshheeeett  
BD37503FV  
Electrical Characteristic  
Unless specified particularly, Ta=25, VCC=8.5V, f=1kHz, Vin=1Vrms, Rg=600, RL=10k, A input, Input gain 0dB,  
Volume 0dB, Tone control 0dB, Loudness 0dB, Fader 0dB, Output Gain 0dB  
Limit  
Item  
Symbol  
Unit  
mA  
Condition  
MIN.  
TYP.  
MAX.  
27  
Current upon no signal  
IQ  
20  
No signal  
Voltage gain  
Channel balance  
GV  
CB  
-1.5  
-1.5  
0
0
1.5  
1.5  
dB  
dB  
Gv=20log(VOUT/VIN)  
CB = GV1-GV2  
VOUT=1Vrms  
BW=400-30KHz  
Rg = 0Ω  
Total harmonic distortion  
THD+N1  
VNO  
0.001  
5.8  
0.05  
18  
%
Output noise voltage *  
μVrms  
BW = IHF-A  
Fader = -∞dB  
Residual output noise voltage *  
Cross-talk between channels *  
Ripple rejection  
VNOR  
CTC  
RR  
2.8  
-100  
-70  
9
μVrms Rg = 0Ω  
BW = IHF-A  
Rg = 0Ω  
-90  
-40  
dB  
dB  
CTC=20log(VOUT/VIN)  
BW = IHF-A  
f=1kHz  
VRR=100mVrms  
RR=20log(VCC IN/VOUT)  
Input impedance(A, B, D)  
Input impedance(CP,CN)  
RIN_S  
RIN_D  
70  
35  
100  
50  
130  
65  
kΩ  
kΩ  
VIM at THD+N(VOUT)=1%  
BW=400-30KHz  
Maximum input voltage  
VIM  
2
2.2  
Vrms  
Rg = 0Ω  
Cross-talk between selectors *  
CTS  
-100  
-90  
dB  
CTS=20log(VOUT/VIN)  
BW = IHF-A  
CP1 and CN1 input  
CP2 and CN2 input  
CMRR=20log(VIN/VOUT)  
BW = IHF-A,  
Input gain 0dB  
VIN=100mVrms  
Common mode rejection ratio  
Minimum input gain  
CMRR  
GIN MIN  
50  
-2  
60  
0
dB  
dB  
2
GIN=20log(VOUT/VIN)  
Input gain 20dB  
Maximum input gain  
Gain set error  
GIN MAX  
GIN ERR  
18  
-2  
20  
0
22  
2
dB  
dB  
VIN=100mVrms  
GIN=20log(VOUT/VIN)  
GAIN=+1 to +20dB  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
4/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Limit  
TYP.  
Item  
Symbol  
GV MAX  
Unit  
dB  
Condition  
MIN.  
-1.5  
MAX.  
1.5  
Volume = 0dB  
VIN=100mVrms  
Maximum gain  
0
Gv=20log(VOUT/VIN)  
Volume = -∞dB  
Gv=20log(VOUT/VIN)  
BW = IHF-A  
ATT=0dB to -36dB  
Gain=+20dB f=100Hz  
VIN=100mVrms  
Maximum attenuation *  
GV MIN  
-100  
0
-85  
2
dB  
dB  
Attenuation set error  
GV ERR1  
-2  
Maximum boost gain  
18  
20  
22  
dB  
GB BST  
GB=20log (VOUT/VIN)  
Gain=-20dB f=100Hz  
VIN=2Vrms  
GB=20log (VOUT/VIN)  
Gain=+20 to -20dB f=100Hz  
Gain=+20dB f=10kHz  
VIN=100mVrms  
Maximum cut gain  
Gain set error  
-22  
-2  
-20  
0
-18  
2
dB  
dB  
dB  
GB CUT  
GB ERR  
GT BST  
Maximum boost gain  
18  
20  
22  
GT=20log (VOUT/VIN)  
Gain=-20dB f=10kHz  
VIN=2Vrms  
Maximum cut gain  
-22  
-20  
-18  
dB  
GT CUT  
GT=20log (VOUT/VIN)  
Gain=+20 to -20dB f=10kHz  
Gain=0dB  
GF=20log(VOUT/VIN)  
Fader = -∞dB  
Gain set error  
Maximum gain  
GT ERR  
GF BST  
-2  
-2  
0
0
2
2
dB  
dB  
Maximum attenuation *  
GF MIN  
-100  
-90  
dB  
GF=20log(VOUT/VIN)  
BW = IHF-A  
GF ERR1  
GF ERR2  
GF ERR3  
RO FAD  
-2  
-3  
-4  
-
0
0
0
2
3
4
dB  
dB  
dB  
ATT=-1 to -15dB  
ATT=-16 to -47dB  
ATT=-48 to -63dB  
VIN=100mVrms  
THD+N=1%  
Attenuation set error 1  
Attenuation set error 2  
Attenuation set error 3  
Output impedance  
50  
VOM F  
2
2.1  
Vrms  
Maximum output voltage  
BW=400-30KHz  
Gain=15dB  
Maximum gain  
GLD MAX  
13  
15  
17  
dB  
GLD=20log(VOUT/VIN)  
BW=IHF-A  
Gain=0dB to -15dB  
GLD=20log(VOUT/VIN)  
GLD ERR  
-2  
4
0
6
0
2
8
2
dB  
dB  
dB  
Gain set error  
Maximum gain  
Gain set error  
Gain +6dB  
VIN=100mVrms  
GOUT  
MAX  
G
OUT=20log(VOUT/VIN)  
GOUT  
ERR  
-2  
Gain=0dB, +6dB  
VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for measurement.  
Phase between input / output is same.  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
5/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Typical Performance Curve(reference data)  
20  
10  
8
Operational Range  
6
15  
10  
5
4
2
0
-2  
-4  
-6  
-8  
-10  
0
9.5 10  
7
10  
100  
1000  
Frequency [Hz]  
10000  
100000  
0
2
4
6
8
VCC [V]  
Figure 4. Iq vs VCC  
Figure 5. Gain vs Frequency  
10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
10kHz  
100Hz  
1
0.1  
1 kHz  
0.01  
0.001  
10  
100  
1000  
10000  
100000  
Frequency [Hz]  
0.001  
0.01  
0.1  
Vin [Vrms]  
1
10  
Figure 6. THD+n vs Input Voltage  
Figure 7. CMRR vs Frequency  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
6/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
-60  
-70  
-40  
-50  
-60  
-70  
-80  
-90  
-80  
-90  
-100  
-110  
-120  
-100  
10  
10  
100  
1000  
Frequency [Hz]  
10000  
100000  
100  
1000  
Frequency [Hz]  
10000  
100000  
Figure 9. Cross-talk between channels vs Frequency  
Figure 8. PSRR vs Frequency  
2
0
5
0
-2  
-4  
-6  
-5  
-8  
-10  
-12  
-14  
-16  
-18  
-10  
-15  
-20  
-20  
10  
10  
100  
1000  
Frequency [Hz]  
10000  
100000  
100  
1000  
Frequency [Hz]  
10000  
100000  
Figure 10. Loudness Gain vs Frequency  
Figure 11. Antifilter Gain vs Frequency  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
7/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
-25  
-25  
10  
10  
100  
1000  
Frequency [Hz]  
10000  
100000  
100  
1000  
Frequency [Hz]  
10000  
100000  
Figure 12. Bass Gain vs Frequency  
Figure 13. Treble Gain vs Frequency  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
8/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
CONTROL SIGNAL SPECIFICATION  
(1) Electrical specifications and timing for bus lines and I/O stages  
SDA  
tBUF  
tHD;STA  
tF  
tSP  
tR  
tLOW  
SCL  
tSU;STO  
tHD;STA  
tSU;DAT tSU;STA  
tHD;DAT  
tHIGH  
Sr  
S
P
P
Figure 14. Definition of timing on the I2C-bus  
Table 1 Characteristics of the SDA and SCL bus lines for I2C-bus devices  
Parameter  
Fast-mode I2C-bus  
Symbol  
Unit  
MIN.  
MAX.  
400  
kHz  
1
2
SCL clock frequency  
fSCL  
tBUF  
0
Bus free time between a STOP and START condition  
1.3  
μS  
Hold time (repeated) START condition. After this period, the first clock  
pulse is generated  
3
tHD;STA  
0.6  
μS  
4
5
6
LOW period of the SCL clock  
tLOW  
tHIGH  
1.3  
0.6  
0.6  
μS  
μS  
μS  
HIGH period of the SCL clock  
Set-up time for a repeated START condition  
tSU;STA  
7
8
9
Data hold time  
tHD;DAT  
tSU; DAT  
tSU;STO  
0
μS  
ns  
Data set-up time  
100  
0.6  
Set-up time for STOP condition  
μS  
All values referred to VIH min. and VIL max. Levels (see Table 2).  
About 7(tHD;DAT), 8(tSU;DAT), please make setup which has enough margin.  
Table 2 Characteristics of the SDA and SCL I/O stages for I2C-bus devices  
Fast-mode I2C-bus  
Unit  
Item  
Symbol  
MIN.  
-0.5  
2.3  
MAX.  
10 LOW level input voltage: In case an input level is fixed  
11 HIGH level input voltage: In case an input level is fixed  
VIL  
1
-
V
V
VIH  
12 Pulse width of spikes which must be suppressed by the input filter.  
tSP  
VOL1  
Ii  
0
0
50  
0.4  
10  
ns  
V
LOW level output voltage(open drain or open collector):  
at 3mA sink current  
13  
Input current each I/O pin with an input voltage between 0.4V and  
0.9V.  
14  
-10  
μA  
tHD;STA  
:2us  
tHD;DAT  
:1us  
tSU;DAT  
:1us  
tSU;STO  
:2us  
SCL  
SDA  
tBUF  
:4us  
tLOW  
:3us  
tHIGH  
:1us  
SCL clock frequency:250kHz  
Figure 15. A command timing example in the I2C data transmission  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
9/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
(2) I2C BUS FORMAT  
MSB  
Slave Address  
8bit  
LSB  
MSB  
Select Address  
8bit  
LSB  
MSB  
LSB  
S
1bit  
A
1bit  
A
1bit  
Data  
8bit  
A
P
1bit 1bit  
S
= Start conditions (Recognition of start bit)  
Slave Address = Recognition of slave address. 7 bits in upper order are voluntary.  
The least significant bit is “L” due to writing.  
A
= ACKNOWLEDGE bit (Recognition of acknowledgement)  
Select Address = Select every of volume, bass and treble.  
Data  
P
= Data on every volume and tone.  
= Stop condition (Recognition of stop bit)  
(3) I2C BUS Interface Protocol  
1) Basic form  
S
Slave Address  
MSB LSB  
A
Select Address  
MSB LSB  
A
Data  
MSB LSB  
A
P
2) Automatic increment (Select Address increases (+1) according to the number of data.)  
S
Slave Address  
MSB LSB  
(Example)Data1 shall be set as data of address specified by Select Address.  
A
Select Address  
A
Data1  
A
Data2  
A
・・・・  
DataN  
MSB  
A
P
MSB LSB  
MSB  
LSB MSB  
LSB  
LSB  
Data2 shall be set as data of address specified by Select Address +1.  
DataN shall be set as data of address specified by Select Address +N-1.  
3) Configuration unavailable for transmission (In this case, only Select Address1 is set.  
S
Slave Address  
MSB LSB  
A
Select Address1  
MSB LSB MSB LSB MSB  
A
Data  
A
Select Address 2  
A
Data  
A P  
LSB MSB LSB  
NoteIf any data is transmitted as Select Address 2 next to data,  
it is recognized as data, not as Select Address 2.  
(4) Slave address  
MSB  
A6  
LSB  
R/W  
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
80H  
1
0
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
10/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
(5) Select Address & Data  
Select  
Address  
(hex)  
MSB  
D7  
Data  
LSB  
D0  
Items  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
1
0
Initial setup 1  
Initial setup 2  
01  
03  
Output  
Gain  
Loudness  
select  
Loudness  
fo  
0
0
0
0
0
0
Input selector  
Input gain  
05  
06  
20  
28  
29  
2A  
2B  
51  
0
0
0
0
0
0
0
Input selector  
Input Gain  
Volume gain  
Volume Attenuation  
Fader Attenuation F1  
Fader Attenuation F2  
Fader Attenuation R1  
Fader Attenuation R2  
Fader 1ch Front  
Fader 2ch Front  
Fader 1ch Rear  
Fader 2ch Rear  
Bass gain  
Bass  
Boost/Cut  
Treble  
0
0
0
0
Bass Gain  
Treble gain  
57  
Treble Gain  
Boost/Cut  
Loudness Gain  
System Reset  
75  
0
1
0
0
0
0
0
Loudness Gain  
0
FE  
0
0
0
1
Advanced switch  
Note  
1. In function changing of the hatching part, it works Advanced switch.  
2. Upon continuous data transfer, the Select Address is circulated by the automatic increment function, as shown  
below.  
010305062028292A2B515775  
3. For the function of input selector, input gain and output gain etc, it is not corresponded for advanced switch.  
Therefore, please apply mute on the side of a set when changes these setting.  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
11/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Select address 03(hex)  
MSB  
D7  
Output  
Gain  
Loudness fo  
LSB  
D0  
0
fo  
D6  
0
D5  
0
D4  
D3  
D2  
0
D1  
0
650 Hz  
1.3k Hz  
Loudness  
select  
0
1
MSB  
D7  
Output  
Gain  
Loudness select  
LSB  
D0  
Loudness  
fo  
Mode  
D6  
0
D5  
0
D4  
D3  
0
D2  
0
D1  
0
Loudness  
Anti-aliasing filter  
0
1
MSB  
D7  
0
Output Gain  
LSB  
D0  
Loudness  
fo  
Gain  
D6  
0
D5  
0
D4  
D3  
D2  
0
D1  
0
0dB  
+6dB  
Loudness  
select  
0
1
Select address 05(hex)  
Mode  
MSB  
D7  
Input Selector  
LSB  
D0  
0
1
0
D6  
0
D5  
0
D4  
D3  
D2  
0
0
0
0
D1  
0
0
1
1
A single  
B single  
C single  
D single  
C diff  
1
0
0
0
0
1
0
Input SHORT  
1
0
1
0
1
1
Prohibition  
1
1
0
1
1
1
Input SHORTThe input impedance of each input terminal is lowered from 100k(TYP) to 1 k(TYP).(For quick  
charge of coupling capacitor)  
: Initial condition  
The list of terminals that is active when each mode of input selector is selected  
Mode  
A single  
B single  
C single  
D single  
C diff  
1ch+Input Terminal 1ch-Input Terminal 2ch+Input Terminal 2ch-Input Terminal  
6pin(A1)  
5pin(B1)  
4pin(CP1)  
2pin(D1)  
4pin(CP1)  
-
16pin(A2)  
17pin(B2)  
18pin(CP2)  
20pin(D2)  
18pin(CP2)  
-
-
-
-
-
-
-
3pin(CN1)  
19pin(CN2)  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
12/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Select address 06 (hex)  
MSB  
D7  
Input Gain  
D4  
LSB  
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
Gain  
D6  
D5  
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
16dB  
17dB  
18dB  
19dB  
20dB  
0
0
0
Prohibition  
Select address 20 (hex)  
ATT  
MSB  
D7  
0
Volume Attenuation  
LSB  
D0  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
0
0
0
0
0
0
0
1
Prohibition  
0
1
1
1
1
1
1
1
0dB  
-1dB  
-2dB  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
-35dB  
-36dB  
1
1
0
0
1
1
0
0
0
0
0
1
1
0
1
0
1
0
1
0
0
1
0
1
Prohibition  
1
1
1
1
1
1
1
0
-∞dB  
1
1
1
1
1
1
1
1
: Initial condition  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
13/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Select address 28, 29, 2A, 2B (hex)  
MSB  
D7  
0
Fader Attenuation  
LSB  
D0  
0
ATT  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
0
0
0
0
0
0
0
1
Prohibition  
0
1
1
1
1
1
1
1
0dB  
-1dB  
-2dB  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
-62dB  
-63dB  
1
1
0
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
0
0
0
0
0
Prohibition  
1
1
1
1
1
1
1
0
-∞dB  
1
1
1
1
1
1
1
1
Select address 51, 57 (hex)  
Gain  
MSB  
D7  
Bass/Treble Gain  
LSB  
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
D6  
D5  
D4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
16dB  
17dB  
18dB  
19dB  
20dB  
Bass/  
Treble  
Boost  
/cut  
0
0
Prohibition  
Select address 51, 57 (hex)  
Mode  
MSB  
D7  
0
Bass/Treble Boost/Cut  
D4 D3  
LSB  
D0  
D6  
0
D5  
0
D2  
D1  
Boost  
Cut  
Bass/Treble Gain  
1
: Initial condition  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
14/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Select address 75 (hex)  
MSB  
D7  
Loudness Gain  
LSB  
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Gain  
D6  
D5  
D4  
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
0
0
0
0
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
1
: Initial condition  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
15/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Volume / Fader volume attenuation of the details  
Volume attenuation is 0dB to -36dB/Fader volume is 0dB to -63dB  
(dB)  
(dB)  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
-33  
-34  
-35  
-36  
-37  
-38  
-39  
-40  
-41  
-42  
-43  
-44  
-45  
-46  
-47  
-48  
-49  
-50  
-51  
-52  
-53  
-54  
-55  
-56  
-57  
-58  
-59  
-60  
-61  
-62  
-63  
-∞  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
-
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
-
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
-
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
-
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
-31  
-32  
1
0
-
-
Initial condition  
(6) About power on reset  
At ON of supply voltage circuit made initialization inside IC is built-in. Please send data to all address as initial data at  
supply voltage on. And please supply mute at set side until this initial data is sent.  
Limit  
Item  
Symbol  
Trise  
Unit  
Condition  
Min.  
20  
Typ.  
Max.  
Rise time of VCC  
VCC voltage of  
release power on  
reset  
usec VCC rise time from 0V to 5V  
V
Vpor  
5.0  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
16/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
About Advanced switching circuit  
1About Advanced switch  
1-1. Effect of Advanced switch  
It is the ROHM original technology for prevention of switching noise. When gain switching such as volume and tone  
control is done momentarily, a music signal isn't continuous, and unpleasant shock noise is made. Advanced switch  
can reduce shock noise with the technology which signal wave shape is complemented so that a music signal may not  
continue drastically.  
select  
slave  
data  
Gain is made to change right after the data transmission momentarily. At this time, a  
change of DC voltage occurs only in the one for the difference of the amplitude  
before and after the change.  
I2C BUS  
80 20 86  
The technology of Advanced switching makes this DC voltage change slow.  
A change of DC voltage  
Wave of Advanced switching  
Advanced switch starts switching after the control data from a microcomputer are received. It takes one fixed time,  
and wave shape transits as the above figure. The data transmitted by a microcomputer are processed inside, and the  
most suitable movement is done inside the IC so that switching shock noise may not be made.  
But, it presumes by the transmitting timing when it doesn't become intended switching wave shape because it is the  
function which needs time. The example in which there are relation with the switching time of the data transmitting  
timing and the reality are shown in the following. It asks for design when it is confirmed well.  
1-2. About a kind of transmission method  
A data setup except for the item for advanced switch  
(p11/27 select address and the data format, the thing which isn't indicated by gray)  
There is no regulation in transmission specially.  
The data setup of the item for advanced switch  
p11/27 select address and the data format,, the thing which is indicated by gray)  
Though there is no regulation in data transmission, the switching order when data are transmitted to several blocks  
follows the next 2.  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
17/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
2About transmission DATA of advanced switching item  
2-1. About switching time of advanced switch  
Advanced switching time are equivalent to the switching time and invalid time(effect-less time) inside the IC, and  
switching time and invalid time is equal to 11.2msec x (1±0.4(dispersion margin))  
Therefore, actual Advanced switching time (Tsoft) is defined as follows.  
The total time of 1 time advanced switching needs 2 times of the switching time  
Tsoft= Switching time×2  
Switching time  
Invalid time  
Advanced switching time  
Advanced switching time Tsoft is, Tsoft = switching time and invalid time(= switching time x 2).  
2-2. About the data transmitting timing in same block state and the switching movement  
Transmitting example 1  
A time chart to the start of switching from the data transmission is as following.  
At first, the example are shown as below when the interval time is sufficient in which transmission of the same  
blocks.  
(Sufficient interval means time which is more than Tsoft maximum value, 11.2msec x 1.4(dispersion margin) x 2 =  
31.4msec  
AKS  
select  
slave  
data  
(F1 0dB)  
80 28  
(F1 –INFdB)  
80 28 FF  
I2C BUS  
80  
IntervalTsoft maximum(=31.4msec)  
Fader F1  
Switching time  
Fader F1  
Switching time  
Invalid time  
Invalid time  
Advanced switching time  
OUTF1  
Transmitting example 2  
Next, when a transmitting interval isn't sufficient (when it is shorter than the above interval), the example is shown.  
In case data are transmitted during the first switching movement, the next switching movement is started in  
succession after the first switching movement is finished.  
AKS  
s elect  
s lave  
data  
(F1 0dB)  
80 28  
(F1 –INFdB)  
80 28 FF  
I2C B US  
80  
IntervalTsoft maximum  
(=31.4msec )  
Fader F1  
Switching time  
Fader F1  
Switching time  
Inva lid time  
Inva lid time  
Advanced switching time  
OU TF 1  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
18/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Transmitting example 3  
Next, the example of the switching movement when a transmitting interval was shortened more is shown.  
Inside the IC, It has the buffer which memorizes data, and a buffer always does transmitting data.  
But, data of +4dB which transmitted to the second become invalid with this example because the buffer holds only  
the latest data.  
This is invalid as a result.  
Only an end is effective in the data transmitted during F1 switching.  
(FaderF1 0dB)  
(FaderF1 +4B)  
80 28 04  
(FaderF1 -8B)  
I2C BUS  
80 28 80  
80 28 88  
Replacement  
0dB  
+4dB  
-8dB  
Fader F1 bufferd data  
Data of 0dB received : -∞→0dB  
Data of -8dB received from buffer : 0dB-8dB  
Fader F1  
Fader F1  
switching time  
Invalid time  
switching time  
Invalid time  
Advanced switching time  
Transmitting example 4  
At first, transmitting data are stored in the maintenance data, and next it is written in the setup data in which gain  
is set up to. But, in case there is no difference between the transmitting data and the setup data as a refresh data,  
Advanced switch movement isn't started.  
(FaderF1 0dB)  
80 28 80  
(FaderF1 0dB)  
80 28 80  
I2C BUS  
Because receiving as refresh-data,  
Advanced switching doesn't start.  
Refresh data  
Fader F1  
switching time  
Invalid  
time  
Advanced switching time  
2-3. About the data transmitting timing and the switching movement in several block state  
When data are transmitted to several blocks, treatment in the BS (block state) unit is carried out inside the IC. The  
order of advanced switch movement start is decided in advance dependent on BS.  
BS1  
BS2  
Fader F1  
‘h28  
BS3  
Fader R1  
‘h2A  
Volume  
Fader F2  
‘h29  
Fader R2  
‘h2B  
‘h20  
Loudness  
‘h75  
Bass  
‘h51  
Treble  
‘h57  
Select address  
The order of advanced switch start  
It is possible that blocks in the same BS start switching at the same timing.  
Figure 16. The example of the timing of command of in I2Cdata transmitting  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
19/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Transmitting example 5  
About the transmission to several blocks also, as explained in the previous section, though there is no restriction of the  
I2C BUS data transmitting timing, the start timing of switching follows the figure of previous page, figure16.  
Therefore, it isn't based on the data transmitting order, and an actual switching order becomes as the figure16  
(Transmitting example 6).  
Each block data is being transmitted separately in the transmitting example 5, but it becomes the same result even if  
data are transmitted by automatic increment.  
AKS  
select  
slave  
data  
(VOLUME 0dB)  
80 20 80  
( FaderF 1 +6dB)  
( FaderR 1 +6dB)  
80 2A 06  
I2C BUS  
80  
28  
06  
Start after advanced switch of  
VOLUME  
Start after advanced switch of  
Fader F1  
Volume  
Fader F1  
Switching time  
Invalid  
time  
Fader R1  
Switching time  
Invalid  
time  
Invalid  
time  
Advanced switch time Switching time  
OUTF1  
OUTR1  
Transmitting example 6  
When an actual switching order is different from the transmitting order or data except for the same BS are transmitted at  
the timing when advanced switch movement isn't finished, switching of the next BS is done after the present switching  
completion .  
select  
slave  
data  
(VOLUME 0dB)  
80 20 80  
(FaderR1 0dB)  
80 2A 80  
(FaderF1 0dB)  
80 28 80  
I2C BUS  
Fader F1  
Switching time  
Fader R1  
Switching time  
VOLUME  
Switching time  
Invalid time  
Invalid time  
Invalid time  
Advanced switching time  
Transmitting example 7  
In this example, data of BS2 and BS3 are transmitted during Advances switching of BS2(same BS2 group) .  
The different data (BASS) of the same BS2 group during advanced switching of (F1) are transmitted.  
BS2  
BS2  
BS3  
(FaderF1 0dB)  
(FaderR1 0dB)  
(BASS +6dB)  
I2C B US  
80  
28  
80  
80  
51  
06  
80  
2A  
80  
Fader R1 buffered data  
BASS buffered data  
6dB  
0dB received -0dB  
0dB received from buffer –INF0dB  
6dB received from buffer 0dB+6dB  
Fader R1  
BASS  
Fader F1  
switching time  
Invalid time  
switching time  
Invalid time  
switching time  
Invalid time  
Advanced switching time  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
20/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
2-4. About gain switching of TONE(Bass/ Treble)  
When gain is changed from boost to cut (or, from cut to boost), advanced switching is two-step transition movement  
that it go through 0dB to prevent the occurrence of the switching noise. And when boost/cut doesn't change between  
before switching and after switching, advanced switching is the same as 2-2, 2-3. About advanced switching time, it is  
same time length as other switching time length.  
Transmitting example 8  
In case changing Bass gain +15dB from -15dB  
(BA SS+15dB)  
I2C B US  
80  
51  
0F  
Tsoft=switching time×2  
BASS  
BASS  
Switching time  
Switching time  
Advanced switching time  
-15dB 0dB  
0dB +15dB  
OUTF1  
3Advanced switch transmitting timing list  
3-1. Volume/Fader(F1,F2,R1,R2)/TONE(BASS,TREBLE,LOUDNESS)  
Advanced switch stand by  
Advanced switch active  
optional  
Transmission timing  
Start timing  
optional  
Starts right after the data  
transmission  
Starts right after present  
switching was finished.  
Advanced switching  
time  
1
Tsoft  
Tsoft  
3-2. TONE BOOST CUT  
Advanced switch stand by  
Advanced switch active  
optional  
Transmission timing  
Start timing  
optional  
Starts right after the data  
transmission  
Starts right after present  
switching was finished.  
Advanced switching  
time  
2
Tsoft  
Tsoft  
1 Advanced switching time Tsoft equalls to 2times of swithcing time.  
2 About Tsoft of TONE BOOSTCUT, the time length until gain switching finishes is equal to 2times of swithcing  
time, because it go through 0dB when switching from initial gain to requested gain. In this case, Advanced  
switching time is same as 1 above.  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
21/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Application Circuit Diagram  
GND Isolation  
CN2  
CP2  
B2  
A2  
D2  
20  
SCL  
13  
SDA  
12  
GND  
11  
OUTF2  
10μ  
OUTR2  
10μ  
2.2μ  
2.2μ  
2.2μ  
2.2μ  
2.2μ  
19  
18  
17  
16  
15  
14  
Advanced  
switch  
100k  
100k  
100k  
25k  
25k  
25k  
I2C BUS  
LOGIC  
25k  
■Fader Volume  
Gain:0dB~-63dB、-INF/1dB step  
■Bass/Treble (f0=100/10k)  
Gain:+20dB~-20dB/1dB step  
■Loudness f0=650,1.3kHz  
Input selector  
(3 single-end and 1 stereo ISO)  
Gain: 15dB~0dB/1dB step  
Input Gain  
■VOLUME  
ATT:0dB~-36dB/1dB step, -INF dB  
■Input Gain  
Gain:+20dB~0dB/1dB step  
Input Gain  
Input selector  
(3 single-end and 1 stereo ISO)  
■Output Gain  
Gain:0dB/6dB  
F1/F2/R1/R2  
25k  
100k  
25k  
25k  
VCC  
VREF  
10  
100k  
100k  
25k  
1
2
3
4
5
6
7
8
9
0.1μ  
10μ  
N.C.  
2.2μ  
CN1  
GND Isolation  
2.2μ  
D1  
2.2μ  
B1  
2.2μ  
2.2μ  
10μ  
10μ  
10μ  
VREF  
CP1  
A1  
OUTF1 OUTR1  
VCC  
(About single input C, it is possible to change from  
single input to GND Isolation input.)  
UNIT  
RESISTANCE: Ω  
CAPACITANCE: F  
Figure 17. Application Circuit Diagram  
Notes on wiring  
Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND.  
Lines of GND shall be one-point connected.  
Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.  
Lines of SCL and SDA of I2C BUS shall not be parallel if possible.  
The lines shall be shielded, if they are adjacent to each other.  
Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
22/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Thermal Derating Curve  
About the thermal design by the IC  
Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum  
ratings may degrade and destroy elements. Careful consideration must be given to the heat of the IC from the two standpoints  
of immediate damage and long-term reliability of operation.  
Reference data  
SSOP-B20  
1.5  
Measurement condition: ROHM Standard board  
board Size70×70×1.6()  
materialA FR4 grass epoxy board  
(3% or less of copper foil area)  
937mW  
1.0  
θja = 133.3/W  
0.5  
0.0  
85  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature Ta(℃)  
Figure 18. Temperature Derating Curve  
Note) Values are actual measurements and are not guaranteed.  
Power dissipation values vary according to the board on which the IC is mounted.  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
23/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Terminal Equivalent Circuit and Description  
Terminal  
Terminal Name  
Equivalent Circuit  
Terminal Description  
Voltage  
A terminal for signal input.  
The input impedance is 100k(typ).  
A1  
A2  
B1  
4.2  
B2  
D1  
D2  
A terminal for positive input of ground  
isolation amplifier.  
CP1  
4.2  
CP2  
A terminal for negative input of ground  
isolation amplifier.  
CN1  
4.2  
CN2  
A terminal for clock input of I2C BUS  
communication.  
SCL  
-
VCC  
A terminal for data input of I2C BUS  
communication.  
SDA  
-
1.65V  
GND  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
24/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Terminal  
Name  
Terminal  
Voltage  
Equivalent Circuit  
Terminal Description  
OUTF1  
OUTR1  
OUTR2  
OUTF2  
A terminal for fader output.  
4.2  
N.C.  
VCC  
GND  
-
8.5  
0
Non connect terminal  
Power supply terminal.  
Ground terminal.  
BIAS terminal.  
Voltage for reference bias of analog  
signal system. The simple pre-charge  
circuit and simple discharge circuit for  
an external capacitor are built in.  
VREF  
4.2  
The figure in the pin explanation and input/outpuuivalent circuit is reference value, it doesn’t guarantee the value.  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
25/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Operational Notes  
1. Absolute-Maximum-Rating Voltage  
When voltage is impressed to VCC exceeding absolute-maximum-rating voltage, circuit current increase rapidly, and it  
may result in property degradation and destruction of a device.  
When impressed by a VCC terminal (9pin) especially by serge examination etc., even if it includes an of operation  
voltage + serge pulse component, be careful not to impress voltage (about 14V) greatly more than  
absolute-maximum-rating voltage.  
2. About a signal input part  
1) About constant set up of input coupling capacitor  
In the signal input terminal, the constant setting of input coupling capacitor C(F) be sufficient input impedance  
RIN(Ω) inside IC and please decide. The first HPF characteristic of RC is composed.  
GdB〕  
CF〕  
0
RIN  
〕  
A(f)  
SSH  
fHz〕  
INPUT  
Figure 19. Input SHORT circuit  
(2πfCR IN)2  
A(f)  
2
1(2πfCR IN)  
2) About the input SHORT  
SHORT mode is the command which makes switch SSH =ON an input selector part and input impedance RIN of all  
terminals, and makes resistance small. Switch SSH is OFF when not choosing a SHORT command.  
A constant time becomes small at the time of this command twisting to the resistance inside the capacitor  
connected outside and LSI. The charge time of a capacitor becomes short.  
Since SHORT mode turns ON the switch of SSH and makes it low impedance, please use it at the time of a  
non-signal.  
3. About output load characteristics  
The usages of load for output are below (reference). Please use the load more than 10kΩ(TYP).  
The target output terminal  
Terminal  
No.  
7
Terminal  
Terminal  
Name  
OUTF1  
OUTF2  
Terminal  
Name  
OUTR1  
OUTR2  
No.  
8
14  
15  
VCC=8.5V  
THD+n=1%  
BW=400 to 30kHz  
Rload[Ω]  
Fig.16 Output Load Characteristic Vcc=8.5V(reference data)  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
26/28  
TSZ2211115001  
Daattaasshheeeett  
BD37503FV  
Status of this document  
The Japanese version of this document is formal specification. A customer may use this translation version only for a  
reference to help reading the formal version.  
If there are any differences in translation version of this document formal version takes priority  
Ordering Information  
B
D
3
7
5
0
E 2  
3
F
V
Part Number  
Packaging and forming specification  
Package  
FV: SSOP-B20  
E2: Embossed tape and reel  
(SSOP-B20)  
Physical Dimension Tape and Reel Information  
SSOP-B20  
<Tape and Reel information>  
6.5 0.2  
Tape  
Embossed carrier tape  
2500pcs  
20  
11  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
10  
0.15 0.1  
0.1  
0.65  
Direction of feed  
1pin  
0.22 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
Marking Diagram(s)(TOP VIEW)  
SSOP-B20(TOP VIEW)  
B D 3 7 5 0 3  
Part Number Marking  
LOT Number  
1PIN MARK  
www.rohm.co.jp  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
27/28  
Daattaasshheeeett  
BD37503FV  
Revision History  
Date  
Revision  
Changes  
03.Aug.2012  
03.Jul.2013  
001  
002  
New Release  
2/28 Figure2 Correction  
www.rohm.co.jp  
TSZ02201-0V2V0E100000-1-2  
2013.07.12 Rev.002  
© 2012 ROHM Co., Ltd. All rights reserved.  
28/28  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD37503FV-E2

Consumer Circuit, PDSO20, 6.50 X 6.40 MM, 1.45 MM HEIGHT, ROHS COMPLIANT, SSOP-20
ROHM

BD37510

Power Bipolar Transistor, 2A I(C), 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-126, Plastic/Epoxy, 3 Pin
FAIRCHILD

BD37510STU

Power Bipolar Transistor, 2A I(C), 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-126, Plastic/Epoxy, 3 Pin,
FAIRCHILD

BD37511FS

Silicon Monolithic Integrated Circuit
ROHM

BD37511FS-E2

Consumer Circuit, BICMOS, PDSO20, ROHS COMPLIANT, SSOP-20
ROHM

BD37512FS

Silicon Monolithic Integrated Circuit
ROHM

BD37512FS-E2

Consumer Circuit, BICMOS, PDSO20, SSOP-20
ROHM

BD37513FS

Silicon Monolithic Integrated Circuit
ROHM

BD37513FS-E2

Sound Processor with Built-in 2-band Equalizer
ROHM

BD37513FS_15

Sound Processor with Built-in 2-band Equalizer
ROHM

BD37514FS

Silicon Monolithic Integrated Circuit
ROHM

BD37514FS-E2

Consumer Circuit, BICMOS, PDSO20, SSOP-20
ROHM