BD4157MUV [ROHM]

Power Switch IC for ExpressCardTM; 电源开关IC的ExpressCardTM
BD4157MUV
型号: BD4157MUV
厂家: ROHM    ROHM
描述:

Power Switch IC for ExpressCardTM
电源开关IC的ExpressCardTM

外围驱动器 驱动程序和接口 开关 接口集成电路 电源开关
文件: 总25页 (文件大小:501K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Power Management Switch ICs for PCs and Digital Consumer Products  
Power Switch IC  
for ExpressCardTM  
No.11029EAT26  
BD4157MUV  
Description  
BD4157MUV is a power management switch IC for the next generation PC card (ExpressCardTM) developed by the PCMCIA.  
It conforms to the PCMCIA ExpressCardTM Standard, ExpressCardTM Compliance Checklist., and ExpressCardTM  
Implementation Guideline, and obtains Compliance ID “EC100395” from PCMCIA. The power switch offers a number of  
functions - card detector, and system status detector - which are ideally suited for laptop and desktop computers.  
Features  
1) Incorporates three low on-resistance FETs for ExpressCardTM  
.
2) Incorporates an FET for output discharge.  
3) Incorporates an enabler.  
4) Incorporates under voltage lockout (UVLO) protection.  
5) Employs an VQFN020V4040 package.  
6) Built-in thermal shutdown protector (TSD).  
7) Built-in thermal shutdown protector (TSD).  
8) Incorporates an overcurrent protection (OCP).  
9) Built-in enable signal for PLL  
10) Built-in Pull up resistance for detecting ExpressCardTM  
11) Conforms to the ExpressCardTM Standard.  
12) Conforms to the ExpressCardTM Compliance Checklist.  
13) Conforms to the ExpressCardTM Implementation Guideline.  
Applications  
Laptop and desktop computers, and other ExpressCard TM equipped digital devices.  
Product Lineup  
Parameter  
BD4157MUV  
Package  
VQFN020V4040  
“ExpressCardTM” is a registered trademark registered of the PCMCIA  
(Personal Computer Memory Card International Association).  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
1/24  
Technical Note  
BD4157MUV  
Absolute Maximum Ratings  
Parameter  
Symbol  
Ratings  
-0.34.5 *1  
-0.3V3AUX_IN+0.3 *1  
-0.3V3AUX_IN+0.3 *1  
-0.3V3AUX_IN+0.3  
-0.34.5 *1  
1.0  
Unit  
V
Input Voltage  
V3AUX_IN, V3_IN, V15_IN  
EN,CPPE#,CPUSB#,SYSR,  
PERST_IN#,RCLKEN  
Logic Input Voltage 1  
Logic Output Voltage 1  
Logic Output Voltage 2  
Output Voltage  
V
RCLKEN  
PERST#  
V3AUX,V3, V15  
IOV3AUX  
IOV3  
V
V
V
Output Current 1  
A
Output Current 2  
2.0  
A
Output Current 3  
IOV15  
2.0  
A
Power Dissipation 1  
Power Dissipation 2  
Operating Temperature Range  
Storage Temperature Range  
Pd1  
0.34 *2  
mW  
mW  
Pd2  
0.70 *3  
Topr  
-40+100  
-55+150  
+150  
Tstg  
Maximum Junction Temperature  
Tjmax  
*1 Not to exceed Pd.  
*2 Reduced by 2.7mW for each increase in Ta of 1over 25℃  
*3 Reduced by 5.6mW for each increase in Ta of 1over 25(When mounted on a board 74.2mm×74.2mm×1.6mm Glass-epoxy PCB.  
Operating Conditions (Ta=25)  
Ratings  
Parameter  
Input Voltage 1  
Symbol  
Unit  
MIN  
3.0  
MAX  
3.6  
V3AUX_IN  
V3_IN  
V
V
Input Voltage 2  
3.0  
1.35  
-0.3  
0
3.6  
1.65  
Input Voltage 3  
V15_IN  
EN  
V
Logic Input Voltage 1  
Logic Input Voltage 2  
Logic Output Voltage 1  
Logic Output Voltage 2  
Output Current 1  
3.6  
V
CPPE#,CPUSB#,SYSR,  
PERST_IN#,RCLKEN  
V3AUX_IN  
V3AUX_IN  
V3AUX_IN  
275  
V
RCLKEN  
PERST#  
IOV3AUX  
IOV3  
0
V
0
V
0
mA  
A
Output Current 2  
0
1.3  
Output Current 3  
IOV15  
0
650  
mA  
This product is not designed to offer protection against radioactive rays.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
2/24  
Technical Note  
BD4157MUV  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Ta=25, V3AUX_IN =V3_IN=3.3V, V15_IN=1.5V  
VEN=OPEN,VSYSR=OPEN,CPPE#=0V,CPUSB#=OPEN,PERST_IN#=OPEN)  
Limits  
Parameter  
Standby Current  
Symbol  
Unit  
Condition  
MIN  
-
TYP  
40  
MAX  
80  
VEN=0V  
IST  
Icc1  
Icc2  
µA  
µA  
µA  
(Include IEN, IRCLKEN)  
VSYSR=0V,  
CPPE#=OPEN  
Bias Current 1  
-
-
100  
250  
250  
500  
Bias Current 2  
[Enable]  
High Level Enable Input Voltage  
VENHI  
VENLOW  
IEN  
2.0  
-0.2  
10  
-
-
-
3.6  
0.8  
30  
V
V
Low Level Enable Input Voltage  
Enable Pin Input Current  
[Logic]  
µA  
VEN=0V  
High Level Logic Input Voltage  
VLHI  
2.0  
-
-
-
-
V
V
Low Level Logic Input Voltage  
Logic Pin Input Current  
RCLKEN Low Voltage  
VLLOW  
0.8  
-
10  
-
0
-
1
30  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
CPPE#=3.6V  
CPPE#=0V  
ICPPE#  
ICPUSB#  
ISYSR  
0
-
CPUSB#=3.6V  
CPUSB#=0V  
SYSR=3.6V  
10  
-
30  
1
0
-
10  
-
30  
1
SYSR=0V  
0
-
PERST_IN#=3.6V  
PERST_IN#=0V  
RCLKEN=3.6V  
RCLKEN=0V  
IPRT_IN#  
IRCLKEN  
10  
-
30  
1
0
-
10  
30  
VRCLKEN  
IRCLKEN  
-
-
0.1  
-
0.3  
1
V
IRCLKEN=0.5mA  
VRCLKEN=3.6V  
RCLKEN Leak Current  
[Switch V3AUX]  
µA  
On Resistance  
RV3AUX  
-
-
140  
30  
220  
150  
mΩ  
Tj=-10100℃  
Tj=-10100℃  
Tj=-10100℃  
Discharge On Resistance  
[Switch V3]  
RV3AUX Dis  
Ω
On Resistance  
RV3  
-
-
50  
30  
90  
mΩ  
Discharge On Resistance  
[Switch V15]  
RV3Dis  
150  
Ω
On Resistance  
RV15  
-
-
50  
30  
90  
mΩ  
Discharge On Resistance  
[Over Current Protection]  
V3 Over Current  
RV15Dis  
150  
Ω
OCPV3  
OCPV3AUX  
OCPV15  
1.3  
0.275  
0.65  
-
-
-
-
-
-
A
A
A
V3AUX Over Current  
V15 Over Current  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
3/24  
Technical Note  
BD4157MUV  
Limits  
TYP  
Parameter  
Symbol  
Unit  
Condition  
MIN  
MAX  
[Under Voltage Lockout]  
V3_IN UVLO OFF Voltage  
VUVLOV3_IN  
2.60  
50  
2.80  
100  
2.80  
100  
1.20  
100  
3.00  
150  
3.00  
150  
1.30  
150  
V
mV  
V
sweep up  
V3_IN Hysteresis Voltage  
VUVLOV3_IN  
sweep down  
sweep up  
V3AUX_IN UVLO OFF Voltage  
V3AUX_IN Hysteresis Voltage  
V15_IN UVLO OFF Voltage  
VUVLOV3AUX_IN 2.60  
VUVLOV3AUX_IN  
VUVLOV15_IN  
50  
1.10  
50  
mV  
V
sweep down  
sweep up  
V15_IN Hysteresis Voltage  
[POWER GOOD]  
VUVLOV15_IN  
mV  
sweep down  
V3 POWER GOOD Voltage  
PGV3  
PGV3AUX  
PGV15  
2.700 2.850 3.000  
2.700 2.850 3.000  
1.200 1.275 1.350  
V
V
V3AUX POWER GOOD Voltage  
V15 POWER GOOD Voltage  
PERST# LOW Voltage  
V
VPERST#Low  
VPERST#HIGH  
TPERST#  
-
3.0  
4
0.01  
0.1  
-
V
IPERST=0.5mA  
PERST# HIGH Voltage  
-
-
-
V
PERST# Delay Time  
20  
500  
ms  
ns  
PERST# assertion time  
[OUTPUT RISE TIME]  
V3_IN to V3  
Tast  
-
TV3  
TV3AUX  
TV15  
0.1  
0.1  
0.1  
-
-
-
3
3
3
ms  
ms  
ms  
V3AUX_IN to V3AUX  
V15_IN to V15  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
4/24  
Technical Note  
BD4157MUV  
Reference data  
CPPE#(2V/div)  
CPPE#(2V/div)  
V3(2V/div)  
SYSR(2V/div)  
V3(2V/div)  
V3(2V/div)  
RV3=3.3Ω  
V3AUX(2V/div)  
V15(1V/div)  
V3AUX(2V/div)  
RV3AUX=13.2Ω  
V3AUX(2V/div)  
V15(1V/div)  
RV15=3Ω  
V15(1V/div)  
5.0ms/div  
5.0ms/div  
Fig.1 Card Assert/ De-assert  
(Active)  
5.0ms/div  
Fig.2 Card Assert/De-assert  
(Standby)  
Fig.3 System Active  
Standby( Card Present)  
SYSR(2V/div)  
CPUSB#(2V/div)  
V3(2V/div)  
CPPE#(2V/div)  
V3(2V/div)  
V3(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V15(1V/div)  
500µs/div  
V15(1V/div)  
500µs/div  
V15(1V/div)  
5.0ms/div  
Fig.4 System Active  
Standby(No Card)  
Fig.5 Wakeup Wave Form  
(Card Assert)  
Fig.6 Wakeup Wave Form  
(USB2.0 Assert)  
SYSR(2V/div)  
V3(2V/div)  
CPPE#(2V/div)  
EN(2V/div)  
V3(2V/div)  
V3(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V15(1V/div)  
500µs/div  
V15(1V/div)  
500µs/div  
V15(1V/div)  
500µs/div  
Fig.8 Wakeup Wave Form  
Fig.7 Wakeup Wave Form  
Fig.9 Power Down Wave Form  
(Card De-assert)  
(StandbyActive)  
(Shut DownActive)  
CPUSB#(2V/div)  
V3(2V/div)  
SYSR(2V/div)  
EN(2V/div)  
V3(2V/div)  
V3(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V15(1V/div)  
V3AUX(2V/div)  
V15(1V/div)  
V15(1V/div)  
5.0ms/div  
500µs/div  
500µs/div  
Fig.10 Power Down Wave Form  
(USB2.0 De-assert)  
Fig.12 Power Down Wave Form  
Fig.11 Power Down Wave Form  
(ActiveShut Down)  
(ActiveStandby)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
5/24  
Technical Note  
BD4157MUV  
CPPE#(2V/div)  
CPPE#(2V/div)  
V3(2V/div)  
CPPE#(2V/div)  
V3(2V/div)  
V3(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
RCLKEN(2V/div)  
5.0ms/div  
PERST#(2V/div)  
PERST#(2V/div)  
5.0ms/div  
5.0ms/div  
Fig.13 PERST# Wave Form  
(Card Assert/ De-assert)  
Fig.14 RCLKEN Wave Form  
(Card Assert/ De-assert)  
Fig.15 PERST# Wave Form  
(USB2.0 Assert/ De-assert)  
CPUSB#(2V/div)  
V3(2V/div)  
PERST_IN#(2V/div)  
V3(2V/div)  
PERST_IN#(2V/div)  
V3(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
RCLKEN(2V/div)  
5.0ms/div  
RCLKEN(2V/div)  
1.0ms/div  
PERST#(2V/div)  
1.0ms/div  
Fig.16 RCLKEN Wave Form  
(USB2.0 Assert/ De-assert)  
Fig.17 PERST# Wave Form  
(PERST_IN# Input)  
Fig.18 RCLKEN Wave Form  
(PERST_IN# Input)  
V3_IN(2V/div)  
V3(2V/div)  
V15_IN(2V/div)  
V3(2V/div)  
V3AUX_IN(2V/div)  
V3(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V15(1V/div)  
500µs/div  
V3AUX(2V/div)  
V15(1V/div)  
500µs/div  
V15(1V/div)  
500µs/div  
Fig.19 Output Voltage  
Fig.21 Output Voltage  
Fig.20 Output Voltage  
(V3_IN:OFFON)  
(V15_IN:OFFON)  
(V3AUX_IN:OFFON)  
V3AUX_IN(2V/div)  
V15_IN(2V/div)  
V3_IN(2V/div)  
V3(2V/div)  
V3(2V/div)  
V3(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
V3AUX(2V/div)  
R
V3=3.3Ω  
R
V3=3.3Ω  
RV3=3.3Ω  
RV3AUX=13.2Ω  
RV15=3Ω  
RV3AUX=13.2Ω  
RV15=3Ω  
RV3AUX=13.2Ω  
RV15=3Ω  
V15(1V/div)  
V15(1V/div)  
500µs/div  
V15(1V/div)  
500µs/div  
500µs/div  
Fig.23 Output Voltage  
Fig.24 Output Voltage  
Fig.22 Output Voltage  
(V3AUX_IN:ONOFF)  
(V15_IN:ONOFF)  
(V3_IN:ONOFF)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
6/24  
Technical Note  
BD4157MUV  
Block Diagram  
3.3V/1.30A  
V3-1  
V3-2  
V3_IN1  
3
5
2
4
VD  
3.3V  
V3_IN2  
TSD,CL,UVLO  
VD  
3.3V /275mA  
V3AUX  
V3AUX_IN  
17  
15  
3.3V  
TSD,CL,UVLO_AUX  
V15_IN1  
V15_IN2  
1.5V/650mA  
V15-1  
12  
14  
11  
13  
V3AUX_IN  
1.5V  
V15-2  
V3AUX_IN  
VD  
CPPE#  
CPUSB#  
SYSR  
10  
9
Input  
logic  
RCLKEN  
18  
Power  
good  
TSD,CL,UVLO  
1
PERST#  
8
6
EN,SYSR,CPUSB#,CPPE#  
TSD  
Thermal  
V3AUX_IN  
PERST_IN#  
protection  
V3_IN,V3AUX_IN,V15_IN  
V3,V3AUX,V15  
CL  
EN  
Reference  
Block  
V3_IN  
N.C.  
20  
19  
Under  
V3AUX_IN  
UVLO  
voltage  
lock out  
VD  
Charge  
Pump  
16 TEST  
V15_IN  
UVLO_AUX  
7
GND  
Physical Dimensions  
Pin Function  
PIN No  
1
PIN NAME  
PIN FUNCTION  
Logic input pin  
V3 input pin  
4.0 0.1  
SYSR  
V3_IN1  
V3-1  
2
D4157  
3
V3 output pin  
V3 input pin  
4
V3_IN2  
V3-2  
5
V3 output pin  
6
PERST_IN# PERST# control input pin (SysReset#)  
Lot No.  
7
GND  
PERST#  
CPUSB#  
CPPE#  
V15-1  
GND pin  
S
8
Logic output pin  
Logic input pin  
9
0.08 S  
10  
11  
12  
13  
14  
15  
16  
17  
Logic input pin  
V15 output pin  
2.1 0.1  
C0.2  
V15_IN1  
V15-2  
V15 input pin  
1
5
V15 output pin  
20  
6
V15_IN2  
V3AUX  
TEST  
V15 input pin  
V3AUX output pin  
Test pin. Must be open or GND.  
V3AUX input pin 1  
16  
10  
15  
11  
1.0  
V3AUX_IN  
+0.05  
-0.04  
0.25  
0.5  
Reference clock enable signal/  
Power good signal (No delay)  
18  
RCLKEN  
VQFN020V4040 Package (Unit:mm)  
19  
20  
N.C.  
EN  
Must be open or GND.  
Enable input pin  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
7/24  
Technical Note  
BD4157MUV  
Description of block operation  
EN  
With an input of 2.0 volts or higher, this terminal goes HIGH to activate the circuit, and goes LOW to deactivate the circuit  
(with the standby circuit current of 40 μA), It discharges each output and lowers output voltage when the input falls to 0.8  
volts or less.  
V3_IN, V15_IN, and V3AUX_IN  
These are the input terminals for each channel of a 3ch switch. V3_IN and V15_IN terminals have two pins each, which  
should be short-circuited on the pc board with a thick conductor. A large current runs through these three terminals :  
(V3_IN: 1.3A; V3AUX_IN: 0.275 A; and V15_IN: 0.65 A). In order to lower the output impedance of the connected power  
supply, it is recommended that ceramic capacitors (with B-type characteristics or better) be provided between these  
terminals and the ground. Specifically, the capacitors should be on the order of 1 μF between V3_IN and GND, and  
between V15_IN and GND; and on the order of 0.1 μF between V3AUX_IN and GND.  
V3, V15, and V3AUX  
These are the output terminals for each switch. The V3 and V15 terminals have two pins each, which should be  
short-circuited on the PC board and connected to an ExpressCard connector with a thick conductor, as short as possible.  
In order to stabilize the output, it is recommended that ceramic capacitors (with B-type characteristics or better) be  
provided between these terminals and the ground. Specifically, the capacitors should be on the order of 10 μF between V3  
and GND, and between V15 and GND; and on the order of 1 μF between V3AUX and GND.  
CPPE#  
This pin is used to find whether or not a PCI-Express signal compatible card is present. Turns to “High” level with an  
input of 2.0 volts or higher, which means that no card is provided, while it turns to “Low” level when the input is lowered to  
0.8 volts or less, which means that a card is provided. Controls the ON/OFF, switch selecting the proper mode based on  
the status of the system. Pull up resistance (100kΩ~200kΩ) is built into, so the number of components is reduced.  
CPUSB#  
This pin is used to find whether or not a USB2.0 signal compatible card is present. Turns to “High” level with an input of  
2.0 volts or higher, which means that no card is provided, while it turns to “Low” level when the input is lowered to 0.8 volts  
or less, which means that a card is provided. Controls the ON/OFF switch, selecting the proper mode based on the  
system status. Pull up resistance (100kΩ~200kΩ) is built into, so the number of components is reduced.  
SYSR  
This pin is used to detect the system status. Turns to “High” level with an input of 2.0 volts or higher, which means that  
the system is activated, while it turns to “Low” level when the input is lowered to 0.8 volts or less, which means that the  
system is on standby.  
PERST_IN#  
This pin is used to control the reset signal (PERST#) to a card from the system side. (Also referred to as “SysReset#” by  
PCMCIA.) Turns to “High” level with an input of 2.0 volts or higher, and sets PERST# to “High” AND with a “Power Good”  
output. Turns to “Low” level and sets PERST# to “Low” when the input falls to 0.8 volts or less.  
PERST#  
This pin is used to send a reset signal to a PCI-Express compatible card. Reset status is determined by the outputs,  
PERST_IN#, CPPE# system status, and EN on/off status. Turns to “High” level and activates the PCI-Express  
compatible card only if each output is within the “Power Good” threshold, with the card inserted and PERST_IN# turned to  
“High” level.  
RCLKEN  
This pin is used to send an enable signal to the reference clock. Activation status is determined by the outputs, CPPE#  
system status, and EN on/off status. Turns to “High” level and activates the reference clock PLL only if each output is  
within the “Power Good” threshold, with the card kept inserted.  
TEST  
This pin is used to test, which should be short-circuited to the GND. When it is short-circuited to V3AUX_IN, UVLO  
(V3_IN, V15_IN) turns OFF.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
8/24  
Technical Note  
BD4157MUV  
Timing Chart  
Power ON/OFF Status of ExpressCardTM  
System Status  
Power Switch Status  
ExpressCardTM Module  
Status  
Primary  
(+3.3V and +1.5V)  
Auxiliary  
(3.3V Aux)  
Primary  
OFF  
Auxiliary  
OFF  
Don’t care  
De-asserted  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
ON  
ON  
Asserted  
De-asserted  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
Asserted Before This  
Asserted After This  
OFF  
ExpressCardTM States Transition Diagram  
SYSR=L  
SYSR=HL  
CP#=H  
CP#=LH  
SYSR=H  
CP#=HL  
SYSR=L  
SYSR=LH  
CP#=L  
SYSR=HL  
CP#=L  
CP#=HL  
V3AUX=OFF  
V15=V3=OFF  
V3AUX=ON  
V15=V3=ON  
V3AUX=ON  
V15=V3=OFF  
SYSR=H  
SYSR=LH  
CP#=L  
CP#=LH  
SYSR=HL  
CP#=L  
SYSR=H  
CP#=H  
SYSR=L  
CP#=L  
System Status  
:SYSR=L  
:SYSR=H  
:SYSR=HL  
Card Status  
Stand-by Status  
Card Asserted Status  
:CP#=L  
ON Status  
Card De-asserted Status  
:CP#=H  
From ON to Stand-by Status  
From De-asserted to Asserted Status  
From Asserted to De-asserted Status  
:CP#=HL  
:CP#=LH  
From Stand-by to ON Status :SYSR=LH  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
9/24  
Technical Note  
BD4157MUV  
ExpressCardTM Timing Diagrams  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
PERST_IN#  
CPPE#  
a
Card Power  
(V3AUX,V3,V15)  
Tpd  
a
Min  
System Dependent  
100  
Max  
Units  
µs  
RCLKEN  
PERST#  
b
-
b
c
System Dependent  
System Dependent  
d
REFCLK  
g
c
d
e
100  
-
µs  
ms  
ms  
e
f
4
-
20  
10  
f
g
Timing Signals-Card Present Before Host Power is On  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
PERST_IN#  
CPUSB#  
a
Card Power  
(V3AUX,V3,V15)  
RCLKEN  
PERST#  
Tpd  
a
Min  
Max  
Units  
ms  
REFCLK  
(Either Tri-Stated or Off)  
System Dependent  
10  
b
b
-
Timing Signals-USB Present Before Host Power is On  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
10/24  
Technical Note  
BD4157MUV  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
PERST_IN#  
CPPE#  
Card Power  
(V3AUX,V3,V15)  
RCLKEN  
PERST#  
REFCLK  
Tpd  
a
Min  
Max  
100  
10  
Units  
µs  
a
-
-
b
ms  
b
c
d
c
System Dependent  
System Dependent  
e
d
e
4
10  
ms  
Timing Signals Host Power is On Prior to Card Insertion  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
PERST_IN#  
CPUSB#  
Card Power  
(V3AUX,V3,V15)  
RCLKEN  
PERST#  
Tpd  
a
Min  
-
Max  
10  
Units  
ms  
REFCLK  
(Either Tri-Stated or Off)  
a
Timing Signals Host Power is On Prior to USB Insertion  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
11/24  
Technical Note  
BD4157MUV  
Application Information (continued)  
Host Power  
(V3AUX_IN)  
Host Power  
(V3_IN,V15_IN,SYSR)  
PERST_IN#  
CPPE#  
Card Power  
(V3AUX,V3,V15)  
RCLKEN  
PERST#  
REFCLK  
(Either Tri-Stated or Off)  
Timing Signals-Host System In Standby Prior to Card Insertion  
Host Power  
(V3AUX_IN)  
Host Power  
(V3_IN,V15_IN,SYSR)  
PERST_IN#  
CPUSB#  
Card Power  
(V3AUX,V3,V15)  
RCLKEN  
PERST#  
REFCLK  
(Either Tri-Stated or Off)  
Timing Signals-Host System In Standby Prior to USB Insertion  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
12/24  
Technical Note  
BD4157MUV  
Host Power  
(V3AUX_IN,  
V3_IN,V15_IN)  
c
PERST_IN  
CPPE#  
Card Power  
(V3AUX,V3,V15)  
d
RCLKEN  
PERST#  
REFCLK  
a
Tpd  
a
Min  
-
Max  
2
Units  
µs  
e
b
System Dependent  
System Dependent  
Load Dependent  
b
c
d
e
-
2
µs  
Timing Signals Host Controlled Power Down  
Host Power  
(V3AUX_IN,  
V3_IN,V15_IN)  
a
PERST_IN  
CPUSB#  
Card Power  
(V3AUX,V3,V15)  
b
RCLKEN  
PERST#  
Tpd  
a
Min  
Max  
Units  
System Dependent  
Load Dependent  
b
REFCLK  
(Either Tri-Stated or Off)  
Timing Signals Host Controlled Power Down  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
13/24  
Technical Note  
BD4157MUV  
Application Information (continued)  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
e
EN  
Tpd  
Min  
Max  
Units  
CPPE#  
f
Card Power  
(V3AUX,V3,V15)  
a
b
c
d
e
f
Load Dependent  
System Dependent  
-
-
500  
2
ns  
µs  
RCLKEN  
a
d
c
PERST#  
b
System Dependent  
System Dependent  
REFCLK  
Timing Signals Controlled Power Down When EN Asserted  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
b
EN  
CPUSB#  
c
Card Power  
(V3AUX,V3,V15)  
a
RCLKEN  
PERST#  
Tpd  
a
Min  
Max  
Units  
Load Dependent  
System Dependent  
System Dependent  
b
REFCLK  
(Either Tri-Stated or Off)  
c
Timing Signals Controlled Power Down When EN Asserted  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
14/24  
Technical Note  
BD4157MUV  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
RERST_IN#  
CPPE#  
Card Power  
(V3AUX,V3,V15)  
a
RCLKEN  
PERST#  
d
b
Tpd  
a
Min  
Load Dependent  
500  
System Dependent  
Max  
Units  
ns  
b
-
REFCLK  
c
c
d
-
2
µs  
Timing Signals-Surprise Card Removal  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
RERST_IN#  
CPUSB#  
Card Power  
(V3AUX,V3,V15)  
a
RCLKEN  
PERST#  
Tpd  
a
Min  
Max  
Units  
Load Dependent  
REFCLK  
(Either Tri-Stated or Off)  
Timing Signals-Surprise USB Removal  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
15/24  
Technical Note  
BD4157MUV  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
SYSR  
CPPE#  
Card Power  
(V3AUX)  
a
Card Power  
(V3,V15)  
Tpd  
a
Min  
Max  
Units  
b
System Dependent  
b
c
PERST#  
REFCLK  
b
4
-
20  
2
ms  
µs  
e
d
c
d
System Dependent  
System Dependent  
e
RCLKEN=OPEN, PERST_IN=3.3V,EN=3.3V  
Timing Signals Power state transitions (Signal applies for SYSR)  
Host Power  
(V3AUX_IN,V3_IN,  
V15_IN)  
SYSR  
CPUSB#  
Card Power  
(V3AUX)  
a
Card Power  
(V3,V15)  
Tpd  
a
Min  
Max  
Units  
System Dependent  
PERST#  
REFCLK  
(Either Tri-Stated or Off)  
RCLKEN=OPEN, PERST_IN=3.3V,EN=3.3V  
Timing Signals Power state transitions (Signal applies for SYSR)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
16/24  
Technical Note  
BD4157MUV  
V3AUX_IN  
EN  
V3_IN,SYSR  
V15_IN  
PERST_IN#  
CPPE#  
Card Power  
(V3AUX)  
Tpd  
a
Min  
Max  
Units  
System Dependent  
a
Card Power  
(V3,V15)  
b
4
-
20  
2
ms  
µs  
b
b
c
c
PERST#  
REFCLK  
d
System Dependent  
System Dependent  
e
d
e
RCLKEN=OPEN, PERST_IN# is asserted in advance of power changes.  
Timing Signals – Power state transitions  
(SYSR and EN are connected to V3_IN/V3AUX_IN.)  
V3AUX_IN  
EN  
V3_IN,SYSR  
V15_IN  
PERST_IN#  
CPUSB#  
Card Power  
(V3AUX)  
a
Card Power  
(V3,V15)  
PERST#  
Tpd  
a
Min  
Max  
Units  
REFCLK  
(Either Tri-Stated or Off)  
System Dependent  
RCLKEN=OPEN, PERST_IN# is asserted in advance of power changes.  
Timing Signals – Power state transitions  
(SYSR and EN are connected to V3_IN/V3AUX_IN.)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
17/24  
Technical Note  
BD4157MUV  
Output Condition List(Output)  
Power Supply  
Logic input  
SYSR  
Output  
State  
V3AUX_IN  
0
V3_IN  
V15_IN  
EN  
CPPE# CPUSB# V3/V15  
V3AUX  
OFF  
OFF  
×
×
×
×
×
×
×
×
×
OFF  
OFF  
Shut down  
1
1
1
1
×
×
×
1
×
×
×
1
0
1
1
1
OFF  
1
×
0
1
0
OFF  
OFF  
OFF  
OFF  
ON  
ON  
Stand-by  
10  
×
ON  
Stand-by  
ON  
0
1
×
×
OFF  
OFF  
1
×
0
1
0
OFF  
ON  
OFF  
ON  
×
ON  
ON  
Logic input  
Logic output  
State  
PERST_IN#  
RCLKEN(Input)  
PERST#  
0
RCLKEN  
OFF  
×
×
×
×
×
0
0
0
0
Shut down  
Stand-by  
×
×
×
0
0
0
ON(No Card)  
0
0
1
1
0
0
1
1
Hiz  
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
ON(CPUSB#=0)  
ON(CPPE#=0)  
Hiz  
0
Hiz  
0
Hiz  
0
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
18/24  
Technical Note  
BD4157MUV  
Application Circuit (Circuit for ExpressCardTM Compliance Checklist)  
CPPE#  
RCLKEN  
CPPE#(10pin)  
RCLKEN(18pin)  
V3_IN(2,4pin)  
3.3V  
3.3V  
CPUSB#  
CPUSB#(9pin)  
3.3V  
V3(3,5pin)  
V3AUX_IN(17pin)  
V15_IN(12,14pin)  
PERST_IN#(6pin)  
EN(20pin)  
BD4157MUV  
3.3V  
1.5V  
1.5V  
V3AUX(15pin)  
SysReset#  
V15(11,13pin)  
PERST#  
PERST#(8pin)  
TEST(16pin)  
SYSR(1pin)  
GND(7pin)  
Heat loss  
Thermal design should allow the device to operate within the following conditions. Note that the temperatures listed are the  
allowed temperature limits. Thermal design should allow sufficient margin from these limits.  
1. Ambient temperature Ta can be no higher than 100.  
2. Chip junction temperature Tj can be no higher more than 150.  
Chip junction temperature Tj can be determined as follows:  
Chip junction temperature Tj is calculated from ambient temperature Ta:  
Tj=Ta+θj-a×W  
Reference value>  
θj-c:VQFN020V4040 367.6/W IC only  
178.6/W 1-layer (copper foil density 10.29mm2)  
56.6/W  
35.1/W  
4-layer (copper foil density 10.29mm2/ 2,3-layer copper foil density 5505mm2 )  
4-layer (copper foil density 5505mm2)  
Substrate size 74.2×74.2×1.6mm3 (thermal vias in the board.)  
Most of heat loss in the BD4157MUV occurs at the output switch. The power lost is determined by multiplying the  
on-resistance by the square of output current of each switch.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
19/24  
Technical Note  
BD4157MUV  
Equivalent Circuit  
1pin<SYSR>  
2,4pin<V3_IN>  
8pin<PERST#>  
11,13pin<V15>  
16pin<TEST>  
3,5pin<V3>  
V3_IN  
V3AUX_IN  
V3AUX_IN  
V3  
6pin<PERST_IN#>  
9pin<CPUSB#>  
12,14pin<V15_IN>  
17pin<V3AUX_IN>  
V3AUX_IN  
V3AUX_IN  
V3AUX_IN  
V3AUX_IN  
V3AUX_IN  
10pin<CPPE#>  
V3_IN  
V3AUX_IN  
V3AUX_IN  
V15  
15pin<V3AUX>  
V3AUX_IN  
V3AUX  
18pin<RCLKEN >  
20pin<EN>  
V3AUX_IN  
V3AUX_IN  
V3AUX_IN  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
20/24  
Technical Note  
BD4157MUV  
Notes for use  
1. Absolute maximum ratings  
Although quality is rigorously controlled, the device may be destroyed when applied voltage, operating temperature, etc.  
exceeds its absolute maximum rating. Because the source (short mode or open mode) cannot be identified once the  
IC is destroyed, it is important to take physical safety measures such as fusing when implementing any special mode  
that operates in excess of absolute rating limits.  
2. Thermal design  
Consider allowable loss (Pd) under actual operating conditions and provide sufficient margin in the thermal design.  
3. Terminal-to-terminal short-circuit and mis-mounting  
When the mounting the IC to a printed circuit board, take utmost care to assure the position and orientation of the IC are  
correct. In the event that the IC is mounted erroneously, it may be destroyed. The IC may also be destroyed when a  
short-circuit is caused by foreign matter introduced into the clearance between outputs, or between an output and  
power-GND.  
4. Operation in strong electromagnetic fields  
Using the IC in strong electromagnetic fields may cause malfunctions. Exercise caution in respect to electromagnetic  
fields.  
5. Built-in thermal shutdown protection circuit  
This IC incorporates a thermal shutdown protection circuit (TSD circuit). The working temperature is 175(standard  
value) with a -15(standard value) hysteresis width. When the IC chip temperature rises the TSD circuit is activated,  
while the output terminal is brought to the OFF state. The built-in TSD circuit is intended exclusively to shut down the  
IC in a thermal runaway event, and is not intended to protect the IC or guarantee performance in these conditions.  
Therefore, do not operate the IC after with the expectation of continued use or subsequent operation once this circuit is  
activated.  
6. Capacitor across output and GND  
When a large capacitor is connected across the output and GND, and the V3AUX_IN is short-circuited with 0V or GND  
for any reason, current charged in the capacitor flows into the output and may destroy the IC. Therefore, use a  
capacitor smaller than 1000 μF between the output and GND.  
7. Set substrate inspection  
Connecting a low-impedance capacitor to a pin when running an inspection with a set substrate may produce stress on  
the IC. Therefore, be certain to discharge electricity at each process of the operation. To prevent electrostatic  
accumulation and discharge in the assembly process, thoroughly ground yourself and any equipment that could sustain  
ESD damage, and continue observing ESD-prevention procedures in all handling, transfer and storage operations.  
Before attempting to connect the set substrate to the test setup, make certain that the power supply is OFF. Likewise,  
be sure the power supply is OFF before removing the substrate from the test setup.  
8. IC terminal input  
This integrated circuit is a monolithic IC, with P substrate and P+ isolation between elements.  
The P layer and N layer of each element form a, PN junction. When the potential relation is GND>terminal A>terminal  
B, the PN junction works as a diode, and when terminal B>GND terminal A, the PN junction operates as a parasitic  
transistor.  
Parasitic elements inevitably form, due to the nature of the IC construction. The operation of the parasitic element  
gives rise to mutual interference between circuits and results in malfunction, and eventually, breakdown. Consequently,  
take utmost care not to use the IC in a way that would cause the parasitic element to actively operate, such as applying  
voltage lower than GND (P substrate) to the input terminal.  
Resistor  
Transistor (NPN)  
B
Pin A  
Pin B  
Pin B  
C
E
Pin A  
B
C
E
N
N
N
P+  
P+  
P+  
P+  
N
P
P
N
N
Parasitic  
element  
Parasitic  
element  
P substrate  
P substrate  
GND  
GND  
GND  
GND  
Parasitic element  
Parasitic element  
Other adjacent elements  
9. GND wiring pattern  
If both a small signal GND and a high current GND are present, it is recommended that the patterns for the high current  
GND and the small signal GND be separated. Proper grounding to the reference point of the set should also be  
provided. In this way, the small signal GND voltage will by unaffected by the change in voltage stemming from the  
pattern wiring resistance and the high current. Also, pay special attention to avoid undesirable wiring pattern  
fluctuations in any externally connected GND component.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
21/24  
Technical Note  
BD4157MUV  
10. Electrical characteristics  
The electrical characteristics in the Specifications may vary, depending on ambient temperature, power supply voltage,  
circuit(s) externally applied, and/or other conditions. Therefore, please check all such factors, including transient  
characteristics, that could affect the electrical characteristics.  
11. Capacitors applied to input terminals  
The capacitors applied to the input terminals (V3_IN, V3AUX_IN and V15_IN) are used to lower the output impedance  
of the connected power supply. An increase in the output impedance of the power supply may result in destabilization  
of input voltages (V3_IN, V3AUX_IN and V15_IN). It is recommended that a low-ESR capacitor be used, with a lower  
temperature coefficient (change in capacitance vs. change in temperature), Recommended capacitors are on the order  
of 0.1 μF for V3AUX_IN, and1 μF for V3_IN and V15_IN. However, they must be thoroughly checked at the  
temperature and with the load range expected in actual use, because capacitor selection depends to a significant  
degree on the characteristics of the input power supply to be used and the conductor pattern of the PC board.  
12. Capacitors applied to output terminals  
Capacitors for the output terminals (V3, V3_AUX, and V15), should be connected between each of the output terminals  
and GND. A low-ESR, low temperature coefficient output capacitor is recommended-on the order of 1 μF for V3 and  
V15 terminals, and 1μF less for V3_AUX. However, they must be thoroughly checked at the temperature and with the  
load range expected in actual use, because capacitor selection depends to a significant degree on the temperature  
and the load conditions.  
13. Not of a radiation-resistant design.  
14. Allowable loss (Pd)  
With respect to the allowable loss, please refer to the thermal derating characteristics shown in the Exhibit, which serves  
as a rule of thumb. When the system design causes the IC to operate in excess of the allowable loss, chip temperature  
will rise, reducing the current capacity and decreasing other basic IC functionality. Therefore, design should always  
enable IC operation within the allowable loss only.  
15. Operating range  
Basic circuit functions and operations are warranted within the specified operating range the working ambient  
temperature range. Although reference values for electrical characteristics are not warranted, no rapid or extraordinary  
changes in these characteristics are expected, provided operation is within the normal operating and temperature  
range.  
16. The applied circuit example diagrams presented here are recommended configurations. However, actual design  
depends on IC characteristics, which should be confirmed before operation. Also, note that modifying external circuits  
may impact static, noise and other IC characteristics, including transient characteristics. Be sure to allow sufficient  
margin in the design to accommodate these factors.  
17. Wiring to the input terminals (V3 IN, V3AUX IN, and V15 IN) and output terminals (V3, V3AUX and V15) of the built-in  
FET should be carried out with special care. Using unnecessarily long and/or thin conductors may decrease output  
voltage and degrade other characteristics.  
18. Heatsink  
The heatsink is connected to the SUB, which should be short-circuited to the GND. Proper heatsink soldering to the  
PC board should enable lower thermal resistance.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
22/24  
Technical Note  
BD4157MUV  
Power Dissipation  
BD4157MUV  
4.0  
3.56W  
3.5  
4-layer (copper foil density 5505mm2)  
θj-a=35.1/W  
3.0  
4-layer (copper foil density 10.29mm2)  
(2,3-layer copper foil density 5505mm2)  
θj-a=56.6/W  
2.5  
2.21W  
2.0  
1.5  
1-layer (copper foil density 10.29mm2)  
θj-a=178.6/W  
IC only  
θj-a=367.6/W  
1.0  
0.70W  
0.5  
0.34W  
0.0  
0
25  
50  
75  
100  
125  
150  
105  
Ambient Temperature: Ta(℃)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
23/24  
Technical Note  
BD4157MUV  
Ordering part number  
B
D
4
5
1
7
M U  
V
-
E
2
Part No.  
Part No.  
Package  
MUV:VQFN020V4040  
Packaging and forming specification  
E2: Embossed tape and reel  
VQFN020V4040  
<Tape and Reel information>  
4.0 0.1  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
1PIN MARK  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
S
(
)
0.08  
S
2.1 0.1  
C0.2  
0.5  
1
5
20  
16  
6
10  
15  
11  
+0.05  
Direction of feed  
1pin  
0.25  
-0.04  
1.0  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.A  
24/24  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD416

Power Bipolar Transistor, 1A I(C), 60V V(BR)CEO, 1-Element, PNP, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin, TO-220, 3 PIN
MICRO-ELECTRO

BD417

TRANSISTOR | BJT | NPN | 80V V(BR)CEO | 1A I(C) | TO-220AB
ETC

BD418

TRANSISTOR,BJT,PNP,80V V(BR)CEO,1A I(C),TO-220AB
ONSEMI

BD41931

SINGLE PHASE MOULDED BRIDGES 0,8 AMP TO 1,5 AMP
ETC

BD4201FV

Battery Backup IC
ROHM

BD4210EKN

Strobe Charge Control IC
ROHM

BD4210EKN-E2

Switching Regulator, ROHS COMPLIANT, QFN-28
ROHM

BD4211FV

Strobe Charge Control IC
ROHM

BD4211FV-E1

Power Management Circuit, PDSO8
ROHM

BD4211FV-E2

Switching Regulator, PDSO8, ROHS COMPLIANT, SSOP-8
ROHM

BD4215NUV

Silicon monolithic integrated circuit
ROHM

BD4216NUV

Silicon Monolithic Integrated Circuit
ROHM