BD433M2EFJ-C [ROHM]

BD4xxM2-C系列是45V耐压、输出电压精度±2%、输出电流200mA、消耗电流40µA的低待机电流稳压器,是输出电压为3.3V或5.0V的固定型产品。本IC适合用来降低蓄电池直连系统的消耗电流。可选择有无输出关断功能,相应产品在向CTL端子施加HIGH电压时元件输出ON,施加LOW电压时元件输出OFF。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。We recommend BD433U2EFJ-C for your new development. It uses different production lines for the purpose of improving production efficiency. Electric characteristics noted in Datasheet does not differ between Production Line.;
BD433M2EFJ-C
型号: BD433M2EFJ-C
厂家: ROHM    ROHM
描述:

BD4xxM2-C系列是45V耐压、输出电压精度±2%、输出电流200mA、消耗电流40µA的低待机电流稳压器,是输出电压为3.3V或5.0V的固定型产品。本IC适合用来降低蓄电池直连系统的消耗电流。可选择有无输出关断功能,相应产品在向CTL端子施加HIGH电压时元件输出ON,施加LOW电压时元件输出OFF。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。We recommend BD433U2EFJ-C for your new development. It uses different production lines for the purpose of improving production efficiency. Electric characteristics noted in Datasheet does not differ between Production Line.

电池 过电流保护 电容器 陶瓷电容器 稳压器
文件: 总37页 (文件大小:1442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
200-mA 3.3-V or 5.0-V Output  
LDO Regulators  
BD4xxM2-C Series  
General Description  
Features  
The BD4xxM2-C series are low quiescent regulators  
featuring 45 V absolute maximum voltage, and output  
voltage accuracy of ±2 % ( 3.3 V or 5.0 V: Typ.), 200 mA  
output current and 40 μA (Typ.) current consumption.  
These regulators are therefore ideal for applications  
requiring a direct connection to the battery and a low  
current consumption.  
Qualified for Automotive Applications  
Wide Temperature Range:  
Wide Operating Input Range:  
Low Quiescent Current:  
Output Current:  
-40 °C to +150 °C  
3.0 V to 42 V  
40 μA (Typ.)  
200 mA  
High Output Voltage Accuracy:  
Output Voltage:  
±2 %  
3.3 V or 5.0 V (Typ.)  
A logical “HIGH” at the CTL pin enables the device and  
“LOW” at the CTL pin not enables the device.  
(Only W: Includes switch)  
Ceramic capacitors can be used for compensation of the  
output capacitor phase. Furthermore, these ICs also  
feature overcurrent protection to protect the device from  
damage caused by short-circuiting and an integrated  
thermal shutdown to protect the device from overheating  
at overload conditions.  
Enable Input (Only W: Includes Enable Input)  
Over Current Protection (OCP)  
Thermal Shutdown Protection (TSD)  
AEC-Q100 Qualified  
Packages  
EFJ: HTSOP-J8  
W (Typ.) x D (Typ.) x H (Max.)  
4.90 mm x 6.00 mm x 1.00 mm  
FP3: SOT223-4F  
6.53 mm x 7.00 mm x 1.80 mm  
Figure 1. Package Outlook  
Applications  
Automotive  
(body, audio system, navigation system, etc.)  
Typical Application Circuits  
Components externally connected: 0.1 µF CIN, 10 µF COUT (Typ.)  
*Electrolytic, Tantalum and Ceramic capacitors can be used.  
4:GND  
8:VCC  
7:N.C.  
6:N.C.  
5:GND  
BD4xxM2WFP3-C  
CIN  
BD4xxM2EFJ-C  
1:VCC  
2:CTL  
3:VOUT  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
COUT  
CIN  
COUT  
BD433 / 450M2WFP3-C  
BD433 / 450M2WEFJ-C  
BD433 / 450M2EFJ-C  
BD433 / 450M2FP3-C  
HTSOP-J8  
SOT223-4F  
Figure 2. Typical Application Circuits  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
1/34  
TSZ2211114001  
Daattaasshheeeett  
BD4xxM2-C Series  
Ordering Information  
B
D
4
x
x
M
2
W
E
F
J -  
C
E 2  
Part  
Number  
Output Voltage  
Output Current  
2: 200 mA  
Enable Input  
Package  
Packaging and Forming  
Specification  
33: 3.3 V  
50: 5.0 V  
W: Includes  
Enable  
EFJ: HTSOP-J8  
FP3: SOT223-4F  
E2: Embossed Tape and Reel  
Input  
Lineup  
Output Current  
Output Voltage  
(Typ.)  
Enable  
Package Type  
Orderable Part Number  
Ability  
Input *1  
SOT223-4F  
HTSOP-J8  
SOT223-4F  
HTSOP-J8  
SOT223-4F  
HTSOP-J8  
SOT223-4F  
HTSOP-J8  
BD433M2WFP3-CE2  
BD433M2WEFJ-CE2  
BD433M2FP3-CE2  
BD433M2EFJ-CE2  
BD450M2WFP3-CE2  
BD450M2WEFJ-CE2  
BD450M2FP3-CE2  
BD450M2EFJ-CE2  
3.3 V  
200 mA  
5.0 V  
*1 : Includes Enable Input.  
: Not includes Enable Input.  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
2/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Pin Configurations  
HTSOP-J8  
(Top View)  
SOT223-4F  
(Top View)  
4 (FIN)  
1
2
3
Figure 3. Pin Configuration  
Pin Descriptions  
BD433 / 450M2WEFJ-C  
BD433 / 450M2WFP3-C  
Pin No.  
Pin Name  
VOUT  
N.C.  
Function  
Pin No.  
Pin Name  
VCC  
Function  
1
2
3
4
5
6
7
8
Output pin  
Not Connected  
Not Connected  
Not Connected  
Ground Pin  
1
Supply Voltage Input Pin  
Output Control Pin  
Output Pin  
2
3
CTL  
N.C.  
VOUT  
GND  
N.C.  
4 (FIN)  
Ground Pin  
GND  
N.C.  
Not Connected  
Output Control Pin  
Supply Voltage Input Pin  
CTL  
VCC  
BD433 / 450M2EFJ-C  
BD433 / 450M2FP3-C  
Pin No.  
Pin Name  
VOUT  
N.C.  
Function  
Output Pin  
Pin No.  
Pin Name  
VCC  
Function  
Supply Voltage Input Pin  
Ground Pin  
1
2
3
4
5
6
7
8
1
Not Connected  
Not Connected  
Not Connected  
Ground Pin  
2
3
GND  
N.C.  
VOUT  
GND  
Output Pin  
N.C.  
4 (FIN)  
Ground Pin  
GND  
N.C.  
Not Connected  
Not Connected  
Supply Voltage Input Pin  
N.C.  
VCC  
* N.C. Pin is recommended to short with GND.  
* N.C. Pin can be open because it isn’t connect it inside of IC.  
* Exposed die pad is need to be connected to GND.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
3/34  
Daattaasshheeeett  
BD4xxM2-C Series  
Block Diagrams  
BD433 / 450M2WEFJ-C  
BD433 / 450M2EFJ-C  
GND (5PIN)  
VCC (8PIN)  
N.C. (7PIN)  
N.C. (6PIN)  
PREREG  
VREF  
DRIVER  
OCP  
TSD  
VOUT (1PIN)  
N.C. (2PIN)  
N.C. (3PIN)  
N.C. (4PIN)  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
4/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
BD433 / 450M2WFP3-C  
GND (FIN)  
CTL  
PREREG  
VREF  
DRIVER  
OCP  
TSD  
VCC (1PIN)  
CTL (2PIN)  
VOUT (3PIN)  
BD433 / 450M2FP3-C  
GND (FIN)  
PREREG  
VREF  
DRIVER  
OCP  
TSD  
VCC (1PIN)  
GND (2PIN)  
VOUT (3PIN)  
Figure 4. Block Diagrams  
5/34  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Description of Blocks  
Block Name  
Function  
Description of Blocks  
A logical “HIGH” ( 2.8 V ) at the CTL pin enables the device  
and “LOW” ( 0.8 V ) at the CTL pin not enable the device.  
CTL *1  
PREREG  
TSD  
Control Output Voltage ON/OFF  
Internal Power Supply  
Power Supply for Internal Circuit  
To protect the device from overheating.  
If the chip temperature ( Tj ) reaches ca. 175 °C ( Typ. ),  
the output is turned off.  
Thermal Shutdown Protection  
Reference Voltage  
VREF  
Generate the Reference Voltage  
Drive the Output MOS FET  
DRIVER  
OCP  
Output MOS FET Driver  
Over Current Protection  
To protect the device from damage caused by over current.  
If the output current reaches ca. 550 mA ( Typ.),  
the output is turned off.  
*1 Applicable for product with Enable Input.  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
6/34  
TSZ2211115001  
29.Oct.2013 Rev.003  
Daattaasshheeeett  
BD4xxM2-C Series  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
CTL  
Ratings  
-0.3 to +45.0  
-0.3 to +45.0  
-0.3 to +8.0  
0.75  
Unit  
V
*1  
*2  
Supply Voltage  
Output Control Voltage  
Output Voltage  
V
VOUT  
Pd  
V
*3  
*3  
HTSOP-J8  
SOT223-4F  
W
W
°C  
°C  
°C  
V
Power Dissipation  
Pd  
0.60  
Tj  
Junction Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
ESD withstand Voltage (HBM)  
-40 to +150  
-55 to +150  
+150  
Tstg  
Tjmax  
VESD,HBM  
*4  
±2000  
*1  
*2  
Do not exceed Pd.  
Applicable for product with Enable Input.  
The start up orders of power supply (VCC) and the CTL pin do not influence if the voltage is within the operation power supply voltage range.  
HTSOP-J8 mounted on 114.3 mm x 76.2 mm x 1.6 mmt Glass-Epoxy PCB based on JEDEC. If Ta 25 °C, reduce by 6.0 mW/°C.  
(1-layer PCB: Copper foil area on the reverse side of PCB:0 mm x 0 mm)  
SOT223-4F mounted on 114.3 mm x 76.2 mm x 1.6 mmt Glass-Epoxy PCB based on JEDEC. If Ta 25 °C, reduce by 4.8 mW/°C.  
(1-layer PCB: Copper foil area on the reverse side of PCB:0 mm x 0 mm)  
*3  
*4  
ESD susceptibility Human Body Model “HBM”  
Operating Conditions (-40 °C Tj +150 °C)  
Parameter  
Supply Voltage ( IOUT 200 mA )  
Supply Voltage ( IOUT 100 mA )  
Supply Voltage ( IOUT 200 mA )  
Supply Voltage ( IOUT 100 mA )  
Output Control Voltage  
Symbol  
VCC  
VCC  
VCC  
VCC  
CTL  
Min.  
4.3  
3.9  
5.8  
5.5  
0
Max.  
42.0  
42.0  
42.0  
42.0  
42.0  
Unit  
V
*1  
*1  
*2  
*2  
*3  
*4  
V
V
V
V
Start-Up Voltage  
VCC  
IOUT  
Tj  
V
3.0  
0
Output Current  
mA  
°C  
200  
Junction Temperature Range  
-40  
+150  
*1  
*2  
*3  
*4  
BD433M2WEFJ-C / BD433M2WFP3-C / BD433M2EFJ-C / BD433M2FP3-C  
BD450M2WEFJ-C / BD450M2WFP3-C / BD450M2EFJ-C / BD450M2FP3-C  
Applicable for product with Enable Input  
When IOUT = 0 mA  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
7/34  
Daattaasshheeeett  
BD4xxM2-C Series  
Thermal Resistance  
Parameter  
Symbol  
Min.  
Max.  
Unit  
HTSOP-J8 Package  
Junction to Ambient  
*1  
*1  
θja  
θjc  
43.1  
10  
°C/W  
°C/W  
Junction to Case (bottom)  
SOT223-4F Package  
Junction to Ambient  
*2  
*2  
θja  
θjc  
83.3  
17  
°C/W  
°C/W  
Junction to Case (bottom)  
*1  
*2  
HTSOP-J8 mounted on 114.3 mm x 76.2 mm x 1.6 mmt Glass-Epoxy PCB based on JEDEC.  
(4-layer PCB: Copper foil on the reverse side of PCB:74.2 mm x 74.2 mm)  
SOT223-4F mounted on 114.3 mm x 76.2 mm x 1.6 mmt Glass-Epoxy PCB based on JEDEC.  
(4-layer PCB: Copper foil on the reverse side of PCB:74.2 mm x 74.2 mm)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
8/34  
Daattaasshheeeett  
BD4xxM2-C Series  
Electrical Characteristics  
(Unless otherwise specified, -40 °C Tj +150 °C, VCC = 13.5 V, CTL = 5 V(*1), IOUT = 0 mA.  
The typical value is defined at Tj = 25 °C.)  
Limit  
Parameter  
Symbol  
Ishut *1  
Unit  
μA  
μA  
μA  
V
Conditions  
Min.  
Typ.  
Max.  
5.0  
CTL = 0 V,  
Shut Down Current  
2.0  
Tj 125 °C  
IOUT = 0 mA,  
40  
90  
Tj 125 °C  
Circuit Current  
Output Voltage  
Icc  
IOUT 200 mA,  
Tj 150 °C  
40  
150  
5.10  
5.10  
3.37  
3.37  
0.35  
0.45  
6 V VCC 42 V,  
0 mA IOUT 50 mA  
6 V VCC 42 V,  
IOUT 200 mA  
6 V VCC 42 V,  
0 mA IOUT 50 mA  
6 V VCC 42 V,  
IOUT 200 mA  
4.90  
4.80  
3.23  
3.16  
5.00  
5.00  
3.30  
3.30  
0.16  
0.20  
65  
VOUT *2  
VOUT *3  
V
V
V
VCC = VOUT x 0.95 (= 4.75V: Typ.),  
IOUT = 100 mA  
ΔVd *2  
ΔVd *3  
R.R.  
V
Dropout Voltage  
Ripple Rejection  
VCC = VOUT x 0.95 (= 3.135V: Typ.),  
IOUT = 100 mA  
V
f = 120 Hz, ein = 1 Vrms,  
IOUT = 100 mA  
55  
dB  
Line Regulation  
Reg.I  
Reg.L  
TSD  
10  
10  
30  
30  
mV  
mV  
°C  
8 V VCC 16 V  
10 mA 100 mA  
Tj at TSD ON  
Load Regulation  
Thermal Shut Down  
175  
*1 Applicable for product with Enable Input.  
*2 For BD450M2WEFJ-C / BD450M2WFP3-C / BD450M2EFJ-C / BD450M2FP3-C  
*3 For BD433M2WEFJ-C / BD433M2WFP3-C / BD433M2EFJ-C / BD433M2FP3-C  
Electrical Characteristics ( Enable function * Applicable for product with Enable Input. )  
(Unless otherwise specified, -40 °C Tj +150 °C, VCC = 13.5 V, IOUT = 0 mA. The Typical value is defined at Tj = 25 °C.)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
ACTIVE MODE  
Min.  
2.8  
Typ.  
Max.  
V
V
CTL ON Mode Voltage  
CTL OFF Mode Voltage  
CTL Bias Current  
VthH  
VthL  
ICTL  
0.8  
30  
OFF MODE  
CTL = 5 V  
15  
µA  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
9/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD433M2WEFJ-C / BD433M2EFJ-C / BD433M2WFP3-C / BD433M2FP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, CTL = 5 V (*1), IOUT = 0 mA.  
*1 Applicable for product with Enable Input.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
5
10 15 20 25 30 35 40 45  
Supply Voltage:VCC[V]  
0
5
10 15 20 25 30 35 40 45  
Supply Voltage:VCC[V]  
Figure 5. Circuit Current vs. Power Supply Voltage  
Figure 6. Output Voltage vs. Power Supply Voltage  
(IOUT = 0 mA)  
6
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
Supply Voltage:VCC[V]  
Supply Voltage:VCC[V]  
Figure 8. Output Voltage vs. Power Supply Voltage  
(IOUT = 0 mA)  
Figure 7. Circuit Current vs. Power Supply Voltage  
*magnified Figure 5. at low supply voltage  
*magnified Figure 6. at low supply voltage  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
10/34  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD433M2WEFJ-C / BD433M2EFJ-C / BD433M2WFP3-C / BD433M2FP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, CTL = 5 V (*1), IOUT = 0 mA.  
*1 Applicable for product with Enable Input.  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
5
10 15 20 25 30 35 40 45  
Supply Voltage:VCC[V]  
0
100  
200  
300  
400  
500  
600  
700  
Output Current: IOUT[mA]  
Figure 9. Output Voltage vs. Power Supply Voltage  
(IOUT = 10 mA)  
Figure10. Output Voltage vs. Output Current  
(Over Current Protection)  
90  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0.01  
0.1  
1
10  
100  
0
20 40 60 80 100 120 140 160 180 200  
Output Current: IOUT[mA]  
Frequency:f [kHz]  
Figure 11. Dropout Voltage  
(VCC = 3.135 V)  
Figure 12. Ripple Rejection  
(ein = 1 Vrms, IOUT = 100 mA)  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
11/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD433M2WEFJ-C / BD433M2EFJ-C / BD433M2WFP3-C / BD433M2FP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, CTL = 5 V (*1), IOUT = 0 mA.  
*1 Applicable for product with Enable Input.  
6
5
4
3
2
1
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
40  
80  
120  
160  
200  
100  
120  
140  
160  
180  
200  
Junction Temperature:Tj[°C]  
Output Current: IOUT[mA]  
Figure 14. Output Voltage vs. Temperature  
(Thermal Shut Down)  
Figure 13. Circuit Current vs. Output Current  
3.370  
3.350  
3.330  
3.310  
3.290  
3.270  
3.250  
3.230  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Junction Temperature:Tj[°C]  
-40  
0
40  
80  
120  
160  
Junction Temperature:Tj[°C]  
Figure 15. Output Voltage vs. Temperature  
Figure 16. Circuit Current vs. Temperature  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
12/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD433M2WEFJ-C / BD433M2WFP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, IOUT = 0 mA  
10  
9
8
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
0
5
10 15 20 25 30 35 40 45  
Supply Voltage:VCC[V]  
0
1
2
3
4
5
CTL Supply Voltage:CTL[V]  
Figure 17. Shut Down Current vs. Power Supply Voltage  
(CTL = 0 V)  
Figure 18. CTL ON / OFF Mode Voltage  
(Tj = -40 °C)  
6
5
4
3
2
6
5
4
3
2
1
0
1
Tj = 25 °C  
Tj = 125 °C  
0
0
1
2
3
4
5
0
1
2
3
4
5
CTL SupplyVoltage:CTL[V]  
CTL Supply Voltage:CTL[V]  
Figure 20. CTL ON / OFF Mode Voltage  
(Tj = 125 °C)  
Figure 19. CTL ON / OFF Mode Voltage  
(Tj = 25 °C)  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
13/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD433M2WEFJ-C / BD433M2WFP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, IOUT = 0 mA  
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
-40  
0
40  
80  
120  
160  
0
1
2
3
4
5
Junction Temperature:Tj[°C]  
CTL Supply Voltage:CTL[V]  
Figure 21. Shut Down Current vs. Temperature  
(CTL = 0 V)  
Figure 22. CTL Bias Current vs. CTL Supply Voltage  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
14/34  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD450M2WEFJ-C / BD450M2EFJ-C / BD450M2WFP3-C / BD450M2FP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, CTL = 5V (*1), IOUT = 0 mA  
*1 Applicable for product with Enable Input.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
5
10 15 20 25 30 35 40 45  
Supply Voltage:VCC[V]  
0
5
10 15 20 25 30 35 40 45  
Supply Voltage:VCC[V]  
Figure 23. Circuit Current vs. Power Supply Voltage  
Figure 24. Output Voltage vs. Power Supply Voltage  
(IOUT = 0 mA)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
Supply Voltage:VCC[V]  
Supply Voltage:VCC[V]  
Figure 26. Output Voltage vs. Power Supply Voltage  
(IOUT = 0 mA)  
Figure 25. Circuit Current vs. Power Supply Voltage  
*magnified Figure 23. at low supply voltage  
*magnified Figure 24. at low supply voltage  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD450M2WEFJ-C / BD450M2EFJ-C / BD450M2WFP3-C / BD450M2FP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, CTL = 5V (*1), IOUT = 0 mA  
*1 Applicable for product with Enable Input.  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
100  
200  
300  
400  
500  
600  
700  
0
5
10 15 20 25 30 35 40 45  
Supply Voltage:VCC[V]  
Output Current: IOUT: [mA]  
Figure 28. Output Voltage vs. Output Current  
(Over Current Protection)  
Figure 27. Output Voltage vs. Power Supply Voltage  
(IOUT = 10 mA)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
20 40 60 80 100 120 140 160 180 200  
Output Current: IOUT[mA]  
0.01  
0.1  
1
10  
100  
Frequwncy: f [kHz]  
Figure 30. Ripple Rejection  
(ein = 1 Vrms, IOUT = 100 mA)  
Figure 29. Dropout Voltage  
(VCC = 4.75 V)  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
16/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD450M2WEFJ-C / BD450M2EFJ-C / BD450M2WFP3-C / BD450M2FP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, CTL = 5V (*1), IOUT = 0 mA  
*1 Applicable for product with Enable Input.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
40  
80  
120  
160  
200  
100  
120  
140  
160  
180  
200  
Output Current: IOUT[mA]  
Junction Temperature:Tj[°C]  
Figure 31. Circuit Current vs. Output Current  
Figure 32. Output Voltage vs. Temperature  
(Thermal Shut Down)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
-40 -20  
0
20 40 60 80 100 120 140 160  
-40 -20  
0
20 40 60 80 100 120 140 160  
Junction Temperature:Tj[°C]  
Junction Temperature:Tj[]  
Figure 34. Circuit Current vs. Temperature  
Figure 33. Output Voltage vs. Temperature  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
17/34  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD450M2WEFJ-C / BD450M2WFP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, IOUT = 0 mA  
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
Tj = -40 °C  
0
1
2
3
4
5
0
5
10 15 20 25 30 35 40 45  
Supply Voltage:VCC[V]  
CTL Supply Voltage:CTL[V]  
Figure 35. Shut Down Current vs. Power Supply Voltage  
(CTL = 0 V)  
Figure 36. CTL ON / OFF Mode Voltage  
(Tj = -40 °C)  
6
5
4
3
2
6
5
4
3
2
1
0
1
Tj = 125 °C  
Tj = 25 °C  
0
0
1
2
3
4
5
0
1
2
3
4
5
CTL Supply Voltage:CTL[V]  
CTL Supply Voltage:CTL[V]  
Figure 38. CTL ON / OFF Mode Voltage  
(Tj = 125 °C)  
Figure 37. CTL ON / OFF Mode Voltage  
(Tj = 25 °C)  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Typical Performance Curves  
BD450M2WEFJ-C / BD450M2WFP3-C Reference Data  
Unless otherwise specified: -40 °C Tj +150 °C, VCC = 13.5 V, IOUT = 0 mA  
30  
25  
20  
15  
10  
5
5
4
3
2
1
0
Tj = -40 °C  
Tj = 25 °C  
Tj = 125 °C  
0
-40  
0
40  
80  
120  
160  
0
1
2
3
4
5
Junction Temperature:Tj[°C]  
CTL Supply Voltage:CTL[V]  
Figure 39. Shut Down Current vs. Temperature  
(CTL = 0 V)  
Figure 40. CTL Bias Current vs. CTL Supply  
Voltage  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
19/34  
Daattaasshheeeett  
BD4xxM2-C Series  
Measurement Circuit for Typical Performance Curves (BD433 / 450M2WEFJ-C)  
8:VCC  
7:CTL  
6:N.C.  
5:GND  
8:VCC  
7:CTL  
6:N.C.  
5:GND  
4.7µF  
4.7µF  
BD4xxM2WEFJ-C  
BD4xxM2WEFJ-C  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
IOUT  
10µF  
10µF  
Measurement Setup for  
Figure 5, 7, 16, 17, 21,  
Figure 23, 25, 34, 35, 39  
Measurement Setup for  
Figure 6, 8, 14, 15,  
Figure 24, 26, 32, 33  
Measurement Setup for  
Figure 9, 27  
8:VCC  
7:CTL  
6:N.C.  
5:GND  
4.7µF  
BD4xxM2WEFJ-C  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
10µF  
IOUT  
Measurement Setup for  
Figure 11, 29  
Measurement Setup for  
Figure 12, 30  
Measurement Setup for  
Figure 10, 28  
8:VCC  
7:CTL  
6:N.C.  
5:GND  
4.7µF  
BD4xxM2WEFJ-C  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
10µF  
IOUT  
Measurement Setup for  
Figure 22, 40  
Measurement Setup for  
Figure 18, 19, 20,  
Figure 36, 37, 38  
Measurement Setup for  
Figure 13, 31  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
20/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Measurement Circuit for Typical Performance Curves (BD433 / 450M2EFJ-C)  
Measurement Setup for  
Figure 6, 8, 14, 15,  
Figure 24, 26, 32, 33  
Measurement Setup for  
Figure 5, 7, 16,  
Measurement Setup for  
Figure 9, 27  
Figure 23, 25, 34  
8:VCC  
7:N.C.  
6:N.C.  
5:GND  
8:VCC  
7:N.C.  
6:N.C.  
5:GND  
1Vrms  
4.7µF  
4.7µF  
BD4xxM2EFJ-C  
BD4xxM2EFJ-C  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
10µF  
10µF  
IOUT  
Measurement Setup for  
Figure 12, 30  
Measurement Setup for  
Figure 11, 29  
Measurement Setup for  
Figure 10, 28  
8:VCC  
7:N.C.  
6:N.C.  
5:GND  
4.7µF  
BD4xxM2EFJ-C  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
10µF  
IOUT  
Measurement Setup for  
Figure 13, 31  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Measurement Circuit for Typical Performance Curves (BD433 / 450M2WFP3-C)  
4:GND  
4:GND  
BD4xxM2WFP3-C  
BD4xxM2WFP3-C  
1:VCC  
2:CTL  
3:VOUT  
1:VCC  
2:CTL  
3:VOUT  
IOUT  
4.7µF  
10µF  
4.7µF  
10µF  
Measurement Setup for  
Figure 5, 7, 16, 17, 21,  
Figure 23, 25, 34, 35, 39  
Measurement Setup for  
Figure 6, 8, 14, 15,  
Figure 24, 26, 32, 33  
Measurement Setup for  
Figure 9, 27  
4:GND  
4:GND  
BD4xxM2WFP3-C  
BD4xxM2WFP3-C  
1:VCC  
2:CTL  
3:VOUT  
1:VCC  
2:CTL  
3:VOUT  
4.7uF  
10uF  
4.7µF  
10µF  
IOUT  
Measurement Setup for  
Figure 12, 30  
Measurement Setup for  
Figure 10, 28  
Measurement Setup for  
Figure 11, 29  
4:GND  
4:GND  
4:GND  
BD4xxM2WFP3-C  
BD4xxM2WFP3-C  
BD4xxM2WFP3-C  
1:VCC  
2:CTL  
3:VOUT  
1:VCC  
2:CTL  
3:VOUT  
1:VCC  
2:CTL  
3:VOUT  
4.7µF  
4.7µF  
10µF  
4.7µF  
10µF  
IOUT  
Measurement Setup for  
Figure 18, 19, 20,  
Figure 36, 37, 38  
Measurement Setup for  
Figure 13, 31  
Measurement Setup for  
Figure 22, 40  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
22/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Measurement Circuit for Typical Performance Curves (BD433 / 450M2FP3-C)  
4:GND  
4:GND  
BD4xxM2FP3-C  
BD4xxM2FP3-C  
1:VCC  
2:GND  
3:VOUT  
1:VCC  
2:GND  
3:VOUT  
4.7uF  
10uF  
4.7uF  
10uF IOUT  
Measurement Setup for  
Figure 5, 7, 16,  
Measurement Setup for  
Figure 6, 8, 14, 15,  
Measurement Setup for  
Figure 9, 27  
Figure 23, 25, 34  
Figure 24, 26, 32, 33  
4:GND  
BD4xxM2FP3-C  
1:VCC  
2:GND  
3:VOUT  
1Vrms  
4.7uF  
10uF IOUT  
Measurement Setup for  
Figure 11, 29  
Measurement Setup for  
Figure 12, 30  
Measurement Setup for  
Figure 10, 28  
Measurement Setup for  
Figure 13, 31  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
23/34  
Daattaasshheeeett  
BD4xxM2-C Series  
Selection of Components Externally Connected  
VCC Pin  
Insert Capacitors with a capacitance of 0.1 μF or higher between the VCC and GND pin. Choose the capacitance  
according to the line between the power smoothing circuit and the VCC pin. Selection of the capacitance also  
depends on the application. Verify the application and allow sufficient margins in the design. We recommend using a  
capacitor with excellent voltage and temperature characteristics.  
Output Pin Capacitor  
In order to prevent oscillation, a capacitor needs to be placed between the output pin and GND pin. We recommend  
using a capacitor with a capacitance of 10 μF (Typ.) or higher. Electrolytic, tantalum and ceramic capacitors can be  
used. When selecting the capacitor ensure that the capacitance of 6 μF or higher is maintained at the intended  
applied voltage and temperature range. Due to changes in temperature the capacitor’s capacitance can fluctuate  
possibly resulting in oscillation. For selection of the capacitor refer to the data of Figure 41.  
The stable operation range given in the data of Figure 41 is based on the standalone IC and resistive load. For actual  
applications the stable operating range is influenced by the PCB impedance, input supply impedance and load  
impedance. Therefore verification of the final operating environment is needed.  
When selecting a ceramic type capacitor, we recommend using X5R, X7R or better with excellent temperature and  
DC-biasing characteristics and high voltage tolerance.  
Also, in case of rapidly changing input voltage and load current, select the capacitance in accordance with verifying  
that the actual application meets with the required specification.  
Condition  
Condition  
VCC = 13.5 V  
(CTL = 5 V)  
CIN = 0.1 µF  
VCC = 13.5 V  
(CTL = 5 V)  
CIN = 0.1 µF  
10 µF COUT (Typ.)  
-40 °C Tj +150 °C  
unstable operation range  
stable operation range  
-40 °C Tj +150 °C  
stable operation range  
unstable operation range  
Figure 41. ESR vs. IOUT  
Figure 42. COUT vs. IOUT  
Measurement Setup  
8:VCC  
7:CTL  
6:N.C.  
5:GND  
8:VCC  
7:N.C.  
6:N.C.  
5:GND  
4:GND  
4:GND  
BD4xxM2WFP3-C  
BD4xxM2FP3-C  
CIN  
CIN  
BD4xxM2EFJ-C  
BD4xxM2WEFJ-C  
1:VCC  
2:CTL  
3:VOUT  
2:GND  
1:VCC  
3:VOUT  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
1:VOUT 2:N.C.  
3:N.C.  
4:N.C.  
ESR  
ESR  
CIN  
CIN  
ESR  
ESR  
IOUT  
IOUT  
IOUT  
IOUT  
COUT  
COUT  
COUT  
COUT  
Figure 43. Measurement Setups for ESR Reference Data  
(about Output Pin Capacitor)  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
24/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Power Dissipation  
HTSOP-J8  
5
IC mounted on ROHM standard board based on JEDEC.  
Board material: FR4  
Board size: 114.3 mm x 76.2 mm x 1.6 mmt  
(with thermal via on the board)  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: The footprint ROHM recommend.  
+ wiring to measure.  
4
2.9 W  
3
: 1-layer PCB  
2
(Copper foil area on the reverse side of PCB: 0 mm x 0 mm)  
: 4-layer PCB  
(2 inner layers and Copper foil area on the reverse side of PCB:  
74.2mm x 74.2 mm)  
0.75 W  
1
Condition: θja = 166.7 °C/W, θjc (top) = 45 °C/W  
Condition: θja = 43.1 °C/W, θjc (top) = 16 °C/W, θjc (bottom) = 10 °C/W  
0
0
25  
50  
75  
100  
125  
150  
AmbientTemperature:Ta[˚С]  
Figure 44. Package Data  
(HTSOP-J8)  
SOT223-4F  
5
IC mounted on ROHM standard board based on JEDEC.  
Board material: FR4  
Board size: 114.3 mm x 76.2 mm x 1.6 mmt  
(with thermal via on the board)  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: The footprint ROHM recommend.  
+ wiring to measure.  
4
3
2
: 1-layer PCB  
1.5 W  
(Copper foil area on the reverse side of PCB: 0 mm x 0 mm)  
: 4-layer PCB  
(2 inner layers and Copper foil area on the reverse side of PCB:  
74.2mm x 74.2 mm)  
1
0
0.6 W  
Condition: θja = 208.3 °C/W, θjc (top) = 52 °C/W  
Condition: θja = 83.3 °C/W, θjc (top) = 36 °C/W, θjc (bottom) = 17 °C/W  
0
25  
50  
75  
100  
125  
150  
AmbientTemperature:Ta[°C]  
Figure 45. Package Data  
(SOT223-4F)  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
25/34  
TSZ2211115001  
29.Oct.2013 Rev.003  
Daattaasshheeeett  
BD4xxM2-C Series  
Refer to the heat mitigation characteristics illustrated in Figure 44, 45 when using the IC in an environment of Ta 25 °C.  
The characteristics of the IC are greatly influenced by the operating temperature, and it is necessary to operate  
under the maximum junction temperature Tjmax.  
Even if the ambient temperature Ta is at 25 °C it is possible that the junction temperature Tj reaches high temperatures.  
Therefore, the IC should be operated within the power dissipation range.  
The following method is used to calculate the power consumption Pc (W)  
Pc = ( VCC - VOUT ) x IOUT + VCC x Icc  
Power dissipation Pd Pc  
VCC : Input Voltage  
VOUT : Output Voltage  
IOUT : Load Current  
The load current IOUT is obtained by operating the IC within the power dissipation range.  
Icc  
Pc  
: Circuit Current  
: Power Consumption  
Pd - VCC x Icc  
VCC - VOUT  
IOUT ≤  
(Refer to Figure 13, 31 for the Icc.)  
Thus, the maximum load current IOUTmax for the applied voltage VCC can be calculated during the thermal design process.  
The following method is also used to calculate the junction temperature Tj.  
Ta : Ambient Temperature  
Tc  
Tj  
: Case Temperature  
: Junction Temperature  
Tj = Pc x θjc + Tc  
θjc : Thermal Resistance  
(Junction to Case)  
HTSOP-J8  
Calculation Example 1) with Ta = 105 °C VCC = 13.5 V, VOUT = 5.0 V  
1.06 W - 13.5 V x Icc  
IOUT ≤  
IC stand alone θja = 43.1 °C/W -23 mW/°C  
25 °C = 2.9 W 105 °C = 1.06 W  
8.5 V  
IOUT 125 mA ( Icc: 45 µA )  
At Ta = 105 °C with Figure 44 condition, the calculation shows that 125 mA of output current is possible at 8.5 V potential  
difference across input and output.  
The thermal calculation shown above should be taken into consideration during the thermal design in order to keep the  
whole operating temperature range within the power dissipation range.  
In the event of shorting (i.e. VOUT and GND pins are shorted) the power consumption Pc of the IC can be calculated as  
follows:  
Pc = VCC x ( Icc + Ishort )  
( Refer to Figure 10, 28 for the Ishort )  
Ishort : Short Current  
Calculation Example 2) with Tc(bottom) = 80 °C, VCC = 13.5 V, VOUT = 5.0 V, IOUT = 80 mA  
At Tc(bottom) = 80 °C with Figure 44 condition, the power consumption Pc of the IC can be calculated as follows:  
Pc = ( VCC - VOUT ) x IOUT + VCC x Icc  
Pc = ( 13.5 V - 5.0 V ) x 80 mA + 13.5 V x Icc  
Pc = 0.681 W  
( Icc = 45 µA )  
At the power consumption Pc is 0.681 W, the junction temperature Tj can be calculated as follows:  
Tj = Pc x θjc + Tc  
Tj = 0.681 W x θjc + 80 °C  
Tj = 86.8 °C  
( θjc (bottom) = 10 °C/W )  
The junction temperature is 86.8 °C, at above condition.  
The thermal calculation shown above should be taken into consideration during the thermal design in order to keep the  
whole operating temperature range within Tj 150 °C.  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
26/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
SOT223-4F  
Calculation Example 1) with Ta = 105 °C VCC = 13.5 V, VOUT = 5.0 V  
0.54 W - 13.5 V x Icc  
IOUT ≤  
IC stand alone θja = 83.3 °C/W -12 mW/°C  
25 °C = 1.50 W 105 °C = 0.54 W  
8.5 V  
IOUT 63 mA ( Icc: 45 µA )  
At Ta = 105°C with Figure 45 condition, the calculation shows that 63 mA of output current is possible at 8.5 V potential  
difference across input and output.  
The thermal calculation shown above should be taken into consideration during the thermal design in order to keep the  
whole operating temperature range within the power dissipation range.  
In the event of shorting (i.e. VOUT and GND pins are shorted) the power consumption Pc of the IC can be calculated as  
follows:  
Pc = VCC x ( Icc + Ishort )  
( Refer to Figure 10, 28 for the Ishort )  
Calculation Example 2) with Tc(bottom) = 92 °C, VCC = 13.5 V, VOUT = 5.0 V, IOUT = 80 mA  
At Tc(bottom) = 92 °C with Figure 45 condition, the power consumption Pc of the IC can be calculated as follows:  
Pc = ( VCC - VOUT ) x IOUT + VCC x Icc  
Pc = ( 13.5 V - 5.0 V ) x 80 mA + 13.5 V x Icc  
Pc = 0.681 W  
( Icc = 45 µA )  
At the power consumption Pc is 0.681 W, the junction temperature Tj can be calculated as follows:  
Tj = Pc x θjc + Tc  
Tj = 0.681 W x θjc + 92 °C  
Tj = 103.6 °C  
( θjc (bottom) = 17 °C/W )  
The junction temperature is 103.6 °C, at above condition.  
The thermal calculation shown above should be taken into consideration during the thermal design in order to keep the  
whole operating temperature range within Tj 150 °C.  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
27/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Application Examples  
Applying positive surge to the VCC pin  
If the possibility exists that surges higher than 45 V will be applied to the VCC pin, a Zener Diode should be placed  
between the VCC pin and GND pin as shown in the figure below.  
4:GND  
4:GND  
BD4xxM2WFP3-C  
BD4xxM2FP3-C  
1:VCC  
2:CTL  
3:VOUT  
1:VCC  
2:GND  
3:VOUT  
Battery  
Battery  
VOUT  
VOUT  
CIN  
COUT  
CIN  
COUT  
Zener  
Diode  
Zener  
Diode  
Input  
switch  
HTSOP-J8  
SOT223-4F  
Figure 46. Sample Application Circuit 1  
Applying negative surge to the VCC pin  
If the possibility exists that negative surges lower than the GND are applied to the VCC pin, a Shottky Diode should be  
place between the VCC pin and GND pin as shown in the figure below.  
4:GND  
4:GND  
BD4xxM2FP3-C  
BD4xxM2WFP3-C  
1:VCC  
2:GND  
3:VOUT  
1:VCC  
2:CTL  
3:VOUT  
Battery  
Battery  
VOUT  
VOUT  
CIN  
COUT  
CIN  
COUT  
Shottky  
Diode  
Shottky  
Diode  
Input  
switch  
HTSOP-J8  
SOT223-4F  
Figure 47. Sample Application Circuit 2  
Implementing a Protection Diode  
If the possibility exists that a large inductive load is connected to the output pin resulting in back-EMF at time of  
startup and shutdown, a protection diode should be placed as shown in the figure below.  
VOUT  
Figure 48. Sample Application Circuit 3  
I / O Equivalence Circuit  
VCC  
(Applicable for product with Enable Input)  
4 M(Typ.)  
VOUT  
1545 k(Typ./5.0 V Output)  
840 k(Typ./3.3 V Output)  
530 k(Typ.)  
Figure 49. Input / Output Equivalence Circuit  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
28/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Operational Notes  
1) Absolute Maximum Ratings  
Exceeding the absolute maximum rating for supply voltage, operating temperature or other parameters can result in  
damages to or destruction of the chip. In this event it also becomes impossible to determine the cause of the  
damage (e.g. short circuit, open circuit, etc.). Therefore, if any special mode is being considered with values  
expected to exceed the absolute maximum ratings, implementing physical safety measures, such as adding fuses,  
should be considered.  
2) The electrical characteristics given in this specification may be influenced by conditions such as temperature, supply  
voltage and external components. Transient characteristics should be sufficiently verified.  
3) GND Electric Potential  
Keep the GND pin potential at the lowest (minimum) level under any operating condition. Furthermore, ensure that,  
including the transient, none of the pin’s voltages are less than the GND pin voltage.  
4) GND Wiring Pattern  
When both a small-signal GND and a high current GND are present, single-point grounding (at the set standard  
point) is recommended. This in order to separate the small-signal and high current patterns and to ensure that  
voltage changes stemming from the wiring resistance and high current do not cause any voltage change in the  
small-signal GND. Similarly, care must be taken to avoid wiring pattern fluctuations in any connected external  
component GND.  
5) Inter-Pin Shorting and Mounting Errors  
Ensure that when mounting the IC on the PCB the direction and position are correct. Incorrect mounting may result  
in damaging the IC. Also, shorts caused by dust entering between the output, input and GND pin may result in  
damaging the IC.  
6) Inspection Using the Set Board  
The IC needs to be discharged after each inspection process as, while using the set board for inspection, connecting  
a capacitor to a low-impedance pin may cause stress to the IC. As a protection from static electricity, ensure that the  
assembly setup is grounded and take sufficient caution with transportation and storage. Also, make sure to turn off  
the power supply when connecting and disconnecting the inspection equipment.  
7) Power Dissipation (Pd)  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 114.3mm x 76.2mm x 1.6mmt glass epoxy board. In case of exceeding this absolute  
maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.  
8) Thermal Design  
The power dissipation under actual operating conditions should be taken into consideration and a sufficient margin  
should be allowed for in the thermal design. On the reverse side of the package this product has an exposed heat  
pad for improving the heat dissipation. Use both the front and reverse side of the PCB to increase the heat  
dissipation pattern as far as possible. The amount of heat generated depends on the voltage difference across the  
input and output, load current, and bias current. Therefore, when actually using the chip, ensure that the generated  
heat does not exceed the Pd rating.  
Tjmax: maximum junction temperature = 150°C, Ta: Ambient Temperature (°C), θja: Junction-to-Ambient Thermal  
Resistance (°C/W), Pd: Power Dissipation Rating (W), Pc: Power Consumption (W), VCC: Supply Voltage,  
VOUT: Output Voltage, IOUT: Output Current, Icc: Circuit Current  
Power Dissipation Rating  
Power Consumption  
Pd (W) = ( Tjmax - Ta ) / θja  
Pc (W) = ( VCC - VOUT ) x IOUT + VCC x Icc  
9) Overcurrent Protection Circuit  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
10) Thermal Shut Down (TSD)  
This IC incorporates and integrated thermal shutdown circuit to prevent heat damage to the IC. Normal operation  
should be within the power dissipation rating, if however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise and the TSD circuit will be activated and turn all output pins OFF. After the Tj falls below the  
TSD threshold the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
29/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
11) In some applications, the VCC and pin potential might be reversed, possibly resulting in circuit internal damage or  
damage to the elements. For example, while the external capacitor is charged, the VCC shorts to the GND. Use a  
capacitor with a capacitance with less than 1000 μF. We also recommend using reverse polarity diodes in series or a  
bypass between all pins and the VCC pin.  
Bypass Diode  
Reverse Polarity Diode  
VCC  
VOUT  
GND  
Figure 50.  
12) This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a  
variety of parasitic elements.  
For example, in case a resistor and a transistor are connected to the pins as shown in the figure below then:  
The P/N junction functions as a parasitic diode when GND > pin A for the resistor, or GND > pin B for the transistor.  
Also, when GND > pin B for the transistor (NPN), the parasitic diode described above combines with the N layer of  
the other adjacent elements to operate as a parasitic NPN transistor.  
Parasitic diodes inevitably occur in the structure of the IC. Their operation can result in mutual interference between  
circuits and can cause malfunctions and, in turn, physical damage to or destruction of the chip. Therefore do not  
employ any method in which parasitic diodes can operate such as applying a voltage to an input pin that is lower  
than the (P substrate) GND.  
Figure 51.  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
30/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Physical Dimension, Tape and Reel Information (HTSOP-J8)  
Package Name  
HTSOP-J8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
31/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Physical Dimension, Tape and Reel Information (SOT223-4F)  
Package Name  
SOT223-4F  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
32/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Marking Diagrams (Top View)  
SOT223-4F (Top View)  
HTSOP-J8 (Top View)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN Mark  
1PIN  
Part Number  
Marking  
Output  
Voltage [V]  
Enable  
Input *1  
Part Number  
Marking  
Output  
Voltage [V]  
Enable  
Input *1  
433M2W  
450M2W  
433M2  
3.3  
5.0  
3.3  
5.0  
433M2W  
450M2W  
433M2  
3.3  
5.0  
3.3  
5.0  
450M2  
450M2  
*1 : Includes Enable Input  
: Not includes Enable Input  
*1 : Includes Enable Input  
: Not includes Enable Input  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
33/34  
TSZ2211115001  
Daattaasshheeeett  
BD4xxM2-C Series  
Revision History  
Date  
Revision  
Changes  
05.Dec.2012  
001  
002  
New Release (BD450M2WEFJ-C, BD450M2EFJ-C)  
15.Jan.2013  
29.Oct.2013  
Additional Entry (BD4xxM2-C Series)  
P.1 , P.3 Figure 3, P.4, P.5 Figure 4, P.9, P.13,  
P23, P.24, P.26, P.29, P.30  
Improve the explanation and corrected type.  
003  
P.28, P.30  
Improve the correct figure number because of sequence.  
Before) Figure 48, 49, 50, 51, 52, 53.  
After) Figure 46, 47, 48, 49, 50, 51.  
www.rohm.com  
TSZ02201-0T2T0AN00040-1-2  
29.Oct.2013 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
34/34  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD433M2EFJ-CE2

Fixed Positive LDO Regulator, 3.3V, 0.45V Dropout, PDSO8, HTSOP-8
ROHM

BD433M2FP3-C

BD4xxM2-C系列是45V耐压、输出电压精度±2%、输出电流200mA、消耗电流40µA的低待机电流稳压器,是输出电压为3.3V或5.0V的固定型产品。本IC适合用来降低蓄电池直连系统的消耗电流。可选择有无输出关断功能,相应产品在向CTL端子施加HIGH电压时元件输出ON,施加LOW电压时元件输出OFF。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。
ROHM

BD433M2FP3-CE2

Fixed Positive LDO Regulator, 3.3V, 0.45V Dropout, PDSO4, SOT223, 4 PIN
ROHM

BD433M2WEFJ-C

BD4xxM2-C系列是45V耐压、输出电压精度±2%、输出电流200mA、消耗电流40µA的低待机电流稳压器,是输出电压为3.3V或5.0V的固定型产品。本IC适合用来降低蓄电池直连系统的消耗电流。可选择有无输出关断功能,相应产品在向CTL端子施加HIGH电压时元件输出ON,施加LOW电压时元件输出OFF。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。We recommend BD433U2WEFJ-C for your new development. It uses different production lines for the purpose of improving production efficiency. Electric characteristics noted in Datasheet does not differ between Production Line.
ROHM

BD433M2WEFJ-CE2

Fixed Positive LDO Regulator, 3.3V, 0.45V Dropout, PDSO8, HTSOP-8
ROHM

BD433M2WFP3-C

200-mA 3.3-V or 5.0-V Output LDO Regulators
ROHM

BD433M2WFP3-CE2

200-mA 3.3-V or 5.0-V Output LDO Regulators
ROHM

BD433M5FP-C

BD433M5FP-C是45V耐压、输出电压精度±2%、输出电流500mA、消耗电流38µA的低待机电流稳压器。本IC适合用来降低蓄电池直连系统的消耗电流。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。
ROHM

BD433M5FP-CE2

Fixed Positive LDO Regulator, 3.3V, 0.75V Dropout, PSSO2, TO-252, 3/2 PIN
ROHM

BD433M5FP2-C

BD433M5FP2-C是45V耐压、输出电压精度±2%、输出电流500mA、消耗电流38µA的低待机电流稳压器。本IC适合用来降低蓄电池直连系统的消耗电流。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。
ROHM

BD433M5FP2-CZE2

Fixed Positive LDO Regulator, 3.3V, 0.75V Dropout, PSSO3, TO263 3 PIN
ROHM

BD433M5WFP2-C

BD433M5WFP2-C是45V耐压、输出电压精度±2%、输出电流500mA、消耗电流38µA的低待机电流稳压器。本IC适合用来降低蓄电池直连系统的消耗电流。输出相位补偿电容器可使用陶瓷电容器。本IC内置防止因输出短路等发生IC破坏的过电流保护、以及防止因过负荷状态等使IC发生热破坏的过热保护电路。向具有输出关断功能的CTL端子施加HIGH电压时元件输出ON,施加LOW电压时元件输出OFF。
ROHM