BD49101AEFS-M [ROHM]

BD49101AEFS-M是内置多个汽车音响所需电源的系统电源IC。本IC内置DC/DC 2ch、线性稳压器5ch、高边开关SW,微控制器、CD、调谐器、USB、照明、音响等可仅靠本IC供电。以高效率DC/DC电源为基础实施了系统化,比以往产品发热少。内置低消耗电流模式切换功能及电源控制功能等,实现了(1)高效率(2)低待机电流(3)简单的电源设计。;
BD49101AEFS-M
型号: BD49101AEFS-M
厂家: ROHM    ROHM
描述:

BD49101AEFS-M是内置多个汽车音响所需电源的系统电源IC。本IC内置DC/DC 2ch、线性稳压器5ch、高边开关SW,微控制器、CD、调谐器、USB、照明、音响等可仅靠本IC供电。以高效率DC/DC电源为基础实施了系统化,比以往产品发热少。内置低消耗电流模式切换功能及电源控制功能等,实现了(1)高效率(2)低待机电流(3)简单的电源设计。

汽车音响 开关 控制器 CD 微控制器 稳压器
文件: 总44页 (文件大小:2069K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Multi-Channel Power Supply LSI Series for Car Electronics  
Multi-channel Power Supply IC  
for Car Audio Systems  
BD49101AEFS-M  
General Description  
Key Specifications  
Input Voltage Range:  
DCDC1(controller):  
The BD49101AEFS-M LSI is a multi-channel power  
supply IC that can provide all necessary supply voltages  
for automobile audio systems. The IC has two Switching  
Power Supplies (DCDC), five Regulators (REG) and a  
High Side switch. This single power supply system can  
provide the required voltages to all systems including the  
MCU, CD, tuner, USB, illumination, audio circuits and  
others.  
The IC system is based on switching regulator which  
has high efficiency then you can suppress heat of IC  
than before. And it has low power mode operation or  
voltage control function so that you can get High  
Efficiency Low IQ and easiness of power supply  
design.  
5.5V to 25V(VIN0=BCAP)  
DCDC2(with low power mode for MCU):  
REG1(output voltage variable):  
REG2(output voltage variable):  
REG3(output voltage variable):  
REG4(output voltage variable for USB):  
REG5(output voltage variable):  
High side SW:  
Standby Current:  
REG4 Over Current Detect Accuracy:  
Operating Temperature Range:  
DCDC Switching Frequency:  
1A  
500mA  
100mA  
300mA  
1.5A  
50mA  
500mA  
100µA(Typ)  
±20%  
-40°C to +85°C  
200kHz to 500kHz  
Package  
HTSSOP-A44  
W(Typ) x D(Typ) x H(Max)  
18.50mm x 9.50mm x 1.00mm  
Features  
AEC-Q100 Qualified(Note1)  
Integrated 7 channels of Power Supply for Car Audio  
2 DCDC (Integrated 1 Controller )  
5 REG  
1 High Side Switch channel  
Integrated Low Power Standby REG for MCU Power  
Supply  
REG4 Cable Impedance Compensation  
I2C Interface  
Selectable Oscillator Frequency using External  
Resistance  
External Clock Synchronization  
Power Supply Control Function (Power on/off  
Sequencer).  
Low Voltage, Over Voltage and REG4 Over Current  
Detect Flag  
HTSSOP-A44  
Integrated Protection Circuitry:  
Over Voltage Input Protection  
Over Current Protection  
Thermal Shutdown  
(Note1:Grade3)  
Applications  
Car Audio and Infotainment  
Product structure:Silicon monolithic integrated circuit This product is not designed for protection against radioactive rays  
.www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
1/41  
TSZ2211114001  
BD49101AEFS-M  
Pin Configuration  
VOUT5  
VIN0  
ADJ5  
EN  
BCAP  
VINSW  
N.C.  
REG4EN  
ECO  
BSENS  
REG4OCB  
SDA  
HSW  
GND4  
SW2  
SCL  
FB2  
SYNC  
GND1  
RT  
INV2  
VOUT0  
VIN1  
GND2  
VOUT3  
ADJ3  
ADJ1  
VOUT1  
ADJ2  
VOUT2  
GND3  
N.C.  
VIN3  
VIN4  
CLCAL  
VOCAL  
ADJ4  
VIN2  
SNSH  
SNSL  
GATE1  
VOUT4  
INV1  
FB1  
Figure 1. Pin Configuration(s)  
Pin Description  
Pin  
Pin  
NO  
23  
Symbol  
NO  
Function  
REG5 voltage output  
Symbol  
Function  
1
2
3
4
VOUT5  
VIN0  
FB1  
INV1  
DCDC1 Error Amp output  
DCDC1 Error Amp Input  
REG4 voltage output  
Battery power supply connection pin  
Back-up capacity connection pin  
Power supply for high side switch  
24  
25  
26  
BCAP  
VINSW  
VOUT4  
ADJ4  
REG4 output voltage adjustment  
REG4 output USB cable impedance  
calibration setting  
5
N.C.  
27  
VOCAL  
6
HSW  
GND4  
SW2  
High side switch output  
Ground  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
CLCAL  
VIN4  
REG4 over current protection setting  
Power supply for built-in FET REG4  
Power supply for built-in FET REG3  
REG3output voltage adjustment  
REG3 voltage output  
7
8
DCDC2 switching output  
DCDC2 Error Amp output  
DCDC2 Error Amp Input  
STBREG voltage output  
Power supply for built-in FET REG1  
REG1 output voltage adjustment  
REG1 voltage output  
VIN3  
9
FB2  
ADJ3  
VOUT3  
GND2  
RT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
INV2  
VOUT0  
VIN1  
Ground  
Oscillator frequency setting  
Ground  
ADJ1  
VOUT1  
ADJ2  
VOUT2  
GND3  
N.C.  
GND1  
SYNC  
SCL  
External synchronization signal input  
I2C-bus clock input  
I2C-bus data input  
REG2 output voltage adjustment  
REG2 voltage output  
SDA  
Ground  
REG4OCB Error flag output  
BSENS  
ECO  
Error flag output  
VIN2  
Power supply for built-in FET REG2  
DCDC1 current detection  
DCDC1 current detection  
DCDC1 outside FET gate drive  
Low power mode switch  
REG4 Enable  
SNSH  
SNSL  
GATE1  
REG4EN  
EN  
Enable  
ADJ5  
REG5 output voltage adjustment  
N.Cpins are not connected into internal circuits.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
2/41  
BD49101AEFS-M  
Block Diagram  
SNSH  
20  
TSD  
21  
SNSL  
SYNC  
RT  
36  
34  
Ext CLK  
22  
GATE1  
DCDC1  
output  
DCDC1  
(Controller)  
OSC  
FB1  
23  
24  
8
INTERNAL  
REGULATOR  
INV1  
SW2  
VIN0  
2
DCDC2  
output  
BCAP  
FB2  
3
9
DCDC2  
BCLDET  
/BCOVP  
10  
11  
INV2  
VIN2  
19  
16  
VOUT0  
STB_REG  
REG2  
output  
VOUT2  
LDET/OVP  
REG2  
REG5  
ADJ2  
15  
VIN1  
12  
REG1  
output  
REG5  
output  
VOUT5  
VOUT1  
ADJ1  
14  
13  
1
REG1  
REG3  
ADJ5  
44  
VINSW  
VIN3  
30  
4
Hi-side SW  
output  
REG3  
output  
Hside  
SW  
6
VOUT3  
ADJ3  
32  
31  
HSW  
BSENS  
40  
VIN4  
29  
REG4OCB  
REG4  
output  
39  
41  
43  
42  
VOUT4  
ADJ4  
25  
26  
ECO  
E N  
REG4EN  
REG4  
(calibrate)  
VOCAL  
27  
28  
SDA  
SCL  
38  
37  
I2C I/F  
Each ch on/off  
LDET setting  
CLCAL  
35  
GND1  
33  
GND2  
17  
7
GND3 GND4  
Figure 2. Block Diagram  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
3/41  
TSZ2211115001  
BD49101AEFS-M  
Description of Blocks  
DCDC2 STBREG Switch Function  
The ECO input is used to switch between operating mode and low power standby mode.  
(This function is for a 3.3V I/O microcomputer because of the 3.3V fixed STBREG output)  
The function of the ECO input is as follows:  
.
.
ECO = H  
ECO = L  
Normal Operating Mode  
Low Power Standby Mode  
(DCDC2 operating).  
(STBREG operating).  
Sequence of VIN0 start up, Low Power Standby mode  
8.3V  
VIN0  
BCAP  
4.7V  
Soft start  
Max 5ms  
DCDC2/  
STBREG  
=VIN1  
STBREG  
DCDC2  
STBREG  
DCDC2  
1.25V  
1.25V  
REG1  
ECO  
BSENS  
EN  
ACK  
SCL  
SDA  
Slave Address  
A
Figure 3. Timing Chart of VIN0 start up, Low Power Standby Mode  
When BD49101AEFS starts up, it starts in the normal operation mode (DCDC2 operation), independent of ECO  
setting. An internal regulator, the reference voltage circuit, and the OSC circuit start up when the voltage of the  
BCAP pin exceeds low voltage protection release voltage (4.7V).  
Following the first access to the I2C interface, the ECO input is able to control the operating mode (normal or low  
power standby). ECO must be set to the desired operating mode prior to accessing the I2C interface for the first  
time.  
The conditions of independent of ECO setting is shown below.  
.
.
.
Input power supply for VIN0 at the first time  
BCAP voltage becomes under 4.5V  
DCDC2 detects over current and DCDC2 restarts  
At each condition ECO setting become effective after you send I2C command and receive ACK.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
4/41  
BD49101AEFS-M  
Relations of BCAP Voltage and Operating Mode  
When the voltage of the BCAP pin decreases under BCAP low voltage detection voltage (4.5V),  
the registers are initialized and the ECO pin setting becomes invalid and forcibly changed to low power mode.  
Afterwards, when BCAP voltage increases over BCAP low detection release voltage (4.7V)  
without under POWER ON reset voltage (3.1V), the mode change to DCDC2 mode. (ECO pin setting is invalid.)  
If BCAP voltage increases with under POWER ON reset voltage, the operation is same as VIN0 start up.  
BCAP voltage  
BCLDET release  
4.7V  
BCLDET detect  
4.5V  
POWER_ON reset voltage  
3.1V  
0V  
µ-con 3.3V supply  
DCDC2  
STBREG  
DCDC2  
STBREG  
DCDC2  
OFF  
OFF  
voltage  
Figure 4. Relation of BCAP Voltage and Operating Mode  
Mode Changing (Normal Operation Mode Low Power Mode)  
When the ECO pin is changed from 0V to 3.3V, it changes from the low power mode to the normal operation mode.  
When it changes from the low power mode to the normal operation mode, the output voltage drops according to the  
load current. (Figure 5)  
(ex.) Supply Voltage 14.4V, Output Capacitor 100µF, Load Current 200mA: Output Drop Voltage= -80mV(Typ)  
We recommend that you save consumption current of the microcomputer in 200mA within 1ms when the mode is  
changed to normal operation mode (Figure 6).  
3.3V  
ECO  
0V  
3.3V  
VOUT0  
80mV  
Output Capa=100µF,Load Current 200mA)  
Figure 5. Timing Chart of Mode Changing (Normal Operation Mode Low Power Mode)  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
5/41  
TSZ2211115001  
BD49101AEFS-M  
more than 1ms  
μ-con  
consumption  
200mA  
0mA  
3.3V  
ECOvoltage  
0V  
Low power mode  
normal operation mode  
Figure 6. Image of Increasing Consumption Current when Switching  
from Low Power Mode to Normal Operation Mode  
USB Supply Calibration (REG4).  
The VOCAL input is used to adjust for cable impedance between the supply and USB connector. This  
adjustment will correct for voltage drop across the cable as a function of the current flow thus maintaining a  
constant voltage at the connector. Compensation of up to 0.5Ω of cable impedance can be achieved.  
The CLCAL input is used to set the over current threshold, up to a maximum of 1.5A.Please refer 2-(3)-②  
Setting of cable impedance calibration  
Over Current Protection (OCP)  
All regulators and high side switch have over current protection. When OCP is detected, the following  
conditions will apply:  
.
.
DCDC1: After disabled for a certain period, it will attempt to restart automatically.  
DCDC2 : After disabled for a certain period, it will attempt to restart automatically  
and the register will be initialized.  
.
.
REG4 Current limit circuit will operate and REG4OCB is activated (Low).  
Other regulators and a high side switch Current limit circuit will operate.  
REG1 to 5, STBREG  
High side switch  
Current at  
shorted  
Current at  
shorted  
IOUT  
IOUT  
Figure 7. REG, High Side Switch Example of the Characteristics about Output Voltage vs Output Current  
Battery Voltage Monitoring Function and BSENS Output  
The BSENS output is active (High) when over voltage protection(OVP) is active. OVP becomes active when  
VIN0 exceeds 20.2V(Typ) OVP is cleared when VIN0 falls below 18.2V(Typ).  
BSENS is also active (High) when VIN0 falls below 7.8V(Typ, initial register condition), afterwards BSENS is  
cleared when VIN0 exceeds 8.3V (Typ, initial register condition).  
This low detection (LDET) voltage can change from 5.7V to 6.4V, and from 7.7V to 8.4V with writing register  
(Initial setting is 7.8V).  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
6/41  
TSZ2211115001  
BD49101AEFS-M  
VIN0 Voltage  
20.2V  
18.2V  
Variable in 15 steps  
by I2C register setting  
8.3V  
7.8V  
LDET detectH  
LDET detectH  
OVP detectH  
3.3  
BSENS  
0
Figure 8. Timing Chart of OVP/LDET Detection  
REG4OCB Output  
3.3V  
REG4EN  
0V  
5.2V  
0V  
VOUT4  
TSS4  
short output  
OCP threshold  
short output  
3ms(typ)  
Soft start time  
short output  
IOCP(variable)  
IOUT4  
1.5A  
(Load current =1.5A)  
short current  
(100mA typ)  
short current  
(100mA typ)  
0 A  
OCP delay time  
TDELAY4  
13.7ms(typ)  
13.7ms(typ)  
3.3V  
REG4OCB  
0V  
Figure 9. Timing Chart of REG4OCB Output  
REG4 starts by a soft start in 3ms(Typ). And when detecting over current detection the REG4OCB output is  
active (Low) after 13.7ms continuous over current condition.  
External Synchronization  
The SYNC input is used to synchronize the switching frequency of DCDC1 and DCDC2. A signal in the  
range of 200kHz 500kHz can be input. The input signal must be at a higher frequency than that set by the  
resistor on RT input and should be configured between 0.6 to 1.5 times the set frequencies.(when SYNC  
Duty=45 to 55%)  
When it changes from internal oscillation mode to external synchronization mode, it changes after it is inputted  
continuously 3 pulses.  
When it changes from external synchronization mode to internal oscillation mode, it changes within a period of  
internal oscillator frequency after SYNC input sets L. When SYNC input sets H, it doesnt change to internal  
oscillation mode. The high pulse within 50ns(like unexpected noise etc.) input could stop DCDC operation. In  
that case you can take measure by inserting damping resister etc. to reduce the pulse.  
At first applying of power on VIN0(BCAP), SYNC pin must be under input L levelmax value until VODC2  
rises up. If it is not so, the IC could not start normally.  
It can adjust to the phase of switching pulse between DCDC1 and DCDC2 by the duty of SYNC input.  
The switching positive edge timing of DCDC1,2 is below.  
.
.
DCDC1: synchronized the negative edge of SYNC input.  
DCDC2: synchronized the positive edge of SYNC input  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
7/41  
TSZ2211115001  
BD49101AEFS-M  
The EN and the REG4EN pins  
When the EN pin is set to H, I2C register setting is available, and when set to L, all register reset.  
This function enable all REG and HSW channel expect DCDC2/STBREG and REG1 to OFF.  
REG4EN is the enable pin of REG4 and can control REG4 through REG4_EN register or REG4EN.  
When the EN pin is set to L, REG4 becomes OFF even if the REG4EN pin is set to H.  
Output Conditions  
Input Pin  
Register  
STBREG  
DCDC2  
REG1  
DCDC1  
REG2,3,5  
REG4  
HSW  
L=OFF  
Reset  
(input"L")  
EN  
REG4EN  
ECO  
need resetting when turning ON  
L=OFF  
H=ON(Note 1)  
L=STBREG  
H=DCDC2  
(Note 1) When the EN pin input H.  
Figure 10. Table of EN control  
I2C Interface  
The I2C interface allows access to the internal registers. The internal registers are used for the following  
functions:  
.
.
.
Enable the high side switch and power supplies except for DCDC2-STBREG.  
Setting LDET VIN0 low voltage detection threshold.  
Detecting high side switch over current condition (address 0x04)  
For Protect and Detect Functions and Enable Function  
Output Conditions  
Error Flag  
Register  
STBREG  
DCDC2  
REG1  
DCDC1  
REG2,3,5  
REG4  
HSW  
BSENS REG4OCB  
fold back  
limit  
STBREG  
DCDC2  
REG1  
restart  
(Note 1)  
OFF(Note 2)  
Reset  
fold back  
limit  
over  
restart  
(Note 1)  
current  
detection  
DCDC1  
REG2,3,5  
REG4  
fold back  
limit  
fold back  
limit  
fold back  
limit  
HSW  
OFF(Note 3)  
TSD  
tharmal  
power  
LDET  
supply  
OVP  
voltage  
detection  
ON  
(Note 4)  
OFF  
(Note 4)  
OFF(Note 2)  
OFF(Note 3)  
BCLDET  
BCOVP  
Reset  
(Note 1) When detecting each output is limited in minimum duty and dropping output and INV voltage then restarts after 1024clk.  
(Note 2) When detecting each output doesnt restart.  
(Note 3) When detecting each output restarts.  
(Note 4) When detecting BCAP low voltage the operation mode switches to standby mode without depending on the ECO setting.  
Figure 11. Table of EN Protect and Detect Functions  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
8/41  
BD49101AEFS-M  
Absolute Maximum Ratings(Ta=25°C)  
Parameter  
Symbol  
VCC  
Limits  
-0.3 to +42  
-0.3 to +7  
-0.3 to +42  
VIN0 7 to VIN0  
-0.3 to +7  
-40 to +85  
-55 to +150  
6.19(Note 1)  
150  
Unit  
V
Power Supply Voltage (PIN2,4,19)  
Input Voltage (PIN37,38,41-43)  
Pin Voltage 1(PIN1,3,6,8,16,22)  
Pin Voltage 2(PIN20,21)  
Vin  
V
VPIN1  
VPIN2  
VPIN3  
Topr  
Tstg  
V
V
Pin Voltage 3(PIN9-15,23-32,34,36,39,40,44)  
Operating Temperature Range  
Storage Temperature Range  
Power Dissipation  
V
°C  
°C  
W
°C  
Pd  
Maximum Junction Temperature  
Tjmax  
(Note 1) Reduce by 49.5mW/°C, when mounted on 4-layer PCB of 70x70x16mm3 (Copper foil area on the reverse side of PCB: 70x70mm2).  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated  
over the absolute maximum ratings.  
Recommended Operating Ratings  
Parameter  
Symbol  
VINopr  
Limits  
Unit  
V
Operating Power Supply Voltage1(VIN0,BCAP)  
Output Voltage Range 1(DCDC1/2)  
5.5 to 25  
0.8 to VINopr  
VOUTopr1  
V
0.8 to 2.4  
(REG1)  
Output Voltage Range 2(REG1/3/4)  
VOUTopr2  
0.8 to VIN3,4 - VSATRG3,4  
V
(REG3.4)  
0.8 to 10.5 (REG2)  
Output Voltage Range 3(REG2/5)  
VOUTopr3  
fSW  
V
kHz  
kΩ  
kHz  
%
0.8 to 8.5  
(REG5)  
DCDC Switching Frequency  
200 to 500  
Oscillator Frequency Setting Resistance  
External Sync Frequency  
RT  
27 to 82  
200 to 500  
20 to 80  
5 to 50  
fCLK  
External Synchronization Pulse Duty  
REG4 Over Current Detection Set Resistance  
REG4 Cable Impedance Compensation Set Resistance  
DCLK  
RCLCAL  
RVOCAL  
kΩ  
Ω
0 to 230  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
9/41  
TSZ2211115001  
BD49101AEFS-M  
Electrical Characteristics  
(Unless otherwise specified, Ta= 25°C, VIN0=BCAP=14.4V, EN=3.3V, VOUT1=1.25V, VOUT2=5.78V, VOUT3=3.3V,  
VOUT4=5.2V, VOUT5=5.0V)  
Spec Values  
Typ  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
Consumption Current】  
Standby Current  
ISTB  
IQ  
100  
5.0  
150  
7.5  
μA  
ECO=0V, EN=0V  
ECO=3.3V, EN=3.3V, Io=0A  
ENABLE=0x7F  
Circuit Current  
mA  
Over Voltage Detection】  
Detection Threshold Voltage  
Release Threshold Voltage  
Low Voltage Detection】  
Detection Threshold Voltage  
Release Threshold Voltage  
OSC】  
VOVPON  
18.2  
16.2  
20.2  
18.2  
22.2  
20.2  
V
V
VOVPOFF  
VLDETON  
7.5  
8.0  
7.8  
8.3  
8.1  
8.6  
V
V
LDET_SETTING=0x09  
VLDETOFF  
Oscillator Frequency  
DCDC1】  
FOSC  
285  
300  
315  
kHz  
RT=51kΩ  
Reference Voltage  
VREF1_DC1  
VOCP_TH_DC1  
VFB1H  
0.784  
0.800  
0.1  
3.0  
0.8  
-400  
100  
-
0.816  
V
V
Over Current Detection  
Threshold Voltage  
-
-
-
SNSH-SNSL  
INV1=0V  
Maximum FB1 Voltage  
Minimum FB1 Voltage  
FB1 Sink Current  
-
-
V
VFB1L  
-
V
INV1=2V  
IFB1SINK  
IFB1SOURCE  
VGT1H  
-800  
50  
-
-200  
200  
µA  
µA  
V
FB1=1V, INV1=1V  
FB1=1V, INV1=0.6V  
INV1=2V  
FB1 Source Current  
Maximum GATE1 Voltage  
Minimum GATE1 Voltage  
Soft Start  
VIN  
+0.3V  
VGT1L  
8.1  
-
-
-
V
INV1=0V  
TSS1  
-
5
ms  
DCDC2】  
Reference Voltage  
Output Current Capacity  
Maximum FB2 Voltage  
Minimum FB2 Voltage  
FB2 Sink Current  
VREF1_DC2  
IODC2  
0.784  
0.800  
-
0.816  
V
A
1
-
-
-
VFB2H  
3.0  
0.8  
-400  
100  
-
V
INV2=0V  
VFB2L  
-
-
V
INV2=2V  
IFB2SINK  
IFB2SOURCE  
TSS2  
-800  
50  
-
-200  
200  
5
µA  
µA  
ms  
mΩ  
FB2=1V, INV2=1V  
FB2=1V, INV2=0.6V  
FB2 Source Current  
Soft Start  
Power MOS FET ON  
Resistance  
RON  
125  
250  
500  
IO=800mA  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
10/41  
TSZ2211115001  
BD49101AEFS-M  
Spec Values  
Typ  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
STBREG】  
Reference Voltage  
Load Current Capacity  
Line Regulation  
VREF_STLD  
IOSTLD  
3.234  
3.300  
3.366  
-
V
200  
-
-
mA  
mV  
mV  
dB  
V
VISTLD  
VLSTLD  
RRSTLD  
-
-
-
-
15  
30  
-
VIN0=7 to 18V, Io=5mA  
IO=5m to 200mA  
Load Regulation  
Ripple Rejection  
I/O Voltage Difference  
REG1】  
-
70  
-
Frp=100Hz, VIN0rp=1Vpp  
IO=100mA  
VSATSTLD  
0.6  
Reference Voltage  
Load Current Capacity  
Line Regulation  
VREF_LD1  
IOLD1  
0.588  
0.600  
0.612  
-
V
500  
-
-
mA  
mV  
mV  
dB  
V
VIN1=3.3V  
VILD1  
VLLD1  
RRLD1  
-
-
-
-
10  
20  
-
VIN1=3 to 6V, Io=5mA  
IO=5m to 500mA  
Frp=100Hz, VIN1rp=1Vpp  
IO=250mA  
Load Regulation  
Ripple Rejection  
I/O Voltage Difference  
REG2】  
-
70  
-
VSATLD1  
1.0  
Reference Voltage  
Load Current Capacity  
Line Regulation  
VREF_LD2  
IOLD2  
0.777  
0.793  
0.809  
-
V
100  
-
-
mA  
mV  
mV  
dB  
V
VILD2  
VLLD2  
RRLD2  
-
-
-
-
25  
VIN2=9 to 18V, Io=5mA  
IO=5mA to 100mA  
Frp=100Hz, VIN2rp=1Vpp  
IO=50mA  
Load Regulation  
Ripple Rejection  
I/O Voltage Difference  
REG3】  
-
50  
70  
-
-
VSATLD2  
0.65  
Reference Voltage  
Load Current Capacity  
Line Regulation  
VREF_LD3  
IOLD3  
0.784  
0.800  
0.816  
-
V
300  
-
-
mA  
mV  
mV  
dB  
V
VIN3=6V  
VILD3  
VLLD3  
RRLD3  
-
-
-
-
20  
40  
-
VIN3=4.0 to 6.5V, Io=5mA  
IO=5m to 300mA  
Frp=100Hz, VIN3rp=1Vpp  
IO=150mA  
Load Regulation  
Ripple Rejection  
I/O Voltage Difference  
-
70  
-
VSATLD3  
0.6  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
11/41  
BD49101AEFS-M  
Spec Values  
Typ  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
REG4】  
Reference Voltage  
Load Current Capacity  
Line Regulation  
VREF_RG4  
IORG4  
0.784  
1.5  
0.800  
0.816  
V
A
VIN4=6V,VOCAL=0Ω  
VIN4=5.6 to 6.5V, Io=5mA  
Io=5m to 1.5A  
VIRG4  
VLRG4  
RRRG4  
VSATRG4  
IOCP1  
50  
mV  
mV  
dB  
V
Load Regulation  
Ripple Rejection  
I/O Voltage Difference  
40  
55  
Frp=100Hz, VIN4rp=1Vpp  
Io=1.5A  
0.4  
1.76  
800  
5.60  
Over Current Detection  
Threshold 1  
Over Current Detection  
Threshold 2  
Voltage Adjusted For Cable  
Impedance(0.26Ω)  
VIN4=6V, CLCAL= 6.8kΩ,  
VOCAL=0Ω  
VIN4=6V, CLCAL= 15kΩ,  
VOCAL=0Ω  
VIN4=6.5V,Io=1.0A,  
VOCAL=120Ω  
1.18  
534  
5.32  
1.47  
667  
5.46  
3
A
IOCP2  
mA  
V
Vcal  
Soft Start Time  
TSS4  
ms  
ms  
OCP Delay Time  
REG5】  
TDELAY4  
8.7  
13.7  
18.7  
fsw = 300kHz  
Reference Voltage  
Load Current Capacity  
Line Regulation  
VREF_RG5  
IORG5  
0.784  
50  
0.800  
0.816  
V
mA  
mV  
mV  
dB  
V
VIRG5  
VLRG5  
RRRG5  
25  
VIN0=9 to 18V, Io=5mA  
Io=5mA to 50mA  
Load Regulation  
Ripple Rejection  
I/O Voltage Difference  
High Side SW】  
Output Current Capacity  
50  
70  
Frp=100Hz, VIN5rp=1Vpp  
Io=25mA  
VSATRG5  
0.65  
IOSW1  
500  
-
-
-
mA  
ON Resistance  
RON_SW1  
3
Ω
IO=500mA  
Digital IO】  
(EN,REG4EN,ECO,SYNC,BSENS,REG4OCB)  
For pin EN, REG4EN,  
ECO,SYNC  
For pin EN, REG4EN,  
ECO,SYNC  
Input H level  
VIH  
VIL  
2.6  
-
-
-
V
V
Ω
Ω
V
V
Input L level  
-
0.8  
-
Input Pulldown Resistance1  
Input Pulldown Resistance2  
Output H level  
RIND1  
RIND2  
VOH  
VOL  
2.6  
-
100k  
For pin REG4EN, ECO,SYNC  
For pin EN  
660k  
For pin BSENS,REG4OCB  
IO=1mA  
For pin BSENS,REG4OCB  
IO= -1mA  
-
-
Output L level  
0.8  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
12/41  
TSZ2211115001  
BD49101AEFS-M  
Typical Performance Curves(reference)  
200  
200  
150  
100  
50  
150  
100  
50  
0
0
-40  
-20  
0
20  
40  
60  
80  
0
5
10  
15  
20  
25  
Input Voltage:V [V]  
Ambient Temperature:Ta[°C]  
IN  
Figure 12. Standby Current vs Temperature  
Figure 13. Standby Current vs Input Voltage  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
-40  
-20  
0
20  
40  
60  
80  
0
5
10  
15  
20  
25  
Ambient Temperature:Ta[°C]  
Input Voltage:V [V]  
IN  
Figure 14. Circuit Current vs Temperature  
Figure 15. Circuit Current vs Input Voltage  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
13/41  
TSZ2211115001  
BD49101AEFS-M  
315  
312  
309  
306  
303  
300  
297  
294  
291  
288  
285  
0.816  
0.812  
0.808  
0.804  
0.8  
0.796  
0.792  
0.788  
0.784  
RT=51kΩ  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature:Ta[]  
Ambient Temperature:Ta[°C]  
Figure 16. Oscillator Frequency vs Temperature  
Figure 17. DCDC1 Reference Voltage vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.09  
6.06  
6.03  
6.00  
5.97  
5.94  
5.91  
VIN0 =14.4V  
VO=6.0V  
f=300kHz  
VIN0 =14.4V  
VO=6V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current:lo[A]  
Output Current:lo[A]  
Figure 18. DCDC1 Efficiency vs Output Current  
Figure 19. DCDC1 Output Voltage vs Output Current  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
14/41  
BD49101AEFS-M  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN0=14.4V  
VO=3.3V  
f=300kHz  
-40  
-20  
0
20  
40  
60  
80  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Ambient Temperature:Ta[°C]  
Output Current:lo[A]  
Figure 20. DCDC2 Reference Voltage vs Temperature  
Figure 21. DCDC2 Conversion Efficiency vs Output Current  
3.42  
3.40  
3.38  
3.36  
525  
475  
425  
375  
325  
275  
225  
3.34  
VIN0=14.4V  
f=300kHz  
175  
Io=800mA  
3.32  
125  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
-40  
-20  
0
20  
40  
60  
80  
Output Current:lo[A]  
Ambient Temperature:Ta[°C]  
Figure 22. DCDC2 Output Voltage vs Output Current  
Figure 23. DCDC2 FET ON Resistance vs Temperature  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
15/41  
TSZ2211115001  
BD49101AEFS-M  
525  
475  
425  
375  
325  
275  
225  
175  
125  
3.366  
3.344  
3.322  
3.300  
3.278  
3.256  
3.234  
Io=800mA  
20  
-40  
-20  
0
20  
40  
60  
80  
0
5
10  
15  
25  
Ambient Temperature:Ta[°C]  
Input Voltage:V [V]  
IN  
Figure 24. DCDC2 FET ON Resistance vs Input Voltage  
Figure 25. STBREG Reference Voltage vs Temperature  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Io=5mA  
Io=20mA  
Io=200mA  
VIN0 =14.4V  
Vrp=1Vpp  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
100  
1k  
10k  
100k  
Output Current:lo[A]  
Frequency:f[Hz]  
Figure 26. STBREG Output Voltage vs Output Current  
Figure 27. STBREG Ripple Rejection vs Frequency  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
16/41  
TSZ2211115001  
BD49101AEFS-M  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.612  
0.608  
0.604  
0.600  
0.596  
0.592  
0.588  
Io=100mA  
20  
0
5
10  
15  
25  
-40  
-20  
0
20  
40  
60  
80  
Input Voltage:V [V]  
IN  
Ambient Temperature:Ta[°C]  
Figure 28. STBREG Output Voltage vs Input Voltage  
Figure 29. REG1 Reference Voltage vs Temperature  
90  
1.4  
VIN1 =3.3V  
Vrp=1Vpp  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Io=5mA  
Io=100mA  
VIN1=3.3V  
VO=1.25V  
Io=1000mA  
10k  
100  
1k  
100k  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
Output Current:lo[A]  
Frequency:f[Hz]  
Figure 30. REG1 Output Voltage vs Output Current  
Figure 31. REG1 Ripple Rejection vs Frequency  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
17/41  
TSZ2211115001  
BD49101AEFS-M  
2.0  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
1.5  
1.0  
0.5  
0.0  
VO=1.25V  
Io=250mA  
0
1
2
3
4
5
6
7
-40  
-20  
0
20  
40  
60  
80  
Input Voltage:V [V]  
Ambient Temperature:Ta[°C]  
IN  
Figure 32. REG1 Output Voltage vs Input Voltage  
Figure 33. REG2 Reference Voltage vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
9
8
7
6
5
4
3
2
1
0
Io=5mA  
Io=10mA  
Io=100mA  
VIN2 =14.4V  
Vrp=1Vpp  
VIN2=14.4V  
VO=8.8V  
100  
1k  
10k  
100k  
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35  
Output Current:lo[A]  
Frequency:f[Hz]  
Figure 34. REG2 Output Voltage vs Output Current  
Figure 35. REG2 Ripple Rejection vs Frequency  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
18/41  
BD49101AEFS-M  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
10  
8
6
4
2
VO=8.8V  
Io=50mA  
0
-40  
-20  
0
20  
40  
60  
80  
0
5
10  
15  
20  
25  
Ambient Temperature:Ta[°C]  
Input Voltage:V [V]  
IN  
Figure 36. REG2 Output Voltage vs Input Voltage  
Figure 37. REG3 Reference Voltage vs Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Io=5mA  
Io=30mA  
Io=300mA  
VIN3=6V  
VO=3.3V  
VIN3 =6V  
Vrp=1Vpp  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
100  
1k  
10k  
100k  
Output Current:lo[A]  
Frequency:f[Hz]  
Figure 38. REG3 Output Voltage vs Output Current  
Figure 39. REG3 Ripple Rejection vs Frequency  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
19/41  
TSZ2211115001  
BD49101AEFS-M  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
VO=3.3V  
Io=150mA  
0
1
2
3
4
5
6
7
-40  
-20  
0
20  
40  
60  
80  
Input Voltage:VIN[V]  
Ambient Temperature:Ta[°C]  
Figure 40. REG3 Output Voltage vs Input Voltage  
Figure 41. REG4 Reference Voltage vs Temperature  
6
5
4
3
2
1
0
90  
VIN4=6V  
Vrp=1Vpp  
80  
70  
60  
50  
40  
30  
20  
10  
0
Io=5mA  
Io=150mA  
VIN4=6V  
VO=5.2V  
RCLCAL=6.8kΩ  
RVOCAL=0Ω  
Io=1500mA  
0.0  
0.4  
0.8  
1.2  
1.6  
100  
1k  
10k  
100k  
Output Current:Io[A]  
Frequency:f[Hz]  
Figure 42. REG4 Output Voltage vs Output Current  
Figure 43. REG4 Ripple Rejection vs Frequency  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
20/41  
BD49101AEFS-M  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.19  
5.17  
5.15  
5.13  
5.11  
5.09  
5.07  
5.05  
5.03  
Io=1.5A  
RVOCAL=0Ω  
VIN4=6V  
RVOCAL=120Ω  
0
1
2
3
4
5
6
7
0.0  
0.5  
1.0  
1.5  
Input Voltage:V [V]  
Output Current:lo[A]  
IN  
Figure 44. REG4 Output Voltage vs Input Voltage  
Figure 45. Voltage Adjusted for Cable Impedance  
vs Output Current  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
6
5
4
3
2
1
0
VIN5=14.4V  
VO=5V  
-40  
-20  
0
20  
40  
60  
80  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
Ambient Temperature:Ta[°C]  
Output Current:lo[A]  
Figure 46. REG5 Reference Voltage vs Temperature  
Figure 47. REG5 Output Voltage vs Output Current  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
21/41  
TSZ2211115001  
BD49101AEFS-M  
90  
80  
70  
60  
50  
40  
30  
20  
10  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Io=5mA  
Io=10mA  
Io=50mA  
VIN5=14.4V  
Vrp=1Vpp  
Io=25mA  
20  
0
0
5
10  
15  
25  
100  
1k  
10k  
100k  
Input Voltage:V [V]  
IN  
Frequency:f[Hz]  
Figure 48. REG5 Ripple Rejection vs Frequency  
Figure 49. REG5 Output Voltage vs Input Voltage  
16  
14  
12  
10  
8
3.0  
2.5  
2.0  
1.5  
1.0  
6
4
2
VIN0=14.4V  
VIN0=14.4V  
0
0
200  
400  
600  
800 1000 1200  
-40  
-20  
0
20  
40  
60  
80  
Output Current:lo[mA]  
Ambient Temperature:Ta[°C]  
Figure 50. HSW Output Voltage vs Output Current  
Figure 51. HSW ON Resistance vs Temperature  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
22/41  
TSZ2211115001  
BD49101AEFS-M  
3.0  
2.5  
2.0  
1.5  
1.0  
0
5
10  
15  
20  
25  
Input Voltage:V [V]  
IN  
Figure 52. HSW ON Resistance vs Input Voltage  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
23/41  
TSZ2211115001  
BD49101AEFS-M  
I2C-bus Block  
(1) Electrical Specifications and Timing for Bus Lines and I/O Stages  
SDA  
tBUF  
tHD;STA  
tF  
tSP  
tR  
tLOW  
SCL  
tSU;STO  
tSU;STA  
Sr  
tHD;STA  
tSU;DAT  
tHD;DAT  
tHIGH  
S
P
P
Figure 53. Definition of timing on the I2C-bus  
Table 1. Characteristics of the SDA and SCL Bus Lines for I2C-bus Devices  
(Unless specified particularly, Ta=25°C, VIN0=14.4V)  
Fast-modeI2C-bus  
Parameter  
Symbol  
Unit  
Min  
0
1.3  
Max  
400  
1
2
SCL Clock Frequency  
fSCL  
tBUF  
kHz  
μs  
Bus Free Time between a STOP and START Condition  
Hold Time (repeated) Start Condition  
(After this period, the first clock pulse is generated.)  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
Set-up Time for a Repeated START Condition  
3
tHD;STA  
0.6  
μs  
4
5
6
tLOW  
tHIGH  
tSU;STA  
1.3  
0.6  
0.6  
μs  
μs  
μs  
0.06  
7
Data Hold Time  
tHD;DAT  
μs  
(Note 1)  
8
9
Data Setup Time  
Setup Time for STOP Condition  
tSU;DAT  
tSU;STO  
120  
0.6  
ns  
μs  
All values referred to VIH min and VIL max levels (see Table 2).  
(Note 1) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min. of the SCL signal) in order to bridge the  
undefined region of the falling edge of SCL.  
About 7(tHD;DAT), 8(tSU;DAT), make it the setup which a margin is fully in .  
Table 2. Characteristics of the SDA and SCL I/O stages for I2C-bus Devices  
Fast-modedevices  
Parameter  
Symbol  
Unit  
Min  
-0.3  
2.3  
0
Max  
+1  
5
10 LOW Level Input Voltage:  
11 HIGH Level Input Voltage:  
12 Pulse Width of Spikes which must be suppressed by the input filter.  
13 LOW Level Output Voltage: at 3mA sink current  
VIL  
VIH  
tSP  
VOL1  
Ii  
V
V
ns  
V
50  
0
-10  
0.4  
+10  
14 Input Current each I/O pin with an input voltage between 0.4V and 4.5V.  
μA  
HD;STA  
2us  
HD;DAT  
1us  
SU;DAT  
1us  
SU;STO  
2us  
SCL  
SDA  
BUF  
4us  
LOW  
3us  
HIGH  
1us  
SCL clock frequency250kHz  
Figure 54. A Command Timing Example in the I2C Data Transmission  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
24/41  
TSZ2211115001  
BD49101AEFS-M  
(2)I2C-bus Format  
MSB  
Slave Address  
8bit  
LSB  
MSB  
Select Address  
8bit  
LSB  
MSB  
LSB  
S
1bit  
A
1bit  
A
1bit  
Data  
8bit  
A
P
1bit 1bit  
S
= Start Conditions (Recognition of Start Bit)  
Slave Address = Recognition of Slave Address. 7 bits in upper order are voluntary.  
The least significant bit is Ldue to writing.  
A
A
= Acknowledge Bit (SDA “L”)  
= Not Acknowledge Bit (SDA “H”)  
Select Address = Select ENABLE / LDET SETTING / HSW OCP.  
Data  
P
= Data on ENABLE / LDET SETTING / HSW OCP  
= Stop Condition (Recognition of Stop Bit)  
(3)I2C-bus InterfaceProtocol  
1)Write Mode Fundamental  
S
Slave Address  
MSB LSB  
A
Select Address  
MSB LSB  
A
Data  
MSB LSB  
A
P
2)Auto Increment(The selection address does increment(+1) the number of data.)  
S
Slave Address  
MSB LSB  
A
Select Address  
MSB LSB  
A
Data1  
MSB  
A
Data2  
MSB  
A
LSB  
・・・・  
DataN  
MSB  
A
P
LSB  
LSB  
(Example) Data 1 is set as data of the address specified in the selection address.  
Data 2 is set as data of the address specified in the selection address +1.  
Data N is set as data of the address specified in the selection address +N-1  
3)Composition that cannot be transmitted(In this case, the selection address only 1 is set.)  
S
Slave Address  
MSB LSB MSB  
(Attention) When you transmit data as selection address 2 next to data,  
A
Select Address1  
A
Data  
A
Select Address 2  
A
Data  
A
P
LSB MSB LSB MSB  
LSB MSB LSB  
it doesn't recognize as selection address 2, and it recognizes it as  
data.  
4)Read Mode Protocol(Address 0x04 Read)  
S
Slave Address  
MSB 0xD8 LSB MSB  
A
REQ Address  
A
Select Address  
0x04 LSB  
A
P
0xD0 LSB MSB  
A
S
Slave Address  
MSB 0xD9 LSB  
A
READ DATA  
MSB LSB  
P
Because read data outputs with synchronizing with falling edge  
of SCL, it latches with synchronizing with rising edge of SCL.  
(4)Slave Address  
MSB  
A6  
1
LSB  
R/W  
1/0  
A5  
1
A4  
0
A3  
1
A2  
1
A1  
0
A0  
0
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
25/41  
TSZ2211115001  
BD49101AEFS-M  
Register Map  
DATA  
D3  
Select  
Items  
init  
Address  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
ENABLE  
01  
02  
0x02  
0x09  
HSW_EN REG5_EN REG4_EN REG3_EN REG2_EN REG1_EN DCDC1_EN  
LDET  
SETTING  
HSW  
LDET[3:0]  
HSW  
OCP  
04  
0x00  
OCP  
Select Address 01 : ENABLE  
DATA  
D3  
Select  
Address  
Items  
init  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
ENABLE  
01  
0x02  
HSW_EN REG5_EN REG4_EN REG3_EN REG2_EN REG1_EN DCDC1_EN  
D[0]: DCDC1_EN ・・・DCDC1 enable control.  
“0”: OFF (Initial Value)  
D[4]: REG4_EN ・・・REG4 enable control.  
“0”: OFF (Initial Value)  
“1”: ON  
“1”: ON  
D[1]: REG1_EN ・・・REG1 enable control.  
D[5]: REG5_EN ・・・REG5 enable control.  
“0”: OFF  
“0”: OFF (Initial Value)  
“1”: ON (Initial Value)  
“1”: ON  
D[2]: REG2_EN ・・・REG2 enable control.  
D[6]: HSW_EN ・・・HSW enable control.  
“0”: OFF (Initial Value)  
“0”: OFF (Initial Value)  
“1”: ON  
“1”: ON  
D[3]: REG3_EN ・・・REG3 enable control.  
“0”: OFF (Initial Value)  
“1”: ON  
Select Address 02 : LDET SETTING  
DATA  
Select  
Address  
Items  
init  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LDET[3:0]  
D0  
LDET  
SETTING  
02  
0x09  
D[3:0]: LDET ・・・ The low voltage detect threshold of the pin VIN0 is set. When the pin VIN0 becomes below the set  
threshold, the pin BSENS becomes L.  
“0000”: 5.7V  
“0001”: 5.8V  
“0010”: 5.9V  
“0011”: 6.0V  
“0100”: 6.1V  
“0101”: 6.2V  
“0110”: 6.3V  
“0111”: 6.4V  
“1000”: 7.7V  
“1001”: 7.8V (Initial Value)  
“1010”: 7.9V  
“1011”:  
“1100”:  
“1101”:  
“1110”:  
“1111”:  
8.0V  
8.1V  
8.2V  
8.3V  
8.4V  
Select Address 04 : HSW OCP (Read only)  
DATA  
D3  
Select  
Address  
Items  
Init  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
HSW  
OCP  
HSW  
OCP  
04  
0x00  
D[0]: HSW OCP ・・・ Detecting HSW over current condition  
“0”: No detected (Initial Value)  
1”: Detected  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
26/41  
TSZ2211115001  
BD49101AEFS-M  
Application Example  
4.7µF  
50V  
SNSH  
20  
TSD  
24mΩ(OCP:4.2A)  
21  
SNSL  
SYNC  
RT  
51kΩ  
(fosc=300kHz)  
1%  
36  
34  
6.0V  
Ext CLK  
22  
GATE1  
DCDC1  
output  
Damping  
Resistor  
22µH  
DCDC1  
(Controller)  
CD-Drive  
100µF  
16V  
560pF  
16V  
1kΩ  
OSC  
130kΩ  
1%  
FB1  
23  
24  
8
39kΩ  
680pF  
6.3V  
INV1  
390pF  
6.3V  
INTERNAL  
20kΩ  
1%  
LC filter  
VBAT  
REGULATOR  
VIN0  
3.3V  
2
SW2  
DCDC2  
output  
47µH  
1µF  
50V  
μ-con  
390pF  
10V  
240kΩ  
1%  
100µF  
10V  
BCAP  
FB2  
220µF  
50V  
3
9
1kΩ  
75kΩ  
1000µF  
50V  
10µF  
50V  
DCDC2  
470pF  
6.3V  
220pF  
6.3V  
75kΩ  
1%  
BCLDET  
/BCOVP  
10  
INV2  
VIN2  
11  
19  
1µF  
50V  
VOUT0  
STB_REG  
8.8V  
Audio  
REG2  
VOUT2  
16  
LDET/OVP  
390kΩ  
1%  
1µF  
16V  
REG2  
REG5  
output  
ADJ2  
15  
39kΩ  
VIN1  
1%  
12  
1µF  
10V  
1.25V  
5.0V  
REG1  
output  
REG5  
VOUT5  
VOUT1  
14  
13  
μ-con RAM  
1
LCD  
470kΩ  
1%  
REG1  
REG3  
4.7µF  
10V  
430kΩ  
output 1µF  
ADJ1  
1%  
ADJ5  
44  
16V  
430kΩ  
82kΩ  
1%  
1%  
VINSW  
VIN3  
30  
4
1µF  
4.7µF  
50V  
10V  
3.3V  
Hi-side SW  
output  
REG3  
output  
Hside  
SW  
ILM  
6
VOUT3  
32  
31  
Tuner  
HSW  
470kΩ  
1%  
4.7µF  
10V  
ADJ3  
150kΩ  
1%  
BSENS  
40  
VIN4  
29  
1µF  
5.2V  
REG4OCB  
10V  
REG4  
output  
39  
41  
43  
42  
VOUT4  
25  
26  
USB  
ECO  
E N  
880kΩ  
1%  
120µF  
10V  
ADJ4  
160kΩ  
1%  
REG4EN  
REG4  
(calibrate)  
VOCAL  
27  
4.7µF  
6.3V  
120Ω  
(VCAL:0.26Ω setting)  
1%  
SDA  
SCL  
38  
37  
I2C I/F  
Each ch on/off  
LDET setting  
CLCAL  
28  
5.1kΩ  
(OCP:1.96A setting)  
1%  
35  
GND1  
33  
GND2  
17  
7
GND3 GND4  
Please put this BCAP capacitor near the BCAP pin as much as possible.  
※ꢀWe recommend you use less than 1% accuracy resistor with voltage, frequency, OCP detect and cable compensation setting.  
This in an example. Please decide all parts after enough evaluations and verifications.  
Figure 55. Application Example  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
27/41  
TSZ2211115001  
BD49101AEFS-M  
Selection of Components Externally Connected  
1. Setting External Components for DCDC  
Vin  
Cin  
Cbulk  
SNSH  
SNSL  
Rcl  
GATE1  
L
DCDC  
Vo  
(Controller)  
D
Co  
C1  
Rs  
R1  
R2  
FB1  
R3  
C2  
INV1  
Figure 56. External Components for DCDC  
(1) Setting Output Voltage  
To set output voltage, connect R1 between VOUT and INV, R2 between INV and GND.  
Furthermore, set the R1 and R2 to 10k–1MΩ.  
VOUT = VINV x (R1 + R2)/R2 [V]  
VINV : INV Voltage  
0.8V(Typ),  
(2) Selection of Coil L  
The value of the coil can be obtained by the formula shown below:  
( VIN - VO ) × VO  
=
L
VIN  
× f × ΔI L  
IL: Output Ripple Current  
IL should typically be approximately 20 to 30% of Iomax (the maximum load current of DCDC)  
If this coil is not set to the optimum value, normal (continuous) oscillation may not be achieved. Furthermore, set the  
value of the coil with an adequate margin so that the peak current passing through the coil will not exceed the rated  
current of the coil.  
(3) Selection of Output Capacitors  
The output capacitor can be determined according to the output ripple voltage Vpp required. Obtain the required ESR  
value by the formula shown below and then select the capacitance.  
( VIN - VO ) × VO  
ΔIL  
=
VIN  
L × f ×  
× V  
ΔIL  
O
ΔVpp  
× ESR +  
ΔIL  
=
V
2 × Co × f ×  
IN  
Set the rating of the capacitor with an adequate margin to the output voltage. Also, set the maximum allowable ripple  
current with an adequate margin to IL. Furthermore, the output rise time should be shorter than the soft start time.  
Select the output capacitor having a value smaller than that obtained by the formula shown below.  
{
O(Max) }  
1.7ms × ILIMIT - I  
C MAX  
=
VO  
ILIMIT: DCDC Over Current Limit Value 0.1/Rcl[A] (DCDC1)  
3.6 [A]  
(DCDC2)  
Rcl: Resistance between SNSH and SNSL  
If these capacitances are not optimum, faulty startup may result.  
( 1.7m is soft start time(min) )  
(4) Selection of Diodes  
Set diode rating with an adequate margin to the maximum load current. Also, make setting of the rated inverse voltage  
with an adequate margin to the maximum input voltage.  
A diode with a low forward voltage and short reverse recovery time will provide high efficiency.  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
28/41  
TSZ2211115001  
BD49101AEFS-M  
(5) Selection of Input Capacitors  
Be sure to insert a ceramic capacitor of 2 to 10µF for Cin  
Furthermore, connect the capacitor Cbulk to keep input voltage.  
The capacitor Cbulk should have a low ESR and a significantly large ripple current. The ripple current IRMS can be  
obtained by the following formula:  
Io x Vo x ( Vin Vo ) / Vin2  
IRMS  
=
Select capacitors that can accept this ripple current.  
If the capacitance of CIN and C28 is not optimum, the IC may malfunction.  
(6) Setting of Phase Compensation  
The following section summarizes the targeted characteristics of this application for the stability condition of DCDC.  
At a 1(0dB)gain, the phase delay is 150°or less(i.e. the phase margin is 30° or more).  
The GBW for this occasion is 1/10 or less of the switching frequency.  
Vin  
L
Vo  
Re  
D
Co  
Figure 57. LC Filter of DCDC  
1
f
[Hz] (LC Resonance Point)  
[Hz] (Phase Lead)  
r
=
2π × L × Co  
1
fESR =  
2π × Re × Co  
Replace a secondary phase delay(-180°) with a secondary phase lead by inserting two-phase leads, to ensure  
the stability through the phase compensation.  
Vo  
C3  
C2 R3  
C1  
Rs  
R1  
R2  
ERR1  
INV1  
FB1  
Figure 58. Phase Compensation  
1
[Hz] (Phase Lead)  
[Hz] (Phase Lead)  
f
z1  
=
2π × R1 × C1  
1
f
z2  
=
2π × R3 × C2  
Setting fz1,fz2 to be half to 2 times a frequency as large as fr provides an appropriate phase margin.  
For output capacitors that have high ESR, because fESR(phase lead) occurs near LC resonance point,  
it is unnecessary to insert fz1(phase lead).  
For output capacitors that have low ESR, insert fz1(phase lead) and fp1 obtained by the following formula  
and adjust frequency response.  
C2 + C3  
[Hz] (Phase Delay)  
f
p1  
=
2π × R3 × C2 × C3  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
29/41  
TSZ2211115001  
BD49101AEFS-M  
The setting value above is simple estimate. Consequently, the setting may be adjusted on the actual system.  
Furthermore, since these characteristics vary with the layout of PCB loading conditions, precise calculations  
should be made on the actual system.  
To check on the actual frequency characteristics, use a FRA or a gain-phase analyzer. Moreover, there is a  
method of guessing the room degree by the loading response, too, when these measuring instruments do not  
exist. The response is low when the change of the output when it is made to change under no load to the  
maximum load is monitored, and there are a lot of variation quantities. It can be said that the phase margin  
degree is little when there are a lot of ringing frequencies after it changes. As the standard, it is two times or  
more of ringing. However, a quantitative phase margin degree cannot be confirmed.  
Maximum load  
Load  
0
Inadequate phase margin  
Output voltage  
Adequate phase margin  
Figure 59. Load Response  
(7) Setting of the Threshold for DCDC1 Over Current Protection  
When the peak of the inductor current gets over the over current protection values, over current protection circuit  
operates. The over current protection values can be obtained by the following formula:  
100mV  
Iocp  
=
Rcl  
(8) Selection of the Pch FET for DCDC1  
VDS-Vin  
VGS-5V(Typ)  
Allowable Current Output Current + Ripple Current  
Recommended more than the threshold for over current protection  
The FET with low on resistance will provide high efficiency.  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
30/41  
TSZ2211115001  
BD49101AEFS-M  
2. Setting External Components for REG  
VIN  
Cin  
REG  
VOUT  
Co  
R1  
R2  
ADJ  
Figure 60. External Components for REG  
Input Voltage Range[V] OCP Current Threshold[A]  
Output Capacitance[µF]  
Output  
ch  
Voltage[V]  
Min  
Typ  
3.3  
14.4  
6
Max  
6.5  
25  
Min  
0.5  
Typ  
1.0  
Max  
1.5  
Min  
4.7  
1
Typ  
Max  
REG1  
REG2  
REG3  
REG4  
REG5  
1.25  
8.8  
3.3  
5.2  
5
2.25(Note 1)  
9.45(Note 1)  
3.9(Note 1)  
5.6(Note 1)  
5.65(Note 1)  
-
-
-
-
-
-
-
-
-
-
0.15  
0.3  
0.30  
0.6  
0.45  
0.9  
6.5  
6.5  
25  
4.7  
47  
1
6
Typ-20% Variable Typ+20%  
0.05 0.10 0.15  
14.4  
(Note 1) the value when Output Voltage is indicated above  
Figure 61. Each REGs Specification of BD49101AEFS-M  
(1) Setting Output Voltage  
To set output voltage, connect R2 between ADJ and GND, R1 between VOUT and ADJ.  
Furthermore, set the R1 to 100kΩ(400kΩ for REG3) or more.  
VOUT = VADJ x (R1+R2)/R2 [V]  
VADJ:ADJ Voltage(=Reference Voltage) REG3,REG4,REG5: 0.8V(Typ),  
REG1:  
REG2:  
0.6V(Typ),  
0.793V(Typ)  
(2) Selection of Output Capacitors  
To prevent from oscillation, insert output capacitor. Check to Figure 61 about minimum capacitance of each REG.  
(Temperature characteristic is excluded) It may be use ceramic capacitors.  
Because steep change and input voltage change have effect on output voltage change, please confirm output  
capacitance in actual application.  
(3) Over Current Protection(OCP) Threshold  
The OCP threshold depends on output voltage setting value. Especially if you set lower voltage than indicated shown  
as Figure 61, OCP threshold value decrease.  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
31/41  
TSZ2211115001  
BD49101AEFS-M  
(4) Setting of REG4 Over Current Protection Threshold and Cable Impedance Calibration  
Setting of Over Current Protection Threshold  
The over current protection threshold (IRG4OCP) can be set by the resistance connected with CLCAL(RCLCAL).  
The threshold can be obtained by the following formula (Typical Characteristic)  
RCLCAL[Ω] = 5.1k x 1.96A / IRG4OCP[A]  
The relation between resistance and the threshold is decided as shown in the figure below.  
2.0  
1.96  
RCLCAL[kΩ] IRG4OCP[A]  
1.79  
5.1  
5.6  
6.8  
8.2  
1.96  
1.79  
1.47  
1.22  
1.00  
0.83  
0.67  
0.56  
0.45  
0.37  
0.30  
0.26  
0.21  
0.18  
1.5  
1.0  
0.5  
0.0  
1.47  
1.22  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
56.0  
1.00  
0.83  
0.67  
0.56  
0.45  
0.37  
0.30  
0.26  
0.21  
50  
0.18  
0
10  
20  
30  
40  
60  
OCP Threshold CurrentSetting  
Resistance :RCLCAL [kΩ]  
Figure 62. Setting of Over Current Protection Threshold  
Setting of Cable Impedance Calibration  
The cable impedance (RCABLE) calibration value can be set by the resistance connected with the VOCALpin (RVOCAL).  
This value can be obtained by the following formula (Typical Characteristic):  
RVOCAL[Ω] = RCABLE[Ω] x 2400 / VOUT4  
VOUT4: REG4 Output Setting Value(Typ)  
250  
RVOCAL[Ω]  
RCABLE[Ω]  
VOUT4=5.2V  
VOUT4=5.2V  
0.000  
0.022  
0.039  
0.085  
0.163  
0.217  
0.238  
0.260  
0.282  
0.325  
0.347  
0.390  
0.433  
0.477  
0.520  
0
10  
18  
39  
200  
150  
100  
50  
75  
100  
110  
120  
130  
150  
160  
180  
200  
220  
240  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
Cable Resistance : RCABLE [Ω]  
Figure 63. Setting of Cable Impedance Calibration  
When you set cable impedance, please assume VOUT4 absolute maximum rating(7.0V) and I/O voltage difference(0.4V max)  
so that the cable impedance calibration cause rising output voltage.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
32/41  
BD49101AEFS-M  
Setting of the VOCAL Capacitor  
VIN4  
Vin  
Cin  
REG4  
VOUT4  
VOCAL  
Vo  
Co  
CVOCAL  
RVOCAL  
Figure 64. Capacitance of the VOCAL pin (CVOCAL  
)
For the oscillation of REG4 cable impedance calibration circuit, insert more than 4.7µF capacitor to VOCAL  
as shown above.  
(5) The VOUT0 Pin Setting  
Be sure to connect DCDC2 output with the VOUT0 pin. (refer to Figure 55.)  
The VOUT0 pin is a power supply for I/O pin (36-43pin). Therefore, if VOUT0 and VODC2 output would not be  
connected, you could not set external synchronization, register and DCDC2/STBREG mode or could not get BSENS or  
REG4OCB output signal.  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
33/41  
TSZ2211115001  
BD49101AEFS-M  
3. Setting the Oscillator Frequency (FOSC  
)
An internal oscillator frequency can be set by the resistance connected with the RT pin.  
The relation between resistance and the oscillator frequency is decided as shown in the figure below. (Typical Characteristic)  
550  
RT[kΩ]  
27  
30  
33  
36  
39  
43  
47  
51  
56  
62  
68  
75  
82  
91  
FOSC[kHz]  
537  
500  
450  
400  
350  
300  
250  
200  
150  
489  
449  
415  
386  
353  
324  
300  
275  
250  
229  
209  
192  
174  
20  
30  
40  
50  
60  
70  
80  
90 100  
Oscillator Frequency Setting  
Resistance: RT [kΩ]  
Figure 65. Oscillator Frequency vs RT  
Thermal Reduction Characteristics  
10  
9
8
7
6.19W  
6
5
4
3
2
1
0
Reduce by 49.5 mW/°C,when mounted on 4-layer PCB  
of 70 x 70 x 16 mm3  
(Copper foil area on the reverse side of PCB: 70 x 70mm2).  
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta []  
Figure 66. Thermal Reduction Characteristics  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
34/41  
BD49101AEFS-M  
I/O Equivalence Circuit(s)  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Equivalent Circuit  
BCAP VIN 1,2,3,0  
Equivalent Circuit  
VINSW  
Internal  
Regulator  
Internal  
Regulator  
Internal  
Regulator  
14  
16  
32  
1
VOUT1  
VOUT2  
VOUT3  
VOUT5  
10kΩ  
VOUT1,2,3,5  
HSW  
6
HSW  
700kΩ  
20kΩ  
20kΩ  
600kΩ  
115kΩ  
35kΩ  
91kΩ  
9kΩ  
Internal  
Regulator  
BCAP  
Internal  
Regulator  
BCAP  
BCAP  
FB1,2  
20Ω  
23  
9
FB1  
FB2  
8
SW2  
1kΩ  
SW2  
100kΩ  
BCAP  
Internal  
Regulator  
BCAP  
BCAP  
12  
19  
INV1  
INV2  
11  
VOUT0  
VOUT0  
INV1,2  
2500kΩ  
5kΩ  
800kΩ  
SNSH  
13  
15  
31  
26  
44  
ADJ1  
ADJ2  
ADJ3  
ADJ4  
ADJ5  
Internal  
Regulator  
SNSH  
SNSH  
BCAP  
5kΩ  
10kΩ  
ADJ1,2,3,4,5  
21  
SNSL  
SNSL  
2kΩ  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
35/41  
TSZ2211115001  
BD49101AEFS-M  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Equivalent Circuit  
Equivalent Circuit  
SNSH  
SNSH  
VIN4  
SNSH  
VOUT4  
22  
27  
34  
37  
GATE1  
VOCAL  
RT  
25 VOUT4  
350kΩ  
10kΩ  
60.125kΩ  
40kΩ  
GATE1  
5kΩ  
150kΩ  
Internal  
Regulator  
VIN4  
VIN4  
Internal  
Regulator  
Internal  
Regulator  
Internal  
Regulator  
28  
36  
38  
CLCAL  
SYNC  
SDA  
VOCAL  
CLCAL  
500kΩ  
500kΩ  
5kΩ  
Internal  
Regulator  
Internal  
Regulator  
BCAP  
VOUT0  
2kΩ  
SYNC  
RT  
50Ω  
30kΩ  
100kΩ  
VOUT0  
VOUT0  
2kΩ  
2kΩ  
SCL  
SCL  
SDA  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
36/41  
TSZ2211115001  
BD49101AEFS-M  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Equivalent Circuit  
Equivalent Circuit  
BCAP  
VOUT0  
BCAP  
VOUT0  
EN  
43  
42  
41  
BSENS  
EN,REG4EN,  
ECO  
40  
39  
2kΩ  
REG4  
EN  
BSENS,  
REG4OCB  
REG4  
OCB  
100kΩ  
(EN:660kΩ)  
ECO  
Figure 67. I/O Equivalence Circuit(s)  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
37/41  
TSZ2211115001  
BD49101AEFS-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size  
and copper area to prevent exceeding the Pd rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
38/41  
TSZ2211115001  
BD49101AEFS-M  
Operational Notes continued  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 68. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins except DCDC2/STBREG  
and REG1. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
16. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
17. DCDC2 Short Current Protection (SCP)  
While OCP operates, if the output voltage falls below 70%, SCP will start up. If SCP operates, the output will be OFF  
period of 1024 pulse. It extends the output OFF time to reduce the average output current. In addition, when power  
start-up this feature is masked until it reaches the output voltage is set to prevent the startup imperfection.  
18. BCAP Over Voltage Protection (BCOVP)  
The output except DCDC2/STBREG and REG1 will be turned OFF when BCAP voltage exceeds 30V(Typ).  
When the voltage falls under 28V(Typ), those outputs restarts. Please care the range of use voltage.  
19. BCAP Voltage Slew Rate Limitation  
When the large voltage slew rate would input on the BCAP pin over 1 V/µs, the IC could be reset. Please care with a  
bypass capacitor or input LC filter etc. to reduce the slew rate.  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
39/41  
TSZ2211115001  
BD49101AEFS-M  
Ordering Information  
B D 4 9 1 0 1 A E F S -  
M E 2  
M: for  
Auto-  
motive  
Part Number  
Package  
EFS: HTSSOP-A44  
Packaging and forming specification  
E2: Embossed tape and reel  
Physical Dimension, Tape and Reel Information  
Marking Diagrams  
HTSSOP-A44 (TOP VIEW)  
Part Number Marking  
LOT Number  
D49101AEF  
S
1PIN MARK  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
40/41  
TSZ2211115001  
BD49101AEFS-M  
Revision History  
Date  
Revision  
Changes  
06.Apr.2015  
23.Jun.2016  
001  
002  
New Release  
Correction of descriptions, Add descriptions of function, Change format  
www.rohm.com  
TSZ02201-0V3V0AP00060-1-2  
23.Jun.2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
41/41  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD49101AEFS-ME2

Multi-channel Power Supply IC for Car Audio Systems
ROHM

BD49101AEFS-M_16

Multi-channel Power Supply IC for Car Audio Systems
ROHM

BD49101ARFS-M

BD49101ARFS-M是内置多个汽车音响所需电源的系统电源IC。本IC内置DC/DC 2ch、线性稳压器(以下称为REG)5ch、高边开关SW,微控制器、CD、调谐器、USB、照明、音响等可仅靠本IC供电。以高效率DC/DC电源为基础实施了系统化,比以往产品发热少。内置低功耗模式切换功能及电源控制功能等,实现了(1)高效率(2)低待机电流(3)简单的电源设计。
ROHM

BD49101ARFS-ME2

Power Supply Support Circuit,
ROHM

BD4911FM

System Power Supply with WDT
ROHM

BD4912

Power Supply Support Circuit, Fixed, 1 Channel, MOS, PSIP12, ROHS COMPLIANT, SIP-12
ROHM

BD4912-V4

Low Current Consumption MOS System Power Supply
ROHM

BD4923

Standard CMOS Voltage Detector IC
ROHM

BD4923FVE

Voltage Detector IC
ROHM

BD4923FVE-TL

Standard CMOS Voltage Detector IC
ROHM

BD4923FVE-TR

Power Supply Support Circuit, Fixed, 1 Channel, +2.3VV, CMOS, PDSO5, ROHS COMPLIANT, VSOF-5
ROHM

BD4923G

Voltage Detector IC
ROHM