BD52015HFV-TR [ROHM]

Omnipolar Detection Hall ICs; 全极霍尔检测芯片
BD52015HFV-TR
型号: BD52015HFV-TR
厂家: ROHM    ROHM
描述:

Omnipolar Detection Hall ICs
全极霍尔检测芯片

文件: 总20页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hall IC Series  
Omnipolar Detection  
Hall ICs  
BU52001GUL, BU52011HFV, BU52021HFV,  
BU52015GUL, BU52025G, BU52051NVX, BD7411G  
No.10045ECT02  
Description  
The bipolar Hall ICs are magnetic switches that can operate both S-and N-pole , upon which the output goes from Hi to  
Low. In addition to regular single-output Hall ICs, We offers a line up of dual-output units with a reverse output terminal  
(active High).  
Features  
1) Omnipolar detection  
2) Micropower operation (small current using intermittent operation method)(BD7411G is excluded.)  
3) Ultra-compact CSP package (BU52001GUL,BU52015GUL)  
4) Ultra-Small outline package HVSOF5 (BU52011HFV,BU52021HFV)  
5) Ultra-Small outline package SSON004X1216 (BU52051NVXV)  
6) Small outline package (BU52025G,BD7411G)  
7) Line up of supply voltage  
For 1.8V Power supply voltage(BU52011HFV,BU52015GUL,BU52051NVX)  
For 3.0V Power supply voltage (BU52001GUL)  
For 3.3V Power supply voltage (BU52021HFV,BU52025G)  
For 5.0V Power supply voltage (BD7411G)  
8) Dual output type (BU52015GUL)  
9) High ESD resistance 8kV(HBM)  
Applications  
Mobile phones, notebook computers, digital video camera, digital still camera, white goods etc.  
Product Lineup  
Supply  
voltage  
(V)  
Operate  
point  
(mT)  
Supply current  
(AVG)  
(A)  
Hysteresis  
(mT)  
Period  
(ms)  
Product name  
Output type  
Package  
BU52001GUL 2.403.30  
BU52015GUL 1.653.30  
BU52051NVX 1.653.30  
+/-3.7※  
+/-3.0※  
+/-3.0※  
+/-3.0※  
+/-3.7※  
+/-3.7※  
+/-3.4※  
0.8  
0.9  
0.9  
0.9  
0.8  
0.8  
0.4  
50  
50  
50  
50  
50  
50  
-
8.0μ  
5.0μ  
5.0μ  
5.0μ  
8.0μ  
8.0μ  
2.0m  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
VCSP50L1  
VCSP50L1  
SSON004X1216  
HVSOF5  
BU52011HFV  
BU52021HFV  
BU52025G  
BD7411G  
1.653.30  
2.403.60  
2.403.60  
4.505.50  
HVSOF5  
SSOP5  
SSOP5  
Plus is expressed on the S-pole; minus on the N-pole  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
1/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Absolute Maximum Ratings  
BU52001GUL (Ta=25)  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
LIMIT  
-0.1+4.5※  
±1  
UNIT  
V
1
3
5
VDD  
IOUT  
Pd  
Output Current  
mA  
mW  
2
Power Dissipation  
420※  
Operating Temperature Range  
Topr  
Tstg  
-40+85  
Storage Temperature Range  
1. Not to exceed Pd  
2. Reduced by 4.20mW for each increase in Ta of 1over 25℃  
(mounted on 50mm×58mm Glass-epoxy PCB)  
-40+125  
BU52015GUL (Ta=25)  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
VDD  
LIMIT  
-0.1+4.5※  
±0.5  
UNIT  
V
Output Current  
IOUT  
mA  
mW  
4
Power Dissipation  
Pd  
420※  
Operating Temperature Range  
Topr  
-40+85  
Storage Temperature Range  
3. Not to exceed Pd  
4. Reduced by 4.20mW for each increase in Ta of 1over 25℃  
(mounted on 50mm×58mm Glass-epoxy PCB)  
Tstg  
-40+125  
BU52051NVX (Ta=25)  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
VDD  
LIMIT  
-0.1+4.5※  
±0.5  
UNIT  
V
Output Current  
IOUT  
mA  
mW  
6
Power Dissipation  
Pd  
2049※  
Operating Temperature Range  
Topr  
-40+85  
Storage Temperature Range  
Tstg  
-40+125  
5. Not to exceed Pd  
6. Reduced by 20.49mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
BU52011HFV (Ta=25)  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
VDD  
LIMIT  
-0.1+4.5※  
±0.5  
UNIT  
V
7
Output Current  
IOUT  
mA  
mW  
8
Power Dissipation  
Pd  
536※  
Operating Temperature Range  
Topr  
-40+85  
Storage Temperature Range  
Tstg  
-40+125  
7. Not to exceed Pd  
8. Reduced by 5.36mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
2/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
BU52021NVX (Ta=25)  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
LIMIT  
-0.1+4.5※  
±1  
UNIT  
V
9
VDD  
IOUT  
Pd  
Output Current  
mA  
mW  
10  
Power Dissipation  
536※  
Operating Temperature Range  
Topr  
Tstg  
-40+85  
Storage Temperature Range  
-40+125  
9. Not to exceed Pd  
10. Reduced by5.36mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
BU52025G (Ta=25)  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
VDD  
LIMIT  
-0.1+4.5※  
UNIT  
V
11  
Output Current  
IOUT  
±1  
mA  
mW  
12  
Power Dissipation  
Pd  
540※  
Operating Temperature Range  
Topr  
-40+85  
Storage Temperature Range  
Tstg  
-40+125  
11. Not to exceed Pd  
12. Reduced by 5.40mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
BD7411G (Ta=25)  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
VDD  
LIMIT  
-0.3+7.0※  
±1  
UNIT  
V
13  
Output Current  
IOUT  
mA  
mW  
14  
Power Dissipation  
Pd  
540※  
Operating Temperature Range  
Topr  
-40+85  
Storage Temperature Range  
Tstg  
-55+150  
13. Not to exceed Pd  
14. Reduced by 5.40mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
3/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Magnetic, Electrical Characteristics  
BU52001GUL (Unless otherwise specified, VDD3.0V, Ta25)  
LIMIT  
TYP MAX  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
VDD  
UNIT  
V
CONDITIONS  
MIN  
2.4  
3.0  
3.3  
BopS  
BopN  
BrpS  
BrpN  
BhysS  
BhysN  
-
3.7  
-3.7  
2.9  
-2.9  
0.8  
5.5  
-
-
-0.8  
-
-
Operate Point  
Release Point  
mT  
-5.5  
0.8  
-
-
-
mT  
Hysteresis  
mT  
ms  
V
0.8  
Period  
Tp  
-
50  
-
100  
-
15  
VDD  
-0.4  
BrpN<B<BrpS  
OUT =-1.0mA  
B<BopN,BopS<B  
IOUT =+1.0mA  
Output High Voltage  
VOH  
I
15  
Output Low Voltage  
VOL  
-
-
-
-
-
0.4  
12  
-
V
Supply Current  
IDD(AVG)  
IDD (EN)  
IDD (DIS)  
8
μA  
mA  
μA  
Average  
Supply Current During Startup Time  
4.7  
3.8  
During Startup Time Value  
During Standby Time Value  
Supply CurrentDuring Standby Time  
-
15 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
BU52015GUL (Unless otherwise specified, VDD1.80V, Ta25)  
LIMIT  
TYP MAX  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
VDD  
UNIT  
V
CONDITIONS  
MIN  
1.65  
1.80  
3.30  
BopS  
BopN  
BrpS  
-
3.0  
-3.0  
2.1  
5.0  
Operate Point  
Release Point  
mT  
mT  
-5.0  
-
0.6  
-
BrpN  
-
-
-
-2.1  
0.9  
-0.6  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
mT  
ms  
0.9  
Tp  
-
50  
100  
16  
OUT1: BrpN<B<BrpS  
OUT2: B<BopN, BopS<B  
IOUT = -0.5mA  
VDD  
-0.2  
Output High Voltage  
Output Low Voltage  
VOH  
-
-
V
V
16  
OUT1: B<BopN, BopS<B  
OUT2: BrpN<B<BrpS  
IOUT = +0.5mA  
VOL  
-
-
0.2  
Supply Current 1  
IDD1(AVG)  
IDD1(EN)  
-
-
5
8
-
μA  
V
DD=1.8V, Average  
VDD=1.8V,  
Supply Current During Startup Time 1  
2.8  
mA  
During Startup Time Value  
VDD=1.8V,  
Supply CurrentDuring Standby Time 1  
Supply Current 2  
IDD1(DIS)  
IDD2(AVG)  
IDD2(EN)  
-
-
-
1.8  
8
-
12  
-
μA  
μA  
During Standby Time Value  
VDD=2.7V, Average  
VDD=2.7V,  
Supply Current During Startup Time 2  
4.5  
mA  
During Startup Time Value  
VDD=2.7V,  
Supply CurrentDuring Standby Time 2  
IDD2(DIS)  
-
4.0  
-
μA  
During Standby Time Value  
16 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2010.01 - Rev.C  
4/19  
© 2010 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
BU52051NVX , BU52011HFV (Unless otherwise specified, VDD1.80V, Ta25)  
BU52021HFV,BU52025G (Unless otherwise specified, VDD3.0V, Ta25)  
LIMIT  
PARAMETERS  
SYMBOL  
UNIT  
CONDITIONS  
MIN  
TYP MAX  
Power Supply Voltage  
VDD  
2.4  
3.0  
3.6  
V
BopS  
BopN  
BrpS  
BrpN  
BhysS  
BhysN  
-
3.7  
-3.7  
2.9  
-2.9  
0.8  
5.5  
-
-
-0.8  
-
-
Operate Point  
Release Point  
mT  
-5.5  
0.8  
-
-
-
mT  
Hysteresis  
mT  
ms  
V
0.8  
Period  
Tp  
-
50  
-
100  
-
17  
VDD  
-0.4  
BrpN<B<BrpS  
Output High Voltage  
VOH  
IOUT =-1.0mA  
B<BopN, BopS<B  
IOUT =+1.0mA  
17  
Output Low Voltage  
VOL  
-
-
-
-
-
0.4  
12  
-
V
Supply Current  
IDD(AVG)  
IDD (EN)  
IDD (DIS)  
8
μA  
mA  
μA  
Average  
Supply Current During Startup Time  
Supply CurrentDuring Standby Time  
4.7  
3.8  
During Startup Time Value  
During Standby Time Value  
-
17 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
BD7411G (Unless otherwise specified, VDD5.0V, Ta25)  
LIMIT  
PARAMETERS  
Power Supply Voltage  
SYMBOL  
VDD  
UNIT  
V
CONDITIONS  
MIN  
4.5  
TYP MAX  
5.0  
5.5  
BopS  
BopN  
BrpS  
-
3.4  
-3.4  
3.0  
5.6  
Operate Point  
Release Point  
Hysteresis  
mT  
-5.6  
-
1.5  
-
mT  
mT  
BrpN  
-
-
-
-3.0  
0.4  
0.4  
-1.5  
BhysS  
BhysN  
-
-
18  
BrpN<B<BrpS  
Output High Voltage  
Output Low Voltage  
Supply Current  
VOH  
VOL  
IDD  
4.6  
-
-
-
0.4  
4
V
V
IOUT =-1.0mA  
B<BopN, BopS<B  
IOUT =+1.0mA  
18  
-
-
2
mA  
18 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
Radiation hardiness is not designed.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
5/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Figure of measurement circuit  
Tp  
Bop/Brp  
200Ω  
VDD  
VDD  
VDD  
OUT  
VDD  
OUT  
100μF  
Oscilloscope  
GND  
GND  
V
Bop and Brp are measured with applying the magnetic field  
from the outside.  
The period is monitored by Oscilloscope.  
Fig.2 Tp measurement circuit  
Fig.1 Bop,Brp measurement circuit  
VOH  
VDD  
OUT  
Product Name  
IOUT  
100μF  
VDD  
BU52001GUL, BU52021HFV,  
BU52025G, BD7411G  
1.0mA  
GND  
IOUT  
V
BU52015GUL, BU52051NVX,  
BU52011HFV  
0.5mA  
Fig.3 VOH measurement circuit  
VOL  
Product Name  
IOUT  
VDD  
100μF  
VDD  
BU52001GUL, BU52021HFV, BU52025G,  
BD7411G  
OUT  
1.0mA  
GND  
V
IOUT  
BU52015GUL, BU52051NVX,  
BU52011HFV  
0.5mA  
Fig.4 VOL measurement circuit  
IDD  
A
Product Name  
C
VDD  
BU52001GUL,BU52015GUL,BU52051NVX,  
BU52011HFV, BU52021HFV, BU52025G  
2200μF  
VDD  
OUT  
C
GND  
BD7411G  
100μF  
Fig.5 IDD measurement circuit  
www.rohm.com  
2010.01 - Rev.C  
6/19  
© 2010 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Technical (Reference) Data  
BU52001GUL (VDD=2.4V3.3V type)  
8.0  
6.0  
4.0  
2.0  
0.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8.0  
6.0  
4.0  
2.0  
0.0  
Ta = 25°C  
VDD=3.0V  
Bop S  
Bop S  
VDD=3.0V  
Brp S  
Brp N  
Brp S  
-2.0  
-2.0  
-4.0  
-6.0  
-8.0  
Brp N  
Bop N  
-4.0  
-6.0  
-8.0  
Bop N  
3.2  
2.0  
2.4  
2.8  
3.6  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE  
V
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig.7 Bop,Brp- Supply voltage  
Fig.8 TP– Ambient  
temperature  
Fig.6 Bop,Brp–  
Ambient temperature  
14.0  
12.0  
10.0  
8.0  
14.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12.0  
Ta =  
VDD=3.0V  
10.0  
Ta = 25°C  
8.0  
6.0  
4.0  
2.0  
0.0  
6.0  
4.0  
2.0  
0.0  
2.0  
2.4  
2.8  
3.2  
3.6  
2.0  
2.4  
2.8  
3.2  
3.6  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.9 TP– Supply voltage  
Fig.11 IDD – Supply voltage  
Fig.10  
IDD– Ambient  
temperature  
BU52015GUL, BU52051NVX, BU52011HFV (VDD=1.65V3.3V type)  
8.0  
6.0  
8.0  
6.0  
100  
90  
VDD=1.8V  
Ta = 25°C  
VDD=1.8V  
Bop S  
Bop S  
80  
4.0  
4.0  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
2.0  
Brp S  
Brp N  
Brp S  
Brp N  
0.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Bop N  
Bop N  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
1.4 1.8 2.2 2.6 3.0 3.4 3.8  
SUPPLY VOLTAGE  
V
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig.14 TP – Ambient  
temperature  
Fig.13 Bop,Brp– Supply voltage  
Fig.12 Bop,Brp–  
Ambient temperature  
14.0  
12.0  
10.0  
8.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
14.0  
12.0  
10.0  
8.0  
Ta = 25°C  
Ta = 25°C  
VDD=1.8V  
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
1.4 1.8 2.2 2.6 3.0 3.4 3.8  
SUPPLY VOLTAGE [V]  
1.4 1.8 2.2  
2.6 3.0 3.4 3.8  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.17 IDD – Supply voltage  
Fig.15 TP– Supply voltage  
Fig.16 IDD– Ambient  
temperature  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
7/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
BU52021HFV, BU52025G (VDD=2.4V3.6V type)  
8.0  
6.0  
8.0  
6.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta = 25°C  
V
DD=3.0V  
Bop S  
Bop S  
VDD=3.0V  
4.0  
4.0  
2.0  
2.0  
Brp S  
Brp N  
Brp S  
Brp N  
0.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Bop N  
Bop N  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE  
V
AMBIENT TEMPERATURE [ ]  
AMBIENT TEMPERATURE [  
]
Fig.20 TP – Ambient  
temperature  
Fig.19 Bop,Brp– Supply voltage  
Fig.18 Bop,Brp–  
Ambient temperature  
100  
14.0  
12.0  
10.0  
8.0  
14.0  
12.0  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta = 25°C  
Ta = 25°C  
VDD=3.0V  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
6.0  
4.0  
2.0  
0.0  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
SUPPLY VOLATAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.23 IDD – Supply voltage  
Fig.22 IDD – Ambient  
temperature  
Fig.21 TP – Supply voltage  
BD7411G (VDD=4.5V5.5V type)  
8.0  
6.0  
8.0  
6.0  
6.0  
Bop S  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
DD=5.0V  
Ta = 25°C  
Bop S  
Brp S  
VDD=5.0V  
4.0  
4.0  
2.0  
2.0  
Brp S  
Brp N  
0.0  
0.0  
Brp N  
Bop N  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Bop N  
-60 -40 -20  
0
20 40 60 80 100  
4.0  
4.5  
5.0  
5.5  
6.0  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE  
V
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE [  
]
Fig.24 Bop,Brp–  
Fig.25 Bop,Brp– Supply voltage  
Fig.26  
IDD – Ambient  
Ambient temperature  
temperature  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Ta = 25°C  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGE [V]  
Fig.27 IDD – Supply voltage  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
8/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Block Diagram  
BU52001GUL  
DD  
0.1μF  
A1  
Adjust the bypass capacitor value  
as necessary, according to voltage  
noise conditions, etc.  
TIMING LOGIC  
HALL  
ELEMENT  
The CMOS output terminals enable direct  
connection to the PC, with no external  
pull-up resistor required.  
B1 OUT  
×
A2  
GND  
Fig.28  
A2  
B2  
A1  
B1  
A1  
B1  
A2  
PIN No.  
A1  
PIN NAME  
VDD  
FUNCTION  
POWER SUPPLY  
GROUND  
COMMENT  
A2  
GND  
B1  
OUTPUT  
OUT  
B2  
Surface  
B2  
OPEN or Short to GND.  
N.C.  
Reverse  
BU52015GUL  
VDD  
B2  
0.1μF  
Adjust the bypass capacitor value  
as necessary, according to  
voltage noise conditions, etc.  
TIMING LOGIC  
A1  
OUT1  
HALL  
ELEMENT  
The CMOS output terminals enable direct  
connection to the PC, with no external pull-up  
resistor required.  
GND  
VDD  
×
A2  
B1  
OUT2  
GND  
A1  
Fig.29  
A2  
B2  
A1  
B1  
A2  
PIN No.  
PIN NAME  
FUNCTION  
COMMENT  
A1  
A2  
B1  
B2  
OUT1  
OUT2  
GND  
VDD  
Output pin (Active Low)  
Output pin (Active High)  
GROUND  
B1  
B2  
Power Supply Voltage  
Surface  
Reverse  
www.rohm.com  
2010.01 - Rev.C  
9/19  
© 2010 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
BU52051NVX  
DD  
0.1μF  
4
Adjust the bypass capacitor  
value as necessary, according to  
voltage noise conditions, etc.  
TIMING LOGIC  
HALL  
ELEMENT  
The CMOS output terminals enable direct  
connection to the PC, with no external  
pull-up resistor required.  
OUT  
1
2
×
GND  
Fig.30  
4
3
2
3
2
4
1
PIN No.  
PIN NAME  
OUT  
FUNCTION  
COMMENT  
1
2
3
4
OUTPUT  
GROUND  
GND  
N.C.  
OPEN or Short to GND.  
1
Surface  
Reverse  
VDD  
POWER SUPPLY  
BU52011HFV,BU52021HFV  
DD  
0.1μF  
4
Adjust the bypass capacitor value  
as necessary, according to  
voltage noise conditions, etc.  
TIMING LOGIC  
HALL  
ELEMENT  
The CMOS output terminals enable  
direct connection to the PC, with no  
external pull-up resistor required.  
OUT  
5
2
×
GND  
Fig.31  
PIN No.  
PIN NAME  
N.C.  
FUNCTION  
GROUND  
COMMENT  
4
3
4
3
5
1
5
1
1
2
3
4
5
OPEN or Short to GND.  
GND  
N.C.  
OPEN or Short to GND.  
VDD  
POWER SUPPLY  
OUTPUT  
2
2
Surface  
OUT  
Reverse  
www.rohm.com  
2010.01 - Rev.C  
10/19  
© 2010 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
BU52025G  
DD  
0.1μF  
4
Adjust the bypass capacitor value  
as necessary, according to voltage  
noise conditions, etc.  
TIMING LOGIC  
HALL  
ELEMENT  
The CMOS output terminals enable direct  
connection to the PC, with no external pull-up  
resistor required.  
OUT  
5
2
×
GND  
Fig.32  
PIN No.  
PIN NAME  
N.C.  
FUNCTION  
GROUND  
COMMENT  
4
3
4
3
5
1
5
1
1
2
3
4
5
OPEN or Short to GND.  
GND  
N.C.  
OPEN or Short to GND.  
VDD  
POWER SUPPLY  
OUTPUT  
2
2
OUT  
Surface  
Reverse  
BD7411G  
DD  
5
0.1μF  
Adjust the bypass capacitor value  
as necessary, according to voltage  
noise conditions, etc.  
TIMING LOGIC  
REG  
The CMOS output terminals enable direct  
connection to the PC, with no external pull-up  
resistor required.  
HALL  
ELEMENT  
OUT  
4
2
×
GND  
Fig.33  
PIN No.  
PIN NAME  
N.C.  
FUNCTION  
COMMENT  
4
3
4
3
5
1
5
1
1
2
3
4
5
OPEN or Short to GND.  
GND  
GROUND  
N.C.  
OPEN or Short to GND.  
OUT  
OUTPUT  
2
2
VDD  
POWER SUPPLY  
Surface  
Reverse  
www.rohm.com  
2010.01 - Rev.C  
11/19  
© 2010 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Description of Operations  
(Micropower Operation)  
The Omnipolar detection Hall IC adopts an intermittent  
IDD  
operation method to save energy. At startup, the Hall  
elements, amp, comparator and other detection circuits  
power ON and magnetic detection begins. During standby,  
the detection circuits power OFF, thereby reducing current  
consumption. The detection results are held while standby  
is active, and then output.  
Period  
Startup time  
Standby  
Reference period: 50ms (MAX100ms)  
Reference startup time: 48μs  
t
Fig.34  
BD7411G don’t adopts an intermittent operation method.  
(Offset Cancelation)  
The Hall elements form an equivalent Wheatstone (resistor)  
bridge circuit. Offset voltage may be generated by a  
differential in this bridge resistance, or can arise from  
changes in resistance due to package or bonding stress. A  
dynamic offset cancellation circuit is employed to cancel this  
offset voltage.  
VDD  
I
When Hall elements are connected as shown in Fig. 35 and a  
magnetic field is applied perpendicular to the Hall elements,  
voltage is generated at the mid-point terminal of the bridge.  
This is known as Hall voltage.  
Dynamic cancellation switches the wiring (shown in the  
figure) to redirect the current flow to a 90˚ angle from its  
original path, and thereby cancels the Hall voltage.  
The magnetic signal (only) is maintained in the sample/hold  
circuit during the offset cancellation process and then  
released.  
B
×
Hall Voltage  
GND  
Fig.35  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
12/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
(Magnetic Field Detection Mechanism)  
S
N
S
S
N
S
N
Flux  
Flux  
Fig.36  
The Hall IC cannot detect magnetic fields that run horizontal to the package top layer.  
Be certain to configure the Hall IC so that the magnetic field is perpendicular to the top layer.  
N
S
N
S
S
N
OUT [V]  
Flux  
Flux  
High  
High  
High  
Low  
Low  
B
0
Bop N  
Brp N  
Bop S  
Brp S  
Magnetic flux density [mT]  
N-Pole  
S-Pole  
Fig.37  
The Omnipolar detection Hall IC detects magnetic fields running perpendicular to the top surface of the package. There is  
an inverse relationship between magnetic flux density and the distance separating the magnet and the Hall IC: when  
distance increases magnetic density falls. When it drops below the operate point (Bop), output goes HIGH. When the  
magnet gets closer to the IC and magnetic density rises, to the operate point, the output switches LOW. In LOW output  
mode, the distance from the magnet to the IC increases again until the magnetic density falls to a point just below Bop, and  
output returns HIGH. (This point, where magnetic flux density restores HIGH output, is known as the release point, Brp.)  
This detection and adjustment mechanism is designed to prevent noise, oscillation and other erratic system operation.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
13/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Intermittent Operation at Power ON  
Power ON  
VDD  
Startup time  
Standby time  
High  
Standby time  
Startup time  
Supply current  
(Intermittent action)  
Indefinite  
OUT  
(No magnetic  
field present)  
Indefinite  
OUT  
(Magnetic  
field present)  
Low  
Fig.38  
The Omnipolar detection Hall IC adopts an intermittent operation method in detecting the magnetic field during startup, as  
shown in Fig. 38. It outputs to the appropriate terminal based on the detection result and maintains the output condition  
during the standby period. The time from power ON until the end of the initial startup period is an indefinite interval, but it  
cannot exceed the maximum period, 100ms. To accommodate the system design, the Hall IC output read should be  
programmed within 100ms of power ON, but after the time allowed for the period ambient temperature and supply voltage.  
BD7411G don’t adopts an intermittent operation method.  
Magnet Selection  
Of the two representative varieties of permanent magnet, neodymium generally offers greater magnetic power per volume  
than ferrite, thereby enabling the highest degree of miniaturization, Thus, neodymium is best suited for small equipment  
applications. Fig. 39 shows the relation between the size (volume) of a neodymium magnet and magnetic flux density. The  
graph plots the correlation between the distance (L) from three versions of a 4mm X 4mm cross-section neodymium magnet  
(1mm, 2mm, and 3mm thick) and magnetic flux density. Fig. 40 shows Hall IC detection distance – a good guide for  
determining the proper size and detection distance of the magnet. Based on the BU52011HFV, BU52015GUL operating  
point max 5.0 mT, the minimum detection distance for the 1mm, 2mm and 3mm magnets would be 7.6mm, 9.22mm, and  
10.4mm, respectively. To increase the magnet’s detection distance, either increase its thickness or sectional area.  
10  
9
t=3mm  
8
7
t=1mm  
t=2mm  
6
5
4
3
2
1
7.6mm 9.2mm  
10.4mm  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Distance between magnet and Hall IC [mm]  
Fig.39  
X
Magnet material: NEOMAX-44H (material)  
Maker: NEOMAX CO.,LTD.  
Magnet  
t
Y
t
X=Y=4mm  
t=1mm,2mm,3mm  
L: Variable  
Flux density measuring point  
Magnet size  
Fig.40 Magnet Dimensions and  
Flux Density Measuring Point  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
14/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Position of the Hall Effect IC(Reference)  
SSOP5  
0.8  
HVSOF5  
0.6  
VCSP50L1  
0.55  
SSON004X1216  
0.6  
0.55  
0.35  
1.45  
0.6  
0.8  
0.8  
0.2  
0.2  
(UNITmm)  
Footprint dimensions (Optimize footprint dimensions to the board design and soldering condition)  
VCSP50L1  
SSON004X1216  
Please avoid having potential overstress from  
PCB material, strength, mounting positions.  
If you had any further questions or concerns,  
please contact your Rohm sales and affiliate.  
HVSOF5  
SSOP5  
(UNITmm)  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
15/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Terminal Equivalent Circuit Diagram  
OUT , OUT1, OUT2  
VDD  
Because they are configured for CMOS (inverter) output, the  
output pins require no external resistance and allow direct  
connection to the PC. This, in turn, enables reduction of the  
current that would otherwise flow to the external resistor  
during magnetic field detection, and supports overall low  
current (micropower) operation.  
GND  
Fig.41  
Operation Notes  
1) Absolute maximum ratings  
Exceeding the absolute maximum ratings for supply voltage, operating conditions, etc. may result in damage to or  
destruction of the IC. Because the source (short mode or open mode) cannot be identified if the device is damaged in this  
way, it is important to take physical safety measures such as fusing when implementing any special mode that operates in  
excess of absolute rating limits.  
2) GND voltage  
Make sure that the GND terminal potential is maintained at the minimum in any operating state, and is always kept lower  
than the potential of all other pins.  
3) Thermal design  
Use a thermal design that allows for sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
4) Pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. Mounting errors, such as improper positioning or  
orientation, may damage or destroy the device. The IC may also be damaged or destroyed if output pins are shorted  
together, or if shorts occur between the output pin and supply pin or GND.  
5) Positioning components in proximity to the Hall IC and magnet  
Positioning magnetic components in close proximity to the Hall IC or magnet may alter the magnetic field, and therefore the  
magnetic detection operation. Thus, placing magnetic components near the Hall IC and magnet should be avoided in the  
design if possible. However, where there is no alternative to employing such a design, be sure to thoroughly test and  
evaluate performance with the magnetic component(s) in place to verify normal operation before implementing the design.  
6) Slide-by position sensing  
Fig.42 depicts the slide-by configuration employed for position sensing. Note that when the gap (d) between the magnet and  
the Hall IC is narrowed, the reverse magnetic field generated by the magnet can cause the IC to malfunction. As seen in  
Fig.43, the magnetic field runs in opposite directions at Point A and Point B. Since the Omnipolar detection Hall IC can  
detect the S-pole at Point A and the N-pole at Point B, it can wind up switching output ON as the magnet slides by in the  
process of position detection. Fig. 44 plots magnetic flux density during the magnet slide-by. Although a reverse magnetic  
field was generated in the process, the magnetic flux density decreased compared with the center of the magnet. This  
demonstrates that slightly widening the gap (d) between the magnet and Hall IC reduces the reverse magnetic field and  
prevents malfunctions.  
10  
8
Magnet  
Slide  
Flux  
6
Reverse  
4
d
2
A
B
0
-2  
-4  
-6  
-8  
-10  
Hall IC  
S
L
Flux  
N
0
1
2
3
4
5
6
7
8
9
10  
Fig.43  
Fig.42  
Horizontal distance from the magnet [mm]  
Fig.44  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.01 - Rev.C  
16/19  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
7) Operation in strong electromagnetic fields  
Exercise extreme caution about using the device in the presence of a strong electromagnetic field, as such use may cause  
the IC to malfunction.  
8) Common impedance  
Make sure that the power supply and GND wiring limits common impedance to the extent possible by, for example,  
employing short, thick supply and ground lines. Also, take measures to minimize ripple such as using an inductor or  
capacitor.  
9) GND wiring pattern  
When both a small-signal GND and high-current GND are provided, single-point grounding at the reference point of the set  
PCB is recommended, in order to separate the small-signal and high-current patterns, and to ensure that voltage changes  
due to the wiring resistance and high current do not cause any voltage fluctuation in the small-signal GND. In the same way,  
care must also be taken to avoid wiring pattern fluctuations in the GND wiring pattern of external components.  
10) Exposure to strong light  
Exposure to halogen lamps, UV and other strong light sources may cause the IC to malfunction. If the IC is subject to such  
exposure, provide a shield or take other measures to protect it from the light. In testing, exposure to white LED and  
fluorescent light sources was shown to have no significant effect on the IC.  
11) Power source design  
Since the IC performs intermittent operation, it has peak current when it’s ON. Please taking that into account and under  
examine adequate evaluations when designing the power source.  
www.rohm.com  
2010.01 - Rev.C  
17/19  
© 2010 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
Ordering part number  
B
D
7
4
1
1
G
-
T
R
Part No.  
Part No.  
Package  
GUL: VSCP50L1  
G: SSOP5  
Packaging and forming specification  
E2: Embossed tape and reel  
(VSCP50L1 )  
52001,52015  
52025,7411  
52051  
NVX: SSON004X1216 TR: Embossed tape and reel  
52011,52021  
HFV: HVSOF5  
(SSOP5, HVSOF5, SSON004X1216)  
VCSP50L1 (BU52001GUL,BU52015GUL)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
(Unit:mm)  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
SSOP5  
<Tape and Reel information>  
°
°
+
4  
2.9 0.2  
6
°
4
Tape  
Embossed carrier tape  
5
4
Quantity  
3000pcs  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
1pin  
+0.05  
0.13  
0.03  
+0.05  
0.04  
0.42  
0.1  
0.95  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
(Unit : mm)  
www.rohm.com  
2010.01 - Rev.C  
18/19  
© 2010 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,  
BU52015GUL,BU52025G,BU52051NVX, BD7411G  
Technical Note  
SSON004X1216  
<Tape and Reel information>  
1.2 0.1  
Tape  
Embossed carrier tape  
5000pcs  
Quantity  
TR  
Direction  
of feed  
1PIN MARK  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
S
0.08  
S
+0.05  
0.65 0.1  
0.2  
-
0.04  
1
2
4
3
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
1pin  
0.75 0.1  
Reel  
(Unit : mm)  
HVSOF5  
<Tape and Reel information>  
1.6 0.05  
1.0 0.05  
(0.8)  
(0.3)  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
5
1
4
3
4
5
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
3
2 1  
2
1pin  
0.13 0.05  
S
0.1  
S
0.5  
0.22 0.05  
M
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.08  
Reel  
(Unit : mm)  
www.rohm.com  
2010.01 - Rev.C  
19/19  
© 2010 ROHM Co., Ltd. All rights reserved.  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
R1010  
A

相关型号:

BD52015NVX-E2

Omnipolar Detection Hall ICs
ROHM

BD52015NVX-TR

Omnipolar Detection Hall ICs
ROHM

BD52021G-E2

Omnipolar Detection Hall ICs
ROHM

BD52021G-TR

Omnipolar Detection Hall ICs
ROHM

BD52021GUL-E2

Omnipolar Detection Hall ICs
ROHM

BD52021GUL-TR

Omnipolar Detection Hall ICs
ROHM

BD52021HFV-E2

Omnipolar Detection Hall ICs
ROHM

BD52021HFV-TR

Omnipolar Detection Hall ICs
ROHM

BD52021NVX-E2

Omnipolar Detection Hall ICs
ROHM

BD52021NVX-TR

Omnipolar Detection Hall ICs
ROHM

BD52025G-E2

Omnipolar Detection Hall ICs
ROHM

BD52025G-TR

Omnipolar Detection Hall ICs
ROHM