BD65520MUV (开发中) [ROHM]

BD65520MUV is a 36V power supply rated, 2.0A output current rated, low-consumption bipolar PWM constant current driven High-efficiency Driver. The input interface adopts the CLK-IN drive system, and the excitation mode supports FULL STEP to 1/32 STEP mode via a built-in DAC. FAST / SLOW DECAY of current decay mode ratio linear variable freely. Pin settings and detailed settings by SPI are set to make an optimum current control possible according to the load of every motor for a High-efficiency Drive. In addition, the power supply may also be driven by a single system, contributing to a simple set design.;
BD65520MUV (开发中)
型号: BD65520MUV (开发中)
厂家: ROHM    ROHM
描述:

BD65520MUV is a 36V power supply rated, 2.0A output current rated, low-consumption bipolar PWM constant current driven High-efficiency Driver. The input interface adopts the CLK-IN drive system, and the excitation mode supports FULL STEP to 1/32 STEP mode via a built-in DAC. FAST / SLOW DECAY of current decay mode ratio linear variable freely. Pin settings and detailed settings by SPI are set to make an optimum current control possible according to the load of every motor for a High-efficiency Drive. In addition, the power supply may also be driven by a single system, contributing to a simple set design.

文件: 总76页 (文件大小:2461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
High-efficiency 36 V Withstand Voltage  
Stepping Motor Drive  
BD65520MUV  
General Description  
Key Specifications  
BD65520MUV is a 36 V power supply rated, 2.0 A output  
current rated, low-consumption bipolar PWM constant  
current driven High-efficiency Driver. The input interface  
adopts the CLK-IN drive system, and the excitation mode  
supports FULL STEP to 1/32 STEP mode via a built-in  
DAC. FAST / SLOW DECAY of current decay mode ratio  
linear variable freely. Pin settings and detailed settings  
by SPI are set to make an optimum current control  
possible according to the load of every motor for a  
High-efficiency Drive. In addition, the power supply may  
also be driven by a single system, contributing to a  
simple set design.  
Power Supply Voltage Range  
Rated Output Current (Continuous)  
Rated Output Current (Peak value)  
Operating Temperature Range  
Output ON Resistance  
8 V to 28 V  
2.0 A/Phase  
2.5 A/Phase  
-25 °C to +85 °C  
0.55 Ω (Typ)  
(Total upper and lower)  
Package  
VQFN040V6060  
W (Typ) x D (Typ) x H (Max)  
6.0 mm x 6.0 mm x 1.0 mm  
Features  
Built-in High-efficiency Drive Mode  
(Drive Current Value Output Function, High-efficiency  
Drive Setting Function)  
Motor Load Status Output Function  
Pin Setting Mode / SPI Setting Mode  
Detailed Setting Function by SPI Input  
Output Current Rating (DC) 2.0 A  
Low ON Resistance DMOS Output  
CLK-IN Drive System  
PWM Constant Current Control (Other Oscillation)  
Built-in Spike Noise Blanking Function  
(No external Noise Filter required)  
FULL STEP to 1/32 STEP Compatible  
Excitation Mode Switching Free Timing  
Current Decay Mode Switching Function  
(FAST DECAY / SLOW DECAY Ratio Linear Variable  
(MIX DECAY))  
Typical Application Circuit  
GND  
PS  
CWCCW_CSB  
TEST1  
TEST2  
MODE0_SCLK  
MODE1_SI  
CLK  
INVREF  
MCU  
ENABLE  
STOMGN  
VCC1  
Current Decay Mode Optimization Function (AUTO  
DECAY)  
SO  
Forward / Reverse Switching Function  
Power Save Function  
Built-in Logic Input Pull-down Resistor  
Power ON Reset Function  
Temperature Protection Circuit (TSD)  
Overcurrent Protection Circuit (OCP)  
Low Voltage Malfunction Prevention Function (UVLO)  
Overvoltage Output OFF Function (OVLO)  
Malfunction Prevention Function if no power applied  
(“Ghost Supply Prevention” function)  
Protection Status Output Function  
Adjacent Pin Short Protection  
OUT1A  
FO  
OUT1B  
RNF1  
GAMOD1  
GAMOD2  
RNF1S  
VCC2  
HIEFEN  
HIFESEL  
VREFMIN  
VREF  
OUT2A  
OUT2B  
RNF2  
MTH  
CR  
Ultra-compact, Ultra-thin, High Heat Dissipation  
(Backside Heat Dissipation) Package  
RNF2S  
GND  
VREGD  
Application  
VREGA  
PPC, Multifunction Printer, Laser Beam Printer, Inkjet  
Printer, Surveillance Camera, WEB Camera, Sewing  
Machine, Photo Printer, Fax, Scanner, Mini Printer, Toy,  
Robot  
VREGDAC  
Figure 1. Application Circuit Diagram (SPI Setting Mode)  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0S2S0C702700-1-2  
14.Oct.2021 Rev.001  
1/73  
 
 
 
 
 
 
BD65520MUV  
Table of Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Application ......................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Table of Contents ...........................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................5  
Pin Description................................................................................................................................................................................5  
Block Diagram ................................................................................................................................................................................6  
Absolute Maximum Rating..............................................................................................................................................................7  
Recommended Operating Condition...............................................................................................................................................7  
Thermal Resistance........................................................................................................................................................................7  
Electrical Characteristics.................................................................................................................................................................8  
Pin Function Description...............................................................................................................................................................11  
1 CLK / Phase Advance Clock Input Pin ...................................................................................................................................11  
2 ENABLE / Output Enable Pin.................................................................................................................................................11  
3 PS / Power Saving Pin ...........................................................................................................................................................11  
4 GAMOD1 and GAMOD2 / High-efficiency Drive Setting Select Pin and Interface Mode Setting Pin .....................................11  
5 MODE0_SCLK, MODE1_SI Motor Excitation Mode Setting Pin and SPI Setting Mode Input Pin .........................................12  
6 CWCCW_CSB / Motor Rotation Direction Setting Pin and SPI Chip Select Input Pin ...........................................................12  
7 SO / SPI Setting Mode Output Pin .........................................................................................................................................12  
8 FO / Protection Status Output Pin..........................................................................................................................................12  
9 HIEFSEL / High-efficiency Drive Setting Pin ..........................................................................................................................12  
10 HIEFEN / High-efficiency Drive Enable Pin..........................................................................................................................12  
11 VCC1, VCC2 / Power Supply Pin .........................................................................................................................................13  
12 GND / Ground Pin................................................................................................................................................................13  
13 OUT1A, OUT1B, OUT2A, OUT2B / H Bridge Output Pin.....................................................................................................13  
14 RNF1, RNF2 / Output Current Detection Resistance connection pin ...................................................................................13  
15 RNF1S, RNF2S / Current Detection Comparator Input Pin..................................................................................................13  
16 VREF / Output Current Value Setting Pin.............................................................................................................................13  
17 VREFMIN / Output Current Value Lower Limit Setting Pin...................................................................................................14  
18 CR / Chopping Frequency Setting Pin..................................................................................................................................14  
19 MTH / Current Decay Mode Setting Pin ...............................................................................................................................14  
20 INVREF / Internal VREF Output Pin.....................................................................................................................................14  
21 STOMGN / Step-out Margin Output Pin ...............................................................................................................................14  
22 VREGD / 1.5 V Regulator Output Pin...................................................................................................................................14  
23 VREGA / 5 V Regulator Output Pin ......................................................................................................................................14  
24 VREGDAC / IC Internal ADC and DAC 5 V Regulator Output Pin .......................................................................................14  
25 TEST1 / Test Pin ..................................................................................................................................................................14  
26 TEST2 / Test Pin ..................................................................................................................................................................15  
27 NC........................................................................................................................................................................................15  
28 IC Back Metal.......................................................................................................................................................................15  
Various Circuits for Protection.......................................................................................................................................................16  
1 Temperature Protection Circuit (TSD) ....................................................................................................................................16  
2 Overcurrent Protection Circuit (OCP).....................................................................................................................................16  
3 Malfunction Prevention Function When Low Voltage (UVLO) ................................................................................................16  
4 Output OFF function When Overvoltage (OVLO)...................................................................................................................16  
5 Malfunction Prevention Function When No Power Loading (Ghost Supply Prevention Function)..........................................16  
6 Operation in a Strong Magnetic Field.....................................................................................................................................16  
PWM Constant Current Control ....................................................................................................................................................17  
1 Current Control Operation......................................................................................................................................................17  
2 Noise Canceling Function ......................................................................................................................................................17  
3 CR Timer................................................................................................................................................................................17  
4 Current Decay Mode..............................................................................................................................................................19  
4.1 SLOW DECAY.................................................................................................................................................................19  
4.2 FAST DECAY...................................................................................................................................................................19  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
2/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
 
BD65520MUV  
4.3 MIX DECAY .....................................................................................................................................................................19  
4.4 AUTO DECAY..................................................................................................................................................................19  
Translator Circuit Operation in CLK-IN Drive System ...................................................................................................................21  
1 Reset Operation.....................................................................................................................................................................21  
1.1 Initialization Process When Turning the Power ON .........................................................................................................21  
1.1.1 When Power ON in PS = L ...........................................................................................................................................21  
1.1.2 When Power ON in PS = H...........................................................................................................................................21  
1.2 Initialization operation during motor operation.................................................................................................................21  
2 Control Input Timing...............................................................................................................................................................21  
3 FULL STEP A, CWCCW_CSB = L, ENABLE = H ..................................................................................................................22  
4 HALF STEP A, CWCCW_CSB = L, ENABLE = H..................................................................................................................22  
5 HALF STEP B, CWCCW_CSB = L, ENABLE = H..................................................................................................................23  
6 QUARTER STEP A, CWCCW_CSB = L, ENABLE = H..........................................................................................................23  
7 HALF STEP C, CWCCW_CSB = L, ENABLE = H..................................................................................................................24  
8 QUARTER STEP B, CWCCW_CSB = L, ENABLE = H .........................................................................................................24  
9 Step Sequence Table (FULL STEP B, HALF STEP C, QUARTER STEP B, 1/ 8 STEP, 1/ 16 STEP, 1/ 32 STEP)................25  
10 Reset timing chart (QUARTER STEP, CWCCW_CSB = L, ENABLE = H) ...........................................................................28  
11 Motor rotation direction switching timing chart (FULL STEP A, ENABLE = H)......................................................................28  
12 ENABLE Switching Timing Chart (FULL STEP A)................................................................................................................29  
13 Motor Excitation Mode Switching .........................................................................................................................................29  
14 Precautions When Doing Both Motor Rotation Direction and Excitation Mode Switching....................................................29  
SPI Interface.................................................................................................................................................................................30  
1 3 Wires 32 Bit SPI Input Method ............................................................................................................................................30  
2 3 Wires 32 Bit SPI Transmission Cancellation .......................................................................................................................31  
Command Register.......................................................................................................................................................................32  
1 Command Register Description .............................................................................................................................................32  
2 Command List........................................................................................................................................................................32  
3 Command Register Detailed Description ...............................................................................................................................33  
3.1 MODESET.......................................................................................................................................................................33  
3.2 READSEL........................................................................................................................................................................34  
3.3 READ_READSEL............................................................................................................................................................34  
3.4 READ_DIAGNOSTIC ......................................................................................................................................................35  
3.5 READ_CURRENT_VREF................................................................................................................................................36  
3.6 READ_MARGIN ..............................................................................................................................................................37  
3.7 STOMGN_PEAKHOLD_CLEAR......................................................................................................................................38  
3.8 VREFSET........................................................................................................................................................................39  
3.9 VREFMINSET .................................................................................................................................................................40  
3.10 KESET...........................................................................................................................................................................41  
3.11 MTHSET........................................................................................................................................................................42  
3.12 CRTIMESET..................................................................................................................................................................43  
3.13 MIN_FREQ_ON_SET....................................................................................................................................................44  
3.14 MIN_FREQ_OFF_SET..................................................................................................................................................45  
3.15 HIEF_SET .....................................................................................................................................................................46  
3.16 VBEMFAVESET.............................................................................................................................................................47  
3.17 GAIN_SET.....................................................................................................................................................................48  
3.18 GAIN1_SET...................................................................................................................................................................49  
3.19 GAIN2_SET...................................................................................................................................................................49  
3.23 VREFOFFSETSET........................................................................................................................................................51  
3.24 GAIN4_SET...................................................................................................................................................................52  
3.25 GAIN5_SET...................................................................................................................................................................52  
3.26 GAIN6_SET...................................................................................................................................................................52  
3.27 VBEMFMONSET...........................................................................................................................................................53  
3.28 STOMGN_PEAKHOLD_SET.........................................................................................................................................55  
3.29 FULLSTEPWINDOWSET..............................................................................................................................................57  
3.30 HIEFSELMAX................................................................................................................................................................58  
3.31 HIEFSELMIN.................................................................................................................................................................59  
3.32 UNLOCK........................................................................................................................................................................60  
Induced-voltage Reading Circuit...................................................................................................................................................61  
High-efficiency Drive.....................................................................................................................................................................62  
Step-out Margin Detection ............................................................................................................................................................63  
Power Dissipation.........................................................................................................................................................................64  
I/O Equivalent Circuit....................................................................................................................................................................65  
Application Example (Pin setting mode) .......................................................................................................................................67  
Application Example (SPI setting mode).......................................................................................................................................68  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
3/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
BD65520MUV  
Operational Notes.........................................................................................................................................................................69  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................69  
Power Supply Lines........................................................................................................................................................69  
Ground Voltage...............................................................................................................................................................69  
Ground Wiring Pattern....................................................................................................................................................69  
Recommended Operating Conditions.............................................................................................................................69  
Inrush Current.................................................................................................................................................................69  
Testing on Application Boards ........................................................................................................................................69  
Inter-pin Short and Mounting Errors ...............................................................................................................................69  
Unused Input Pins ..........................................................................................................................................................69  
Regarding the Input Pin of the IC ...................................................................................................................................70  
Ceramic Capacitor..........................................................................................................................................................70  
Thermal Shutdown Circuit (TSD)....................................................................................................................................70  
Over Current Protection Circuit (OCP) ...........................................................................................................................70  
9.  
10.  
11.  
12.  
13.  
Ordering Information.....................................................................................................................................................................71  
Marking Diagram ..........................................................................................................................................................................71  
Physical Dimension and Packing Information...............................................................................................................................72  
Revision History............................................................................................................................................................................73  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
4/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
BD65520MUV  
Pin Configuration  
(TOP VIEW)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
OUT1A  
VCC1  
NC  
OUT2A  
VCC2  
NC  
GAMOD1  
MTH  
GAMOD2  
TEST2  
TEST1  
GND  
VREF  
VREFMIN  
HIEFSEL  
CLK  
EXP-PAD  
HIEFEN  
CR  
ENABLE  
VREGDAC  
1
2
3
4
5
6
7
8
9
10  
Figure 2. Pin Layout Diagram  
Pin Description  
Pin  
Pin Name  
No.  
Function  
Pin No. Pin Name  
Function  
1
2
PS  
Power save pin  
21  
22  
NC  
No connection  
CWCCW_ Motor rotation direction setting pin (Note 1)  
OUT2B  
H bridge output pin  
CSB  
Chip select input pin (Note 2)  
MODE0_ Motor excitation mode setting pin (Note 1)  
SCLK  
3
4
23  
24  
NC  
No connection  
Serial clock input pin (Note 2)  
Motor excitation mode setting pin (Note 1)  
Serial data input pin (Note 2)  
MODE1_SI  
RNF2  
Output current detection resistor connection pin  
5
SO  
FO  
Serial data output pin  
Protect status output pin  
Internal VREF output pin  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
RNF2S  
GND  
Current detection comparator input pin  
Ground pin  
6
7
INVREF  
RNF1S  
RNF1  
OUT1B  
NC  
Current detection comparator input pin  
Output current detection resistor connection pin  
H bridge output pin  
8
STOMGN Step-out margin output pin  
9
VREGD  
VREGA  
1.5 V Regulator output pin  
5 V Regulator output pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
-
No connection  
VREGDAC DAC 5 V Regulator output pin  
OUT1A  
VCC1  
NC  
H bridge output pin  
CR  
Chopping frequency setting pin (Note 3)  
Ground pin  
Power pin  
GND  
No connection  
TEST1  
TEST2  
Test pin (Set OPEN)  
MTH  
Current decay mode setting pin (Note 3)  
Output current value setting pin (Note 3)  
Test pin (Use while connected with GND)  
VREF  
GAMOD2 High-efficiency Drive gain setting pin  
GAMOD1 High-efficiency Drive gain setting pin  
VREFMIN Output current value lower limit setting pin Note 3)  
HIEFSEL High-efficiency Drive setting pin (Note 3)  
NC  
No connection  
CLK  
Phase-advancing clock input pin  
High-efficiency Drive enable pin (Note 4)  
Output enable pin  
VCC2  
OUT2A  
Power supply pin  
H bridge output pin  
HIEFEN  
ENABLE  
EXP-PAD Connect the EXP-PAD to GND  
(Note 1) Function in pin setting mode.  
(Note 2) Function in SPI setting mode.  
(Note 3) Not used in SPI setting mode. Connect with GND.  
(Note 4) Not used in SPI setting mode. Open or connect to GND.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
5/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Block Diagram  
GND  
SO  
CWCCW_CSB  
MODE0_SCLK  
MODE1_SI  
SPI  
TSD  
OCP  
TEST1  
TEST2  
OVLO  
UVLO  
RESET  
PS  
FO  
Translator  
CLK  
ENABLE  
HIEFEN  
GAMOD2  
GAMOD1  
HIEFSEL  
INVREF  
DAC  
STOMGN  
VREFMIN  
VREF  
ADC  
VCC1  
OUT1A  
OUT1B  
CR  
OSC  
RNF1  
RNF1S  
Mix decay  
control  
MTH  
VCC2  
OUT2A  
OUT2B  
VREGD  
VREGA  
VREGD  
VREGA  
RNF2  
VREGDAC  
VREGDAC  
RNF2S  
GND  
OUT1A  
OUT1B  
VREF  
CALC  
RNF1S DAC  
RNF2S  
ADC  
OUT2A  
OUT2B  
Figure 3. BD65520MUV Block Diagram  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
6/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Absolute Maximum Rating (Ta = 25 °C)  
Parameters  
Supply Voltage  
Symbol  
VCC1, VCC2  
VIN  
Rating  
Unit  
-0.2 to +36.0  
-0.2 to +5.5  
0.7  
V
Input Voltage for Control Pin  
RNF Maximum Voltage  
V
V
VRNF  
Output Current (Continuous)  
Output Current (Peak) (Note 2)  
Storage Temperature Range  
Maximum Junction Temperature  
IOUT  
2.0(Note 1)  
2.5(Note 1)  
-55 to +150  
+150  
A/Phase  
A/Phase  
°C  
IOUTPEAK  
Tstg  
Tjmax  
°C  
(Note 1) Do not exceed Tjmax = 150 °C.  
(Note 2) Pulse width tw ≤ 2 ms, duty 20 %.  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated  
over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded, the rise in temperature of chip may result in deterioration of the properties  
of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing board size  
and copper area so as not to exceed the maximum junction temperature rating.  
Recommended Operating Condition  
Parameters  
Operating Temperature  
Supply Voltage  
Symbol  
Topr  
Min  
-25  
Typ  
+25  
Max  
+85  
Unit  
°C  
VCC1, VCC2  
IOUT  
8
24  
28  
V
Maximum Output Current  
(Continuous)  
0(Note 3)  
1.0(Note 3)  
2.0(Note3)  
A/Phase  
(Note 3) Must not exceed Tjmax = 150 °C.  
Thermal Resistance (Note 4)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 6)  
2s2p(Note 7)  
VQFN040V6060  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 5)  
θJA  
85.2  
8
30.5  
5
°C/W  
°C/W  
ΨJT  
(Note 4) Based on JESD51-2A (Still-Air), using a BD65520MUV Chip.  
(Note 5) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 6) Using a PCB board based on JESD51-3.  
(Note 7) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
Board Size  
Single  
FR-4  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 8)  
Material  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
FR-4  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
(Note 8) This thermal via connect with the copper pattern of layers 1,2, and 4. The placement and dimensions obey a land pattern.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
7/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Electrical Characteristics (Unless otherwise specified, Ta = 25 °C, VCC1, VCC2 = 24 V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
[General]  
Circuit Current at Standby  
Circuit Current  
ICCST  
ICC  
-
-
-
10  
25  
µA  
PS = L  
PS = H, VREF = 2.5 V  
10  
mA  
[Control Input] (PS, ENABLE, CLK, CWCCW_CSB, MODE0_SCLK, MODE1_SI, GAMOD1, GAMOD2, HIEFEN)  
H Level Input Voltage  
L Level Input Voltage  
H Level Input Current  
L Level Input Current  
VINH  
VINL  
IINH  
IINL  
2.0  
-
-
-
-
V
V
0.8  
100  
-
35  
-10  
50  
0
µA  
µA  
VIN = 5 V  
VIN = 0 V  
[Output] (OUT1A, OUT1B, OUT2A, OUT2B)  
Output ON Resistor  
RON  
ILEAK  
IOUTR  
-
-
-
0.55  
-
0.85  
10  
Ω
IOUT = ±1.0 A (Top/Bottom Total)  
VOUT = 24 V  
Output MOS Leak  
μA  
μA  
Output Inflow Current  
[Current Control Unit]  
RNFXS Inflow Current(Note1)  
RNFX Inflow Current(Note1)  
VREF Inflow Current  
VREF Input Voltage Range  
MTH Inflow Current  
120  
200  
VOUT = 24 V  
IRNFS  
IRNF  
-2.0  
-80  
-2.0  
0
-0.1  
-40  
-0.1  
-
-
-
µA  
µA  
µA  
V
RNFXS = 0 V  
RNFX = 0 V  
VREF = 0 V  
IVREF  
VVREF  
IMTH  
-
3.0  
-
-2.0  
0
-0.1  
-
µA  
V
MTH = 0 V  
MTH Input Voltage Range  
VMTH  
tONMIN  
VCTH  
3.5  
1.7  
0.627  
Minimum ON Time  
(Blank Time)  
0.5  
0.573  
1.2  
0.600  
µs  
V
C = 1000 pF, R = 39 kΩ  
VREF = 3.0 V  
Comparator Threshold  
VREF = 3.0 V,  
OUT1 comparator Threshold  
- OUT2 comparator Threshold  
Comparator Threshold  
1phase/2phase difference  
VdcTH  
-0.27  
0
+0.27  
V
[Regulator Output]  
VREGA Output Voltage  
VREGD Output Voltage  
VA  
VD  
-
-
-
5.0  
1.5  
5.0  
-
-
-
V
V
V
VREGDAC Output Voltage  
VDAC  
(Note 1) x = 1, 2  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
8/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Electrical Characteristics – Continued  
(Unless otherwise specified, Ta = 25 °C, VCC1, VCC2 = 24 V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
[High-efficiency Drive Setting]  
VREFMIN Inflow Current  
IVREFMIN  
VVREFMIN  
IHIEFSEL  
-2.0  
0
-0.1  
-
3.0  
-
µA  
V
VREFMIN = 0 V  
VREFMIN Input Voltage  
Range  
-
-0.1  
-
HIEFSEL Inflow Current  
-2.0  
0
µA  
V
HIEFSEL = 0 V  
HIEFSEL Input Voltage Range VHIEFSEL  
[Analog Output]  
3.99  
ILOAD = 0 mA, VREGDAC = 5 V,  
GAMOD1 = 5 V, GAMOD2 = 5 V  
VREFSET = 1.00  
ILOAD = 0 mA, VREGDAC = 5 V,  
OUT1A = 4 V, OUT1B = 0 V,  
(When OUT1-side is OPEN)  
INVREF Output Voltage  
STOMGN Output Voltage  
VINVREF  
0.95  
3.90  
1.00  
4.00  
1.05  
4.10  
V
V
VSTOMGN  
[FO Output]  
Output L Voltage  
Output Leak Current  
[SO Output]  
VOLF  
-
-
0.05  
0.10  
10  
V
ILOAD = -1 mA  
IFO_LEAK  
-
µA  
Output H Voltage  
Output L Voltage  
Output Leak Current  
VOHS  
VOLS  
IOS  
VA-0.2  
VA-0.1  
-
V
V
ILOAD = +1 mA  
-
-
0.1  
0.2  
10  
ILOAD = -1 mA  
-
µA  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
9/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Electrical Characteristics - Continued  
(Unless otherwise specified, Ta = 25 °C, VCC1, VCC2 = 24 V)  
Signal  
Symbol  
Parameter  
CSX “H” Pulse  
Width  
Min  
Typ  
Max  
Unit  
Comment  
tCHW  
400  
-
-
ns  
tCSSW  
tCSHW  
tCSSR  
tCSHR  
CSX-SCL Time  
(Write)  
CSX-SCL Time  
(Read)  
200  
200  
600  
600  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
CWCCW_CSB  
Serial Clock  
Cycle  
SCL “H” Pulse  
Width  
SCL “L” Pulse  
Width  
Serial Clock  
Cycle  
SCL “H” Pulse  
Width  
SCL “L” Pulse  
Width  
Data Setup  
Time  
tSCYCW  
tSHW  
tSLW  
1000  
500  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MODE0_SCLK  
(Write)  
500  
tSCYCR  
tSHR  
2000  
1000  
1000  
200  
MODE0_SCLK  
(Read)  
tSLR  
tSDS  
MODE1_SI  
SO  
Data Hold  
Time  
Access Time  
Output Disable  
Time  
tSDH  
tACC  
tOH  
200  
-
-
-
-
-
1000  
-
ns  
ns  
ns  
Max Condition: CL = 30 pF  
Min Condition: CL = 8 pF  
100  
Caution 1: tr and tf (signal rise/fall) should be at 15 ns or less.  
tCHW  
tCHW  
tCSSW  
tCSSR  
tCSHW  
tCSHR  
CWCCW_CSB  
tSCYCW  
tSCYCR  
tSLW  
tSLR  
MODE0_SCLK  
MODE1_SI  
SO  
tSHW  
tSHR  
tf  
tr  
tSDS  
tSDH  
tOH  
tACC  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
10/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Pin Function Description  
1 CLK / Phase Advance Clock Input Pin  
This pin operates at rising edge. The Electrical angle advances by one for each CLK input. Motor misstep will occur if noise  
mixed in the CLK pin so, design the pattern in such a way that there is no noise mixing in.  
2 ENABLE / Output Enable Pin  
This pin forcibly turns off all output transistors (motor output OPEN). During ENABLE = L, CLK input is cut off so the phase  
advance operation of the internal translator circuit will stop. However, if the excitation mode (MODE0, MODE1) is switched in  
the ENABLE = L interval, the excitation mode when ENABLE pin returns from Low to High becomes enabled in the switched  
mode. Also, in the SPI setting mode, if the register setting is MODESET D5 = 1 even if at ENABLE = L, the phase advance  
operation will operate.  
ENABLE  
Motor Output  
OPEN (electrical angle maintained)  
ACTIVE  
L
H
3 PS / Power Saving Pin  
Standby mode can be set and motor output can be OPEN. When entering a standby state, the translator circuit will RESET  
(initialized) and the electrical angle will be initialized. Notice that after returning from standby state to normal state when PS =  
L becomes H, there will a delay of 1 ms (Max) until the motor output returns to the ACTIVE state.  
PS  
Status  
Standby State (RESET)  
ACTIVE  
L
H
The electrical angle (initial electrical angle) for each excitation mode right after RESET shall be as follows.  
Excitation Mode  
FULL STEP A  
HALF STEP A  
HALF STEP B  
QUARTER STEP A  
FULL STEP B  
HALF STEP C  
QUARTER STEP B  
1/8 STEP  
Initial Electrical Angle  
45°  
45°  
45°  
45°  
45°  
45°  
45°  
45°  
45°  
45°  
1/16 STEP  
1/32 STEP  
4 GAMOD1 and GAMOD2 / High-efficiency Drive Setting Select Pin and Interface Mode Setting Pin  
This pin performs settings for pin setting mode and SPI setting mode.  
This pin performs a High-efficiency Drive setting when in pin setting mode.  
GAMOD1 GAMOD2  
Interface  
High-efficiency Drive Setting  
Preset 1 (GAIN1_SET, GAIN4_SET)  
Preset 2 (GAIN2_SET, GAIN5_SET)  
Preset 3 (GAIN3_SET, GAIN6_SET)  
GAIN1_SET, GAIN4_SET  
L
H
L
L
L
Pin Setting Mode  
SPI Setting Mode  
H
H
H
This pin selects preset when in pin setting mode by GAMOD1 and GAMOD2 pin logic, and the circuit initial values of the  
corresponding register settings are used. Select the optimum High-efficiency Drive setting depending on the motor and load  
conditions.  
This pin performs High-efficiency Drive setting in SPI setting mode by register setting of GAIN1_SET and GAIN4_SET.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
11/73  
14.Oct.2021 Rev.001  
 
 
BD65520MUV  
Pin Function Description - Continued  
5 MODE0_SCLK, MODE1_SI Motor Excitation Mode Setting Pin and SPI Setting Mode Input Pin  
This pin sets the motor excitation mode when at pin setting mode.  
MODE0_SCLK MODE1_SI  
Excitation Mode  
L
H
L
L
L
FULL STEP  
HALF STEP A  
HALF SETP B  
QUARTER STEP A  
H
H
H
MODE0_SCLK pin becomes SPI clock input pin and MODE1_SI pin becomes SPI data input pin when in SPI setting mode.  
For each excitation mode, refer to the timing chart and motor torque vector diagram.  
This pin forcibly reflects the setting change regardless of CLK.  
This pin carries out the motor excitation mode setting in the register setting when in the SPI setting mode.  
6 CWCCW_CSB / Motor Rotation Direction Setting Pin and SPI Chip Select Input Pin  
This pin sets the motor rotation direction when pin setting mode, and reflects the rising edge of CLK immediately after setting  
change.  
CWCCW_CSB  
Rotating Direction  
L
Clockwise (CH2 current output is delay by 90° phase with respect to CH1 current)  
Counter Clockwise (CH2 current output is advance by 90° phase with respect to CH1 current)  
H
CWCCW_CSB is the SPI chip select input pin when in the SPI setting mode.  
This pin carries out the motor rotating direction setting in the register setting when in SPI setting mode.  
7 SO / SPI Setting Mode Output Pin  
This is the serial data output pin when in the SPI setting mode. H Level is VA level(5 V Typ).  
Open is recommended when you don’t use SPI read.  
SO pin is Hi-z without Read condition. So, it is recommended to attach 5 kΩ or more Pulldown resistance or Pullup  
resistance.  
8 FO / Protection Status Output Pin  
This pin outputs the status of protection with TSD, OCP, and OVLO.  
The FO pin outputs L level when detects each protection function.  
It is recommended to attach 5 kΩ or more Pullup resistance.  
When SPI setting mode  
FO pin is L level output after IC power on until READ_DIAGNOSTIC command sent.  
When IC is receipt READ_DIAGNOSTIC command and TSD, OCP or OVLO are not detected, FO output is H level.  
9 HIEFSEL / High-efficiency Drive Setting Pin  
This pin sets the current decay ratio during High-efficiency driving in the pin setting mode.  
This pin divides the values of the preset registers HIEFSELMAX (Page 58) and HIEFSELMIN (Page 59) into 16 as shown in  
the  
following formula and the values are determined by the voltage setting of HIEFSEL.  
Current Decay Ratio = HIEFSELMIN + (HIEFSELMAX – HIEFSELMIN) / 16 * n  
[Relationship between n and HIEFSEL voltage setting]  
n = 0: HIEFSEL = 4/16/2  
= 0.125 V  
n = 1: HIEFSEL = 4/16/2 + 4/16 = 0.375 V  
n = 2: HIEFSEL = 4/16/2 + 4/16*2 = 0.625 V  
n = 15: HIEFSEL = 4/16/2 + 4/16*15 = 3.875 V  
Not used in SPI setting mode.  
10 HIEFEN / High-efficiency Drive Enable Pin  
This pin enables the High-efficiency Drive operation in pin setting mode.  
This pin performs a High-efficiency Drive enable setting in SPI setting mode by register setting.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
14.Oct.2021 Rev.001  
12/73  
 
 
 
BD65520MUV  
Pin Function Description - Continued  
11 VCC1, VCC2 / Power Supply Pin  
Motor drive current is flowing in this pin so wire in such a way that the wire is thick, short and has low impedance. Voltage  
VCC may have great fluctuation, so place a bypass capacitor (100 μF to 470 µF) as close to the pin as possible and adjust in  
such a way that the voltage VCC is stable. Increase the capacity if needed especially when a large current is used or those  
motors that have great back electromotive force are used. In addition, to lower the impedance of the power supply in a wide  
band, it is recommended that a multilayer ceramic capacitor of about 0.01 µF to 0.1 µF to be placed in parallel. Be careful not  
to exceed the rating even if the VCC voltage is instantaneous. Although VCC1 and VCC2 are shorted inside the IC, be sure  
to short externally VCC1 and VCC2 before using. If not shorted, the current path may be concentrated resulting in  
malfunction or destruction. The power supply pin has a built-in clamp element to prevent electrostatic damage. If a steep  
pulse signal or voltage such as a surge that exceeds the absolute maximum rating is applied, this clamp element may  
operate and cause damage. Therefore, never exceed the absolute maximum rating. It is also effective to attach a zener  
diode with an absolute maximum rating. Also, note that a diode for preventing static electricity destruction is inserted  
between the VCC pin and the GND pin, and if a reverse voltage is applied to the VCC pin and the GND pin, the IC may be  
destroyed.  
12 GND / Ground Pin  
In order to reduce noise due to switching current and stabilize the reference voltage inside the IC, make the impedance of  
the wiring from this pin as low as possible so that it has the lowest potential under any operating conditions. Also, design the  
pattern so that it does not have a common impedance with other GND patterns.  
13 OUT1A, OUT1B, OUT2A, OUT2B / H Bridge Output Pin  
Motor drive current is flowing in this pin so wire in such a way that the wire is thick, short and has low impedance. It is also  
effective to add a schottky diode when the output fluctuates greatly positively or negatively when using a large current such  
as a back electromotive force. The output pin has a built-in clamp element to prevent electrostatic breakdown. If a steep  
pulse signal or voltage such as a surge that exceeds the absolute maximum rating is applied, this clamp element may  
operate and cause damage, so never exceed the absolute maximum rating.  
14 RNF1, RNF2 / Output Current Detection Resistance connection pin  
Connect the resistor of 0.1 Ω to 0.3 Ω for current detection between this pin and GND. In view of the power consumption of  
the current-detecting resistor, determine the resistor in such a way that W = IOUT2R [W] does not exceed the power  
dissipation of the resistor. In addition, Wire in such a way that it has a low impedance and does not have impedance in  
common with other GND patterns because motor’s drive current flows in the pattern through RNF pin to current-detecting  
resistor to GND. Do not exceed the rating because there is the possibility of circuit malfunction etc. if RNF voltage exceeds  
the maximum rating (0.7 V). Moreover, be careful because if RNF pin is shorted to GND, a large current will flow without  
normal PWM constant current control, then there is the danger that OCP or TSD will operate. Even if RNF pin is open, there  
is the possibility of malfunction such as no output current flowing, so do not put it in such as state.  
15 RNF1S, RNF2S / Current Detection Comparator Input Pin  
The RNFS pin, which is the input pin of the current detection comparator, is provided independently to reduce the decrease  
in current detection accuracy due to the wire impedance inside the IC of the RNF pin. Therefore, when controlling PWM  
constant current, be sure to connect the RNF pin and RNFS pin. Furthermore, when connecting, the decrease in current  
detection accuracy due to impedance in board pattern between the RNF pin and the current detection resistor can be  
reduced by connecting the wiring from the RNFS pin to the immediate vicinity of the current detection resistor. Also, design  
the pattern in consideration of wiring with less noise. Take note that if the RNF1S and RNF2S pins are short-circuited to GND,  
a large current may flow without normal PWM constant current control, and OCP or TSD may operate.  
16 VREF / Output Current Value Setting Pin  
This is the pin for setting the output current value to pin setting mode. Output current value can be set base on VREF voltage  
and current detection resistor (RNF resistor).  
푂푈푇  
=
푉푅퐸퐹 / ꢀ푁ꢁ  
[A]  
5
Where:  
IOUT is the Output Current  
VREF is the Output Current Value Set Voltage  
RNF is the Resistor for Current Detection  
If the VREF pin is open, the input becomes indefinite, the VREF voltage rises, the set current increases, and a large current  
may flow. Therefore, avoid using the VREF pin when it is open. If a voltage is applied to the VREF pin so that the calculated  
value of IOUT exceeds 2 A, a current exceeding the rating will flow to the output, and OCP or TSD may operate or may even  
be destroyed.  
Also, when inputting by divided resistance, select the resistance value in consideration of the outflow current (Max 2 µA).  
The minimum current that may be controlled from VREF voltage has a minimum ON time for PWM drive therefore, it is  
decided based on inductance and resistance values of motor coil and minimum ON time.  
In SPI setting mode, the register set value is reflected, so the pin input is invalid. It is recommended that VREF connects  
GND in SPI setting mode.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
13/73  
14.Oct.2021 Rev.001  
 
 
 
BD65520MUV  
Pin Function Description - Continued  
17 VREFMIN / Output Current Value Lower Limit Setting Pin  
This pin is for setting the lower limit of the output current during High-efficiency driving in pin setting mode. The lower limit of  
output current can be set base on VREF voltage and current detection resistor (RNF resistor).  
푂푈푇푀ꢂꢃ  
=
푉푅퐸퐹푀ꢂꢃ / ꢀ푁ꢁ  
[A]  
5
Where:  
IOUTMIN is the Output Lower Limit Current  
VREFMIN is the Output Current Value Lower Limit Set Voltage  
RNF is the Resistor for Current Detection  
If VREFMIN voltage greater or equal VREF voltage, VREFMIN equals zero in IC internal.  
In SPI setting mode, the register set value is reflected so the pin input is disabled. It is recommended that VREFMIN  
connects GND in SPI setting mode.  
18 CR / Chopping Frequency Setting Pin  
This is the pin for setting the chopping frequency of output using pin setting mode.  
Connect external capacitor (470 pF to 1500 pF) and Resistance (10 kΩ to 200 kΩ) to GND.  
Make sure that the wiring from the external to GND does not have a common impedance with other GND patterns. Also,  
keep away from the wiring of steep pulses such as square waves, and design the pattern so that the wiring is less likely to  
cause noise. If the CR pin is open or biased from the outside, normal PWM constant current control will not be possible.  
Therefore, be sure to attach both capacitor and resistance parts when using with PWM constant current control.  
In SPI setting mode, register setting is used. so the pin input is invalid. It is recommended that CR connects GND in SPI  
setting mode.  
19 MTH / Current Decay Mode Setting Pin  
This is the pin for setting the current decay mode using pin setting mode. Current decay mode can be optionally set  
according to input voltage.  
MTH Pin Input Voltage [V]  
Current Decay Mode  
SLOW DECAY  
MIX DECAY  
0 to 0.3  
0.4 to 1.0  
1.5 to 3.5  
FAST DECAY  
Connect to GND when using at SLOW DECAY mode. Don’t use missing setting in above table.  
If the MTH pin is open, the input will be unsettled and the PWM operation may become unstable. Therefore, avoid using the  
MTH pin when it is open. Also, when divided resistance is input, select the resistance value in consideration of the outflow  
current (Max 2 µA).  
In SPI setting mode, register setting is used. so the pin input is invalid. It is recommended that MTH connects GND in SPI  
setting mode.  
20 INVREF / Internal VREF Output Pin  
This is the pin for the output of internal VREF voltage.  
21 STOMGN / Step-out Margin Output Pin  
This pin is for output a voltage corresponding to the back electromotive voltage of the connected motor.  
This pin acquires counter electromotive voltage during the motor output OPEN period.  
Therefore, using it in FULL STEP mode without an OPEN period is not possible. STOMGN voltage hold previous voltage in  
FULL STEP mode without an OPEN period. And, STOMGN voltage is 0 V when ENABLE = L.  
22 VREGD / 1.5 V Regulator Output Pin  
This is the regulator output pin for logic power supply. Place a multilayer ceramic capacitor of about 0.01 µF to 0.1 µF to  
stabilize the operation of the IC internal circuit.  
23 VREGA / 5 V Regulator Output Pin  
Regulator output pin for analog power supply. Place a multilayer ceramic capacitor of about 0.01 µF to 0.1 µF to stabilize the  
operation of the IC internal circuit.  
24 VREGDAC / IC Internal ADC and DAC 5 V Regulator Output Pin  
Regulator output pin for ADC and DAC inside the IC. Place a multilayer ceramic capacitor of about 0.01 µF to 0.1 µF to  
stabilize the operation of the IC internal circuit.  
25 TEST1 / Test Pin  
This pin is used during IC shipping test. When PS = L -> H, 2.8 V is output for about 1 ms, so use to it at OPEN. Take note  
that there is a possibility of malfunction if used without OPEN processing.  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
14/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
 
 
 
 
 
 
 
BD65520MUV  
Pin Function Description - Continued  
26 TEST2 / Test Pin  
This pin is for the delivery inspection of IC, and grounded before use.  
In addition, using application without grounding may result to a malfunction.  
27 NC  
This pin is unconnected electrically with IC internal circuit.  
28 IC Back Metal  
The VQFN040V6060 package has a heat dissipation metal at the back of IC, and it is assumed that this metal will be  
heat-treated before use so be sure to connect it to the GND plane on the board with solder and use taking as wide a GND  
pattern as possible to secure a sufficient heat dissipation area.  
In addition, the back metal is shorted to the back of IC chip, and since it is a GND potential, if it is shorted with a potential  
other than GND, it may malfunction or break. Never pass any wiring pattern other than GND at the back of IC.  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
15/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
BD65520MUV  
Various Circuits for Protection  
1 Temperature Protection Circuit (TSD)  
This IC has a built-in thermal shutdown circuit as a measure to protect the IC from overheating. If the chip temperature of the  
IC exceeds 175 °C (Typ), the motor output will open and L level is output from the FO pin. In addition, it automatically returns  
to normal operation when the temperature drops below 150 °C (Typ). However, if, continuously, heat is applied further from  
the outside even if the TSD is operating, thermal runaway will occur and result in destruction.  
2 Overcurrent Protection Circuit (OCP)  
This IC has a built-in overcurrent protection circuit as a countermeasure against damage in the event of a short circuit  
between motor outputs, a ceiling fault, or a ground fault. This circuit latches the motor output to the OPEN state when the  
specified current flows for 4 µs (Typ), and outputs the L level from the FO pin. It will be restored by turning the power on  
again or resetting with the PS pin. The overcurrent protection circuit is a circuit that aims to prevent the IC from being  
destroyed by overcurrent in an abnormal state such as a motor output short circuit, and does not aim to protect or guarantee  
the set. Therefore, do not design the protection of the set using the function of this circuit. If the power is turned on again or  
restored by resetting in an abnormal state after overcurrent protection operation, take note that the overcurrent protection  
operation may be repeated in the order of latch -> return -> latch, which may cause heat generation or deterioration of the IC.  
If the Inductance value of wiring is large such as when the wiring is long at the time of ceiling fault, ground fault or short  
circuit, an overcurrent will flow and the output pin voltage will jump. If it exceeds the absolute maximum rating, it may result in  
destruction of the IC. Also, if a current that is greater than or equal to the output current rating and less than or equal to the  
OCP detection current flows, the IC may generate heat and the IC may deteriorate beyond Tjmax = 150 °C. Therefore, do  
not allow current exceeding the output rating to flow.  
3 Malfunction Prevention Function When Low Voltage (UVLO)  
This IC has a built-in under voltage lock out function to prevent false operation such as IC output during power supply  
under voltage. When the applied voltage to the VCC pin goes under 6 V (Typ), the motor output is set to OPEN.  
This switching voltage has a 1 V (Typ) hysteresis to prevent false operation by noise etc. Be aware that this  
circuit does not operate during power save mode. Also, the electrical angle is reset when the UVLO circuit operates.  
4 Output OFF function When Overvoltage (OVLO)  
This IC has a built-in over voltage lock OFF circuit to protect the IC output and the motor during power supply over voltage.  
When the applied voltage to the VCC pin goes over 32 V (Typ), the motor output is set to OPEN. This switching voltage has  
a 1 V (Typ) hysteresis and a 4 µs (Typ) mask time to prevent false operation by noise etc. Although this over voltage locked  
out circuit is built-in, there is a possibility of destruction if the absolute maximum value for power supply voltage is exceeded,  
therefore the absolute maximum value should not be exceeded. Be aware that this circuit does not operate during power  
save mode.  
5 Malfunction Prevention Function When No Power Loading (Ghost Supply Prevention Function)  
If a signal (logic input, MTH, VREF) is input when there is no power supplied to this IC, there is a function which  
prevents the false operation by voltage supplied via the electrostatic destruction prevention diode from these input  
pins to the VCC to this IC or to another IC’s power supply. Therefore, there is no malfunction of the circuit even  
when voltage is supplied to these input pins while there is no power supply.  
6 Operation in a Strong Magnetic Field  
This IC is not intended to operate in a strong electric field. Therefore, when using it in a strong electric field, make sure that  
there are no malfunctions.  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
16/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
BD65520MUV  
PWM Constant Current Control  
1 Current Control Operation  
When the output transistor is turned on, the output current increases, RNF voltage(voltage that external resistance  
attached the RNF pin and output current determined) reaches its voltage to be determined by the VREF pin and IC internal  
proper voltage, current detection comparator toggles and it becomes decay mode.  
The output transistor turned on again after CR timer reaches decay count time.  
This sequence occurs repeatedly that VREF voltage is determined by the VREF pin at pin setting mode.  
VREF voltage and decay count time is determined by each registers setting at SPI setting mode.  
2 Noise Canceling Function  
To avoid false detection of the current detection comparator due to RNF spike noise that occurs when the output is turned  
on, minimum ON time tONMIN (blank time) is provided to disable current detection from turning ON of output transistor to  
minimum ON time. This allows constant current drive without an external filter.  
3 CR Timer  
In pin setting mode, the CR pin repeats charging and discharging between the VCRH voltage and VCRL voltage due to the  
external capacitor and resistance.  
The current detection comparator detection is disabled in a section from the start of charging in VCRL to VCRH. This  
charging section is the minimum ON time tONMIN. Discharge starts after reaching VCRH and when the output current  
reaches the set current value in this discharge section, the current decay mode is entered.  
After that, when it is discharged and reaches VCRL, it returns from current decay mode to output ON mode, and at the  
same time it starts charging.  
The CR charge time tONMIN and discharge time tDISCHARGE are determined using the following equations (Typ) based on  
external components capacitor and resistance, and the sum of these two is the chopping cycle tCHOP  
.
−푉  
푂ꢃ푀ꢂꢃ ≈ 퐶 × 푅 ×푅  
푅 +푅 × 푙푛 (푉  
ꢄꢅ퐿 ) [s]  
ꢄꢅ  
−푉  
ꢄꢅ  
ꢄꢅ퐻  
Where:  
tONMIN is the Minimum ON Time  
C is the External Capacitor  
R is the External Resistor  
R’ is the CR Pin Internal Impedance 5 kΩ (Typ)  
VCR is the CR Pin internal charge Voltage  
VCRH is the Pin maximum Voltage  
VCRL is the CR Pin minimum Voltage  
ꢇ푅 = ꢆ × 푅 +푅 [V]  
Where:  
V is the Internal Regulator Voltage 5 V (Typ)  
ꢇ푅ꢈ = ꢇ푅 ꢉ ꢊꢆ ꢉ 1ꢋ × 푒푥푝ꢊꢉ푡푢/ꢊ퐶 × 푅 ×푅  
푅 +푅) [V]  
ꢇ푅  
Where:  
tu is the Internal proper time 3.32x10-7 s (Typ)  
ꢇ푅ꢌ = 0.4 × 푒푥푝 (ꢉ ꢍ푑+ꢇ×푅×훼) [V]  
ꢇ×R  
Where:  
td is the Internal proper time 1.25x10-6 s (Typ)  
α is the Internal proper value 0.0656 (Typ)  
퐷ꢂ푆ꢇꢈ퐴푅퐺퐸 ≈ 퐶 × ꢀ × 푙푛 (ꢄꢅ퐻) [s]  
ꢄꢅ퐿  
Where:  
tDISCHARGE is the CR Discharge Time  
ꢇꢈ푂푃 = 푡푂ꢃ푀ꢂꢃ ꢎ 푡퐷ꢂ푆ꢇꢈ퐴푅퐺퐸 [s]  
Where:  
tCHOP is the Chopping Cycle  
In SPI setting mode, it is determined by register setting.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
17/73  
14.Oct.2021 Rev.001  
 
BD65520MUV  
3 CR Timer - Continued  
Spike Noise  
Current Set Value  
0 mA  
Output Current  
Current Set Value  
RNF Voltage  
GND  
VCRH  
CR Voltage  
VCRL  
Discharge Time  
tDISCHARGE  
GND  
Chopping Cycle  
tCHOP  
Minimum ON Time  
tONMIN  
Figure 4. CR Voltage, RNF Voltage and Output Current Timing Chart  
The resistance of the CR pin does not reach the VCRH voltage when the resistance value is low so use 10 kΩ or more (10  
kΩ to 200 kΩ is recommended). Regarding capacity, if a capacitor of several thousand pF or more is used, the minimum  
ON time tONMIN becomes longer, and depending on the inductance and resistance values of the motor coil, output current  
may flow more than the current set value (470 pF to 1500 pF is recommended).  
Furthermore, if the chopping cycle tCHOP is set too long, the ripple of output current becomes large which may reduce the  
average current and reduce the rotation efficiency so be careful. Select the optimal value to minimize motor drive noise,  
output current waveform distortion, etc. The CR pin is not used in SPI setting mode. Both tONMIN and tDISCHARGE can be  
decided in the register setting.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
18/73  
14.Oct.2021 Rev.001  
BD65520MUV  
PWM Constant Current Control - Continued  
4 Current Decay Mode  
In PWM constant current drive, the current decay mode (FAST DECAY / SLOW DECAY) can be optionally set. The following  
diagrams show the route of state of output transistor and the motor regenerative current path during current decay for each  
decay mode.  
FAST DECAY  
SLOW DECAY  
OFF→OFF  
ON→ON  
OFF→ON  
ON→OFF  
ON→OFF  
OFF→ON  
ON→OFF  
OFF→ON  
M
M
Output ON  
Current Decay  
Figure 5. Regenerative Current Path During Current Decay  
When in pin setting mode, set by the MTH pin voltage, and when in SPI setting mode, set by register setting.  
MTH Pin Input Voltage [V]  
0 to 0.3  
Current Decay Mode  
SLOW DECAY  
MIX DECAY  
0.4 to 1.0  
1.5 to 3.5  
FAST DECAY  
The current decay setting in SPI setting mode is set in the register setting. Don’t use missing setting in above table.  
The features of each decay mode are as follows.  
4.1 SLOW DECAY  
The voltage applied between the motor coils during current decay is small, and the regenerative current gradually  
decreases so the current ripple is small, which is advantageous for motor torque. However, the output current increases.  
due to fall-off of current control characteristics in the low-current region, or due to reverse EMF of the output motors  
exhibited in half-step, quarter step, 1/8 step, 1/16 step and 1/32 step modes when driving at high pulse rate. The current  
waveform is distorted because it cannot follow the change in current limit value, and motor vibration increases. Thus,  
this decay mode is most suited to full step modes or low pulse rate drive half step, quarter step, 1/8 step, 1/16 step and  
1/32 step modes.  
4.2 FAST DECAY  
The regenerative current decreases sharply so the distortion in current waveform in high pulse rate drive can be  
reduced. However, since the ripple in output current increases, the average current decreases;  
(1) decrease in motor torque(it can be dealt with by increasing the current limit value, but it is necessary to consider the  
output rated current) and (2) dissipation in motor becomes large and heat generation increases. If there is no problem  
particularly with (1) and (2), this mode is most suited for half step, quarter step, 1/8 step, 1/16 step, and 1/32 step modes  
in high pulse rate drive.  
MIX DECAY method / AUTO DECAY method are available as a way to improve the problems that occur in SLOW  
DECAY and FAST DECAY.  
4.3 MIX DECAY  
Switching between SLOW DECAY and FAST DECAY during current decay can improve the current controllability  
without increasing the current ripple. Also, depending on the voltage input to the MTH pin, time ratio can be changed for  
SLOW DECAY and FAST DECAY and can achieve the optimal control conditions for all motors. During MIX DECAY, the  
first half, x % (t1 to t2), of discharge section in the chopping cycle tCHOP is SLOW DECAY, and the remaining section (t2 to  
t3) is FAST DECAY. However, if the current set value is not reached during the first half, x % (t1 to t2), of this discharge  
section, SLOW DECAY is not performed and only FAST DECAY is performed. The SPI setting mode is set by register  
setting.  
4.4 AUTO DECAY  
Normally, the SLOW DECAY mode is applied in decay, only when rapid decay requires switching to the FAST  
DECAY mode so that current controllability can be improved without increasing the current ripple. FAST DECAY is set  
only when the output current reaches the current set value during the minimum ON time. However, the AUTO DECAY  
mode can only be used in the SPI setting mode.  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
19/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
 
BD65520MUV  
4 Current Decay Mode - Continued  
t1  
t2  
t3  
1.0 V  
CR Voltage  
MTH Voltage  
0.4 V  
GND  
Chopping Cycle  
tCHOP  
Current Set Value  
Output Current  
FAST DECAY  
SLOW  
DECAY  
0 A  
Figure 6. CR Voltage and Output Current During MIX DECAY  
Current Set Value  
Output Current  
SLOW  
FASTꢀ  
DECAY  
DECAY  
0 A  
Minimum ON Time  
tONMIN  
Chopping Cycle  
tCHOP  
Figure 7. Output current during AUTO DECAY  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
14.Oct.2021 Rev.001  
20/73  
BD65520MUV  
Translator Circuit Operation in CLK-IN Drive System  
This IC has a built-in translator circuit that may drive the stepping motor in the CLK-IN drive system. The translator circuit in the  
CLK-IN drive system is described as follows.  
1 Reset Operation  
The translator circuit goes through an initialization process in power ON reset function and the PS pin.  
1.1 Initialization Process When Turning the Power ON  
1.1.1 When Power ON in PS = L (This is the normal sequence so recommended to use this.)  
When power is turned on, the power ON reset function will work inside the IC to initialize it. However, the motor output  
will remain in OPEN state as long as PS = L whether ENABLE = H or not. After turning on the power, by setting to PS = L  
-> H, the motor output will be in the ACTIVE state, and excitation will be applied at the initial electric angle.  
However, take note that when in PS = L -> H, there is a delay of 1 ms (Max) until the motor output returns  
to the ACTIVE state from standby state to the normal state.  
Reset Cancel  
ACTIVE  
Delay  
PS  
CLK  
OUT1A  
OUT1B  
Motor Output OPEN  
Motor Output ON  
1.1.2 When Power ON in PS = H  
After the power ON reset function works inside the IC, the power turns on and the circuit is initialized. If the motor output  
is ENABLE = H, it becomes active, and excitation is applied at the initial electric angle.  
1.2 Initialization operation during motor operation  
When initializing the translator circuit while the motor is operating, input a reset signal to the PS pin.  
However, when PS = L -> H, there is a delay of 1 ms (Max) until the motor output returns to the ACTIVE state from the  
standby state to the normal state.  
2 Control Input Timing  
The translator circuit basically operates at the rising edge of CLK signal so observe the input timing as shown below. Take  
note that the translator circuit may behave unexpectedly if the input is set in violation of this timing. Also, take note that when  
in PS = L -> H, there will be a delay of 1 ms (Max) until the motor output returns to the ACTIVE state from the standby state to  
the normal state, and even with the CLK input in the delay section, the phase advance operation is not performed.  
Similar sections are disabled for SPI transfer as well.  
A: PS Minimum L Pulse width 20 µs  
B: PS Rising Edge to CLK Rising Edge Input Maximum Delay Time 1 ms  
C: CLK Minimum Cycle 4 µs  
D: CLK Minimum Input H Pulse Width 2 µs  
E: CLK Minimum Input L Pulse Width 2 µs  
F: MODE0_SCLK, MODE1_SI, CWCCW_CSB and ENABLE Setup Time 1 µs  
G: MODE0_SCLK, MODE1_SI, CWCCW_CSB and ENABLE Hold Time 1 µs  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
21/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
BD65520MUV  
Translator Circuit Operation in CLK-IN Drive System - Continued  
3 FULL STEP A, CWCCW_CSB = L, ENABLE = H  
OUT1A  
PS  
100 %  
CLK  
67 %  
33 %  
1
2
4
3
OUT1A  
OUT1B  
OUT2A  
OUT2B  
OUT2A  
OUT2B  
OUT1B  
100 %  
67 %  
33 %  
4CLK = Electrical Angle 360°  
IOUT(CH1)  
-33 %  
-67 %  
-100 %  
100 %  
67 %  
33 %  
IOUT(CH2)  
-33 %  
-67 %  
-100 %  
4 HALF STEP A, CWCCW_CSB = L, ENABLE = H  
OUT1A  
8
100 %  
PS  
67 %  
33 %  
CLK  
1
3
7
5
OUT1A  
OUT1B  
OUT2A  
OUT2B  
OUT2B  
OUT2A  
6
2
4
100 %  
67 %  
33 %  
-33 %  
-67 %  
-100 %  
OUT1B  
IOUT(CH1)  
8CLK = Electrical Angle 360°  
100 %  
67 %  
33 %  
IOUT(CH2)  
-33 %  
-67 %  
-100 %  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
22/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Translator Circuit Operation in CLK-IN Drive System - Continued  
5 HALF STEP B, CWCCW_CSB = L, ENABLE = H  
OUT1A  
8
PS  
100 %  
67 %  
CLK  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
33 %  
1
3
7
5
OUT2B  
OUT2A  
2
6
4
100 %  
67 %  
33 %  
OUT1B  
IOUT(CH1)  
8CLK = Electrical Angle 360°  
-33 %  
-67 %  
-100 %  
100 %  
67 %  
33 %  
IOUT(CH2)  
-33 %  
-67 %  
-100 %  
6 QUARTER STEP A, CWCCW_CSB = L, ENABLE = H  
OUT1A  
CLK  
100 %  
OUT1A  
67 %  
33 %  
15  
14  
16  
13  
1
5
OUT1B  
OUT2A  
OUT2B  
12  
11  
10  
2
3
4
OUT2A  
OUT2B  
9
100 %  
67 %  
33 %  
OUT1B  
IOUT(CH1)  
-33 %  
-67 %  
-100 %  
16CLK = Electrical Angle 360°  
100 %  
67 %  
33 %  
IOUT(CH2)  
-33 %  
-67 %  
-100 %  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
23/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Translator Circuit Operation in CLK-IN Drive System - Continued  
7 HALF STEP C, CWCCW_CSB = L, ENABLE = H  
OUT1A  
8
PS  
100 %  
67 %  
CLK  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
33 %  
1
3
7
5
OUT2B  
OUT2A  
2
6
100 %  
67 %  
33 %  
OUT1B  
IOUT(CH1)  
-33 %  
-67 %  
-100 %  
8CLK = Electrical Angle  
360°  
100 %  
67 %  
33 %  
IOUT(CH2)  
-33 %  
-67 %  
-100 %  
8 QUARTER STEP B, CWCCW_CSB = L, ENABLE = H  
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ① ② ③ ④  
OUT1A  
100 %  
67 %  
33 %  
PS  
15  
14  
16  
CLK  
13  
1
5
12  
11  
2
3
OUT1A  
OUT1B  
OUT2A  
OUT2B  
OUT2A  
OUT2B  
4
10  
9
6
8
7
OUT1B  
100 %  
67 %  
33 %  
16CLK = Electrical  
Angle 360°  
IOUT(CH1)  
-33 %  
-67 %  
-100 %  
100 %  
67 %  
33 %  
IOUT(CH2)  
-33 %  
-67 %  
-100 %  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
24/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Translator Circuit Operation in CLK-IN Drive System – Continued  
9 Step Sequence Table (FULL STEP B, HALF STEP C, QUARTER STEP B, 1/ 8 STEP, 1/ 16 STEP, 1/ 32 STEP)  
Initial Excitation Position = Step Angle 45°  
FULL  
HALF  
QUARTE  
RSTEP B  
1/8  
1/16  
1/32  
CH1  
CH2  
STEP  
STEP B  
STEP C  
STEP  
STEP  
STEP  
Current [%]  
Current [%]  
Angle [°]  
1
2
3
1
1
2
1
2
1
2
100.00  
99.88  
99.52  
98.92  
98.08  
97.00  
95.69  
94.15  
92.39  
90.40  
88.19  
85.77  
83.15  
80.32  
77.30  
74.10  
70.71  
67.16  
63.44  
59.57  
55.56  
51.41  
47.14  
42.76  
38.27  
33.69  
29.03  
24.30  
19.51  
14.67  
9.80  
0.00  
4.91  
0.00  
2.81  
5.63  
3
9.80  
4
14.67  
19.51  
24.30  
29.03  
33.69  
38.27  
42.76  
47.14  
51.41  
55.56  
59.57  
63.44  
67.16  
70.71  
74.10  
77.30  
80.32  
83.15  
85.77  
88.19  
90.40  
92.39  
94.15  
95.69  
97.00  
98.08  
98.92  
99.52  
99.88  
100.00  
99.88  
99.52  
98.92  
98.08  
97.00  
95.69  
94.15  
92.39  
90.40  
88.19  
85.77  
83.15  
80.32  
77.30  
74.10  
8.44  
3
5
11.25  
14.06  
16.88  
19.69  
22.50  
25.31  
28.13  
30.94  
33.75  
36.56  
39.38  
42.19  
45.00  
47.81  
50.63  
53.44  
56.25  
59.06  
61.88  
64.69  
67.50  
70.31  
73.13  
75.94  
78.75  
81.56  
84.38  
87.19  
90.00  
92.81  
95.63  
98.44  
101.25  
104.06  
106.88  
109.69  
112.50  
115.31  
118.13  
120.94  
123.75  
126.56  
129.38  
132.19  
6
4
7
8
2
3
4
5
6
3
5
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
6
4
7
8
1
5
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
6
7
8
4.91  
9
0.00  
-4.91  
-9.80  
-14.67  
-19.51  
-24.30  
-29.03  
-33.69  
-38.27  
-42.76  
-47.14  
-51.41  
-55.56  
-59.57  
-63.44  
-67.16  
10  
11  
12  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
25/73  
14.Oct.2021 Rev.001  
BD65520MUV  
9 Step Sequence Table - Continued  
FULL  
HALF  
QUARTE  
RSTEP B  
EIGHTH  
STEP  
1/16  
1/32  
CH1  
CH2  
STEP  
STEP B  
STEP C  
STEP  
STEP  
Current [%]  
Current [%]  
Angle [°]  
2
4
5
6
7
13  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
-70.71  
-74.10  
-77.30  
-80.32  
-83.15  
-85.77  
-88.19  
-90.40  
-92.39  
-94.15  
-95.69  
-97.00  
-98.08  
-98.92  
-99.52  
-99.88  
-100.00  
-99.88  
-99.52  
-98.92  
-98.08  
-97.00  
-95.69  
-94.15  
-92.39  
-90.40  
-88.19  
-85.77  
-83.15  
-80.32  
-77.30  
-74.10  
-70.71  
-67.16  
-63.44  
-59.57  
-55.56  
-51.41  
-47.14  
-42.76  
-38.27  
-33.69  
-29.03  
-24.30  
-19.51  
-14.67  
-9.80  
70.71  
67.16  
63.44  
59.57  
55.56  
51.41  
47.14  
42.76  
38.27  
33.69  
29.03  
24.30  
19.51  
14.67  
9.80  
135.00  
137.81  
140.63  
143.44  
146.25  
149.06  
151.88  
154.69  
157.50  
160.31  
163.13  
165.94  
168.75  
171.56  
174.38  
177.19  
180.00  
182.81  
185.63  
188.44  
191.25  
194.06  
196.88  
199.69  
202.50  
205.31  
208.13  
210.94  
213.75  
216.56  
219.38  
222.19  
225.00  
227.81  
230.63  
233.44  
236.25  
239.06  
241.88  
244.69  
247.50  
250.31  
253.13  
255.94  
258.75  
261.56  
264.38  
267.19  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
8
4.91  
9
0.00  
-4.91  
-9.80  
-14.67  
-19.51  
-24.30  
-29.03  
-33.69  
-38.27  
-42.76  
-47.14  
-51.41  
-55.56  
-59.57  
-63.44  
-67.16  
-70.71  
-74.10  
-77.30  
-80.32  
-83.15  
-85.77  
-88.19  
-90.40  
-92.39  
-94.15  
-95.69  
-97.00  
-98.08  
-98.92  
-99.52  
-99.88  
10  
11  
12  
3
-4.91  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
26/73  
14.Oct.2021 Rev.001  
BD65520MUV  
9 Step Sequence Table - Continued  
FULL  
HALF  
QUARTE  
RSTEP B  
EIGHTH  
STEP  
1/16  
1/32  
CH1  
CH2  
STEP  
STEP B  
STEP C  
STEP  
STEP  
Current [%]  
Current [%]  
Angle [°]  
7
13  
25  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
97  
98  
99  
0.00  
-100.00  
-99.88  
-99.52  
-98.92  
-98.08  
-97.00  
-95.69  
-94.15  
-92.39  
-90.40  
-88.19  
-85.77  
-83.15  
-80.32  
-77.30  
-74.10  
-70.71  
-67.16  
-63.44  
-59.57  
-55.56  
-51.41  
-47.14  
-42.76  
-38.27  
-33.69  
-29.03  
-24.30  
-19.51  
-14.67  
-9.80  
270.00  
4.91  
9.80  
272.81  
275.63  
278.44  
281.25  
284.06  
286.88  
289.69  
292.50  
295.31  
298.13  
300.94  
303.75  
306.56  
309.38  
312.19  
315.00  
317.81  
320.63  
323.44  
326.25  
329.06  
331.88  
334.69  
337.50  
340.31  
343.13  
345.94  
348.75  
351.56  
354.38  
357.19  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
14.67  
19.51  
24.30  
29.03  
33.69  
38.27  
42.76  
47.14  
51.41  
55.56  
59.57  
63.44  
67.16  
70.71  
74.10  
77.30  
80.32  
83.15  
85.77  
88.19  
90.40  
92.39  
94.15  
95.69  
97.00  
98.08  
98.92  
99.52  
99.88  
26  
27  
28  
29  
30  
31  
32  
14  
15  
16  
4
8
-4.91  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
27/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Translator Circuit Operation in CLK-IN Drive System – continued  
10 Reset timing chart (QUARTER STEP, CWCCW_CSB = L, ENABLE = H)  
Input the PS pin to L to reset the translator circuit while the motor operates. Reset operation will run regardless of other input  
signals. At this point, the IC internal circuit will come to a standby mode, and the motor output will be set OPEN.  
RESET  
PS  
CLK  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
100 %  
67 %  
33 %  
IOUT(CH1)  
-33 %  
-67 %  
-100 %  
100 %  
67 %  
33 %  
IOUT(CH2)  
-33 %  
-67 %  
-100 %  
11 Motor rotation direction switching timing chart (FULL STEP A, ENABLE = H)  
The switching of the motor rotation direction is reflected at the rising edge of CLK immediately after the CWCCW_CSB signal  
changes. However, even if the control on the driver IC side is supported, depending on the operating state of the motor at the  
time of switching, the motor may not be able to follow. Motor step-out and missteps may occur, so evaluate the switching  
sequence thoroughly.  
CW  
CCW  
PS  
CWCCW_CSB  
CLK  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
100 %  
-100 %  
100 %  
-100 %  
IOUT(CH1)  
IOUT(CH2)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
28/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Translator Circuit Operation in CLK-IN Drive System - Continued  
12 ENABLE Switching Timing Chart (FULL STEP A)  
ENABLE signal switching is reflected by changes in the ENABLE signal regardless of other input signals. In the ENABLE = L  
section, the phase advance operation of the internal translator circuit is stopped because the CLK input is cut off as the  
motor output becomes OPEN. Therefore, when returning from ENABLE = L to H, it returns to the state immediately before  
entering ENABLE = L. Since the excitation mode is switched even in the ENABLE = L section, when the excitation mode is  
switched in the ENABLE = L section, it will return by excitation mode after switching to return from ENABLE = L to H.  
Output off & Translator stop  
PS  
ENABLE  
CLK  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
100 %  
IOUT(CH1)  
IOUT(CH2)  
-100 %  
100 %  
-100 %  
Returns to the state before entering ENABLE = L.  
13 Motor Excitation Mode Switching  
Switching the excitation mode is performed at the same time as the excitation mode setting signal changes regardless of  
CLK signal. This product has a built-in function to prevent motor step-out due to torque vector mismatch between transition  
excitations when switching the excitation mode. However, even if the control on the driver IC side is supported, the motor  
cannot follow depending on the operating state of the motor at the time of switching. Since motor step-out or mis-stepping  
may occur, carefully evaluate the excitation mode switching sequence before deciding or setting.  
14 Precautions When Doing Both Motor Rotation Direction and Excitation Mode Switching  
As shown in the figure below, after reset release (PS = L -> H), section A is defined as the period before the first CLK signal is  
input while section B is defined as the period after the first CLK signal is input.  
Section A  
-> There are no restrictions on switching the motor rotation direction and excitation mode.  
Section B  
-> While in one CLK cycle or while in the ENABLE = L section, perform one from either motor rotation direction or  
excitation mode.  
If this constraint is violated, a misstep (one more phase advance) may occur and the motor may step out. Therefore, when  
switching both motor rotation direction and excitation mode, be sure to input the reset signal to the PS pin and set it to  
the state of section A.  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
29/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
BD65520MUV  
SPI Interface  
This IC is equipped with SPI and can read various settings and IC status.  
1 3 Wires 32 Bit SPI Input Method  
Setting GAMOD1 = H and GAMOD2 = H will enable the 3 wires 32 bit SPI mode and will make the following pins useable as  
SPI input / output.  
Pin Name  
I/O  
I
Description  
CWCCW_CSB  
Chip select signal  
L active  
MODE0_SCLK  
I
Serial clock  
Write: Captures data at the rising edge  
Read: Outputs data at falling edge  
Serial data entry  
Input data is invalid when CWCCW_CSB is H  
Serial data output  
MODE1_SI  
SO  
I
O
The upper 8 bits are the register address and the lower 24 bits are the register data.  
The register data is read/write in ‘MSB first’ every 8 bits.  
When writing  
CWCCW_CSB  
Address Section  
Data Section  
D0 D15 D14 D13 D12 D11 D10  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D9  
D8 D23 D22 D21 D20 D19 D18 D17 D16  
MODE1_SI  
MODE0_SCLK  
Hi-z  
SO  
When reading  
CWCCW_CSB  
Address Section  
Data Section  
XX(Invalid DATA)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
MODE1_SI  
MODE0_SCLK  
Output Data Section  
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8 DO23 DO22 DO21 DO20 DO19 DO18 DO17 DO16  
Hi-z  
Hi-z  
SO  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
30/73  
14.Oct.2021 Rev.001  
BD65520MUV  
SPI Interface - Continued  
2 3 Wires 32 Bit SPI Transmission Cancellation  
Hold the CWCCW_CSB pin at L while transmitting 32-bit data. If the CWCCW_CSB pin is set to H during transmission, the  
transmission will be cancelled.  
When the number of transmission register data bits is 8 bits or more, the data cancellation range differs depending on the  
register type (Type1, Type2).  
Transmission cancellation (register address)  
CWCCW_CSB  
Address Section(Invalid)  
Data Section(Invalid)  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
MODE1_SI  
MODE0_SCLK  
Hi-z  
SO  
Transmission Register Data Cancellation (less than 8 bits)  
CWCCW_CSB  
Address Section(Invalid)  
Data Section(Invalid)  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
MODE1_SI  
MODE0_SCLK  
Hi-z  
SO  
Transmission Register Data Cancellation (8 Bit or more, Type1)  
CWCCW_CSB  
Address Section  
Data Section(Valid)  
Data Section(Invalid)  
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx  
MODE1_SI  
MODE0_SCLK  
Hi-z  
SO  
Transmission Register Data Cancellation (8 Bit or more, Type2)  
CWCCW_CSB  
Address Section  
Data Section(Invalid)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
MODE1_SI  
MODE0_SCLK  
Hi-z  
SO  
Read Cancellation  
CWCCW_CSB  
Address Section  
Data Section  
XX(Invalid DATA)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
MODE1_SI  
MODE0_SCLK  
Output Data Section(Valid)  
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15 DO14 DO13  
Invalid  
Hi-z  
Hi-z  
SO  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
31/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Command Register  
1 Command Register Description  
This IC has a command register consisting of 8-bit address + 24-bit data.  
The write command register is roughly divided into Type 1 and Type 2, and Type1 and Type2 write reflect timings are different.  
Write command register  
Description  
type  
Type1  
Data is reflected every 8 bits of transmission  
Reflected when all 24 bits of transmission are received  
Enabled after sending UNLOCK command (Note 9)  
Type2  
2 Command List  
No.  
Command  
Hex  
Function  
Type  
R/W  
MODE setting, rotation direction,  
High-efficiency Drive setting  
1
MODESET  
01  
Type1  
R/W  
2
3
READSEL  
02  
03  
Read command settings  
Read READSEL settings  
Type1  
W
R
READ_READSEL  
-
Read TSD, OCP, OVLO protection  
status  
4
READ_DIAGNOSTIC  
04  
-
R
5
6
READ_CURRENT_VREF  
READ_MARGIN  
STOMGN_PEAKHOLD_CLEAR (Note 9)  
05  
06  
07  
10  
Read drive VREF set value  
Load state read  
-
R
R
-
7
8
STOMGN peak hold state OFF  
Drive VREF setting  
Type2  
Type2  
W
VREFSET  
R/W  
VREF setting for minimum drive  
during High-efficiency Drive  
9
VREFMINSET  
11  
Type2  
R/W  
10  
11  
12  
KESET  
MTHSET  
12  
13  
14  
Motor constant setting  
Current decay mode setting  
Chopping time setting  
Type2  
Type2  
Type2  
R/W  
R/W  
R/W  
CRTIMESET  
High-efficiency Drive OFF -> ON  
frequency setting  
13  
MIN_FREQ_ON_SET  
15  
Type2  
R/W  
High-efficiency Drive ON -> OFF  
frequency setting  
14  
15  
16  
MIN_FREQ_OFF_SET  
HIEF_SET  
16  
17  
18  
Type2  
Type2  
Type2  
R/W  
R/W  
R/W  
High-efficiency Drive setting  
Internal induced-voltage reading  
setting  
VBEMFAVESET  
High-efficiency Drive gain setting 1  
17  
18  
19  
20  
21  
22  
GAIN_SET  
GAIN1_SET  
GAIN2_SET  
RESERVE  
RESERVE  
RESERVE  
19  
1A  
1B  
1C  
1D  
1E  
Type2  
R/W  
High-efficiency Drive gain setting 2  
High-efficiency Drive gain setting 3  
Type2  
R/W  
Type2  
R/W  
RESERVE  
RESERVE  
RESERVE  
-
-
-
-
-
-
OUT2A / OUT2B output current  
setting Offset setting  
23  
VREFOFFSETSET  
1F  
Type2  
R/W  
High-efficiency Drive gain setting 5  
24  
25  
26  
27  
28  
GAIN4_SET  
GAIN5_SET  
20  
21  
22  
23  
24  
Type2  
Type2  
Type2  
Type2  
Type2  
R/W  
R/W  
R/W  
R/W  
R/W  
High-efficiency Drive gain setting 6  
High-efficiency Drive gain setting 7  
GAIN6_SET  
VBEMFMONSET  
STOMGN_PEAKHOLD_SET  
Step-out margin read setting  
STOMGN peak hold setting  
Current reading period setting during  
FULL STEP  
29  
FULLSTEPWINDOWSET  
25  
Type2  
R/W  
Current decay ratio upper limit setting  
30  
31  
32  
HIEFSELMAX  
HIEFSELMIN  
UNLOCK  
26  
27  
A0  
Type2  
Type2  
Type1  
R/W  
R/W  
W
Current decay ratio lower limit setting  
Type2 command enabled  
(Note 9) STOMGN_PEAKHOLD_CLEAR is a Type2 register, but it is enabled regardless of the UNLOCK command.  
Do not use command addresses other than those in this table.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
32/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Command register-continued  
3 Command Register Detailed Description  
3.1 MODESET  
MODESET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
01  
-
0
0
0
0
0
D6  
0
0
D5  
0
0
0
D3  
0
0
D2  
0
0
D1  
0
1
D0  
0
D4  
0
00  
D15-D8  
-
00  
D23-D16  
-
0
0
0
0
0
0
0
00  
Motor excitation mode setting  
Description  
FULL STEP A  
HALF STEP A  
HALF STEP B  
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
QUARTER STEP A  
FULL STEP B  
HALF STEP C  
QUARTER STEP B  
1/8 STEP  
1/16 STEP  
1/32 STEP  
Inhibit  
Inhibit  
Inhibit  
Inhibit  
Inhibit  
Inhibit  
Motor rotation direction setting  
D4  
Description  
Clockwise (CH2 current outputs with a phase delay of 90° with respect to CH1 current.)  
0
Counter Clockwise (CH2 current outputs with a phase advancement by 90° with respect to  
CH1 current.)  
1
Output enable setting  
D5  
Description  
Output enable OFF  
0
1
Output enable ON  
The output enable setting is valid only in SPI setting mode.  
The relationship between the OUT1A/OUT1B/OUT2A/OUT2B pin outputs, the D5 output enable setting, and the  
ENABLE pin is as follows.  
OUT1A/OUT1B/OUT2A/OUT2B pin output  
ENABLE pin logic  
D5  
0
OPEN (electrical angle retention)  
L
H
L
ACTIVE  
ACTIVE  
ACTIVE  
0
1
1
H
High-efficiency Drive setting  
D6  
Description  
0
1
High-efficiency Drive OFF  
High-efficiency Drive ON  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
14.Oct.2021 Rev.001  
33/73  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.2 READSEL  
READSEL  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
02  
-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
D1  
D9  
0
0
D0  
D8  
0
0
0
0
00  
D15-D8  
-
00  
D23-D16  
-
00  
MODESET Read Setting  
D0  
Description  
0
1
MODESET command operates as a write command  
MODESET command operates as a read command  
Type 2 Command Read Settings  
D1  
Description  
0
1
Type 2 command (command address 10h to 27h) operates as a write command  
Type 2 command (command address 10h to 27h) operates as a read command  
READ_MARGIN Read value setting  
Description  
12bit load state is read  
D9  
0
D8  
0
0
1
STOMGN output voltage set value is read  
Internally induced voltage value is read  
Inhibit  
1
0
1
1
3.3 READ_READSEL  
READ_READSEL  
Command  
Hex  
DATA  
Initial  
-
Remarks  
03  
-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
D7-D0  
0
0
0
DO1 DO0  
DO9 DO8  
00  
D15-D8  
-
00  
D23-D16  
-
0
0
00  
READSEL D0 Reading  
DO0  
Description  
0
1
READSEL command D0 setting reading. D0 = 0  
READSEL command D0 setting reading. D0 = 1  
READSEL D1 Reading  
DO1  
Description  
0
1
READSEL command D1 setting reading. D1 = 0  
READSEL command D1 setting reading. D1 = 1  
READSEL D8 Reading  
DO8  
Description  
0
1
READSEL command D8 setting reading. D8 = 0  
READSEL command D8 setting reading. D8 = 1  
READSEL D9 Reading  
DO9  
Description  
0
1
READSEL command D9 setting reading. D9 = 0  
READSEL command D9 setting reading. D9 = 1  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
34/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.4 READ_DIAGNOSTIC  
READ_DIAGNOSTIC  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
04  
-
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
DO3 DO2 DO1 DO0  
88  
D15-D8  
-
0
0
0
0
0
0
0
0
00  
D23-D16  
-
00  
TSD Status Reading  
DO0  
Description  
0
TSD undetected  
TSD detected  
1
TSD stated is detected, DO0 is 1.  
When the TSD state is released after TSD state is detected, the read value holds DO0 = 1 until this command  
used.  
Notice that SPI read sequence does not complete when read sequence does not exceed D23.  
So the read value continue to hold DO0 = 1, TSD state is released also.  
OVLO Status Reading  
DO1  
Description  
0
OVLO undetected  
OVLO detected  
1
When VCC voltage exceeded the detection voltage during OVLO mask time, it will not be detected.  
OVLO stated is detected, DO1 is 1.  
When the OVLO state is released after OVLO state is detected, the read value holds DO1 = 1 until this command  
used.  
Notice that SPI read sequence does not complete when read sequence does not exceed D23.  
So the read value continue to hold DO1 = 1, OVLO state is released also.  
OCP Status Reading  
DO2  
Description  
0
OCP undetected  
OCP detected  
1
When detection current is exceeded during the OCP mask time, it will not be detected.  
OCP stated is detected, DO2 is 1.  
Even when the OCP state is released, the state of the IC is output OFF and the read value is detected.  
DO2 clear PS = L or power supply OFF.  
Initial Status Reading  
DO3  
Description  
0
Second or more Reading  
1
Initial read value after Power On  
When this Command is used first time after IC power on, DO3 read value is 1.  
Second time or more, DO3 read value is 0.  
Notice that SPI read sequence does not complete when read sequence does not exceed D23.  
So the read value continue to hold DO3 = 1, second or more Reading also.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
35/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.5 READ_CURRENT_VREF  
READ_CURRENT_VREF Hex  
DATA  
Initial  
-
Remarks  
Command  
D7-D0  
05  
-
0
0
0
0
0
0
0
0
0
1
0
0
1
0
DO1 DO0  
00  
D15-D8  
D23-D16  
-
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8  
DO16  
00  
-
0
0
0
0
0
0
0
00  
Drive VREF Setting Integer-side Reading  
Description  
DO1  
DO0  
0
0
1
1
0
1
0
1
0
1
2
3
Drive VREF Setting Decimal-side Reading  
DO15 DO14 DO13 DO12 DO11 DO10 DO9  
Description  
0
DO8  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0.00390625  
0.0078125  
1
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0.5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
Drive VREF = VREF setting integer-side + VREF setting decimal-side  
The decimal-side are values added to each bit as DO15 = 0.5, DO14 = 0.25, DO8 = 0.00390625 and so on.  
Example: Read value DO7-DO0 = 01, DO15-DO8 = 5A  
VREF setting integer-side = 01 = 1  
VREF setting decimal-side = 5A = 0.25 + 0.0625 + 0.03125 + 0.0078125 = 0.3515625  
Drive VREF = 1 + 0.3515625= 1.3515625  
High-efficiency Drive Status Reading  
DO16  
Description  
0
Normal operating condition  
1
High-efficiency Drive state  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
36/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.6 READ_MARGIN  
READ_MARGIN  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
06  
-
0
0
0
0
0
0
0
0
1
1
0
DO4 DO3 DO2 DO1 DO0  
00  
D15-D8  
-
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8  
00  
D23-D16  
-
0
0
0
0
0
0
0
0
00  
In READ_MARGIN, read value contents changes by READSEL D8 and D9.  
3.6.1 D9 = 0 and D8 = 0: 12 Bit Load Status Reading  
Description  
DO3 DO2 DO1 DO0 DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
Load Status Heavy  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
Load Status Small  
DO3-DO0, DO15-DO8 is 12bit of load read value. If the value is large, the load is applied.  
DO4 is inhibit.  
3.6.2 READSEL D9 = 0 and D8 = 1: STOMGN Output Voltage Set Value Reading  
STOMGN Output Voltage Set Value Integer Side  
Description  
DO2  
0
DO1  
0
DO0  
0
0
0
0
1
1
0
1
0
2
0
1
1
3
4
1
0
0
1
0
1
5
1
1
0
Inhibit  
Inhibit  
1
1
1
STOMGN output voltage set decimal-side  
Description  
0
DO15 DO14 DO13 DO12 DO11 DO10 DO9  
DO8  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0.00390625  
0.0078125  
1
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0.5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
Reading of the STOMGN output voltage set value.  
STOMGN output voltage set value = STOMGN output voltage set value integer-side + STOMGN output  
voltage set value decimal-side.  
The decimal-side are values added to each bit as DO15 = 0.5, DO14 = 0.25, DO8 = 0.00390625 and so on.  
DO4 and DO3 are inhibit.  
Decimal-side is 8bit. However, circuit accuracy is around 4bit.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
37/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.6.2 READSEL D9 = 1 and D8 = 0: Internal Induced-voltage Value Reading  
Internal Induced-voltage Value Integer-side  
Description  
DO4  
DO3  
DO2  
DO1  
DO0  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0
1
2
:
1
:
0
:
0
:
0
:
0
:
16  
1
1
1
1
1
1
1
1
0
1
30  
31  
Internal induced-voltage Value decimal-side  
DO15 DO14 DO13 DO12 DO11 DO10 DO9  
Description  
0
DO8  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0.00390625  
0.0078125  
1
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0.5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
Reading of the internal induced-voltage value.  
Internal induced-voltage value = internal induced-voltage value integer-side + internal induced-voltage value  
decimal-side.  
The decimal-side are values added to each bit as DO15 = 0.5, DO14 = 0.25, DO8 = 0.00390625 and so on.  
Decimal-side is 8bit. However, circuit accuracy is around 4bit.  
For the internal induced-voltage, refer to Induced-voltage Reading Circuit (Page 61).  
3.7 STOMGN_PEAKHOLD_CLEAR  
READ_CURRENT_VREF Hex  
DATA  
Initial  
-
Remarks  
Command  
D7-D0  
07  
-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
00  
D15-D8  
D23-D16  
-
00  
-
00  
If this command is used when the STOMGN pin is in peak hold status, it will disappear in the peak hold status.  
This command does not depend on the value of D23-D0, but the peak hold status is released when a 24-bit data is  
transmitted.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
38/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.8 VREFSET  
VREFSET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
10  
-
0
0
0
0
0
0
1
0
0
0
0
0
D1  
D9  
0
0
D0  
D8  
0
0
01  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
00  
D23-D16  
-
0
0
0
0
0
0
00  
Drive VREF Setting Integer-side  
Description  
D1  
0
D0  
0
0
1
2
3
0
1
1
0
1
0
Drive VREF Setting Decimal-side  
Description  
0
D15  
D14  
D13  
D12  
D11  
0
D10  
D9  
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
0.00390625  
0.0078125  
0
:
1
:
0
:
0
:
0
:
0
0
:
0
:
0
:
0.5  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
1
1
Drive VREF = VREF setting integer-side + VREF setting decimal-side.  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D8 = 0.00390625 and so on.  
Example: When setting to Drive VREF setting = 1.4  
VREF setting integer-side = 1: D7-D0 = 01  
VREF setting decimal-side = 0.4(Note1) ≈ 0.3984375 = 0.25 + 0.125 + 0.015625 + 0.0078125: D15-D8 = 66  
(Note1) means setting the decimal-side to exactly 0.4 is not possible.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
39/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.9 VREFMINSET  
VREFMINSET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
11  
-
0
0
0
0
0
0
1
0
0
0
0
0
D1  
D9  
0
1
D0  
D8  
0
0
00  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
80  
D23-D16  
-
0
0
0
0
0
0
00  
High-efficiency Drive VREF Minimum Value Setting Integer-side  
Description  
D1  
0
D0  
0
0
1
2
3
0
1
1
0
1
1
High-efficiency Drive VREF Minimum Value Setting Decimal-side  
Description  
0
D15  
D14  
D13  
D12  
D11  
0
D10  
D9  
0
0
1
:
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0.00390625  
0.0078125  
0
:
1
:
0
:
0
:
0
:
0
0
:
0
:
0
:
0.5  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
1
1
High-efficiency Drive VREF minimum value = VREF minimum value setting integer-side + VREF minimum value  
setting decimal-side.  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D8 = 0.00390625 and so on.  
This register is not used in normal operations. If VREFSET setting is less than the VREFMINSET set value,  
the minimum setting for High-efficiency Drive will be 0 regardless of the set value.  
Example: When setting to High-efficiency Drive VREF minimum value = 0.2  
High-efficiency Drive VREF minimum value setting integer-side = 0: D7-D0 = 00  
High-efficiency Drive VREF minimum value setting Integer-side = 0.2(Note1) ≈ 0.19921875  
= 0.125 + 0.0625 + 0.0078125 + 0.00390625: D15-D8 = 33  
(Note1) means setting the decimal-side to exactly 0.2 is not possible.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
40/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.10 KESET  
KESET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
12  
-
0
0
0
1
0
0
1
D1  
D9  
0
0
D0  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
01  
D15-D8  
D23-D16  
-
D15 D14 D13 D12 D11 D10  
D23 D22 D21 D20  
40  
-
0
0
00  
Motor Integer Setting  
Description  
D7  
0
0
0
:
D6  
0
0
0
:
D5  
0
0
0
:
D4  
0
0
0
:
D3  
0
0
0
:
D2  
0
0
0
:
D1  
0
0
0
:
D0  
0
0
0
:
:
:
:
:
:
:
:
:
:
:
D23 D22 D21 D20  
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0
0.00000095367431640625  
0.0000019073486328125  
:
1
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0.5  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.99999713897705078125  
0.9999980926513671875  
0.99999904632568359375  
The motor constant is set to 20 bits. There is no integer-side. Use the 20 bits as decimal numbers.  
Motor constants are D7 = 0.5, D6 = 0.25 D0 = 0.00390625, D23 = 0.00000762939453125 and  
D20 = 0.00000095367431640625 and so on which are values added to each bit.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
41/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.11 MTHSET  
MTHSET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
13  
-
0
0
0
0
0
0
1
0
0
0
0
1
D1  
D9  
0
1
0
D0  
D8  
D16  
00  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
00  
D23-D16  
-
0
0
0
0
0
0
00  
MTH Setting Integer-side  
Description  
D1  
0
D0  
0
0
1
2
3
0
1
1
0
1
1
MTH Setting Decimal-side  
Description  
0
D15  
D14  
D13  
D12  
D11  
0
D10  
D9  
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
0.00390625  
0.0078125  
0
:
1
:
0
:
0
:
0
:
0
0
:
0
:
0
:
0.5  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
1
1
MTH setting = MTH setting integer-side + MTH setting decimal-side.  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D8 = 0.00390625 and so on.  
AUTO DECAY mode setting  
D16  
0
Description  
AUTO DECAY OFF  
AUTO DECAY ON  
1
D0-D15 bit setting are invalid and operate AUTO DECAY during current decay when AUTO DECAY is ON.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
42/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.12 CRTIMESET  
CRTIMSET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
14  
-
0
0
0
0
0
0
0
0
0
1
0
1
0
D1  
D9  
0
0
D0  
D8  
0
D5  
D4  
D3  
D2  
05  
D15-D8  
-
D13 D12 D11 D10  
20  
D23-D16  
-
0
0
0
0
00  
PWM Constant Current Control Minimum ON Time Setting  
Description  
inhibit  
D5  
0
0
0
:
D4  
0
0
0
:
D3  
0
0
0
:
D2  
0
0
0
:
D1  
0
0
1
:
D0  
0
1
0
:
0.083 μs  
0.166 μs  
:
0
:
0
:
0
:
1
:
0
:
1
:
0.4166 μs  
:
1
1
1
1
1
1
1
1
1
1
0
1
5.166 μs  
5.25 μs  
PWM Constant Current Control Current Decay Time Setting  
Description  
inhibit  
2 μs  
D13  
D12  
D11  
0
D10  
D9  
0
0
1
:
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
4 μs  
:
:
1
:
0
:
0
0
:
0
:
0
:
64 μs  
:
:
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
122 μs  
124 μs  
126 μs  
1
1
PWM constant current control chopping cycle is determined by minimum ON time + current decay time setting.  
When using the SPI mode setting, setting of chopping cycle by the CR pin becomes disabled.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
43/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.13 MIN_FREQ_ON_SET  
MIN_FREQ_ON_SET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
15  
-
0
0
0
0
0
0
1
0
1
0
D1  
D9  
0
1
D0  
D8  
0
D4  
D3  
D2  
00  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
D23 D22  
20  
D23-D16  
-
0
0
0
0
00  
High-efficiency Drive Enabled Frequency Setting (OFF -> ON) Integer-side  
Description  
inhibit  
1 Hz  
D4  
0
0
0
:
D3  
0
0
0
:
D2  
0
0
0
:
D1  
0
0
0
:
D0  
0
0
0
:
D15 D14 D13 D12 D11 D10  
D9  
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
2 Hz  
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
1
:
0
:
0
:
0
:
0
:
0
:
32 Hz  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
8190 Hz  
8191 Hz  
High-efficiency Drive Enabled Frequency Setting (OFF -> ON) Decimal-side  
D23 D22  
Description  
0 Hz  
0
0
1
1
0
1
0
1
0.25 Hz  
0.5 Hz  
0.75 Hz  
High-efficiency Drive enabled frequency setting (OFF -> ON) enables High-efficiency Drive valid (HIEFEN = H for  
pin setting mode or MODESET D5 = 1 when using SPI setting), and if input CLK satisfies the following condition  
expressions, a High-efficiency Drive is performed.  
Input CLK frequency > High-efficiency Drive enabled frequency setting (OFF -> ON) x ratio  
Ratio: The magnification rate determined by excitation mode  
Ratio  
4
Excitation Mode  
FULL STEP A  
FULL STEP B  
HALF STEP A  
HALF STEP B  
HALF STEP C  
QUARTER STEP A  
QUARTER STEP B  
EIGHTH STEP  
1/16 STEP  
4
8
8
8
16  
16  
32  
64  
128  
1/32 STEP  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
44/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.14 MIN_FREQ_OFF_SET  
MIN_FREQ_OFF_SET Hex  
DATA  
Initial  
-
Remarks  
Command  
D7-D0  
16  
-
0
0
0
0
0
0
1
0
1
1
D1  
D9  
0
0
D0  
D8  
0
D4  
D3  
D2  
00  
D15-D8  
D23-D16  
-
D15 D14 D13 D12 D11 D10  
D23 D22  
10  
-
0
0
0
0
00  
High-efficiency Drive Disabled Frequency Setting (ON -> OFF) Integer-side  
Description  
inhibit  
1 Hz  
D4  
0
0
0
:
D3  
0
0
0
:
D2  
0
0
0
:
D1  
0
0
0
:
D0  
0
0
0
:
D15 D14 D13 D12 D11 D10  
D9  
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
2 Hz  
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
1
:
0
:
0
:
0
:
0
:
16 Hz  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
8190 Hz  
8191 Hz  
High-efficiency Drive Enabled Frequency Setting (ON -> OFF) Decimal Setting  
D23 D22  
Description  
0 Hz  
0
0
1
1
0
1
0
1
0.25 Hz  
0.5 Hz  
0.75 Hz  
High-efficiency Drive disabled frequency setting (ON -> OFF) enables High-efficiency Drive valid (HIEFEN = H for  
pin setting mode or MODESET D5 = 1 when using SPI setting), and if input CLK satisfies the following condition  
expressions, the operation will switch from High-efficiency Drive to normal operation.  
In addition, this setting must be set a value smaller than MIN_FREQ_ON_SET set value.  
Input CLK frequency < High-efficiency Drive disabled frequency setting (ON -> OFF) x ratio  
Ratio: The magnification rate determined from excitation mode  
Ratio  
4
Excitation Mode  
FULL STEP A  
FULL STEP B  
HALF STEP A  
HALF STEP B  
HALF STEP C  
QUARTER STEP A  
QUARTER STEP B  
EIGHTH STEP  
1/16 STEP  
4
8
8
8
16  
16  
32  
64  
128  
1/32 STEP  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
45/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.15 HIEF_SET  
HIEF_SET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
17  
-
0
0
0
0
0
0
1
0
1
1
D1  
D9  
0
1
D0  
D8  
0
D4  
D3  
D2  
05  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
C0  
00  
D23-D16  
-
0
0
0
0
0
0
High-efficiency Drive High-efficiency Rate Setting Integer-side  
Description  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
0
1
0
0
0
0
1
0
0
0
1
0
2
:
:
:
:
:
:
1
1
1
1
0
30  
31  
1
1
1
1
1
High-efficiency Drive High-efficiency Rate Setting Decimal-side  
Description  
D15 D14 D13 D12 D11 D10  
D9  
0
D8  
0
0
0
0
:
0
0
1
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0.00390625  
0.0078125  
:
0
1
1
0
:
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.75  
1
1
0.857  
High-efficiency rate setting = High-efficiency rate setting integer-side + High-efficiency rate setting decimal-side.  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D8 = 0.00390625 and so on.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
46/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.16 VBEMFAVESET  
VBEMFAVESET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
18  
-
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
D1  
D9  
0
0
D0  
D8  
0
0
0
0
00  
D15-D8  
-
00  
D23-D16  
-
00  
Measurement Internal Induced-voltage Averaging Setting  
Description  
D1  
0
D0  
0
No average  
0
1
Twice average  
1
0
Four times average  
Eight times average  
1
1
Performs the process of averaging on the internal induced-voltage to measure within one OPEN cycle.  
For the averaged value, use the value measured just before the output goes from OPEN to ACTIVE.  
If the averaging process is enabled and if two times measurements/ four times measurement/ eight times  
measurement cannot be made while OPEN process, no average / two times / four times measurements will be used  
instead.  
No Average: The values measured immediately before the change from OPEN to ACTIVE  
Two Times Average: The average of the values measured immediately before the change from OPEN to ACTIVE  
and of the one measurement before that.  
Four Times Average: The average of the values measured immediately before the change from OPEN to ACTIVE  
and of the three measurements before that.  
Eight Times Average: The average of the values measured immediately before the change from OPEN to ACTIVE  
and of the seven measurements before that.  
Measurement Internal Induced-voltage Acquisition Setting  
Description  
1 phase/2 phase alternately  
Only 1 phase  
D9  
0
D8  
0
0
1
1
0
Only 2 phases  
1
1
Inhibit  
Set the internal induced-voltage to be measured.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
47/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.17 GAIN_SET  
GAIN_SET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
19  
-
0
0
0
0
0
0
1
1
0
0
D1  
D9  
0
1
0
D3  
D2  
D0  
D8  
D16  
01  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
F0  
00  
D23-D16  
-
0
0
0
0
0
0
High-efficiency Drive, Drive Gain Setting Integer-side  
Description  
D3  
0
D2  
0
D1  
0
D0  
0
0
1
2
0
0
0
1
0
0
1
0
:
:
:
:
1
1
1
0
14  
15  
1
1
1
1
High-efficiency Drive, Drive Gain Setting Decimal-side  
Description  
D15  
D14  
D13  
D12  
D11  
0
D10  
D9  
0
0
1
:
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0.00390625  
0.0078125  
:
0
:
1
:
0
:
0
:
0
:
0
0
:
0
:
0
:
0.5  
:
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
1
1
High-efficiency Drive, drive gain setting = High-efficiency Drive, drive gain setting integer-side + High-efficiency  
Drive drive gain setting decimal-side.  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D8 = 0.00390625 and so on.  
The drive gain setting during High-efficiency driving is enabled when GAMOD1, GAMOD2 = L, L or GAMOD1,  
GAMOD2 = H, H.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
48/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.18 GAIN1_SET  
GAIN1_SET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
1A  
0
0
0
0
0
0
1
1
0
1
D1  
D9  
0
0
D0  
D8  
0
-
-
-
0
D3  
D2  
02  
D15-D8  
D15 D14 D13 D12 D11 D10  
F0  
00  
D23-D16  
0
0
0
0
0
0
High-efficiency Drive, Drive Gain Setting Integer-side  
Description  
D3  
0
0
0
:
D2  
0
0
0
:
D1  
0
0
1
:
D0  
0
1
0
:
0
1
2
:
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
12  
13  
14  
15  
High-efficiency Drive, Drive Gain Setting Decimal-side  
Description  
D15  
D14  
D13  
D12  
D11  
0
D10  
D9  
0
0
1
:
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0.00390625  
0.0078125  
:
0
:
1
:
0
:
0
:
0
:
0
0
:
0
:
0
:
0.5  
:
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
1
1
High-efficiency Drive, drive gain setting = High-efficiency Drive, drive gain setting integer-side + High-efficiency Drive,  
drive gain setting decimal-side.  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D8 = 0.00390625 and so on.  
The drive gain setting during High-efficiency driving is enabled when GAMOD1, GAMOD2 = H, L.  
3.19 GAIN2_SET  
GAIN2_SET  
Hex  
DATA  
Initial  
-
Remarks  
Command  
D7-D0  
1B  
0
0
0
0
0
0
1
1
0
1
D1  
D9  
0
1
D0  
D8  
0
-
-
-
0
D3  
D2  
04  
D15-D8  
D23-D16  
D15 D14 D13 D12 D11 D10  
F0  
00  
0
0
0
0
0
0
High-efficiency Drive, Drive Gain Setting Integer-side  
Description  
D3  
0
D2  
0
D1  
0
D0  
0
0
1
2
0
0
0
1
0
0
1
0
:
:
:
:
1
1
1
0
14  
15  
1
1
1
1
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
49/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
High-efficiency Drive, Drive Gain Setting Decimal-side  
Description  
D15  
D14  
D13  
D12  
D11  
0
D10  
D9  
0
0
1
:
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0.00390625  
0.0078125  
:
0
:
1
:
0
:
0
:
0
:
0
0
:
0
:
0
:
0.5  
:
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
1
1
High-efficiency Drive, drive gain setting = High-efficiency Drive, drive gain setting integer-side + High-efficiency Drive,  
drive gain setting decimal-side.  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D8 = 0.00390625 and so on.  
The drive gain setting during High-efficiency driving is enabled when GAMOD1, GAMOD2 = L, H.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
50/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.23 VREFOFFSETSET  
VREFOFFSETSET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
1F  
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
1
0
1
-
-
-
0
0
D0  
D8  
00  
D15-D8  
D15  
D9  
00  
D23-D16  
D23 D22 D21 D20 D19 D18 D17 D16  
00  
OUT2A / OUT2B Output Current Setting Offset Setting  
D0  
0
Description  
Offset Setting OFF  
Offset Setting ON  
1
OUT2A / OUT2B Output Current Setting Offset Set Value Integer-side  
Description  
D9  
0
D8  
0
0
1
2
3
0
1
1
0
1
1
OUT2A / OUT2B Output Current Setting Offset Set Value Symbol-side  
Description  
D15  
0
1 (offset positive number)  
-1 (offset negative number)  
1
OUT2A / OUT2B Output Current Setting Offset Set Value Decimal-side  
Description  
0
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0.00390625  
0.0078125  
1
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0.5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
OUT2A / OUT2B output current setting offset setting value  
= OUT2A / OUT2B output current setting offset set value symbol-side * (offset integer-side + offset decimal-side)  
The decimal-side are values added to each bit as D23 = 0.5, D22 = 0.25, D16 = 0.00390625 and so on.  
The symbol-side is determined by D15, and is treated as a positive offset when D15 = 0 and a negative offset when  
D15 = -1.  
Therefore, when OUT2A / OUT2B output current setting is D0 = 1,  
it becomes the VREFSET command set value+ OUT2A / OUT2B output current setting offset set value.  
In addition, if OUT2A / OUT2B output current setting is less than 0 or if OUT2A / OUT2B output current setting is  
greater than 4, it will be clipped to 0 and 4, respectively.  
If VREFOFFSETSET was set in pin setting mode, since the set value is added to the voltage value set from the  
VREF pin, do not use the offset setting with D0 = 0 (circuit initial value).  
If High-efficiency Drive is enabled, set to D0 = 0 and do not use the offset setting.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
51/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.24 GAIN4_SET  
GAIN4_SET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
20  
-
0
0
1
0
0
0
0
D1  
D9  
0
0
D0  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
00  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
D23 D22 D21 D20  
FF  
00  
D23-D16  
-
0
0
High-efficiency Drive, Drive Gain Setting Integer-side  
D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8  
Description  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0
1
2
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
65534  
65535  
High-efficiency Drive, Drive Gain Setting Decimal-side  
Description  
0
D23  
D22  
D21  
D20  
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0.0625  
0.125  
:
1
1
1
1
1
1
0
1
0.875  
0.9375  
High-efficiency Drive, drive gain setting  
= High-efficiency Drive, drive gain setting integer-side + High-efficiency Drive, drive gain setting decimal-side.  
The decimal-side are values added to each bit as D23 = 0.5, D22 = 0.25, D20 = 0.0625 and so on.  
The drive gain setting during High-efficiency Drive for GAIN4_SET is enabled when GAMOD1, GAMOD2 = L, L or  
GAMOD1, GAMOD2 = H, H.  
3.25 GAIN5_SET  
GAIN5_SET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
21  
-
0
0
1
0
0
0
0
D1  
D9  
0
1
D0  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
01  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
D23 D22 D21 D20  
FF  
00  
D23-D16  
-
0
0
High-efficiency Drive, drive gain setting = High-efficiency Drive, drive gain setting integer-side + High-efficiency  
Drive  
drive gain setting decimal-side.  
The decimal-side are values added to each bit as D23 = 0.5, D22 = 0.25, D20 = 0.0625 and so on.  
The drive gain setting during High-efficiency Drive for GAIN5_SET is enabled when GAMOD1, GAMOD2 = H, L.  
3.26 GAIN6_SET  
GAIN6_SET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
22  
-
0
0
1
0
0
0
1
D1  
D9  
0
0
D0  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
02  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
D23 D22 D21 D20  
FF  
00  
D23-D16  
-
0
0
High-efficiency Drive, drive gain setting  
= High-efficiency Drive, drive gain setting integer-side + High-efficiency Drive drive gain setting decimal-side.  
The decimal-side are values added to each bit as D23 = 0.5, D22 = 0.25, D20 = 0.0625 and so on.  
The drive gain setting during High-efficiency Drive for GAIN6_SET is enabled when GAMOD1, GAMOD2 = L, H.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
52/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.27 VBEMFMONSET  
VBEMFMONSET  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
23  
-
0
0
0
D6  
0
1
0
0
0
1
1
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
00  
D15-D8  
-
D15  
D13 D12 D11 D10  
00  
D23-D16  
-
D23 D22 D21 D20 D19 D18 D17 D16  
00  
STOMGN Output Pin Constant Factor  
Description  
x1  
D3  
0
D2  
0
D1  
0
D0  
0
0
0
0
1
x2  
0
0
1
0
x4  
0
0
1
1
x8  
0
1
0
0
x16  
0
1
0
1
x32  
0
1
1
0
x1/2  
x1/4  
x1/8  
x1/16  
x1/32  
Inhibit  
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
others  
The above constant factor is applied to the internal induced-voltage.  
If adding a moving average or offset, multiply the values by a constant after each process.  
STOMGN Output Pin Moving Average  
Description  
No moving average  
D6  
0
D5  
0
D4  
0
0
0
1
(an + an-1)/2  
0
1
0
(an + an-1 + an-2 + an-3)/4  
(2*an + an-1 + an-2)/4  
0
1
1
1
0
0
(an + an-1 + an-2 + an-3 + an-4 + an-5 + an-6 + an-7 )/8  
(an + an-1 + an-2 + … + an-14 + an-15 )/16  
inhibit  
1
0
1
1
1
0
1
1
1
inhibit  
an = the last measured internal induced-voltage. an-1 = the previous internal induced-voltage.  
an-15 = the 15th previous internal induced-voltage.  
Follow the settings in D6 to D4 to obtain a moving average using an to an-15  
.
The initial values of an to an-15 are 0, respectively.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
53/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
STOMGN Output Pin Offset Integer-side  
Description  
D13  
D12  
D11  
0
D10  
D9  
0
0
1
:
D8  
0
1
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
1
0
0
2
:
:
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
61  
62  
63  
1
1
STOMGN Output Pin Offset Symbol-side  
Description  
D15  
0
1(Offset positive number)  
-1(Offset negative number)  
1
STOMGN Output Pin Offset decimal-side  
Description  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0
0.00390625  
0.0078125  
:
1
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0.5  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
STOMGN output pin offset = STOMGN output pin offset symbol-side * (offset integer-side + offset decimal-side)  
The decimal-side are values added to each bit as D23 = 0.5, D22 = 0.25, D16 = 0.00390625 and so on.  
The symbol-side is determined by D15, and is treated as a positive offset when D15 = 0 and a negative offset when  
D15 = -1.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
54/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description - Continued  
3.28 STOMGN_PEAKHOLD_SET  
STOMGN_PEAKHOLD  
Hex  
DATA  
Initial  
Remarks  
_SET  
Command  
D7-D0  
24  
-
0
D7  
0
0
D6  
0
1
D5  
0
0
0
D3  
0
1
0
0
-
D4  
D2  
D1  
D9  
D0  
D8  
00  
00  
00  
D15-D8  
D23-D16  
-
D12  
D10  
-
D23 D22 D21 D20 D19 D18 D17 D16  
STOMGN PEAKHOLD Setting Constant  
Description  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
PEAKHOLD Unnecessary  
0
0
0
0
0
0
0
1
1 time  
2 times  
:
0
0
0
0
0
0
1
0
:
:
:
:
:
:
:
:
1
1
1
1
1
1
1
0
254 times  
255 times  
1
1
1
1
1
1
1
1
If D23-D8 (STOMGN PEAKHOLD threshold) is smaller continuously in the frequency set for D7-D0, with respect to  
internal STOMGN calculated value, the STOMGN output is not the internal STOMGN calculated value but instead, the  
minimum value of internal STOMGN calculated value detected during continuous PEAKHOLD OFF is output.  
If D7-D0 = 00 is set, PEAKHOLD will not be used.  
STOMGN PEAKHOLD Threshold Integer-side  
Description  
D10  
0
D9  
0
D8  
0
0
0
0
1
1
2
0
1
0
0
1
1
3
1
0
0
4
1
0
1
inhibit  
inhibit  
inhibit  
1
1
0
1
1
1
STOMGN PEAKHOLD Threshold Decimal-side  
Description  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0
0.00390625  
0.0078125  
:
1
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
0.5  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0.98828125  
0.9921875  
0.99609375  
STOMGN PEAKHOLD Threshold = (Integer-side + Decimal-side)  
The decimal-side are values added to each bit as D23 = 0.5, D22 = 0.25, D16 = 0.00390625 and so on.  
If set to STOMGN PEAKHOLD threshold >= 5, PEAKHOLD will not be used.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
55/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
PEAKHOLD Application Timing Mask When STOMGN PEAKHOLD ENABLE = L -> H  
Description  
Timing Mask OFF  
Timing Mask ON  
D12  
0
1
Notice When ENABLE = L -> H.  
If the STOMGN_PEAKHOLD_SET command was set and using the PEAKHOLD function, under the condition that the  
STOMGN output pin moving average setting of the VBEMFMONSET command is also used, it is recommended that the  
STOMGN_PEAKHOLD_SET command is set to either [1] or [2] below to prevent PEAKHOLD ON immediately after  
ENABLE L -> H.  
[1] Turn on the PEAKHOLD timing mask (D12 = 1)  
[2] STOMGN PEAKHOLD setting constant greater than STOMGN output pin moving average setting moving  
average number (VBEMFMONSET D6 to D4)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
56/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.29 FULLSTEPWINDOWSET  
FULLSTEPWINDOWSET Hex  
DATA  
Initial  
-
Remarks  
Command  
D7-D0  
25  
-
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
D2  
0
0
D1  
D9  
0
1
D0  
D8  
0
D4  
0
02  
D15-D8  
D23-D16  
-
00  
-
0
0
00  
FULLSTEPWINDOWSET Setting Cycle  
Description  
D2  
0
0
0
:
D1  
0
0
1
:
D0  
0
1
0
:
Input CLK cycle x 4 x 1/2  
Input CLK cycle x 4 x 1/4  
Input CLK cycle x 4 x 1/8  
:
1
1
1
0
1
1
1
0
1
Input CLK cycle x 4 x 1/64  
Input CLK cycle x 1/128  
Input CLK cycle x 1/256  
Set the time to OPEN the motor drive when the excitation mode is FULL STEP during High-efficiency Drive.  
Measure the input CLK cycle inside the IC and base on that cycle, decide the period to OPEN.  
Non-High-efficiency Drive FULL STEP OPEN Setting  
Description  
‘Without’ OPEN  
‘With’ OPEN  
D4  
0
1
Setting the motor drive to 'with' OPEN when the excitation mode is FULL STEP during non-High-efficiency Drive.  
Set when using the STOMGN pin in FULL STEP.  
High-efficiency Output OFF Period Setting  
Description  
1 CLK range  
2 CLK range  
3 CLK range  
5 CLK range  
D9  
0
D8  
0
0
1
1
0
1
1
Set the period to open the output during micro steps of 1/8 STEP or above during High-efficiency driving.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
57/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.30 HIEFSELMAX  
HIEFSELMAX  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
26  
-
0
0
0
0
1
0
0
0
0
1
1
D1  
D9  
0
0
D0  
D8  
0
0
D2  
00  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
D23 D22 D21 D20  
CC  
00  
D23-D16  
-
0
0
Pin Setting Mode High-efficiency Drive Current Decay Ratio Upper Limit Integer-side  
Description  
D2  
0
D1  
0
D0  
0
0
1
2
0
0
1
0
1
0
:
:
:
1
1
0
6
7
1
1
1
Pin Setting Mode High-efficiency Drive Current Decay Ratio Upper Limit Decimal-side  
Description  
D15  
D14  
D13  
D12  
D11  
0
D10  
D9  
0
0
0
:
D8  
0
0
0
:
D23  
D22  
D21  
D20  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0
0
0
0.0078125  
:
:
0.5  
:
1
:
0
:
0
:
0
:
0
0
:
0
:
0
:
0
:
0
:
0
:
0
:
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
Pin setting mode High-efficiency Drive current decay ratio upper limit  
= pin setting mode High-efficiency Drive current decay ratio upper limit integer-side  
+ pin setting mode High-efficiency Drive current decay ratio upper limit decimal-side  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D20 = 0.000244141 and so on.  
Pin setting mode High-efficiency Drive current decay ratio upper limit is valid only in pin setting mode. Decide the  
current decay ratio during High-efficiency driving in pin setting mode in conjunction with the set value of  
HIEFSELMIN command.  
On how to decide, refer to HIEFSEL / High-efficiency Drive Setting Pin (Page 12).  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
58/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.31 HIEFSELMIN  
HIEFSELMIN  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
27  
-
0
0
0
0
1
0
0
0
0
1
1
D1  
D9  
0
1
D0  
D8  
0
0
D2  
00  
D15-D8  
-
D15 D14 D13 D12 D11 D10  
D23 D22 D21 D20  
01  
D23-D16  
-
0
0
40  
Pin Setting Mode High-efficiency Drive Current Decay Ratio Lower Limit Integer-side  
Description  
D2  
0
D1  
0
D0  
0
0
1
2
:
0
0
1
0
1
0
:
:
:
1
1
0
6
7
1
1
1
Pin Setting Mode High-efficiency Drive Current Decay Ratio Lower Limit Decimal-side  
Description  
D15  
D14  
D13  
D12  
D11  
0
D10  
D9  
0
0
0
:
D8  
0
0
0
:
D23  
D22  
D21  
D20  
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
0
0
0
0.0078125  
:
:
0.5  
:
1
:
0
:
0
:
0
:
0
0
:
0
:
0
:
0
:
0
:
0
:
0
:
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
Pin setting mode High-efficiency Drive current decay ratio lower limit  
= pin setting mode High-efficiency Drive current decay ratio lower limit integer-side  
+ pin setting mode High-efficiency Drive current decay ratio lower limit decimal-side  
The decimal-side are values added to each bit as D15 = 0.5, D14 = 0.25, D20 = 0.000244141 and so on.  
Pin setting mode High-efficiency Drive current decay ratio lower limit is valid only in pin setting mode.  
Decide the current decay ratio during High-efficiency driving in pin setting mode in conjunction with the set value of  
HIEFSELMAX command.  
On how to decide, refer to HIEFSEL / High-efficiency Drive Setting Pin (Page 12).  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
59/73  
14.Oct.2021 Rev.001  
BD65520MUV  
3 Command Register Detailed Description – Continued  
3.32 UNLOCK  
UNLOCK  
Command  
D7-D0  
Hex  
DATA  
Initial  
-
Remarks  
-
A0  
0
0
0
0
0
0
0
1
-
-
-
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
55  
Password1  
Password2  
Password3  
D15-D8  
D15 D14 D13 D12 D11 D10  
AA  
AA  
D23-D16  
D23 D22 D21 D20 D19 D18 D17 D16  
Setting Password1 = AA, Password2 = 55, Password3 = 55 will enable the Type2 commands (command addresses  
10 to 27).  
The initial values are Password1 = 55, Password2 = AA and Password3 = AA, and since Type2 command will be  
disabled after PS is released, always set the Password1 = AA, Password2 = 55 and Password3 = 55 when using the  
Type2 command.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
60/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Induced-voltage Reading Circuit  
BD65520MUV measures the voltage of each pin during the period when the output pins OUT1A/OUT1B/OUT2A/OUT2B are  
OPEN, and calculate the voltage difference between OUT1A, OUT1B / OUT2A and OUT2B.  
The measured value immediately before the change from OPEN to ACTIVE is the internally induced voltage value, and  
based on that value, High-efficiency Drive and step-out margin detection circuit operates.  
Induced-voltage Measurement Period  
Induced-voltage Measurement Period  
(OUT1A,OUT1B OPEN Period)  
(OUT2A,OUT2B OPEN Period)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
OUT1A Pin Voltage  
OUT1B Pin Voltage  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
OUT2A Pin Voltage  
OUT2B Pin Voltage  
CLK  
OUT1A,OUT1B OPEN Control Signal  
(Internal Signal)  
OUT1A,OUT1B Voltage Mearsument  
Control Signal(Internal Signal)  
OUT2A,OUT2B OPEN Control Signal  
(Internal Signal)  
OUT2A,OUT2B Voltage Mearsument  
Control Signal(Internal Signal)  
1
1.2  
1.5  
2
2.3  
0.1  
2
0
2
0
OUA1A Voltage Measurement Value  
OUA1B Voltage Measurement Value  
OUA2A Voltage Measurement Value  
OUA2B Voltage Measurement Value  
Internal Induced-voltage Value  
0.2  
0.1  
0.1  
0
1
1.3  
1.6  
2.2  
2.1  
0
2.1  
0
2.2  
0.1  
0.2  
0.1  
0.1  
0.1  
2.2  
2
2
2.1  
It is possible to change the averaging and the measurement pin (OUT1A, OUT1B / OUT2A, OUT2B) to measure by register  
setting (VBEMFAVESET).  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
61/73  
14.Oct.2021 Rev.001  
BD65520MUV  
High-efficiency Drive  
Adjust the internal VREF with the PI controller from the internal induced-voltage value of the induced-voltage reading circuit,  
the input cycle of the CLK pin and the excitation mode.  
In SPI setting mode, High-efficiency Drive current value can be controlled by KESET register set value and HIEF_SET  
register set value. In the pin setting mode, the current value of High-efficiency Drive can be controlled by the HIEFSEL input  
voltage.  
The P gain constant and I gain constant settings of the PI controller are decided as follows.  
P Gain Constant Enabled Register  
GAMOD2  
GAMOD1  
0
0
GAIN_SET  
GAIN1_SET  
GAIN2_SET  
0
1
1
0
1
1
GAIN_SET  
I Gain Constant Enabled Register  
GAMOD2  
GAMOD1  
0
0
1
1
0
1
0
1
GAIN4_SET  
GAIN5_SET  
GAIN6_SET  
GAIN4_SET  
Reference: High-efficiency Drive-side Control Block Diagram  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
14.Oct.2021 Rev.001  
62/73  
BD65520MUV  
Step-out Margin Detection  
Performs the operation below for the internal induced-voltage value of induced-voltage reading circuit, and outputs from the  
STOMGN pin as analog voltage output.  
MovingAverage  
Processing  
Offset  
(-64 V to +64 V)  
ConstantFactor  
(x1/32 to x32)  
Internal induced-voltage value  
STOMGN Output  
PEAKHOLDCircuit  
Figure 8. Step-out Margin Detection Block Diagram  
Moving average processing, offset and constant factor can be changed by register setting (VBEMFMONSET).  
However, adjust the offset and constant factor so that the STOMGN pin output is 0 V < STOMGN < 5 V.  
If it is outside the range of 0 V < STOMGN < 5 V, it will be clipped to 0 V and 5 V, respectively.  
PEAKHOLD Circuit  
If STOMGN_PEAKHOLD_SET is set and the PEAKHOLD function is used, the pre-set threshold voltage below will continue  
and the STOMGN pin output the constant voltage regardless of internal induced-voltage.  
[Waveform Example: PEAKHOLD Count Setting 3 and Threshold 2.75]  
ACTIVE  
OPEN  
OPEN  
ACTIVE  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
OUT1APIN  
OUT2APIN  
ACTIVE  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Internal Induced-Voltage Value  
3.0  
3.1  
3.2  
2.8  
3.5  
3.5  
[1]  
2.4  
2.3  
[2]  
1.8  
2.8  
2
2.4  
3
2
STOMGN  
Internal PEAKHOLD Count Value  
PEAKHOLD Status  
3
0
1
2
OFF  
ON  
PEAKHOLD Set Frequency  
PEAKHOLD Set Value  
3
2.75  
When the motor output pin is open, the induced-voltage is read and that value is used as internal induced voltage to  
calculate the STOMGN pin voltage value. Since the internal induced-voltage is less than or equal to the PEAKHOLD set  
value in [1], and because it fell below the PEAKHOLD set value three times in a row in [2], the STOMGN pin output will  
output a constant voltage regardless of the internal induced-voltage.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
63/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Power Dissipation  
Confirm that the IC’s chip temperature Tj is not over 150 °C, while considering the IC’s power consumption (W),  
Thermal Resistance (°C/W) and ambient temperature (Ta). When Tj = 150 °C is exceeded the functions as a semiconductor  
do not  
operate and problems such as parasitism and leaks occur. Constant use under these circumstances leads to deterioration  
and eventually destruction of the IC. Tjmax = 150 °C must be strictly obeyed under all circumstances.  
1 Heat Calculation  
The approximate power consumption of the IC can be calculated from the power supply voltage (VCC), circuit current (ICC),  
output ON resistance (RONH, RONL) and motor output current value (IOUT).  
Here, the calculation method in FULL STEP drive and SLOW DECAY mode is shown.  
푉ꢇꢇ = ꢇꢇ × 퐼ꢇꢇ  
[W]  
WV  
VCC  
ICC  
VCC Power Consumption  
Supply Voltage  
Circuit Current  
CC  
퐷푀푂푆 = 푂ꢃ 퐷퐸ꢇ퐴푌 [W]  
푂ꢃ = ꢀ푂ꢃꢈ ꢎ ꢀ푂ꢃꢌ × 퐼푂푈2 × ꢏ × 표푛_ꢐ푢푡푦 [W]  
2
퐷퐸ꢇ퐴푌 = ꢏ × ꢀ푂ꢃꢌ × 퐼푂푈푇 × ꢏ × 1 ꢉ 표푛_ꢐ푢푡푦  
[W]  
Where:  
WDMOS is the Output DMOS Power Consumption  
WON is the Output ON Power Consumption  
WDECAY is the Power consumption during current regeneration  
RONH is the Top-side Pch DMOS ON Resistance  
RONL is the Bottom-side Nch DMOS ON Resistance  
IOUT is the Motor Output Current  
푂ꢃ  
on_duty is the PWM on duty=  
“ 2 ” is the H-bridge for 2ch  
ꢇꢈ푂푃  
tON (Output ON time) differs depending on the inductance and resistance values of the motor coil and the current set value.  
Check by actual measurement or calculate by estimation.  
tCHOP is a chopping cycle determined by the constant current control.  
Product No.  
Top Pch DMOS ON Resistance RONH [Ω] (Typ)  
0.35  
Bottom Nch DMOS ON Resistance RONL [Ω] (Typ)  
0.20  
BD65520MUV  
푊_푡표푡푎푙 = 푉ꢇꢇ 퐷푀푂푆 [W]  
ꢑ푗 = ꢑ푎 ꢎ 휃푗푎 × 푊_푡표푡푎푙 [°C]  
Where:  
W_total is the IC Entirety Power Consumption  
Tj is the Temperature Junction  
Ta is the Temperature Ambient  
θja is the Thermal Resistance  
However, the thermal resistance value θja [°C/W] varies greatly depending on the board conditions. The above are only  
theoretically calculated values. In the actual thermal design, not only the theory but also the thermal evaluation of the  
application board to be used should be sufficiently performed, and the thermal design should have a sufficient margin so  
as not to exceed Tjmax = 150 °C. In addition, although it is basically unnecessary in normal usage, when it is used under  
particularly severe thermal conditions, take into account the heat generation of the IC is reduced by connecting a schottky  
diode to GND at the motor output pin.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
64/73  
14.Oct.2021 Rev.001  
BD65520MUV  
I/O Equivalent Circuit  
PS  
CWCCW_CSB  
MODE0_SCLK  
MODE1_SI  
GAMOD2  
GAMOD1  
HIEFEN  
Internal  
Circuit  
ENABLE  
CLK  
5 kΩ  
5 kΩ  
100 kΩ  
100 kΩ  
VREGA (Internal Power Supply)  
FO  
SO  
VREGA (Internal Power Supply)  
INVREF  
STOMGN  
Internal  
Circuit  
2.5 kΩ  
VREF  
VREFMIN  
HIEFSEL  
MTH  
5 kΩ  
5 kΩ  
Internal  
Circuit  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
65/73  
14.Oct.2021 Rev.001  
BD65520MUV  
I/O Equivalent Circuit - Continued  
Internal  
Circuit  
VREGA  
VREGD  
VREGDAC  
150 kΩ  
45 kΩ  
45 kΩ  
368 kΩ  
109 kΩ  
155 kΩ  
VREGA (Internal Power Supply)  
5 kΩ  
CR  
5 kΩ  
5 kΩ  
VCC1,VCC2  
OUT1A  
OUT2A  
OUT1B  
OUT2B  
RNF1S  
RNE2S  
5 kΩ  
210 kΩ  
30 kΩ  
210 kΩ  
30 kΩ  
RNF1  
RNF2  
Internal  
Circuit  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
66/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Application Example (Pin setting mode)  
SPI output pin.  
Not use for Pin setting mode.  
Recommended Open setting  
Refer to Page 12 for detail.  
SO  
2
3
4
CWCCW_CSB  
MODE0_SCLK  
MODE1_SI  
5
SPI  
10 kΩ  
Logic input pin  
Refer to Page 11 and  
Page 12 for detail.  
Test Pin  
TEST1 : OPEN  
TEST2 : GND  
GND  
13  
TEST1  
14  
Refer to Page 14 and  
Page 15 for detail.  
Translator  
38  
40  
CLK  
15 TEST2  
TSD  
OCP  
ENABLE  
OVLO UVLO  
Power save pin.  
Refer to Page 11 for detail.  
39  
16  
17  
HIEFEN  
GAMOD2  
GAMOD1  
PS  
1
RESET  
3.3 V or 5.0 V  
10 kΩ  
FO  
6
37  
Set the High-efficiency drive  
setting.  
HIEFSEL  
Input by resistor division.  
Set to GND when not to use High  
efficiency Drive.  
Protect status output pin.  
Pull up 3.3 V or 5 V more  
than 5 kΩ.  
Refer to Page 12 for detail.  
Refer to Page 12 for detail.  
7
8
INVREF  
36  
35  
VREFMIN  
VREF  
ADC  
Set the minimum output current  
during High-efficiency drive.  
Input by resistor division.  
Set to GND when not to use  
High efficiency Drive.  
Internal VREF output pin.  
Refer to Page 14 for detail.  
DAC  
STOMGN  
Refer to Page 14 for detail.  
Step out margin output pin.  
Refer to Page 14 for detail.  
Set the output current.  
Input by resistor division.  
Refer to Page 13 for detail.  
VCC1  
32  
CR  
12  
OSC  
OUT1A  
31  
29  
M
1000 pF  
39 kΩ  
0.1 µF  
100 µF  
OUT1B  
RNF1  
28  
27  
RNF1S  
0.2 Ω  
Set the chopping frequency.  
Setting range is  
C: 470 pF to 1500 pF  
R: 10 kΩ to 200 kΩ  
Bypass capacitor.  
Setting range is  
100 μF to 470 μF  
(electrolytic)  
0.01 μF to 0.1 μF (multilayer  
ceramic etc.)  
Refer to Page 14,Page 17 for detail.  
Mix decay  
control  
34  
MTH  
VCC2  
19  
Refer to Page 13 for detail.  
Be sure to short VCC1 and  
VCC2.  
OUT2A  
M
20  
22  
Set the current decay mode.  
1) SLOW DECAY  
=> Connect to GND.  
2) MIX DECAY / AUTO DECAY  
=> Input by resistor division.  
Refer to Page 14, Page 19 for detail.  
OUT2B  
RNF2  
24  
25  
RNF2S  
0.2 Ω  
VREGD  
GND  
VREGD  
VREGA  
9
26  
0.1 µF  
VREGA  
OUT1A  
Resistor for current detection.  
Setting range is  
0.1 Ω to 0.2 Ω.  
10  
11  
VREGDAC  
VREF  
CALC  
OUT1B  
ADC  
0.1 µF  
VREGDAC  
RNF1S  
RNF2S  
Refer to Page 13 for detail.  
0.1 µF  
OUT2A  
OUT2B  
Internal regulator attach capacitor.  
C : 0.01 μF to 0.1μF  
Refer to Page 14 for detail.  
Figure 8. BD65520MUV Application Example (Pin setting mode)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
67/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Application Example (SPI setting mode)  
SPI output pin.  
Pull-down more than 5 kΩ when this  
pin used.  
Logic input pin  
Refer to Page 11 and  
Page 12 for detail.  
Refer to Page 12 for detail.  
Test Pin  
TEST1 : OPEN  
TEST2 : GND  
SO  
2
3
4
CWCCW_CSB  
MODE0_SCLK  
MODE1_SI  
5
SPI  
10 kΩ  
GND  
13  
Refer to Page 14 and  
Page 15 for detail.  
TEST1  
14  
Translator  
38  
40  
CLK  
15 TEST2  
TSD  
OCP  
ENABLE  
3.3 V or 5.0 V  
OVLO UVLO  
HIEFEN  
GAMOD2  
GAMOD1  
Power save pin.  
Refer to Page 11 for detail.  
39  
16  
17  
PS  
1
3.3 V or 5.0 V  
RESET  
3.3 V or 5.0 V  
10 kΩ  
FO  
6
HIEFSEL  
37  
Protect status output pin.  
Pull up 3.3 V or 5 V more  
than 5 kΩ.  
Refer to Page 12 for detail.  
VREFMIN  
VREF  
7
8
INVREF  
36  
35  
Internal VREF output pin.  
Refer to Page 14 for detail.  
ADC  
DAC  
STOMGN  
Step out margin output pin.  
Refer to Page 14 for detail.  
Not use for SPI setting mode  
each pins.  
Recommendation for GND.  
VCC1  
32  
CR  
0.1 µF  
100 µF  
12  
OSC  
OUT1A  
31  
29  
M
OUT1B  
RNF1  
28  
27  
RNF1S  
0.2 Ω  
Bypass capacitor.  
Setting range is  
100 μF to 470 μF  
(electrolytic)  
0.01 μF to 0.1 μF (multilayer  
ceramic etc.)  
Refer to Page 13 for detail.  
Be sure to short VCC1 and  
VCC2.  
Mix decay  
control  
MTH  
34  
VCC2  
19  
OUT2A  
M
20  
22  
OUT2B  
RNF2  
24  
25  
RNF2S  
0.2 Ω  
VREGD  
VREGA  
GND  
VREGD  
VREGA  
9
26  
0.1 µF  
OUT1A  
10  
11  
Resistor for current detection.  
Setting range is  
0.1 Ω to 0.2 Ω.  
VREGDAC  
VREF  
CALC  
OUT1B  
ADC  
0.1 µF  
VREGDAC  
RNF1S  
RNF2S  
0.1 µF  
OUT2A  
OUT2B  
Refer to Page 13 for detail.  
Internal regulator attach capacitor.  
C : 0.01 μF to 0.1 μF  
Refer to Page 14 for detail.  
Figure 9. BD65520MUV Application Example (SPI setting mode)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
68/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
69/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
BD65520MUV  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 10. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0S2S0C702700-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
70/73  
14.Oct.2021 Rev.001  
TSZ22111 • 15 • 001  
BD65520MUV  
Ordering Information  
B D 6  
5
5
2
0 M U V  
-
E 2  
Package  
Packing and forming specification  
MUV: VQFN040V6060  
E2: Reel-type embossed taping  
Marking Diagram  
VQFN040V6060 (TOP VIEW)  
Part Number Marking  
BD65520  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
14.Oct.2021 Rev.001  
71/73  
BD65520MUV  
Physical Dimension and Packing Information  
Package Name  
VQFN040V6060  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
72/73  
14.Oct.2021 Rev.001  
BD65520MUV  
Revision History  
Date  
Revision  
001  
Contents of Revision  
New Release  
14.Oct.2021  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0S2S0C702700-1-2  
73/73  
14.Oct.2021 Rev.001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD6563FV-LB

Three-Channel Small Signal IGBT/MOSFET Gate Drivers
ROHM

BD6563FV-LBE2

Three-Channel Small Signal IGBT/MOSFET Gate Drivers
ROHM

BD6581GU

White Backlight LED Driver for Medium to Large LCD Panels (Switching Regulator Type)
ROHM

BD6581GU-E2

LED Driver, 72-Segment, PBGA24, 2.60 X 2.60 MM, 0.85 MM HEIGHT, ROHS COMPLIANT, VCSP-24
ROHM

BD6583MUV

Step-up DC/DC converter for medium size LCD panel
ROHM

BD6583MUV-A

Silicon Monolithic Integrated Circuit
ROHM

BD6583MUV-AE2

White Backlight LED Driver for Medium to Large LCD Panels (Switching Regulator Type)
ROHM

BD6583MUV-A_11

White Backlight LED Driver for Medium to Large LCD Panels (Switching Regulator Type)
ROHM

BD6586MUV

Silicon Monolithic Integrated Circuit
ROHM

BD6586MUV-E2

4-Channel White LED Driver
ROHM

BD6586MUV_11

White Backlight LED Driver for Medium to Large LCD Panels (Switching Regulator Type)
ROHM

BD6586MUV_12

4-Channel White LED Driver
ROHM