BD6637KV-E1 [ROHM]

Disk Drive Motor Controller, 1A, PQFP64, ROHS COMPLIANT, VQFP-64;
BD6637KV-E1
型号: BD6637KV-E1
厂家: ROHM    ROHM
描述:

Disk Drive Motor Controller, 1A, PQFP64, ROHS COMPLIANT, VQFP-64

电动机控制
文件: 总17页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
Motor Driver IC Series for Tape Record System  
3 in 1 Motor Driver  
for Digital Video Camera  
BD6637KV/KS, BD6300KU  
ʀDescription  
The low power consumption, 3 in 1 motor driver, utilizes a DMOS linear output driver. It integrates the capstan, cylinder,  
loading motor driver, and amplifier of each sensor signal that is required for digital video camera systems.  
ʀFeatures  
ž3-phase motor driver for capstan  
1) 3-phase full wave drive system (pseudo-linear)  
2) Output stage DMOS drive system  
3) Built-in torque ripple canceling circuit  
4) Built-in output Tr saturation preventing circuit (lower)  
5) Equipped with a VM power supply control terminal  
6) Built-in normal, reverse, and short brake function  
7) Built-in FG sensor amplifier  
ž3-phase sensor-less motor driver for cylinder  
1) Soft switching drive system  
2) Output stage DMOS drive system  
3) Built-in output Tr saturation preventing circuit (lower)  
4) Equipped with a VM power supply control terminal  
5) Built-in startup circuit  
6) Built-in FG/PG sensor amplifier  
žReversible motor driver for loading  
1) Output stage DMOS drive system  
2) Normal/Reverse rotation and braking 3 mode output  
3) Any setting of output voltage with L_REF terminal available  
žBuilt-in TSD  
žBuilt-in voltage rise circuit  
žPower saving function  
ʀApplications  
Portable video equipment, such as digital video cameras, VTR, and 8-mm video cameras.  
Ver.B Oct. 2005  
ʀProduct lineup  
Item  
BD6637KV/KS  
BD6300KU  
3-phase pseudo-linear drive  
(DMOS linear drive)  
3-phase pseudo-linear drive  
(DMOS linear drive)  
Capstan  
Cylinder  
Loading  
3-phase sensor-less soft switching drive  
(DMOS linear drive)  
3-phase sensor-less soft switching drive  
(DMOS linear drive)  
DMOS H bridge drive  
DMOS H bridge drive  
Capstan FG signal, Cylinder PG signal  
(coil sense), Cylinder FG signal waveform  
coordinate  
Capstan FG signal, Cylinder PG signal  
(hall sense), Cylinder FG signal, Reel  
sensor signal waveform coordinate  
Sensor  
Amplifier  
Package  
VQFP64/SQFP56  
UQFP64  
ꢀ ꢀ ꢀ ꢀ ꢀ  
ʀAbsolute maximum ratings (Ta=25@)  
Unit  
Symbol  
Limit  
Parameter  
VCC  
UNREG  
C_VM  
D_VM  
L_VM  
7
15  
V
V
Supply voltage  
10  
V
10  
V
7
V
BD6637KV/KS  
1250  
1750዆  
25+75  
40+150  
150  
mW  
mW  
@
Pd  
Power dissipation  
BD6300KU  
Operate temperature  
Storage temperature  
Junction temperature  
Topr  
Tstg  
@
Tjmax  
@
BD6637KV/KS  
BD6300KU  
1000዆዆  
800዆  
mA  
mA  
Output max current  
Iomax  
70mm470mm41.6mm glass epoxy board. Reduced by 14mW/@ when Ta=25@  
዆዆However, do not exceed Pd, ASO and Tj=150@(Common to 3 drivers)  
ʀOperating conditions  
VCC  
UNREG  
C_VM  
D_VM  
L_VM  
V
V
V
V
V
2.7 4.5  
5 12  
Supply voltage  
0 8዆  
0 8  
4.5 5.5  
UNREG C_VM  
UNREG D_VM  
L_VM VCC  
2/16  
ʀElectrical characteristics  
BD6637KV/KS (Unless otherwise specified Ta=25@,VCC=3V, C_VMD_VML_VM=5VUNREG=7.2V)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Fig No.  
Min.  
Typ.  
Max.  
<TOTAL>  
VCC Circuit current 1  
VCC Circuit current 2  
UNREG stand by current  
PS input switching level  
VG voltage  
Icc1  
Icc2  
6
13  
20  
5
mA  
A  
Power save OFF  
Power save ON  
Power save ON  
Fig.1  
Fig.2  
Fig.3  
IUNREG  
PS  
A  
5
0.6  
9.5  
1.4  
11  
2
V
V
VG  
12.5  
Fig.4,5  
<CAPSTAN OUTPUT>  
Output H voltage  
C_VOH  
C_VOL  
0.35  
0.4  
0.55  
0.65  
V
V
IOUT=-400mA  
Fig.6  
Fig.7  
Output L voltage  
IOUT=400mA,C_RNF=0.33Q  
<CAPSTAN HALL AMP>  
In-phase input voltage range  
Hall input offset range  
<CAPSTAN F/B/R>  
C_VCM  
1.2  
-15  
VCC-1.1  
15  
V
C_VHOF  
mV  
Forward rotation control  
Brake voltage range  
Reverse rotation control  
<CAPSTAN TORQUE CONTROL>  
EC input bias current  
Torque control input/output gain  
Torque control start voltage  
Current limit voltage  
Ripple cancel ratio  
C_VFWD  
C_VBRK  
1.5  
0.7  
1.7  
V
V
V
1.3  
2.3  
C_VREV  
C_IEC  
C_GIO  
A  
0.35  
1.05  
0.2  
8
3
7.5  
0.65  
1.35  
0.28  
32  
C_EC=VCC  
0.5  
1.2  
0.24  
20  
A/V  
V
C_RNF=0.33Q,C_RCC=3.3kQ  
Fig.8  
Fig.8  
Fig.8  
C_VECOFS  
C_Climit  
V
C_RNF=0.33Q,C_RCC=3.3kQ  
IOUT=400mA,C_RCC=3.3kQ  
C_VRCC  
%
<CAPSTAN VS>  
Voltage gain  
C_GVS  
7
8
9
TIMES  
V
Output H voltage  
IOVS=1mA,  
C_VVSOH  
0.5  
0.8  
Output L voltage  
C_VVSOL  
0.13  
0.25  
0.2  
0.38  
V
V
IOVS=50A  
DC/DC43 in use  
VS offset voltage  
<CAPSTAN FGAMP>  
Input offset voltage  
DC bias voltage  
C_VVSOFS  
0.12  
C_VFGOFS  
C_VFG  
-12  
1.3  
50  
1.5  
59  
12  
1.7  
mV  
V
Voltage gain 1  
C_AV1  
Fig.20  
Fig.20  
dB  
dB  
V
f=3kHz  
Voltage gain 2  
C_AV2  
30  
0.35  
36  
f=50kHz  
In-phase input voltage range  
Output H voltage  
C_VFGCM  
VCC-1.1  
0.5  
IOH=0.2mA,  
IOL=1mA  
C_VFGAOH  
C_VFGAOL  
0.3  
0.1  
V
Output L voltage  
0.3  
V
<CAPSTAN FGHYS>  
C_FG hysteresis width  
DC bias voltage  
C_VFGHYS  
C_VFG+  
30  
1.3  
46  
1.5  
0.1  
62  
1.7  
mV  
V
Fig.22  
Output L voltage  
C_VFGSOL  
0.3  
IOL=1mA  
Fig.21  
<CYLINDER OUTPUT>  
Output H voltage  
D_VOH  
D_VOL  
0.3  
0.4  
0.5  
V
V
IOUT=-400mA  
IOUT=400mA,C_RNF=0.33Q  
Fig.9  
Output L voltage  
0.65  
Fig.10  
<CYLINDER TORQUE CONTROL>  
EC input bias current  
D_IEC  
A  
2
5
D_EC=VCC  
Torque control input/output gain  
D_GIO  
0.45  
1.05  
0.217  
0.66  
1.2  
0.87  
1.35  
0.332  
A/V  
V
D_RNF=0.33ꢀ  
Fig.11  
Fig.11  
Fig.11  
Torque control start voltage  
Current limit voltage  
D_VECOFS  
D_Climit  
0.274  
V
D_RNF=0.33ꢀ  
3/16  
BD6637KV/KS (Unless otherwise specified Ta=25@,VCC=3V, C_VMD_VML_VM=5VUNREG=7.2V)  
Limit  
Typ.  
Symbol  
<CYLINDER STARTING/DETECTION/SLOPE>  
Unit  
Conditions  
Parameter  
Fig No.  
Min.  
Max.  
DETECT terminal charge current  
DETECT terminal discharge current  
DETECT terminal H voltage  
DETECT terminal L voltage  
ISET voltage  
SL1,2 charge current  
SL1,2 discharge current  
SL1,2 H voltage  
D_IDETO  
D_IDETI  
D_VDETH  
D_VDETL  
D_VISET  
D_ISLO  
D_ISLI  
D_VSLH  
D_VSLL  
2
2
1.1  
0.5  
0.32  
16  
17  
2.5  
0.85  
5
5
10  
10  
1.5  
0.8  
0.48  
28  
A  
A  
V
V
V
A  
A  
V
Fig.12  
Fig.12  
Fig.13  
Fig.13  
Fig.14  
Fig.15  
Fig.15  
Fig.16  
Fig.16  
1.3  
0.65  
0.4  
22  
24  
2.8  
1
RD_ISET=18kꢀ  
RD_ISET=18kꢀ  
RD_ISET=18kꢀ  
31  
SL1,2 L voltage  
1.15  
V
SL1,2 charge and discharge  
D_RSL  
0.82  
1.6  
0.89  
2
0.96  
2.4  
current ratio  
SL switching EC level  
< CYLINDER VS>  
Voltage gain  
D_VECSL  
V
D_GVS  
7
8
9
TIMES  
V
IOVS=1mA,  
between VCC and output  
Output H voltage  
0.5  
0.8  
D_VVSOH  
Output L voltage  
VS offset voltage  
<CYLINDER FGAMP>  
Input offset voltage  
DC bias voltage  
Voltage gain 1  
Voltage gain 2  
In-phase input voltage range  
D_VVSOL  
D_VVSOFS  
0.13  
0.25  
0.2  
0.38  
V
V
IOVS=50A  
DC/DC43 in use  
0.12  
D_VFGOFS  
D_VFG+  
D_FAV1  
D_FAV2  
D_VFGCM  
-12  
1.3  
50  
30  
0.35  
1.5  
59  
36  
12  
1.7  
mV  
V
dB  
dB  
V
f=3kHz  
f=50kHz  
Fig.20  
Fig.20  
VCC-1.1  
IOH=-0.2mA,  
Output H voltage  
D_VFGAOH  
0.3  
0.5  
V
V
between VCC and output  
Output L voltage  
D_VFGAOL  
0.15  
0.35  
IOL=1mA  
<CYLINDER FGHYS>  
Measure D_FGAMP at 1K  
feed back resistance  
D_FG hysteresis width  
D_VFGHYS  
84  
110  
136  
mV  
Fig.24  
Measure D_FGAMP at 1K  
DC bias voltage  
D_VFG+  
1.3  
1.5  
0.1  
1.7  
0.3  
V
V
feed back resistance  
Output L voltage  
<CYLINDER PGAMP>  
Input offset voltage  
DC bias voltage  
Voltage gain 1  
Voltage gain 2  
D_VFGSOL  
IOL=1mA  
Fig.21  
D_VPGOFS  
D_VPG+  
D_PAV1  
D_PAV2  
D_VPGCM  
17  
1.7  
-12  
1.3  
50  
30  
0.35  
1.5  
59  
36  
mV  
V
dB  
dB  
V
f=3kHz  
f=50kHz  
Fig.20  
Fig.20  
In-phase input voltage range  
VCC-1.1  
IOH=-0.2mA,  
Output H voltage  
D_VPGAOH  
0.3  
0.5  
V
V
between VCC and output  
Output L voltage  
<CYLINDER PGHYS>  
D_PG hysteresis width  
DC bias voltage  
Output L voltage  
<LOADING>  
D_VPGAOL  
0.15  
0.35  
IOL=1mA  
D_VPGHYS  
D_VPG+  
D_VPGSOL  
118 144  
1.3  
170  
1.7  
0.3  
mV  
V
V
Fig.23  
1.5  
0.1  
IOL=1mA  
Fig.21  
IOUT=200mA,L_REF=L_VM  
Total saturation voltage of low and  
high side output transistor  
Fig.  
17,18  
Output saturation voltage  
L_VSAT  
0.3  
0.5  
V
L_REF pin input current  
Vout-L_REF offset  
L_IIREF  
L_VOFS  
0.3  
100  
2
200  
A  
mV  
0
Fig.19  
Forward rotation control  
L_VFWD  
L_VBRK  
L_VREV  
L_VREF  
1.3  
2.3  
1.5  
0.7  
1.7  
V
V
voltage range  
Brake voltage range  
Reverse rotation control  
voltage range  
V
L_REF output open voltage  
1.3  
4/16  
ʀElectrical characteristics  
BD6300KU (Unless otherwise specified Ta=25@,VCC=3V, C_VMD_VML_VM=5VUNREG=7.2V)  
Limit  
Typ.  
Symbol  
Unit  
Conditions  
Parameter  
Fig No.  
Min.  
Max.  
<TOTAL>  
VCC Circuit current 1  
5
1
mA  
mA  
Icc1  
Icc2  
Power save OFF  
Power save ON  
11  
4
17  
7
Fig.25  
Fig.26  
VCC Circuit current 2  
Fig.  
28,29  
VG  
9.5  
11  
12.5  
V
VG voltage  
<CAPSTAN OUTPUT>  
Output H voltage 1  
C_VOH1  
C_VOH2  
C_VOL  
0.1  
0.2  
0.2  
0.16  
0.32  
0.32  
V
V
V
IOUT=-200mA  
Fig.31  
Fig.31  
Fig.32  
Output H voltage 2  
IOUT=-400mA  
IOUT=200mA,C_RNF=0.33Q  
Output L voltageꢀ  
<CAPSTAN HALL AMP>  
In-phase input voltage range  
C_VCM  
1.2  
-15  
VCC-1.1  
V
Hall input offset range  
<CAPSTAN PS, F/B/R>  
C_VHOF  
15  
mV  
C_PS  
0.7  
1.4  
2
V
V
V
V
C_PS input threshold levelꢀ  
Forward rotation control  
voltage range  
Brake voltage range  
Reverse rotation control  
voltage range  
0.7  
1.7  
C_VFWD  
C_VBRK  
1.3  
2.3  
1.5  
C_VREV  
<CAPSTAN TORQUE CONTROL>  
EC input bias current  
C_IEC  
C_GIO  
C.EC=VCC  
3
7.5  
A  
A/V  
V
Torque control input/output gain  
Torque control start voltage  
Current limit voltage  
C_RNF=0.33Q,C_RCC=3.3kQ  
0.42  
1.05  
0.25  
0.6  
1.2  
0.33  
0.78  
1.35  
0.41  
Fig.30  
Fig.30  
Fig.30  
C_VECOFS  
C_Climit  
C_RNF=0.33Q,C_RCC=3.3kQ  
V
IOUT=100mA,C_RCC=3.3kQ  
C_RNF=0.33Q  
Ripple cancel ratio  
C_VRCC  
C_GVS  
22  
45  
68  
%
<CAPSTAN VS>  
Voltage gain  
TIMES  
7
8
9
IOVS=1mA,  
between VCC and output  
V
V
Output H voltage  
Output L voltage  
C_VVSOH  
C_VVSOL  
0.5  
0.8  
0.2  
IOVS=50A  
0.13  
<CAPSTAN FGAMP>  
In-phase input voltage range  
C_VFGCM  
C_IFG  
0.35  
VCC-1.1  
1
V
A  
V
Input bias current  
Output H voltage  
Output L voltage  
C_VFGSOH  
C_VFGSOL  
2.8  
0.1  
0.3  
V
IOL=1mA  
Fig.44  
<CYLINDER OUTPUT>  
Output H voltage  
D_VOH  
D_VOL  
IOUT=-400mA  
IOUT=100mA,C_RNF=0.33Q  
0.3  
0.28  
0.48  
0.4  
V
V
Fig.34  
Fig.35  
Output L voltage  
<CYLINDER OUTPUT>  
D_PS  
0.7  
1.4  
2
V
D_PSinput threshold levelꢀ  
<CYLINDER TORQUE CONTROL>  
EC input bias current  
D_IEC  
D_GIO  
2
5
A  
A/V  
V
D_EC=VCC  
Torque control input/output gain  
Torque control start voltage  
Current limit voltage  
0.45  
1.05  
0.217  
0.66  
1.2  
0.87  
1.35  
0.332  
D_RNF=0.33Q  
Fig.33  
Fig.33  
Fig.33  
D_VECOFS  
D_Climit  
0.274  
V
D_RNF=0.33Q  
<CYLINDER STARTING/DETECTION>  
DETECT terminal charge current  
D_IDETO  
D_IDETI  
2
5
5
10  
10  
A  
A  
V
Fig.36  
Fig.36  
Fig.37  
Fig.37  
DETECT terminal discharge current  
DETECT terminal H voltage  
DETECT terminal L voltage  
2
D_VDETH  
D_VDETL  
1.1  
0.5  
1.3  
0.65  
1.5  
0.8  
V
5/16  
BD6300KU ELECTRICAL CHARACTERISTICS (Unless otherwise specified Ta=25@,VCC=3V, C_VMD_VML_VM=5VUNREG=7.2V)  
Limit  
Typ.  
Symbol  
Unit  
Conditions  
Parameter  
Fig No.  
Min.  
Max.  
<CYLINDER SLOPE>  
ISET voltage  
D_VISET  
D_ISLO  
D_ISLI  
0.4  
22  
24  
2.8  
1
V
RD_ISET=18kꢀ  
0.32  
16  
0.48  
28  
Fig.38  
Fig.39  
Fig.39  
Fig.40  
Fig.40  
SL1,2 charge current  
SL1,2 discharge current  
SL1,2 H voltage  
A  
A  
V
RD_ISET=18kꢀ  
RD_ISET=18kꢀ  
17  
31  
D_VSLH  
D_VSLL  
2.5  
SL1,2 L voltage  
0.85  
V
1.15  
SL1,2 charge and discharge  
current ratio  
< CYLINDER VS>  
Voltage gain  
D_RSL  
D_GVS  
0.82  
0.89  
0.96  
TIME  
7
8
9
IOVS=-1mA,  
between VCC and output  
Output H voltage  
Output L voltage  
D_VVSOH  
0.5  
0.8  
0.2  
V
V
D_VVSOL  
0.13  
IOVS=50A  
<CYLINDER FGAMP/SMT>  
DC bias voltage  
V
1.3  
0.35  
1.5  
1.7  
VCC-1.1  
1
D_VFG+  
D_VFGCM  
In-phase input voltage range  
DC bias current  
V
A  
D_IFG  
2.8  
Output H voltage  
D_VFGSO  
D_VFGSO  
V
V
Output L voltage  
0.1  
0.3  
IOL=1mA  
Fig.45  
<CYLINDER PGAMP>  
DC bias voltage  
D_VPG+  
D_VPGC  
D_VPGSO  
D_VPGSO  
1.3  
0.35  
2.8  
1.5  
1.7  
VCC-1.1  
V
V
V
V
In-phase input voltage range  
Output H voltage  
Output L voltage  
0.14  
0.3  
Fig.46  
<LOADING>  
IOUT=200mA,L_REF=L_VM  
Total saturation voltage of low and  
high side output transistor  
Fig.  
Output saturation voltage  
L_VSAT  
0.3  
0.5  
V
41,42  
L_REF pin input current  
Vout-L_REF offset  
L_IIREF  
0.3  
2
A  
L_REF=L_VM  
L_VOFS  
100  
200  
mV  
Fig.43  
Forward rotation control  
voltage range  
Brake voltage range  
Reverse rotation control  
voltage range  
L_REF output open voltage  
L_VFWD  
0.7  
1.7  
V
L_VBRK  
L_VREV  
L_VREF  
1.3  
2.3  
1.5  
V
V
V
1.3  
<REEL AMP>  
R_IIN  
-8  
1
8
A  
mV  
V
Input bias current  
R_VOFS  
R_VINCM  
R_VSOL  
Input offset voltage  
In-phase input voltage range  
0.35  
VCC-1.1  
Output L voltage  
0.1  
V
IOL=1mA  
Fig.47  
6/16  
ʀReference data  
BD6637KV/KS Characteristic data  
BD6637KV/KS  
BD6637KV/KS  
BD6637KV/KS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
75℃  
18  
25℃  
16  
14  
12  
-25℃  
10  
8
6
-25,25,75℃  
4
-25,25,75℃  
2
0
Operating Voltage Range  
Operating Voltage Range  
2.0  
3.0  
4.0  
5.0  
0
3
6
᎜᎕᎙ᎌᎎ፯᎝፰  
9
12  
2.0  
2.5  
3.0  
3.5  
VCC(V)  
4.0  
4.5  
5.0  
VCC(V)  
Fig.1 VCC Circuit current 1ꢀ  
Fig.2 VCC Circuit current 2  
Fig.3 UNREG stand by current  
0.0  
BD6637KV/KS  
BD6637KV/KS  
BD6637KV/KS  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
-0.2  
-0.4  
75℃  
UNREG=12V  
25℃  
-25℃  
-0.6  
-0.8  
-1.0  
-1.2  
UNREG=7.2V  
UNREG=5V  
-25℃  
6
6
25℃  
75℃  
4
4
2
2
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
IOUT(A)  
0.0  
2.0  
4.0  
6.0  
0.0  
2.0  
4.0  
6.0  
IVG(mA)  
IVG(mA)  
Fig.4 VG voltage  
Fig.5 VG voltage  
Fig.6 CAPSTAN Output High-voltage  
Temperature characteristicsዅ  
Voltage characteristicsዅ  
BD6637KV/KS  
BD6637KV/KS  
BD6637KV/KS  
1.4  
0.0  
300  
250  
200  
150  
100  
50  
-25℃  
1.2  
-0.2  
75℃  
25℃  
75℃  
1.0  
-0.4  
-25℃  
0.8  
25℃  
-0.6  
0.6  
-25℃  
2575℃  
-0.8  
0.4  
0.2  
0.0  
-1.0  
-1.2  
0
0.0  
1.0  
2.0  
3.0  
0.0  
0.2  
0.4  
IOUT(A)  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
IOUT(A)  
0.6  
0.8  
1.0  
C.EC(V)  
Fig.8 CAPSTAN Torque control  
input/output gain  
Fig.7 CAPSTAN Output High-voltage  
Fig.9 CYLINDER Output  
High-voltage  
BD6637KV/KS  
BD6637KV/KS  
BD6637KV/KS  
1.4  
8.0  
300  
-25℃  
25℃  
6.0  
25℃  
75℃  
1.2  
75℃  
250  
75℃  
4.0  
1.0  
discharge  
-25℃  
200  
150  
100  
50  
2.0  
25℃  
0.8  
0.0  
-25℃  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.6  
-2.0  
-4.0  
-6.0  
-8.0  
-10.0  
0.4  
0.2  
0.0  
charge  
-25,25,75℃  
Operating Voltage Range  
0
0.0  
1.0  
2.0  
3.0  
0.0  
0.2  
0.4  
IOUT(A)  
0.6  
0.8  
1.0  
VCC(V)  
D.EC(mV)  
Fig.10 CYLINDER  
Output Low-voltage  
Fig.11 CYLINDER Torque control  
input/output gain  
Fig.12 DETECT terminal  
charge/discharge current  
7/16  
BD6637KV/KS Characteristic data  
BD6637KV/KS  
BD6637KV/KS  
BD6637KV/KS  
discharge  
1.6  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
40.0  
30.0  
20.0  
10.0  
0.0  
1.4  
H voltage  
75℃  
1.2  
25℃  
-25℃  
75℃  
25℃  
1.0  
-25,25,75℃  
0.8  
L voltage  
0.6  
0.4  
0.2  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
-25℃  
-25℃  
25℃  
charge  
Operating Voltage Range  
Operating Voltage Range  
Operating Voltage Range  
75℃  
2.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VCC(V)  
VCC(V)  
VCC(V)  
Fig.13 DETECT terminal  
H/L voltage  
Fig.14 ISET voltage  
Fig.15 SL1,2 charge/discharge  
current  
BD6637KV/KS  
BD6637KV/KS  
BD6637KV/KS  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.6  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
Operating Voltage Range  
75℃  
0.5  
0.4  
25℃  
-25,25,75℃  
H Voltage  
L Voltage  
0.3  
-25℃  
25℃  
-25℃  
0.2  
0.1  
0.0  
75℃  
-25,25,75℃  
2.0  
2.5  
3.0  
3.5  
VCC(V)  
4.0  
4.5  
5.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
L_IFWD(A)  
L_IFWD(A)  
Fig.16 SL1,2 H/L voltage  
Fig.17 LOADING Output  
High-voltage  
Fig.18 LOADING Output  
Low-voltage  
BD6637KV/KS  
BD6637KV/KS  
BD6637KV/KS  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-25℃  
-25℃  
75℃  
25℃  
-25,25,75℃  
75℃  
25℃  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
10  
1000  
100000  
10000000  
C_IF/D_IF/D_IP GSMT(mA)  
L_REF (V)  
Frequency (Hz)  
Fig.21 C_FG/D_FG/D_PG  
Output Low-voltage  
Fig.19 Vout-L_REF offset  
Fig.20 C_FG/D_FG/D_PG Voltage  
gain  
BD6637KV/KS  
BD6637KV/KS  
BD6637KV/KS  
5.0  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.5  
-25,25,75℃  
-25,25,75℃  
-25,25,75℃  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-200  
-100  
0
100  
200  
-200  
-100  
0
100  
200  
-200  
-100  
0
100  
200  
D_PGAMP-D_FGPGINP (mV)  
D_FGAMP-D_FGPGINP (mV)  
C_FGAMP-C_FGINP (mV)  
Fig.22 C_FG hysteresis width  
Fig.23 D_PG hysteresis width  
Fig.24 D_FG hysteresis width  
8/16  
ʀReference data  
BD6300KU Characteristic data  
BD6300KU  
75℃  
BD6300KU  
BD6300KU  
16  
7
6
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
75℃  
25℃  
14  
25℃  
12  
10  
-25℃  
-25℃  
8
6
4
-25,25,75℃  
2
0
Operating Voltage Range  
Operating Voltage Range  
2.0  
3.0  
4.0  
5.0  
0
3
6
᎜᎕᎙ᎌᎎ፯᎝፰  
9
12  
2.0  
2.5  
3.0  
3.5  
VCC(V)  
4.0  
4.5  
5.0  
VCC(V)  
Fig.25 VCC Circuit current 1  
Fig.26 VCC Circuit current 2  
Fig.27 UNREG stand by current  
BD6300KU  
450  
BD6300KU  
BD6300KU  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
75℃  
400  
25℃  
75℃  
350  
-25℃  
UNREG=12  
UNREG=7.2  
UNREG=5V  
300  
25℃  
250  
200  
150  
100  
50  
-25℃  
6
6
4
4
2
2
0
0
0
0.0  
1.0  
2.0  
3.0  
0.0  
1.0  
2.0  
3.0  
IVG(mA)  
4.0  
5.0  
6.0  
0.0  
1.0  
2.0  
3.0  
IVG(mA)  
4.0  
5.0  
6.0  
C_EC(V)  
Fig.28 VG voltage  
Fig.29 VG voltage  
Fig.30 CAPSTAN  
Torque control input/output gain  
Temperature characteristicsዅ  
Voltage characteristicsዅꢀ  
BD6300KU  
BD6300KU  
BD6300KU  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
300  
75℃  
-25℃  
25℃  
-0.1  
250  
-0.2  
200  
-25℃  
75℃  
25℃  
-0.3  
150  
100  
50  
25℃  
-25℃  
75℃  
-0.4  
-0.5  
-0.6  
0
0.0  
1.0  
2.0  
3.0  
0.0  
0.2  
0.4  
IOUT(A)  
0.6  
0.8  
0.0  
0.2  
0.4  
IOUT(A)  
0.6  
0.8  
D_EC(V)  
Fig.33 CYLINDER Torque control  
input/output gain  
Fig.31 CAPSTAN Output  
High-voltage  
Fig.32 CAPSTAN Output  
Low-voltage  
BD6300KU  
BD6300KU  
BD6300KU  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
8.0  
25℃  
6.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
75℃  
25℃  
75℃  
4.0  
discharge  
-25℃  
2.0  
0.0  
-25℃  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-25℃  
-2.0  
-4.0  
-6.0  
-8.0  
-10.0  
25℃  
charge  
-25,25,75@  
75℃  
0.6  
Operating Voltage Range  
VCC(V)  
0.0  
0.2  
0.4  
0.8  
0.0  
0.2  
0.4  
IOUT(A)  
0.6  
0.8  
IOUT(A)  
Fig.34 CYLINDER Output  
High-voltage  
ꢀ ꢀ ꢀ  
Fig.35 CYLINDER Output  
Low-voltage  
ꢀ ꢀ ꢀ  
Fig.36 DETECT terminal  
charge/discharge current  
9/16  
BD6300KU Characteristic data  
BD6300KU  
BD6300KU  
BD6300KU  
discharge  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
40.0  
30.0  
20.0  
10.0  
0.0  
H Voltage  
75℃  
25℃  
75℃  
25℃  
-25℃  
-25,25,75℃  
L Voltage  
-25℃  
-10.0  
-20.0  
-30.0  
-40.0  
-25℃  
25℃  
charge  
Operating Voltage Range  
Operating Voltage Range  
Operating Voltage Range  
75℃  
2.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
VCC(V)  
VCC(V)  
VCC(V)  
Fig.37 DETECT terminal H/L voltage  
Fig.39 SL1,2 charge/discharge  
current  
Fig.38 ISET voltage  
BD6300KU  
9.0  
BD6300KU  
BD6300KU  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
0.6  
Operating Voltage Range  
8.0  
75℃  
25℃  
7.0  
6.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-25,25,75℃  
H Voltage  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-25℃  
-25℃  
25℃  
L Voltage  
-25,25,75℃  
75℃  
2.0  
2.5  
3.0  
3.5  
VCC(V)  
4.0  
4.5  
5.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
L_FWD(A)  
L_FWD(A)  
Fig.40 SL1,2 H/L voltage  
Fig.41 LOADING Output High-voltage  
ꢀ ꢀ ꢀ ꢀ  
Fig.42 LOADING Output  
Low-voltage  
BD6300KU  
BD6300KU  
BD6300KU  
3.0  
3.0  
ꢀ ꢀ ꢀ ꢀ ꢀ  
0
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-25℃  
75℃  
2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
25℃  
2.0  
-25℃  
-25℃  
1.5  
25℃  
25℃  
1.0  
0.5  
75℃  
75℃  
0.0  
0.0  
0.0  
0.0  
3.0  
6.0  
9.0  
12.0  
15.0  
3.0  
6.0  
9.0  
12.0  
15.0  
0
1
2
3
4
5
C_FGINM (mA)  
D_FGINM (mA)  
L_REF (V)  
Fig.44 C_FGSMT Output  
Low-voltage  
Fig.45 D_FGSMT Output  
Low-voltage  
Fig.43 Vout-L_REF offset  
BD6300KU  
BD6300KU  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-25℃  
-25℃  
25℃  
75℃  
25℃  
75℃  
0.0  
3.0  
6.0  
9.0  
12.0  
15.0  
0.0  
3.0  
6.0  
9.0  
12.0  
15.0  
D_PGINM (mA)  
R_IOL1/2 (mA)  
Fig.46 D_PGSMT Output L voltage  
Fig.47 R_OUT1/2 Output L voltage  
10/16  
ʀBlock diagram  
BD6637KV/KS  
ꢀ ꢀ ꢀ ꢀ ꢀ  
Terminal function table  
PIN Name  
PIN Name  
(KS)  
PIN Name  
(KV)  
PIN Name  
(KS)  
PIN NO.  
PIN NO.  
(KV)  
L_VM  
L_FBR  
D_DETECT  
VG  
D_ISET D_SL1 D_SL2  
1
N.C.  
C_U  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
D_COM  
D_W  
D_VM  
D_U  
2
C_U  
C_V  
D_U  
L_FBR  
L_REF  
L_FWD  
L_GND  
L_REV  
L_VM  
L_REF  
Starting  
3
C_V  
C_RNF  
C_W  
D_V  
L_FWD  
Oscilator  
detection  
D_V  
circuit  
4
C_RNF  
C_W  
D_RNF  
D_W  
DC/DC  
D_W  
5
C_HU+  
C_HU-  
L_REV  
Driver  
FGHys.Amp.  
FG Amp.  
L_GND  
6
N.C.  
N.C.  
D_RNF  
D_FGIN-  
PG Hys. Amp.  
7
N.C.  
C_HV+  
C_HV-  
L_FBR  
L_REF  
L_FWD  
N_C  
D_FGPGIN+  
PG Amp.  
8
C_HU+  
C_HU-  
C_HV+  
C_HV-  
C_HW+  
C_HW-  
D_PGSMT  
D_PGAMP  
D_PGIN-  
D_FGPGIN+  
D_FGIN-  
D_FGAMP  
D_FGSMT  
VCC  
C_FGIN+  
C_FGIN-  
C_FGAMP  
C_FGSMT  
VG  
D_FGAMP  
D_FGSMT  
9
C_HW+  
C_HW-  
D_PGSMT  
D_PGAMP  
D_PGIN-  
D_FGPGIN+  
D_FGIN-  
D_FGAMP  
D_FGSMT  
VCC  
ȵϕ༫˂  
Amp.  
FG Hys.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
D_PGIN-  
D_PGAMP  
L_GND  
L_REV  
L_VM  
C_FGIN+  
C_FGIN-  
C_FGAMP  
C_FGSMT  
N.C.  
D_PGSMT  
D_PCV  
D_COM  
D_PCI  
CP1  
Current feed back Amp.  
CP2  
D_EC  
Error Amp.  
Torque control Amp.  
GND  
D_VS  
GDX  
GDX  
D_VM  
VREG  
CP1  
CP2  
UNREG  
GND  
Booster  
Circuit  
PS  
VCC  
C_RCC  
C_FBR  
C_VM  
C_VS  
VG  
C_VM  
VG  
Rotary  
course  
D_DETECT  
D_ISET  
D_SL1  
VG  
C_FBR  
brake  
C_U  
HALL  
CP1  
C_HU+  
C_HU-  
Hall Amp.  
CP2  
DC/DC  
C_V  
HALL  
HALL  
C_HV+  
C_HV-  
D_DETECT  
D_ISET  
D_SL1  
D_SL2  
UNREG  
N.C.  
D_SL2  
N.C.  
C_EC  
UNREG  
D_VM  
GND  
C_PCI  
C_PCV  
C_W  
C_HW+  
C_HW-  
C_RNF  
GDX  
Torque ripple  
D_VS  
PS  
C_RCC  
C_EC  
cancel  
Current feed back Amp.  
D_EC  
C_RCC  
C_FBR  
C_VM  
C_VS  
C_EC  
C_PCI  
C_PCV  
Low side  
C_PCV  
C_PCI  
ȵ
sat.prevention  
D_PCI  
Circuit  
Torque control Amp.  
FGHys. Amp.  
C_FGIN-  
C_FGIN+  
Error Amp.  
D_VM  
D_PCV  
D_COM  
D_U  
C_VS  
Thermal  
Power  
D_VS  
100k  
FG Amp.  
C_FGAMP  
Q
Save  
shut down  
C_VM  
D_EC  
C_FGSMT  
D_PCI  
D_V  
P.S.  
D_PCV  
D_RNF  
BD6300KUꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ  
Terminal function table  
PIN NO.  
PIN Name  
PIN NO.  
PIN Name  
R_IN+2  
L_VM  
L_FBR  
D_DETECT  
1
D_PH  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
VG  
D_ISET D_SL1 D_SL2  
D_VM  
D_U  
2
D_FGIN-  
D_FGPGIN+  
D_PGIN-  
D_FGSMT  
VCC  
R_IN-2  
R_OUT2  
VG  
L_REF  
3
Starting  
L_FWD  
Oscilator  
detection  
D_V  
4
circuit  
DC/DC  
5
CP2  
D_W  
L_REV  
Driver  
FGHys.Amp.  
FG Amp.  
6
CP1  
L_GND  
D_RNF  
D_FGIN-  
PG Hys. Amp.  
7
D_DETECT  
D_ISET  
D_SL1  
D_SL2  
UNREG  
D_VM  
GND  
D_FGPGIN+  
PG Amp.  
8
GDX  
9
D_PS  
C_PS  
C_FBR  
C_VM  
C_VS  
C_EC  
C_PCI  
C_PCV  
FGND1  
C_U  
D_FGAMP  
D_FGSMT  
Amp.  
FG Hys.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
D_PGIN-  
D_PGAMP  
D_PGSMT  
D_PCV  
D_COM  
D_VS  
D_PCI  
D_EC  
Current feed back Amp.  
D_EC  
Error Amp.  
Torque control Amp.  
D_PCI  
D_PCV  
D_COM  
D_U  
D_VS  
GDX  
D_VM  
VREG  
CP1  
CP2  
UNREG  
GND  
Booster  
Circuit  
VCC  
VG  
C_VM  
VG  
Rotary  
D_V  
C_V  
course  
C_FBR  
brake  
D_RNF  
D_W  
C_RNF  
C_W  
C_U  
C_V  
HALL  
C_HU+  
C_HU-  
Hall Amp.  
DC/DC  
HALL  
HALL  
N.C.  
C_RCC  
C_HV-  
C_HV+  
C_HU-  
C_HU+  
C_HW+  
C_HW-  
C_HV+  
C_HV-  
FGND2  
L_FBR  
L_REF  
L_FWD  
L_GND  
L_REV  
L_VM  
C_W  
C_HW+  
C_HW-  
C_RNF  
Torque ripple  
cancel  
C_RCC  
C_EC  
Current feed back Amp.  
Low side  
C_PCV  
C_PCI  
sat.prevention  
Circuit  
Torque control Amp.  
FGHys. Amp.  
C_FGIN-  
C_FGIN+  
Error Amp.  
C_VS  
Thermal  
Power  
C_FGIN+  
C_FGIN-  
100k  
FG Amp.  
C_FGAMP  
Q
Save  
shut down  
C_VM  
R_IN+1  
R_IN-1  
R_OUT1  
C_FGSMT  
D_PGSMT  
C_FGSMT  
P.S.  
11/16  
ʀDescription of operations  
Description of capstan operation  
1. Hall input - output  
The Hall sensor input signal of the three-phase, is amplified by the Hall amplifier to produce a drive signal  
waveform. This drive signal is amplified, once again, by the output amplifier to supply a drive current for the motor  
coil. Output current is a trapezoidal waveform. Due to the trapezoidal waveform, gaps are generated in the  
magnetic field by the three-phase coil, which causes a slight irregularity of rotation. In operation, the triangle wave  
is superimposed upon the trapezoidal output waveform. (Torque ripple cancellation)  
2. Torque control  
Output current can be controlled by the voltage applied to C.EC (torque control terminal).  
Internal reference voltage  
C. RNF voltage  
፧ ፧ ፧ ፧ ፧ ፧ ፧ ፧ ፧ ፧ ፧ ፧ ፧  
፧ ፧ ፧ ፧ ፧ ፧ ፧  
Torque command  
start voltage፧  
1.05ᰆᰮ1.35ᰆ  
1.2V  
C. EC voltage  
3. Brake  
When the C.FBR terminal is set to M, each output voltage becomes low and the brake is applied.  
Brake command voltage: C.FBR 1.3V to 1.7V  
4. Motor power supply control function  
In order to use power effectively (as well as to prevent exceeding permissible dissipation of IC), it is required to  
change supply voltage according to output current, i.e. to reduce supply voltage when current output is low, and  
increase when current output is high, thereby preventing extra voltage from being applied between Drain and  
Source of output stage MOS. Power supply control function (VS terminal) is installed for this purpose. In this  
function, the voltage between Drain and Source of upper MOS of output stage is detected, and output to VS  
terminal as a power supply control signal. This gain signal is multiplied several times by DC/DC, for controlling  
motor power supply.  
5. Output TR saturation preventing circuit  
This circuit is used to operate output MOS in linear region. It has good dynamic range from a low to high current,  
and provides a good rotating performance under overload, etc.  
Description of cylinder operation  
1. Back electromotive force detecting comparator (BEMF)  
Compares the output voltage of the motor with the midpoint potential BEMF and detects the position of the rotor  
and stator (magnet and coil). Further, the BEMF is provided with hysteresis, which can be set by resistor RD.com,  
connected to D.COM terminal.  
2. Phase switching logic  
Synthesizes the output from three-phase BEMF force detecting comparator. The noise pulse of BEMF by the motor  
is eliminated by MASK signal, generated by D.SL terminal 1 and 2 with reference to each position-detected signal.  
Only the rising edge of masked synthetic output is used as a signal for the secondary counter. While output from  
secondary and drive signal is synthesized, FG signal is generated every 60 degrees (electric angle).  
3. Slope  
D.SL terminal 1 and 2 are charged and discharged in synchronization with the timing of the internal FG signal. For  
driving soft switching, slope is applied to output current waveform by the slope rate of D.SL terminal 1 and 2.  
MASK signal is generated by charging and discharging waveform of D.SL terminal 1 and 2. MASK signal L is  
output only when the charging and discharging waveform of D.SL terminal 1 and 2 is clamped at L level, when  
MASK is canceled. Otherwise, H is output and MASK is applied, and noise pulse by back electromotive force of  
motor is removed.  
4. Detection circuit - start signal synthesizing  
When a capacitor is connected to D.DETECT terminal, charging and discharging are performed. When the motor is  
stopped, D.DETECT terminal repeats charging and discharging between Low-level and High-level. Only the rising  
edge of square wave (SEL) that is synchronized with D.DETECT terminal, is compared with rising edge of  
synthesized output of BEMF detecting comparator. When the motor is stopped, BEMF detecting comparator is not  
output. Therefore, the edge of SEL signal is input to secondary counter and attempts to force the motor to rotate  
(synchronized mode). Before the motor rotates and D.DETECT terminal reaches High-level, BEMF detecting  
comparator detects BEMF motor. When synthetic output of BEMF detection comparator is output, D.DETECT  
terminal starts discharging on the corresponding edge. When Low-level is reached, charging is started again, and  
discharging is started on the edge of BEMF detecting comparator output. Here the edge of synthetic output of  
BEMF comparator is input to secondary counter, and the motor rotates. (BEMF mode)  
12/16  
5. Torque control  
Output current can be controlled by the voltage applied to D.EC (torque control terminal), as with capstan  
assembly.  
6. Motor power supply control function  
In order to use power effectively (as well as to prevent exceeding permissible dissipation of IC), it is required to  
control supply voltage according to output current. For example, reduce supply voltage when current output is low,  
and increase when current output is high, thereby preventing extra voltage from being applied between Drain and  
Source of output stage MOS. Power supply control function (VS terminal) is used for this purpose. In this function,  
the voltage between Drain and Source of upper MOS of output stage is detected, and sent to VS terminal as a  
power supply control signal. This gain signal is multiplied several times by DC/DC, for controlling motor power  
supply.  
7. Output TR saturation preventing circuit  
This circuit is used to operate output MOS in linear region. It has good dynamic range from a low to high current,  
and provides a good rotating performance under overload, etc.  
Description of loading assembly operation  
1. L.FBR input - output  
Output (L.REV and L.FWD) is three-mode output for forward/reverse rotation and braking, depending on the  
voltage input to L.FBR.  
2. Loading assembly output H voltage control  
Output High-voltage of loading assembly can be set by the voltage input to L.RFF terminal.  
Output High-voltage VOH can be represented by the formula below:  
L.REF voltage where the formula above holds true is 1.7 V - L. VM voltage.ꢀ  
Output H voltage  
ꢀ  
ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ  
L L. REF voltage  
L.VM  
፸፵፾  
Output H voltage setting range  
ʀApplication part selecting procedure  
Selection of constant in the example of recommended circuit is shown below:  
1) Capstan hall bias resistor (RH1 and RH2)ꢀ  
The amplitude and bias point of hall element can be set by hall bias resistor. Hall amplitude varies with hall element  
in use even when the same bias resistor is used, therefore adjust the bias resistor so that the amplitude of hall  
element is 50 - 100mvp-p as well as within the range of hall amplifier in-phase input voltage range of capstan  
assembly (1.2 - VCC-1.1V).  
Vcc  
Upper limit of hall input voltage range (VCC-1.1V)  
Amplitude of hall element  
Lower limit of hall input voltage range (1.2V)  
GND  
2) Capstan C.RCC resistor  
Canceling rate of torque ripple canceling circuit of capstan assembly can be adjusted by the resistor equipped  
externally on C.RCC terminal. Select the optimum value, considering the vibrations, when the IC is mounted to the  
motor. The optimum value depends on the motor, while 2k ꢁ to 4k ꢁ is recommended.  
3) Cylinder D.COM terminal connection terminal  
By inserting a resistor in the middle point of D.COM terminal and motor, the BEMF detecting comparator can also  
generate hysteresis, thereby preventing any noise from causing malfunction. Hysteresis width can be calculated as  
follows:  
Hysteresis width = R.D.COM x 20 ) A (Typ. value)  
The optimum value depends on the motor, while 200 ꢁ to 300ꢁ is recommended.  
13/16  
4) Cylinder and output current slope setting capacitor (CSL1, CSL2)  
Triangle wave is output from D.SL terminal 1 and 2 for normal rotation of the cylinder. Level 1 is output for Low-  
level of the triangle wave. The level determined by cylinder rotating speed is output for High-level. Adjust the  
capacitor of terminal D.SL1 and D.SL2 and the resistance of ISET terminal so that this High-level is approximately  
1.8V. It can be set as follows:  
Example: When normal rotation speed of cylinder is 9000 rpm, capacitor of terminal D.SL1 and D.SL2 0.047F and  
resistance 18 k ꢁ are recommended.  
ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ  
185ꢂs4ISL  
ISET terminal voltageTyp.:0.4Vዅ  
CSL1,CSL2  
(ꢂF)  
ꢀ ꢀ  
(where ISLዙ  
ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ  
ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ  
0.8V  
RISET  
ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ  
5) Setting of drive signal frequency in cylinder startup  
Drive signal frequency in cylinder startup can be controlled by changing the capacitor of D.DETECT terminal.  
Adjust the optimum value, so that starting time is shortest on your motor. Drive signal frequency during startup  
can be calculated as follows: Optimum value depends on motor, while 0.1 - 0.2 ꢂ F is recommended.  
DETECT terminal charging and discharging current  
(Hz)  
ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ  
(DETECT terminal H voltage DETECT terminal L voltage)4 CDETECT 4 6  
DETECT terminal H voltage  
DETECT terminal L  
: 1.3V (Typ. value)  
: 0.65V (Typ. value)  
DETECT terminal charging and discharging current : 5ꢂA (Typ. value)  
6) PCI/PCV terminal connecting capacitor (capstan/cylinder)  
Capacitor connected to PCI and PCV terminal is used to compensate the phase of upper and lower saturation  
prevention circuit and current feedback loop. When it is too large, the entire loop (including servo system), becomes  
unstable. When it is too small, the output waveform oscillates. Recommended are 100pF for PCI terminal, 0.1 ꢂ F  
for PCV terminal of cylinder, 0.1 ꢂ F for PCI terminal and 0.1 ꢂ F for PCV terminal of capstan.  
7) DC/DC (capstan/cylinder)  
When the output of VS terminal of capstan/cylinder is connected to the DC/DC converter, the motor voltage can be  
controlled according to the output voltage waveform of the motor. When the DC/DC converter gain is low, the  
maximum VM voltage cannot be output. The output current waveform is distorted, therefore adjust to an optimum  
value.  
8) RNF terminal  
Connect a small resistor (0.33 ꢁ to 0.5 ꢁ) between RNF terminal and GND for detecting output current. Because  
High current flows in this resistor, take precautious against high resistor wattage. The value of the torque command  
gain versus this resistor (0.33 ꢁ), is described in the electrical characteristics. Note that this value also changes  
when resistance changes.  
9) Voltage rising circuit  
This IC applies Nch DMOS on output stage, and incorporates a voltage boost current for the corresponding gate  
voltage. When the capacitance value between CP1 terminal and CP2 terminal is low, the current capability of VG  
terminal voltage is low. When the capacitance value between VG terminal and GND terminal is low, the ripple of  
VG voltage becomes high. Recommended capacitance value between terminal CP1 and CP2 is 0.1 to 0.22 ꢂ F  
and that between terminal VG and GND is 1 to 10 ꢂ F.  
ʀThermal derating characteristics  
BD6637KV/KS  
BD6300KU  
᎗Ꭻ᫰᎞᫱  
፹፵፷  
᎗Ꭻ᫰᎞᫱  
፹፵፷  
፸፵፾፼  
፸፵፼  
፸፵፼  
፸፵፹፼  
፸፵፷  
፸፵፷  
፷፵፼  
፷፵፼  
፹፼  
፼፷  
፾፼  
፸፷፷  
፸፹፼  
፸፼፷  
᎛Ꭸ᫰ᚴ᫱  
፹፼  
፼፷  
፾፼፧  
፸፷፷፧  
፸፹፼፧  
፸፼፷  
᎛Ꭸ᫰ᚴ᫱  
* 70 mm x 70 mm x 1.6 mm glass epoxy board mounted  
Reduce by 10m W/°C when Ta = 25 °C  
* 70 mm x 70 mm x 1.6 mm glass epoxy board mounted  
Reduce by 14m W/°C when Ta = 25 °C  
14/16  
ʀOperation Notes  
1) Absolute maximum ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break  
down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated  
values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.  
2) Power supply lines  
Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and  
supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power  
supply terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying  
electrolytic capacitors in the circuit, note that capacitance characteristic values are reduced at low temperatures.  
3) GND potential  
Ensure a minimum GND pin potential in all operating conditions. In addition, ensure that no pins other than the GND pin  
carry a voltage less than or equal to the GND pin, including during actual transient phenomena. The voltage of the motor  
output pin may, however, drop below the GND potential due to the BEMF voltage of the motor. Malfunctions or other  
failures may result, depending on the operating conditions, environment, and individual characteristics of the motor.  
Check that the IC has no operational problems.  
4) Thermal Design  
Use a proper thermal design that allows for a sufficient margin of the power dissipation (Pd) at actual operating conditions.  
5) Pin short and mistake fitting  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are  
shorted together or are shorted to other circuit’s power lines.  
6) Operation in a strong electromagnetic field  
Use caution when using the IC in the presence of a strong magnetic field, as doing so may cause the IC to malfunction.  
7) ASO  
When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.  
8) Thermal shutdown circuit  
If the junction temperature (Tj) reaches 175°C (Typ.), the TSD circuit will operate, and the coil output circuit of the motor  
will open. There is a temperature hysteresis of approximately 25°C (Typ.). The TSD circuit is designed only to shut off the  
IC in order to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. The  
performance of the IC’s characteristics is not guaranteed and it is recommended that the device is replaced after the TSD  
is activated.  
9) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress.  
Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or  
removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic  
measure. Use similar precaution when transporting and storing the IC.  
10) Ground wiring patterns  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern  
from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the  
wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay  
attention not to cause fluctuations in the GND wiring pattern of external parts as well.  
11) Capacitors connected between output and ground pins  
If a large capacitance value is connected between the output and ground pins, and if the VCC falls to 0 V or becomes  
shorted with the ground pin, the current stored in the capacitor may flow to the output pin. This can cause damage to the  
IC. The capacitance value between the output and GND must be 100ꢂF or lower.  
12) Regarding input pin of the IC  
If no Vcc voltage is applied to the IC do not apply any voltage to the input pins. If a voltage higher, or as high as the Vcc, or  
a voltage lower than, or as low as, the GND is applied, parasitic elements may result due to the structure of the IC. The  
operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. Use  
caution so that the IC is not used in a manner that will trigger the operation of parasitic elements.  
13) Operating Precautions  
Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to  
verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits  
may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow  
for sufficient margins when determining circuit constants.  
15/16  
Physical Dimension  
VQFP64  
SQFP56  
UQFP64  
Dimension〉  
Dimension〉  
Dimension〉  
12.0 0.2  
10.0 0.1  
12.4 0.3  
10.0 0.2  
42 29  
9.0 0.2  
7.0 0.1  
48  
33  
48  
33  
49  
64  
32  
17  
49  
64  
32  
17  
43  
56  
28  
15  
0.5 1  
16  
+0.05  
0.03  
1
16  
0.145  
1.25  
14  
+0.05  
1
0.145  
0.03  
0.15 0.1  
°+6  
4°  
°
+6°  
4
4°  
4°  
0.4  
0.08  
S
0.08  
0.5 0.1  
0.05  
+
0.04  
0.65  
0.3 0.1  
+0.05  
0.17  
0.03  
0.15  
M
0.08  
0.2  
M
0.08  
(Unit:mm)  
(Unit:mm)  
(Unit:mm)  
Ordering part number  
Please order by ordering part number.Please confirm the combination of each items.Please write the letter close to left when column is blank  
K
B
D
6
6
3
7
V
2
E
Part Number  
BD6637KV  
BD6637KS  
BD6300KU  
Package Type  
KV : VQFP64  
KS : SQFP56  
KU : UQFP64  
E1 Emboss tape reel Pin 1 on draw-out side  
E2 Emboss tape reel Pin 1 opposite draw-out side  
<Packing information>  
Container  
Quantity  
Tray(with dry pack)  
1000pcs  
Direction of product is fixed in a tray.  
Direction  
of feed  
When you order , please order in times the amount of package quantity.  
The contents described herein are correct as of October, 2005  
The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.  
Any part of this application note must not be duplicated or copied without our permission.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding  
upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any  
warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such  
infringement, or arising from or connected with or related to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other  
proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.  
The products described herein utilize silicon as the main material.  
The products described herein are not designed to be X ray proof.  
Published by  
Application Engineering Group  
Catalog No.05T350Be '05.10 ROHM C 2000 TSU  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

BD6637KV-E2

Disk Drive Motor Controller, 1A, PQFP64, ROHS COMPLIANT, VQFP-64
ROHM

BD6640KUT

4ch Sensorless System Motor Driver for MD
ROHM

BD6640KVT

4ch Sensorless System Motor Driver for MD
ROHM

BD6640KVT_11

Silicon Monolithic Integrated Circuit
ROHM

BD6641KUT

4ch PWM Sensorless System Motor Driver for MD
ROHM

BD6641KUT_11

Silicon Monolithic Integrated Circuit
ROHM

BD6643KN

4ch PWM Sensorless System Motor Driver for MD
ROHM

BD6643KN-E2

CD Motor Driver, 4 Channel, PQCC48, ROHS COMPLIANT, UQFN-48
ROHM

BD6660FV

3-phase motor driver for CD-ROMs
ROHM

BD6662FS

Disk Drive Motor Controller, 1.5A, PDSO32, SSOP-32
ROHM

BD6663FM

3-phase Motor Driver for DVD-ROM Spindle Motors
ETC

BD6664AFM-E2

AC Motor Controller, 1.3A, PDSO28, ROHS COMPLIANT, HSOP-28
ROHM