BD70522GUL [ROHM]

BD70522GUL是一个降压转换器,具有180nA静态电流,支持高达500mA的输出电流。ULP(超低功率)模式的恒定开启时间(COT)控制提供了卓越的瞬态响应,并通过在10μA负载范围内提供卓越的轻载效率延长了电池寿命。输出电压可以通过VSEL引脚从9个预设电压中选择。当输入电压接近输出电压时,集成电路进入100%接通模式,开关操作停止。日本碍子株式会社的芯片型陶瓷二次电池“EnerCera®”与ROHM电源IC的超低静态电流技术“Nano Energy™”相结合,助力实现免维护物联网设备,构建超高效蓄电单元。EnerCera® × Nano Energy™ Collaboration Page;
BD70522GUL
型号: BD70522GUL
厂家: ROHM    ROHM
描述:

BD70522GUL是一个降压转换器,具有180nA静态电流,支持高达500mA的输出电流。ULP(超低功率)模式的恒定开启时间(COT)控制提供了卓越的瞬态响应,并通过在10μA负载范围内提供卓越的轻载效率延长了电池寿命。输出电压可以通过VSEL引脚从9个预设电压中选择。当输入电压接近输出电压时,集成电路进入100%接通模式,开关操作停止。日本碍子株式会社的芯片型陶瓷二次电池“EnerCera®”与ROHM电源IC的超低静态电流技术“Nano Energy™”相结合,助力实现免维护物联网设备,构建超高效蓄电单元。EnerCera® × Nano Energy™ Collaboration Page

电池 开关 转换器
文件: 总27页 (文件大小:2651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Nano EnergyTM  
Ultra Low Iq Buck Converter  
For Low Power Applications  
BD70522GUL  
General Description  
Key Specifications  
The BD70522GUL is a Buck Converter featuring 180nA  
quiescent current and supports output current up to  
500mA. The Constant ON-Time (COT) control with ULP  
(Ultra Low Power) mode provides superior transient  
response and extends battery life by providing excellent  
light load efficiency below 10µA load range. The output  
voltage can be selected from 9 pre-set voltages by VSEL  
pins. When the input voltage gets close to the output  
voltage, the IC enters 100%ON mode where the  
switching operation stops.  
Input Voltage Range:  
2.5V to 5.5V  
1.2V to 3.3V  
500mA  
180nA (Typ)  
50nA (Typ)  
Output Voltage Range:  
Maximum Output Current:  
Operating Quiescent Current:  
Standby Current:  
Operating Temperature Range:  
-40°C to +85°C  
Package  
VCSP50L1C  
W(Typ) x D(Typ) x H(Max)  
1.76mm x 1.56mm x 0.57mm  
Features  
Nano EnergyTM  
180nA (Typ) Quiescent Current  
Up to 90% Efficiency at 10µA Output Current  
Up to 500mA Output Current  
9 Selectable Output Voltages  
(1.2V, 1.5V, 1.8V, 2.0V, 2.5V, 2.8V, 3.0V, 3.2V, 3.3V)  
Power Good Output  
100%ON Mode for Low Input Voltage  
Discharge Function on VOUT  
Applications  
Smoke Detector  
Thermostat  
Portable Devices  
Wearable Devices  
Low-Iq Applications without Standby Switcher  
Energy Harvesting  
Typical Application Circuit  
L1  
2.2μH  
VIN  
2.5V-5.5V  
VOUT  
1.2V-3.3V  
VIN  
LX  
COUT  
22μF  
CIN  
10μF  
EN  
VOUT  
VEN  
VSEL1  
VSEL2  
PG  
AGND  
PGND  
VSEL1  
VSEL2  
VPG  
Figure 1. Typical Application Circuit  
Nano EnergyTMis a trademark of Rohm Co., Ltd.  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
1/24  
TSZ22111 14 001  
 
 
 
 
 
 
BD70522GUL  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................3  
Absolute Maximum Ratings ............................................................................................................................................................4  
Thermal Resistance........................................................................................................................................................................4  
Recommended Operating Conditions.............................................................................................................................................4  
Electrical Characteristics.................................................................................................................................................................4  
Electrical Characteristics - continued..............................................................................................................................................5  
Detailed Descriptions......................................................................................................................................................................6  
Typical Performance Curves...........................................................................................................................................................8  
Figure 7-10. Efficiency vs Output Current ...................................................................................................................................8  
Figure 11-14. Output Voltage vs Output Current .........................................................................................................................9  
Figure 15-18. Switching Frequency vs Output Current .............................................................................................................10  
Figure 19-22. Output Ripple Voltage vs Output Current............................................................................................................11  
Figure 23-26. Load Transient Response...................................................................................................................................12  
Figure 27-30. Line Transient Response ....................................................................................................................................13  
Figure 31-34. Line Transient Response ....................................................................................................................................14  
Figure 35-36. Startup.................................................................................................................................................................15  
Figure 37-38. Shutdown............................................................................................................................................................15  
Figure 39-42. Input Voltage Ramp Up/Down.............................................................................................................................16  
Timing Chart .................................................................................................................................................................................17  
Application Examples ...................................................................................................................................................................18  
I/O Equivalence Circuits................................................................................................................................................................19  
Operational Notes.........................................................................................................................................................................20  
Ordering Information.....................................................................................................................................................................22  
Marking Diagram ..........................................................................................................................................................................22  
Physical Dimension and Packing Information...............................................................................................................................23  
Revision History............................................................................................................................................................................24  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
2/24  
TSZ22111 15 001  
 
BD70522GUL  
Pin Configuration  
1
2
3
PGND  
LX  
VIN  
A
B
C
VOUT  
PG  
AGND  
EN  
VSEL2  
VSEL1  
Top View  
Figure 2. Pin Configuration  
Pin Descriptions  
Pin No.  
Pin Name  
PGND  
LX  
Description  
A1  
Power Ground Pin  
A2  
Switching Pin. Connect an inductor to this pin.  
A3  
VIN  
Power Supply Input Pin. Connect an input capacitor close to this pin.  
Feedback Pin for internal feedback divider network and regulation loop.  
This pin is also used for VOUT discharge while EN pin is set to low.  
B1  
B2  
VOUT  
AGND  
Analog Ground Pin  
Enable Pin. This pin must be terminated.  
High : Enable  
Low : Shutdown  
B3  
EN  
Do not pull up EN terminal higher than VIN voltage.  
Power Good Open Drain Output Pin. PG remains low while the VOUT pin voltage  
is lower than the threshold voltage. If not used, this pin can be left open.  
Do not pull up PG terminal to a voltage which is higher than VIN voltage.  
Output Voltage Selection Pins.  
C1  
C2  
C3  
PG  
These pins have three states :  
VSEL2  
VSEL1  
High = VIN (Connect these pins to VIN directly without pull up resistors)  
Low = GND (Connect these pins to GND directly without pull down resistors)  
OPEN = No Connection (PCB:C<50pF, R>1Mohm)  
The setting of these pins cannot be changed while the IC is operating.  
Block Diagram  
Ultra Low Power  
Reference  
VOUT  
EN  
UVLO  
EN  
VOUT  
Discharge  
Soft  
Start  
Internal  
Feedback  
Network  
VSEL1  
VFB  
100% ON Mode  
Comp  
UVLO  
Comp  
VIN  
VSEL2  
AGND  
VIN  
VIN  
VTH_UVLO  
V100TH_REF  
Main  
Comp  
UVLO  
Limit  
High Side  
Main  
Ref  
Current  
Limit Comp  
LX  
ULP  
Comp  
Control  
Logic  
PG  
PG  
Comp  
Zero Cross  
Comp  
ULP  
Ref  
Limit  
Low Side  
VTH_PG  
EN  
PGND  
Current  
Limit Comp  
Figure 3. Block Diagram  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
3/24  
TSZ22111 15 001  
BD70522GUL  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
Rating  
Unit  
Supply Voltage  
VIN  
VLX  
-0.3 to +6  
-0.3 to VIN+0.3V  
-0.3 to VIN+0.3V  
-0.3 to VIN+0.3V  
-0.3 to VIN+0.3V  
10  
V
V
LX Voltage  
EN Voltage  
VEN  
VPG  
VSEL  
IPG  
V
PG Voltage  
V
VSEL1, 2 Voltage  
PG Sink Current  
Power Dissipation  
Maximum Junction Temperature  
Storage Temperature Range  
V
mA  
Pd  
0.592 (Note 1)  
W
°C  
Tjmax  
Tstg  
150  
- 55 to + 150  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with power dissipation taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) The derating is 4.74 mW/°C while the device is operating above Ta25°C (Mounted on 4-layer 50.0mm x 58.0mm x 1.6mm FR-4 board)  
Thermal Resistance  
Parameter  
Symbol  
Thermal Resistance (Typ)  
168.8  
Unit  
VCSP50L1C  
Junction to Ambient  
θJA  
°C/W  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
50.0mm x 58.0mm x 1.6mmt  
4 Layers  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Supply Voltage(Note 2)  
VIN  
IOUT  
L
2.5  
-
3.6  
-
5.5  
500  
-
V
Output Current  
Inductance(Note 3)  
Output Capacitance(Note 4)  
mA  
µH  
µF  
°C  
-
2.2  
22  
+25  
COUT  
Topr  
10  
-40  
100  
+85  
Operating Temperature  
(Note 2) Initial startup voltage is over 2.6V (Max)  
(Note 3) The effective inductance should be kept in the specified range from 1.5µH to 3.5µH, including the variety of tolerance, temperature, current derating.  
(Note 4) The effective capacitance should be kept this specified range including variety of tolerance, temperature, bias voltage derating.  
Electrical Characteristics  
(Unless otherwise specified VIN=3.6V Ta=25°C)  
Parameter  
Circuit Current  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Shutdown Current  
IST  
IQ  
-
-
50  
1000  
1000  
nA  
nA  
No switching, VEN= VIN  
VSEL=VIN  
Include VSEL, EN pin current  
Operating Quiescent Current  
180  
Under Voltage Lockout  
UVLO Detection Threshold  
UVLO Release Threshold  
VUVLO  
2.30  
2.40  
2.40  
2.50  
2.50  
2.60  
V
V
VIN falling  
VIN rising  
VUVLORLS  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
4/24  
TSZ22111 15 001  
BD70522GUL  
Electrical Characteristics - continued  
(Unless otherwise specified VIN=3.6V Ta=25°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Control  
EN High Level  
VENH  
VENL  
IEN  
1.1  
-
-
-
0.3  
V
V
EN Low Level  
-
EN Input Current  
-
VIN-0.3  
-0.3  
-
0
-
1
µA  
V
VSEL High Level  
VSELH  
VSELL  
IVSEL  
VIN+0.3  
+0.3  
1
VSEL Low Level  
-
V
VSEL Input Current  
0
µA  
Power Switch  
High-side FET On-Resistance  
Low-side FET On-Resistance  
High-side FET Switch Current Limit 1  
Low-side FET Switch Current Limit  
High-side FET Switch Current Limit 2  
VOUT Discharge FET On-Resistance  
Power Good Output  
RONH  
RONL  
-
-
0.30  
0.15  
1750  
970  
0.45  
0.23  
2275  
1260  
1260  
200  
Ω
Ω
ILX =50mA  
ILX=-50mA  
ILIMITH1  
ILIMITL  
ILIMITH2  
RDISCH  
1225  
680  
680  
50  
mA  
mA  
mA  
Ω
Peak current of inductor  
Bottom current of inductor  
100%ON Mode  
970  
100  
IOUT=-10mA  
Power Good Detection Threshold  
Power Good Hysteresis  
PG Low Level Output Voltage  
PG Output Off Leak Current  
100% ON Mode Transition  
100% ON Mode Detection Threshold  
100% ON Mode Release Threshold  
Output  
VPGTH  
VPGHYS  
VOLPG  
IOFFPG  
-
95  
-5  
-
-
-
%
%
V
VOUT rising  
IPG=-1mA  
-
-0.3  
-
0.3  
1
0
µA  
V100THM  
V100THP  
100  
150  
200  
250  
300  
350  
mV  
mV  
VIN falling, VIN = VOUT + V100THM  
VIN rising, VIN = VOUT + V100THP  
Output Voltage Range  
VOUTRG  
VOACC1  
VOACC2  
tSDELAY  
tSS  
1.2  
-2.0  
-2.5  
2.5  
-
3.3  
2.0  
V
%
Refer to Table 1  
IOUT=10mA  
Output Voltage Accuracy 1  
Output Voltage Accuracy 2  
Startup Delay Time  
0.0  
0.0  
5.0  
3.0  
2.5  
%
IOUT=100mA  
10.0  
6.0  
ms  
ms  
Soft-Start Time  
1.5  
Table 1. Output Voltage Settings (Note 5)  
VSEL1  
VSET  
1.2V  
1.5V  
1.8V  
2.0V  
2.5V  
2.8V  
3.0V  
3.2V  
3.3V  
VSEL2  
GND  
OPEN  
GND  
VIN  
OPEN  
GND  
GND  
GND  
VIN  
OPEN  
VIN  
OPEN  
OPEN  
VIN  
OPEN  
GND  
VIN  
VIN  
(Note 5) The output voltage is only determined by the states of VSEL1 and VSEL2 during the startup delay.  
In order to reduce the current consumption, the output voltage cannot be changed by changing the  
states of VSEL1 and VSEL2 after the startup delay.  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
5/24  
TSZ22111 15 001  
BD70522GUL  
Detailed Descriptions  
1. Constant ON-Time (COT) Control  
The COT control topology supports CCM (Continuous Current Mode) for medium and high load conditions and  
DCM (Discontinuous Current Mode) for light load conditions.  
The ON-Time is set in proportion to the output voltage (VOUT), and in inverse proportion to power supply voltage  
(VIN). Therefore, when in CCM, even if VIN or VOUT settings changes, the IC always operates in a constant frequency  
1MHz (Typ) approximately.  
If the load current decreases, the IC enters DCM seamlessly to maintain high efficiency down to very light loads,  
and the switching frequency varies approximately linearly with the load current.  
2. 100%ON Mode  
When VIN gets close to VOUT, the IC stops switching and starts 100% duty cycle operation. It connects the output to  
the input via the inductor and the internal high side MOSFET switch, when VIN falls below the 100%ON Mode Enter  
Threshold (V100THM). And when VIN increases and exceeds the 100%ON Mode Release Threshold (V100THP), the IC  
starts to switch again.  
VIN  
VOUT  
Soft  
100%  
100%  
Start  
MODE  
MODE  
250mV(Typ)  
V100THP  
V100THM  
200mV(Typ)  
VPGTH  
95%(Typ)  
VPGHYS  
5%(Typ)  
VUVLORLS  
2.5V(Typ)  
VUVLO  
2.4V(Typ)  
t
PG  
: Soft Start End  
: VINV100THP  
① ’① VINV100THM  
① ① ① ’  
① ① ①  
High  
Low  
Low  
t
Figure 4. 100% ON Mode Transition  
3. Ultra Low Power (ULP) Mode  
2 comparators are used in this IC for monitoring VOUT.  
One is main comparator (Main Comp) and the other is ULP comparator (ULP Comp).  
The transition from normal mode to ULP mode is judged pulse by pulse. While the Main Comp or the ULP Comp  
detects the decrease in VOUT, the LX node switches for one pulse, then becomes high impedance.  
If the high impedance state lasts over 8μs, the IC transits from normal mode to ULP mode.  
In ULP mode, the Main Comp and the Power Good comparator (PG Comp) are disabled to reduce the current  
consumption. And when the ULP Comp detects the decrease in VOUT, the Main Comp and the PG Comp are  
enabled, and the IC transits from ULP mode to normal mode.  
8us  
8us  
8us  
normal mode  
ULP mode  
normal mode  
ULP mode  
normal mode  
Main Comp: ON  
PG Comp: ON  
Main Comp: OFF  
PG Comp: OFF  
Main Comp: ON  
PG Comp: ON  
Main Comp: OFF  
PG Comp: OFF  
Main Comp: ON  
PG Comp: ON  
Figure 5. Transition between Normal Mode and ULP Mode  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
6/24  
TSZ22111 15 001  
BD70522GUL  
4. On-Time Extension  
The On-Time is extended automatically to get the best transient response in the case of high duty cycle operation.  
If the Main Comp Output does not return to high level within Constant On-Time, the On-Time is extended until the  
Main Comp Output returns to high, and the maximum On-Time is limited to 16μs.  
FB  
+
Ramp  
Compensator  
VREF  
Main Comp  
Output  
On-Time Extension  
with delay  
LX  
Constant  
On-Time  
shot  
IL  
Figure 6. On-Time Extension  
5. Discharge for VOUT  
VOUT pin has a MOSFET for discharge which connects VOUT pin to GND when the IC is in standby state.  
(EN=Low or UVLO state or TSD state)  
6.  
Power Good (PG) Output  
PG pin is an open-drain output.  
The PG Comp is active when EN pin is set to high and VIN is above the threshold VUVLORLS  
PG pin remains low when the VOUT is lower than the PG detection threshold (VPGTH) or during the soft-start time.  
PG pin goes to high impedance when VOUT exceeds VPGTH  
And it is pulled to low level once VOUT falls below the PG release threshold (VPGTH-VPGHYS).  
.
.
7. Under Voltage Lock Out (UVLO)  
UVLO function prevents the malfunction of the internal circuit when VIN is too low.  
If VIN falls lower than 2.4V (Typ), the IC turns off.  
In order to prevent from the misdetection of UVLO, it is necessary to set VIN higher than 2.5V (Typ).  
8.  
Over Current Limit (OCL)  
BD70522GUL employs a bottom inductor current limit function which is achieved by using the low side MOSFET.  
Turning on the high side MOSFET is prohibited while the inductor current is higher than the low side OCL (ILIMITL).  
This function keeps the inductor peak current lower than the sum of ILIMITL and the inductor ripple current.  
However, the low side OCL function does not work if the VOUT pin is directly shorted to GND. Thus, a high side  
OCL is implemented for such case. The high side MOSFET turns off when the inductor current exceeds the high  
side OCL (ILIMITH1). Furthermore, the peak current is limited to ILIMITH1×0.67 under the On-Time extension state.  
The inductor current is also limited to ILIMITH2 under 100%ON mode, and the high side MOSFET is used to sense the  
current in this case.  
9.  
Thermal Shutdown (TSD)  
BD70522GUL stops the switching operation when the device temperature exceeds the TSD detection threshold  
130°C (Typ) for protecting the IC from overheat. After the device temperature falls below the TSD release threshold  
115°C (Typ), the IC starts the soft-start operation and recovers to the normal operation.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
7/24  
BD70522GUL  
Typical Performance Curves  
(Unless otherwise specified Ta=25°C)  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
VIN=2.6V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=5.5V  
VIN=2.6V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=5.5V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
OutputCurrent: IOUT[mA]  
OutputCurrent: IOUT[mA]  
Figure 7. Efficiency vs Output Current  
(VOUT=1.2V)  
Figure 8. Efficiency vs Output Current  
(VOUT=1.8V)  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
VIN=2.8V  
VIN=3.6V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=5.5V  
VIN=4.2V  
VIN=5.0V  
VIN=5.5V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
OutputCurrent: IOUT[mA]  
OutputCurrent: IOUT[mA]  
Figure 9. Efficiency vs Output Current  
(VOUT=2.5V)  
Figure 10. Efficiency vs Output Current  
(VOUT=3.3V)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
8/24  
BD70522GUL  
Typical Performance Curves - continued  
(Unless otherwise specified Ta=25°C)  
1.236  
1.224  
1.212  
1.200  
1.188  
1.176  
1.164  
1.854  
1.836  
1.818  
1.800  
1.782  
1.764  
1.746  
VIN=2.6V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=5.5V  
VIN=2.6V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=5.5V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
OutputCurrent: IOUT[mA]  
OutputCurrent: IOUT[mA]  
Figure 11. Output Voltage vs Output Current  
(Load Regulation, VOUT=1.2V)  
Figure 12. Output Voltage vs Output Current  
(Load Regulation, VOUT=1.8V)  
2.575  
3.399  
2.550  
2.525  
2.500  
2.475  
2.450  
2.425  
3.366  
3.333  
3.300  
3.267  
3.234  
3.201  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=5.5V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=5.5V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
OutputCurrent: IOUT[mA]  
OutputCurrent: IOUT[mA]  
Figure 13. Output Voltage vs Output Current  
(Load Regulation, VOUT=2.5V)  
Figure 14. Output Voltage vs Output Current  
(Load Regulation, VOUT=3.3V)  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
9/24  
TSZ22111 15 001  
BD70522GUL  
Typical Performance Curves - continued  
(Unless otherwise specified Ta=25°C)  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN=2.6V  
VIN=3.6V  
VIN=5.5V  
VIN=2.6V  
VIN=3.6V  
VIN=5.5V  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
OutputCurrent: IOUT[mA]  
OutputCurrent: IOUT[mA]  
Figure 15. Switching Frequency vs Output Current  
(VOUT=1.2V)  
Figure 16. Switching Frequency vs Output Current  
(VOUT=1.8V)  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
200  
VIN=2.8V  
VIN=3.6V  
VIN=5.5V  
400  
100  
0
VIN=3.6V  
VIN=5.5V  
100  
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
500  
OutputCurrent: IOUT[mA]  
OutputCurrent: IOUT[mA]  
Figure 17. Switching Frequency vs Output Current  
(VOUT=2.5V)  
Figure 18. Switching Frequency vs Output Current  
(VOUT=3.3V)  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
10/24  
TSZ22111 15 001  
BD70522GUL  
Typical Performance Curves - continued  
(Unless otherwise specified Ta=25°C)  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
VIN=2.6V  
VIN=3.6V  
VIN=5.5V  
VIN=2.6V  
VIN=3.6V  
VIN=5.5V  
0.0  
0.0  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
OutputCurrent: IOUT[mA]  
OutputCurrent: IOUT[mA]  
Figure 19. Output Ripple Voltage vs Output Current  
(Peak to Peak Output Ripple Voltage, VOUT=1.2V)  
Figure 20. Output Ripple Voltage vs Output Current  
(Peak to Peak Output Ripple Voltage, VOUT=1.8V)  
50.0  
50  
VIN=2.8V  
VIN=3.6V  
VIN=3.6V  
45.0  
45  
40  
VIN=5.5V  
VIN=5.5V  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
35  
30  
25  
20  
15  
10  
5
0.0  
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
OutputCurrent: IOUT[mA]  
OutputCurrent: IOUT[mA]  
Figure 21. Output Ripple Voltage vs Output Current  
(Peak to Peak Output Ripple Voltage, VOUT=2.5V)  
Figure 22. Output Ripple Voltage vs Output Current  
(Peak to Peak Output Ripple Voltage, VOUT=3.3V)  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
11/24  
TSZ22111 15 001  
BD70522GUL  
Typical Performance Curves - continued  
(Unless otherwise specified Ta=25°C)  
Droop=137.5mV  
Overshoot=66.9mV  
Droop=113.9mV  
Overshoot=65.1mV  
VOUT  
VOUT  
IOUT  
IOUT  
Figure 23. Load Transient Response  
Figure 24. Load Transient Response  
(VIN=3.6V, VOUT=1.2V, IOUT=1uA500mA, tr=tf=1μs)  
(VIN=3.6V, VOUT=1.8V, IOUT=1uA500mA, tr=tf=1μs)  
Droop=174.9mV  
Overshoot=85.6mV  
Droop=260.2mV  
Overshoot=88.1mV  
VOUT  
VOUT  
IOUT  
IOUT  
Figure 25. Load Transient Response  
Figure 26. Load Transient Response  
(VIN=3.6V, VOUT=2.5V, IOUT=1uA500mA, tr=tf=1μs)  
(VIN=3.6V, VOUT=3.3V, IOUT=1uA500mA, tr=tf=1μs)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
12/24  
BD70522GUL  
Typical Performance Curves - continued  
(Unless otherwise specified Ta=25°C)  
VIN  
VIN  
Droop=30.4mV  
Overshoot=29.6mV  
Droop=22.0mV  
Overshoot=22.8mV  
VOUT  
VOUT  
Figure 27. Line Transient Response  
Figure 28. Line Transient Response  
(VIN=2.6V5.5V, tr=tf=48μs, VOUT=1.2V, IOUT=1mA)  
(VIN=2.6V5.5V, tr=tf=48μs, VOUT=1.2V, IOUT=500mA)  
VIN  
VIN  
Droop=32.8mV  
Overshoot=30.4mV  
Droop=18.8mV  
Overshoot=20.0mV  
VOUT  
VOUT  
Figure 29. Line Transient Response  
Figure 30. Line Transient Response  
(VIN=2.6V5.5V, tr=tf=48μs, VOUT=1.8V, IOUT=1mA)  
(VIN=2.6V5.5V, tr=tf=48μs, VOUT=1.8V, IOUT=500mA)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
13/24  
BD70522GUL  
Typical Performance Curves - continued  
(Unless otherwise specified Ta=25°C)  
Droop=54.0mV  
Overshoot=48.4mV  
VIN  
VIN  
Droop=20.0mV  
Overshoot=28.0mV  
VOUT  
VOUT  
Figure 31. Line Transient Response  
Figure 32. Line Transient Response  
(VIN=2.8V5.5V, tr=tf=45μs, VOUT=2.5V, IOUT=1mA)  
(VIN=2.8V5.5V, tr=tf=45μs, VOUT=2.5V, IOUT=500mA)  
Droop=50.8mV  
VIN  
VIN  
Droop=24.4mV  
Overshoot=30.4mV  
Overshoot=48.4mV  
VOUT  
VOUT  
Figure 33. Line Transient Response  
Figure 34. Line Transient Response  
(VIN=3.7V5.5V, tr=tf=30μs, VOUT=3.3V, IOUT=1mA)  
(VIN=3.7V5.5V, tr=tf=30μs, VOUT=3.3V, IOUT=500mA)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
14/24  
BD70522GUL  
Typical Performance Curves - continued  
(Unless otherwise specified Ta=25°C)  
VEN  
VLX  
VPG  
VEN  
VLX  
VPG  
tSDELAY=4.50ms  
tSS=2.54ms  
tSDELAY=4.51ms  
tSS=2.57ms  
VOUT  
VOUT  
Figure 35. Startup  
(VIN=3.6V, VOUT=2.5V, IOUT=0mA, EN=0VIN)  
Figure 36. Startup  
(VIN=3.6V, VOUT=2.5V, IOUT=500mA, EN=0VIN)  
VEN  
VEN  
VOUT  
VOUT  
tSD=134.2us  
tSD=2.45ms  
(50%EN20%VOUT  
)
(50%EN20%VOUT  
)
Figure 37. Shutdown  
(VIN=3.6V, VOUT=2.5V, IOUT=0mA, EN=VIN0)  
Figure 38. Shutdown  
(VIN=3.6V, VOUT=2.5V, IOUT=500mA, EN=VIN0)  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
15/24  
TSZ22111 15 001  
BD70522GUL  
Typical Performance Curves - continued  
(Unless otherwise specified Ta=25°C)  
VPG  
VIN  
VPG  
VIN  
VOUT  
VOUT  
V
LX  
VLX  
Figure 39. Input Voltage Ramp Up/Down  
Figure 40. Input Voltage Ramp Up/Down  
(VIN=0V5.0 V, VOUT=1.2V, IOUT=500mA, PG=VOUT)  
(VIN=0V5.0V, VOUT=1.8V, IOUT=500mA, PG=VOUT)  
V
PG  
V
IN  
VPG  
VIN  
100%ON Mode  
Operation  
100%ON Mode  
Operation  
VOUT  
VOUT  
VLX  
VLX  
Figure 41. Input Voltage Ramp Up/Down  
Figure 42. Input Voltage Ramp Up/Down  
(VIN=0V5.0V, VOUT=2.5V, IOUT=500mA, PG=VOUT)  
(VIN=0V5.0V, VOUT=3.3V, IOUT=500mA, PG=VOUT)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
16/24  
BD70522GUL  
Timing Chart  
After BD70522GUL is enabled, the internal reference voltage is booted up.  
When the startup delay time tSDELAY has expired, the switching is started by the soft-start operation, and the output  
voltage is ramped up to the set voltage (VOUTSET) which is determined by the states of VSEL1 and VSEL2 during the  
startup delay in normal operation.  
V
EN  
LX  
V
V
OUTSET  
VOUT  
tSDELAY  
tSS  
Figure 43. Timing Chart  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
17/24  
TSZ22111 15 001  
BD70522GUL  
Application Examples  
L1  
VIN  
2.2μH  
VOUT  
VIN  
LX  
VOUT  
PG  
COUT  
CIN  
EN  
10μF  
22μF  
VEN  
VSEL1  
VSEL2  
VPG  
AGND  
PGND  
Figure 44. Application Example (VOUT=1.2V)  
L1  
VIN  
2.2μH  
VOUT  
VIN  
LX  
VOUT  
PG  
COUT  
CIN  
EN  
10μF  
22μF  
VEN  
VSEL1  
VSEL2  
VPG  
AGND  
PGND  
Figure 45. Application Example (VOUT=1.8V)  
L1  
VIN  
2.2μH  
VOUT  
VIN  
LX  
VOUT  
PG  
COUT  
CIN  
EN  
10μF  
22μF  
VEN  
VSEL1  
VSEL2  
VPG  
AGND  
PGND  
Figure 46. Application Example (VOUT=2.5V)  
L1  
VIN  
2.2μH  
VOUT  
VIN  
LX  
VOUT  
PG  
COUT  
CIN  
EN  
10μF  
22μF  
VEN  
VSEL1  
VSEL2  
VPG  
AGND  
PGND  
Figure 47. Application Example (VOUT=3.3V)  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
18/24  
TSZ22111 15 001  
BD70522GUL  
I/O Equivalence Circuits  
A1: PGND, A2: LX, A3: VIN, B2: AGND  
B1: VOUT  
VIN  
VOUT  
LX  
PGND  
AGND  
B3: EN  
C1: PG  
VIN  
EN  
VIN  
PG  
C2: VSEL2, C3: VSEL1  
VIN  
VIN  
VSEL2, VSEL1  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
19/24  
TSZ22111 15 001  
BD70522GUL  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
20/24  
TSZ22111 15 001  
BD70522GUL  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure xx. Example of monolithic IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all  
within the Area of Safe Operation (ASO).  
14. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
15. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
16. Disturbance Light  
In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics  
may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures  
that will prevent the chip from being exposed to light.  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
21/24  
TSZ22111 15 001  
BD70522GUL  
Ordering Information  
B D 7 0 5 2 2 G U L - E 2  
Part Number  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
GUL: VCSP50L1C  
Marking Diagram  
VCSP50L1C (TOP VIEW)  
1PIN MARK  
Part Number Marking  
LOT Number  
0 5 2 2  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
22/24  
TSZ22111 15 001  
BD70522GUL  
Physical Dimension and Packing Information  
Package Name  
VCSP50L1C  
< Tape and Reel Information >  
Tape  
Embossed carrier tape  
Quantity  
3,000pcs/Reel  
E2  
Direction of feed  
The direction is the pin 1 of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
1234  
1234  
1234  
1234  
1234  
1234  
Direction of feed  
1pin  
Reel  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
23/24  
TSZ22111 15 001  
BD70522GUL  
Revision History  
Date  
Revision  
001  
Changes  
10.Aug.2017  
New Release  
Corrected the limits of ILIMITLand ILIMITH2in Electrical Characteristics.  
Improved the description of OCL.  
21.Aug.2017  
002  
Improved Figure 5, Marking Diagram.  
www.rohm.com  
TSZ02201-0Q1Q0AJ00400-1-2  
21.Aug.2017 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
24/24  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD706

NPN POWER TRANSISTORS
STMICROELECTR

BD706

Silicon PNP Power Transistor
ISC

BD707

COMPLEMENTARY SILICON POWER TRANSISTORS
STMICROELECTR

BD707

NPN SILICON PLANAR POWER TRANSISTOR
TRSYS

BD707

Silicon NPN Power Transistors
SAVANTIC

BD707

Silicon NPN Power Transistors
ISC

BD708

COMPLEMENTARY SILICON POWER TRANSISTORS
STMICROELECTR

BD708

Silicon PNP Power Transistors
ISC

BD708

Silicon PNP Power Transistors
SAVANTIC

BD709

COMPLEMENTARY SILICON POWER TRANSISTORS
STMICROELECTR

BD709

Silicon NPN Power Transistors
ISC

BD709

Silicon NPN Power Transistors
SAVANTIC