BD7602GUL [ROHM]

BD7602GUL是用于向移动设备的近距离无线通信LSI提供电源的LSI。&通过对应sup2;总线协议的2线串行接口进行各LDO的输出控制。将近距离无线通信LSI所需的电源整合在1chip中,实现省空间。;
BD7602GUL
型号: BD7602GUL
厂家: ROHM    ROHM
描述:

BD7602GUL是用于向移动设备的近距离无线通信LSI提供电源的LSI。&通过对应sup2;总线协议的2线串行接口进行各LDO的输出控制。将近距离无线通信LSI所需的电源整合在1chip中,实现省空间。

通信 无线
文件: 总25页 (文件大小:1188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Power Management IC for Cell phoneSmart Phone  
Power Management IC for Near Field  
Communication LSI  
BD7602GUL  
Summary  
BD7602GUL is a Power Management IC for mobile  
Key Parameters  
Input voltage range   
Output voltage(LDO1):  
Output voltage range(LDO2):  
Output current(LDO1):  
Output current(LDO2):  
VBAT operating current:  
Operating temperature range:  
2.7V 5.5V  
3.0V(Typ)  
2.8V 3.3V  
100mA(Max)  
150mA(Max)  
10μA (Typ)  
device with NFC IC.  
Each LDO output is controlled by 2 line serial interface  
which supports I2C Bus protocol.  
This helps to save space to integrate all PMIC for NFC  
IC.  
-35°C +85°C  
Features  
Low current consumption 10µA (Typ)  
PACKAGE  
VCSP50L1C  
W (Typ) x D (Typ) x H (Max)  
1.60mm x 1.60mm x 0.57mm  
2 Channel LDO  
2.7V UVLO detection  
1 Channel GPO  
Thermal Shut Down function  
2 line serial interface which supports I2C bus  
protocol.  
USE  
Smart Phones  
Cell Phones  
Mobile device which has NFC IC  
VCSP50L1C  
Application Schematic  
1μF  
VBAT  
Voltage  
Detect  
(2.7V)  
VOUT1  
VOUT2  
REFC  
LDO1  
3.0V  
100mA  
4.7uF  
4.7uF  
TSD  
LDO2  
2.8V3.3V  
150mA  
VREF  
(IC Internal  
Power  
DPREF  
DVDD  
DVDD  
0.1μF  
2.2KΩ  
2.2KΩ  
SCL  
SDA  
I2C  
SLAVE  
GPO  
GPO  
REGISTER  
GND  
Figure 1. Application schematic.  
Product structure : Silicon monolithic integrated circuit. This product has no designed protection against radioactive rays.  
www.rohm.co.jp  
TSZ02201-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/22  
TSZ2211114001  
BD7602GUL  
Pinout Diagram  
1
3
2
VOUT1  
VBAT  
VOUT2  
REFC  
GND  
SCL  
SDA  
DVDD  
VOUT2  
A
B
C
C
B
A
GND  
GPO  
SCL  
DVDD  
GPO  
REFC  
SDA  
VOUT1  
VBAT  
2
1
3
Bottom View  
Top View  
Figure 2. Pinout Diagram  
Pin Descriptions  
Diode  
Terminal  
Number  
Name  
Function  
+side  
VBAT  
-
-side  
GND  
GND  
GND  
-
SiA1  
A2  
A3  
B1  
B2  
B3  
C1  
C2  
C3  
VOUT1  
VBAT  
VOUT2  
GND  
LDO1 OUTPUT  
POWER Supply  
LDO2 OUTPUT  
Ground  
VBAT  
VBAT  
-
GPO  
GPO OUTPUT  
GND  
GND  
GND  
GND  
GND  
DVDD  
REFC  
SCL  
I2C Serial Interface I/O Power supply  
Power for logic circuit.  
-
VBAT  
DVDD  
DVDD  
I2C serial interface CLK input  
I2C serial interface DATA inout  
SDA  
IC Block Diagram  
VBAT  
Voltage  
Detect  
(2.7V)  
LDO1  
3.0V  
100mA  
VOUT1  
VOUT2  
REFC  
TSD  
LDO2  
2.8V3.3V  
150mA  
VREF  
(IC Internal  
Power  
DPREF  
DVDD  
I2C  
SLAVE  
SCL  
SDA  
GPO  
GPO  
REGISTER  
GND  
Figure 3. Block Diagram  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/22  
TSZ2211115001  
BD7602GUL  
Block Explanation  
The output voltage for LDO1 is 3V (Typ) with an output current capability of 100mA (Max). UVLO Function is released when  
the IC starts by turning the power ON (VBAT).  
LDO1 turns OFF when UVLO function is enabled.  
I2C controller can also be used to turn off the IC. When LDO1 turns off, VOUT1 automatically connects with 100Ω  
discharge resistance.  
VOUT1 needs 4.7uF external capacitor.  
LDO2 has an adjustable output voltage from 2.8V to 3.3V.The initial value is 3V (Typ) with an output current capability of  
150mA (Max). UVLO Function is released when the IC starts by turning the power ON (VBAT).  
LDO2 turns OFF when UVLO function is enabled.  
I2C Controller is used to adjust output voltage from 2.8V to 3.3V (8steps). It is also used to turn off the IC.  
When LDO2 turns off, VOUT2 automatically connects with 100Ω discharge resistance.  
VOUT2 needs 4.7uF external capacitor.  
GPO is a logic output pin from register and could be used as enable or disable signal. The register can also set its output to  
CMOS type or NMOS type with an output current capability of 3mA.  
Initial condition of GPO is disabled or in HI-Z state.  
Maximum pull up voltage during NMOS output is equal to VBAT  
I2C SLAVE REGISTER is the function for I2C serial interface. Input voltage level is DVDD.  
Voltage Detect for VBAT UVLO is 2.7V (Typ). When UVLO is detected, registers are reset.  
Also at this time VREF, LDO1 and LDO2 outputs turn off.  
VREF is equal to 2.5V (Typ). It powers the internal circuit and cannot be used externally. UVLO Function is released when  
the IC starts by turning power ON (VBAT). When UVLO function is detected, IC turns off.  
REFC needs 0.1uF external capacitor.  
DPREF is reference voltage for LDO VREF and Voltage Detect.  
TSD is for thermal shut down function. This prevents damaging and breaking of IC. When IC„s internal temperature rise up  
to a certain temperature, LDO1 and LDO2 are automatically turned off. When temperature goes down, LDO1 and LDO2  
automatically return to its normal operation.  
In this case, register doesn‟t need to be reset.  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/22  
25.Feb.2014 Rev.001  
TSZ2211115001  
BD7602GUL  
Absolute Maximum Rating(s) (Ta = 25°C)  
Parameter  
Symbol  
Value  
Unit  
Power Supply (VBAT)  
Power Supply (DVDD)  
Power Dissipation  
VINVBAT  
VINDVDD  
Pd  
-0.3 +7.0  
-0.3 +7.0  
0.66 (Note 1)  
-35 +85  
-55 +150  
150  
V
V
W
°C  
°C  
°C  
V
Operating Temperature Range  
Storage Temperature  
Junction Temperature  
Other Pin Voltage  
Topr  
Tstg  
Tjmax  
VOTH  
-0.3 +7.0  
(Note 1) Derate by 5.2mW/when operating above Ta=25. (Mounted on a ROHM specification board.50mm x 58mm)  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Recommended Operating Condition (Ta= -35°C to +85°C)  
Parameter  
Power Supply(VBAT)  
Power Supply(DVDD)  
Symbol  
MIN  
TYP  
MAC  
UNIT  
VBAT  
2.7  
3.6  
5.5  
V
V
VDVDD  
1.70  
1.80  
3.50  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/22  
TSZ2211115001  
BD7602GUL  
Electrical Characteristic (Unless otherwise specified, VBAT=3.6V, VDVDD=1.8V, Ta=25°C)  
Parameter  
Circuit Current  
Symbol  
MIN  
TYP  
MAX  
UNIT  
Condition  
VBAT Circuit Current(VBAT=3.6V)  
VBAT Circuit Current(VBAT=3.1V)  
DVDD Circuit Current  
Voltage Detector  
ICCBAT  
ICCBAT  
-
-
10  
9.5  
0
18  
15  
1
µA  
µA  
µA  
LDO1,2: No Load  
LDO1,2: No Load  
ICCDVDD  
Detect Voltage  
VUVLO  
VUVLOHYS  
VOREF  
2.64  
50  
2.70  
100  
2.76  
150  
V
mV  
V
Down Sweep  
Detect Voltage Hysteresis  
VREF Output Voltage  
LDO1  
2.45  
2.50  
2.55  
Output Voltage  
VOUT1  
IOUT1MAX  
ΔVIS1  
2.94  
3.00  
-
3.06  
V
IOUT1= 50mA  
Output Max Current  
Line Regulation  
100  
-
-
-
mA  
mV  
mV  
-
-
2
VBAT=3.34.5V, IOUT1= 50mA  
IOUT1= 1100mA  
Load Regulation  
ΔVLS1  
20  
VBAT=4.2V+0.2Vpp,  
IOUT1= 50mA  
fr=120Hz,BW=2020kHz  
PSRR  
PSRR1  
RDIS1  
-
-
45  
-
-
dB  
Discharge Resistance  
LDO2  
100  
Ω
VBAT=2.5V  
Output Voltage  
VOUT2  
VO2RNG  
IOUT2MAX  
2.94  
2.80  
150  
3.00  
3.06  
3.30  
-
V
V
IOUT1= 50mA  
Variable Output Voltage  
Output Max Current  
-
-
mA  
VBAT=VOUT2+0.3V4.5V,  
IOUT2= 50mA  
Line Regulation  
Load Regulation  
ΔVIS2  
ΔVLS2  
-
-
2
-
-
mV  
mV  
20  
IOUT2= 1150mA  
VBAT=4.2V+0.2Vpp,  
IOUT2= 50mA  
fr=120Hz,BW=2020kHz  
PSRR  
PSRR2  
RDIS2  
-
-
45  
-
-
dB  
Discharge resistance  
100  
Ω
VBAT=2.5V  
GPO  
0.8×  
VOUT1  
0.3+  
VOUT1  
Output H Level  
VOHGPO  
-
V
ISINKGPO= 3mA  
Output L Level  
VOLGPO  
VMXGPON  
VOLGPON  
ILKGPON  
-0.3  
-
-
-
0.4  
VBAT  
0.4  
1
V
V
ISOURCEGPO= 3mA  
NMOS output pulled up max voltage  
NMOS output L level  
-0.3  
-1  
-
V
ISOURCEGPO= 3mA  
NMOS output leak current  
I2Cserial interface  
0
µA  
Terminal voltage=VOUT1, 0V  
0.75×  
VDVDD  
0.3+  
VDVDD  
0.25×  
VDVDD  
Input H Level (SCL, SDA)  
Input L Level (SCL, SDA)  
VIH  
VIL  
-
-
V
V
-0.3  
Input Leak Current (SCL, SDA)  
Output L Level (SDA)  
ILK  
-1  
0
-
1
µA  
V
Terminal voltage=VDVDD, 0V  
ISOURCE= 6mA  
VOL  
-0.3  
0.4  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/22  
TSZ2211115001  
BD7602GUL  
Electrical Characteristic (Unless otherwise specified, VBAT=3.6V, VDVDD=1.8V, Ta=-3585°C( Note2))  
Parameter  
Circuit Current  
Symbol  
MIN  
TYP  
MAX  
UNIT  
Condition  
VBAT Circuit Current(VBAT=3.6V)  
VBAT Circuit Current(VBAT=3.1V)  
DVDD Circuit Current  
Voltage Detector  
ICCBAT  
ICCBAT  
-
-
-
10  
9.5  
0
18  
15  
1
µA  
µA  
µA  
LDO1,2: No Load  
LDO1,2: No Load  
ICCDVDD  
Detect Voltage  
VUVLO  
VUVLOHYS  
VOREF  
2.6  
50  
2.7  
100  
2.5  
2.8  
150  
2.6  
V
mV  
V
Down Sweep  
Detect Voltage Hysteresis  
VREF Output Voltage  
LDO1  
2.4  
Output Voltage  
VOUT1  
IOUT1MAX  
ΔVIS1  
2.88  
3
-
3.12  
V
IOUT1= 50mA  
Output Max Current  
Line Regulation  
100  
-
-
-
mA  
mV  
mV  
-
-
2
VBAT=3.34.5V, IOUT1= 50mA  
IOUT1= 1100mA  
Load Regulation  
ΔVLS1  
20  
VBAT=4.2V+0.2Vpp,  
IOUT1= 50mA  
fr=120Hz,BW=2020kHz  
PSRR  
PSRR1  
RDIS1  
-
-
45  
-
-
dB  
Discharge Resistance  
LDO2  
100  
Ω
VBAT=2.5V  
Output Voltage  
VOUT2  
VO2RNG  
IOUT2MAX  
2.88  
2.8  
3
-
3.12  
3.3  
-
V
V
IOUT1= 50mA  
Variable Output Voltage  
Output Max Current  
150  
-
mA  
VBAT=VOUT2+0.3V4.5V,  
IOUT2= 50mA  
Line Regulation  
Load Regulation  
ΔVIS2  
ΔVLS2  
-
-
2
-
-
mV  
mV  
20  
IOUT2= 1150mA  
VBAT=4.2V+0.2Vpp,  
IOUT2= 50mA  
fr=120Hz,BW=2020kHz  
PSRR  
PSRR2  
RDIS2  
-
-
45  
-
-
dB  
Discharge resistance  
100  
Ω
VBAT=2.5V  
GPO  
0.8×  
VOUT1  
0.3+  
VOUT1  
Output H Level  
VOHGPO  
-
V
ISINKGPO= 3mA  
Output L Level  
VOLGPO  
VMXGPON  
VOLGPON  
ILKGPON  
-0.3  
-
-
-
0.4  
VBAT  
0.4  
1
V
V
ISOURCEGPO= 3mA  
NMOS output pulled up max voltage  
NMOS output L level  
-0.3  
-1  
-
V
ISOURCEGPO= 3mA  
NMOS output leak current  
I2Cserial interface  
0
µA  
Terminal voltage=VOUT1, 0V  
0.75×  
VDVDD  
0.3+  
VDVDD  
0.25×  
VDVDD  
Input H Level (SCL, SDA)  
Input L Level (SCL, SDA)  
VIH  
VIL  
-
-
V
V
-0.3  
Input Leak Current (SCL, SDA)  
Output L Level (SDA)  
ILK  
-1  
0
-
1
µA  
V
Terminal voltage=VDVDD, 0V  
ISOURCE= 6mA  
VOL  
-0.3  
0.4  
(Note2)These are guaranteed by design engineering from -35to 85.  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
6/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
2
4
6
-50  
0
50  
100  
Input Voltage : VBAT[V]  
Temp : Ta[]  
Figure 4. Circuit Current VS temperature  
Figure 5. Input Current VS Input Voltage  
(VBAT=3.6V,Ta=-35~85)  
(VBAT=0V~5.5V,Ta=25)  
4
3
2
1
0
4
3
2
1
0
Io=1mA  
Io=1mA  
Io=30mA  
Io=50mA  
Io=100mA  
Io=30mA  
Io=50mA  
Io=100mA  
0
2
4
6
0
2
4
6
Input Voltage : VBAT[V]  
Input Voltage : VBAT[V]  
Figure 6. Output Voltage VS Input Voltage  
Figure 7. Output Voltage VS Input Voltage  
(VBAT=0V~5.5V,Ta=25)  
(VBAT=0V~5.5V,Ta=25,Vout=2.8V)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
7/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
VOUT2=2.9V  
VOUT2=2.95V  
4
4
3
2
1
0
3
2
Io=1mA  
Io=1mA  
Io=30mA  
Io=50mA  
Io=100mA  
1
Io=30mA  
Io=50mA  
Io=100mA  
0
0
2
4
6
0
2
4
6
Input Voltage : VBAT[V]  
Input Voltage : VBAT[V]  
Figure 8. Output Voltage VS Input Voltage  
Figure 9. Output Voltage VS Input Voltage  
(VBAT=0V~5.5V,Ta=25,Vout=2.9V)  
(VBAT=0V~5.5V,Ta=25,Vout=2.95V)  
VOUT2=3.0V  
VOUT2=3.05V  
4
3
2
1
0
4
3
2
1
0
Io=1mA  
Io=1mA  
Io=30mA  
Io=50mA  
Io=100mA  
Io=30mA  
Io=50mA  
Io=100mA  
0
2
4
6
0
2
4
6
Input Voltage : VBAT[V]  
Input Voltage : VBAT[V]  
Figure 10. Output Voltage VS Input Voltage  
Figure 11. Output Voltage VS Input Voltage  
(VBAT=0V~5.5V,Ta=25,Vout=3.0V)  
(VBAT=0V~5.5V,Ta=25,Vout=3.05V)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
8/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
VOUT2=3.2V  
VOUT2=3.1V  
4
3
2
1
0
4
3
2
Io=1mA  
1
Io=1mA  
Io=30mA  
Io=30mA  
Io=50mA  
Io=100mA  
Io=50mA  
Io=100mA  
0
0
2
4
6
0
2
4
6
Input Voltage : VBAT[V]  
Input Voltage : VBAT[V]  
Figure 12. Output Voltage VS Input Voltage  
Figure 13. Output Voltage VS Input Voltage  
(VBAT=0V~5.5V,Ta=25,Vout=3.1V)  
(VBAT=0V~5.5V,Ta=25,Vout=3.2V)  
VOUT2=3.3V  
4
3
2
1
0
Io=1mA  
Io=30mA  
Io=50mA  
Io=100mA  
0
2
4
6
Input Volatage : VBAT[V]  
Figure 14. Output Voltage VS Input Voltage  
(VBAT=0V~5.5V,Ta=25,Vout=3.3V)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
3.4  
3.3  
3.2  
3.1  
3
3.2  
VOUT2=3.3V  
VOUT2=3.2V  
VOUT2=3.1V  
VOUT2=3.05V  
VOUT2=3.0V  
VOUT2=2.95V  
VOUT2=2.9V  
VOUT2=2.8V  
3.1  
3
2.9  
2.8  
2.9  
2.8  
2.7  
-50  
0
50  
100  
Temp : Ta[]  
-50  
0
50  
100  
Temp : Ta[]  
Figure 15. Output Voltage VS Temperature  
Figure 16. Output Voltage VS Temperature  
(VBAT=3.6V,Ta=25,Io=1mA)  
(VBAT=3.6V,Ta=25,Io=1mA)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
VBAT=3.1V  
VBAT=3.1V  
VBAT=3.3V  
VBAT=3.6V  
VBAT=3.9V  
VBAT=5.5V  
VBAT=3.3V  
VBAT=3.6V  
VBAT=3.9V  
VBAT=5.5V  
0
0
0
1
2
3
4
0
1
2
3
4
VOUT2 Voltage : VOUT2[V]  
VOUT1 Voltage : VOUT1[V]  
Figure 17. Output Current VS VOUT1 Voltage  
Figure 18. Output Current VS VOUT2 Voltage  
(VBAT=3.6V,Ta=25)  
(VBAT=3.6V,Ta=25,VOUT2=3.0V)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
60  
40  
20  
60  
40  
20  
0
Io=1mA  
Io=1mA  
Io=50mA  
Io=50mA  
Io=100mA  
Io=100mA  
0
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency : fR[Hz]  
Frequency : fR[Hz]  
Figure 19. Ripple Rejection VS Frequency  
(VBAT=4.2V+0.2Vpp,Cout=4.7μF,fR=120Hz,Ta=25)  
Figure 20. Ripple Rejection VS Frequency  
(VBAT=4.2V+0.2Vpp,Cout=4.7μF,fR=120Hz,Ta=25)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
VBAT:0.5V/Div  
VBAT:0.5V/Div  
VOUT1:20mV/Div  
VOUT1:20mV/Div  
30.83mV  
104.17mV  
Figure 21. VBAT Response(Rise)  
Figure 22. VBAT Response(Fall)  
(VBAT=4V5V,Cout=4.7μF,Ta=25,Tf=0.5μs)  
(VBAT=5V4V,Cout=4.7μF,Ta=25,Tf=0.5μs)  
VBAT:0.5V/Div  
VBAT:0.5V/Div  
VOUT2:20mV/Div  
VOUT2:20mV/Div  
112.50mV  
30.00mV  
Figure 23. VBAT Response(Rise)  
Figure 24. VBAT Response(Fall)  
(VBAT=4V5V,Cout=4.7μF,Ta=25,Tf=0.5μs)  
(VBAT=5V4V,Cout=4.7μF,Ta=25,Tf=0.5μs)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
IVOUT1 5mA/Div  
IVOUT1 5mA/Div  
VOUT1 100mV/Div  
VOUT1 100mV/Div  
36.00mV  
32.00mV  
Figure 25. Load Response(Rise)  
Figure 26. Load Response(Fall)  
(VBAT=3.6V,Cout=4.7μF,Ta=25,Iout=1mA10mA,Tr=0.5μs)  
(VBAT=3.6V,Cout=4.7μF,Ta=25,Iout=10mA1mA,Tf=0.5μs)  
IVOUT2 5mA/Div  
IVOUT2 5mA/Div  
VOUT2 100mV/Div  
VOUT2 100mV/Div  
32.00mV  
30.00mV  
Figure 27. Load Response(Rise)  
Figure 28. Load Response(Fall)  
(VBAT=3.6V,Cout=4.7μF,Ta=25,Iout=1mA10mA,Tr=0.5μs)  
(VBAT=3.6V,Cout=4.7μF,Ta=25,Iout=10mA1mA,Tf=0.5μs)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
IVOUT1 5mA/Div  
IVOUT1 5mA/Div  
VOUT1 100mV/Div  
VOUT1 100mV/Div  
82mV  
78mV  
Figure 29. Load Response(Rise)  
Figure 30. Load Response(Fall)  
(VBAT=3.6V,Cout=4.7μTa=25,F,Iout=50mA100mA,Tr=0.5μs)  
(VBAT=3.6V,Cout=4.7μF,Ta=25,Iout=100mA50mA,Tf=0.5μs)  
IVOUT2 50mA/Div  
IVOUT2 50mA/Div  
VOUT2 100mV/Div  
VOUT2 100mV/Div  
80mV  
82mV  
Figure 31. Load Response(Rise)  
Figure 32. Load Response(Fall)  
(VBAT=3.6V,Cout=4.7μF,Ta=25,Iout=50mA100mA,Tr=0.5μs)  
(VBAT=3.6V,Cout=4.7μF,Ta=25,Iout=100mA50mA,Tf=0.5μs)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
14/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
VBAT 2.0V/Div  
VBAT 2.0V/Div  
VOUT1 2.0V/Div  
VOUT2 2.0V/Div  
152mA  
164mA  
IVBAT 100A/Div  
IVBAT 100A/Div  
Figure 33. Rush Current  
Figure 34. Rush Current  
(VBAT=3.6V, LDO_EN=LH ,Cout=4.7μF,Ta=25)  
(VBAT=3.6V,LDO_EN=LH Cout=4.7μF,Ta=25)  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
2.5  
2.7  
2.9  
3.1  
Input Voltage : VBAT[V]  
Figure 35. Output Voltage VS Input Voltage  
(VBAT=3.6V,Ta=25)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/22  
TSZ2211115001  
BD7602GUL  
Characteristic Data(Reference Data) -continuance  
300  
200  
100  
0
3
2.8  
2.6  
0
2
4
0
2
4
Source Current : ISOURCEGPO[mA]  
SinkCurrent : ISINKGPO[mA]  
Figure 36. Output Voltage VS Source Current(CMOS Output)  
Figure 37. Output Voltage VS Sink Current(CMOS Output)  
(VBAT=3.6V,Ta=25)  
(VBAT=3.6V,Ta=25)  
300  
200  
100  
0
0
2
4
SinkCurrent : ISINKGPO[mA]  
Figure 38. Output Voltage VS Sink Current(NMOS Output)  
(VBAT=3.6V,Ta=25)  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/22  
TSZ2211115001  
BD7602GUL  
I2C Interface Timing Specification  
BD7602GUL has 2 line serial interface which supports I2C Bus protocol.  
Table 1. I2C slave address  
A7  
0
A6  
0
A5  
A4  
A3  
A2  
A1  
0
R/W  
1/0  
1
1
1
1
Figure 39. I2C interface Timing  
(Unless otherwise specified, VBAT=3.6V, VDVDD=1.8V, Ta=25°C)  
Parameter  
Symbol  
MIN  
TYP  
MAX  
UNIT  
Condition  
SCL Clock Frequency  
START Hold time  
fSCL  
-
-
-
-
-
-
-
-
400  
kHz  
µs  
µs  
µs  
ns  
ns  
µs  
tHD:STA  
tLOW  
0.6  
1.3  
0.6  
0.0  
100  
0.6  
-
-
-
-
-
-
SCL of Ltime  
SCL of Htime  
tHIGH  
Data input hold time  
Data input setup time  
STOP condition setup time  
tHD:DAT  
tSU:DAT  
tSU:STO  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/22  
TSZ2211115001  
BD7602GUL  
Register Map  
Table 2.Register Map  
Register  
name  
ICREV  
Address  
R/W  
INIT  
D7  
D6  
D5  
D4  
D3  
D2  
-
D1  
D0  
00h  
01h  
02h  
03h  
04h  
R
09h  
03h  
03h  
00h  
00h  
-
-
-
-
-
-
-
-
-
-
DEVICE [2:0]  
CHIPREV [2:0]  
LDO2_EN LDO1_EN  
LDO2_VOUT [2:0]  
LDOCNT  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
-
-
-
LDO2ADJ  
GPOCNT  
GPOMODE  
-
-
-
REG_GPO  
-
-
GPO_EN  
Reserved  
GPO_SEL  
Register Detail  
Register  
name  
ICREV  
Address  
00h  
R/W  
R
INIT  
09h  
D7  
-
D6  
-
D5  
D4  
D3  
D2  
D1  
D0  
DEVICE [2:0]  
CHIPREV [2:0]  
Bit[5:3]: DEVICE [2:0]  
DEVICE Name Notification  
001: BD7602GUL (Initial Value)  
CHIP Revision Notification  
001: DS1 (Initial Value)  
Bit[2:0]: CHIPREV [2:0]  
Register  
name  
LDOCNT  
Address  
01h  
R/W  
R/W  
INIT  
03h  
D7  
-
D6  
-
D5  
-
D4  
-
D3  
-
D2  
-
D1  
D0  
LDO2_EN LDO1_EN  
Bit[1]: LDO2_EN  
LDO2 Output ON/OFF Control  
0: OFF  
1: ON (Initial Value)  
LDO1 Output ON/OFF Control  
0: OFF  
Bit[0]: LDO1_EN  
1: ON (Initial Value)  
Register  
name  
LDO2ADJ  
Address  
02h  
R/W  
R/W  
INIT  
03h  
D7  
-
D6  
D5  
-
D4  
-
D3  
-
D2  
D1  
D0  
-
LDO2_VOUT [2:0]  
Bit[2:0]: LDO2_VOUT [2:0] LDO2 Output Voltage set  
000: 2.80V  
001: 2.90V  
010: 2.95V  
011: 3.00V (Initial Value)  
100: 3.05V  
101: 3.10V  
110: 3.20V  
111: 3.30V  
Register  
name  
GPOCNT  
Address  
03h  
R/W  
R/W  
INIT  
00h  
D7  
-
D6  
-
D5  
-
D4  
-
D3  
-
D2  
-
D1  
D0  
REG_GPO  
GPO_EN  
Bit[1]: GPO_EN  
GPO Enable/Disable Control  
0: Disable (Hi-Z) (Initial Value)  
1: Enable (Output Type and Output Voltage follow data of address 04h)  
GPO Output Control  
Bit[0]: REG_GPO  
0: Low Output (Initial Value)  
1: High Output (CMOS Output), Hi-Z (NMOS Output)  
Register  
name  
GPOMODE  
Address  
04h  
R/W  
R/W  
INIT  
00h  
D7  
-
D6  
-
D5  
-
D4  
-
D3  
-
D2  
-
D1  
D0  
Reserved  
GPO_SEL  
Bit[1]: Reserved  
Reserved Register no any function)  
In case of writing address 04h, note to set this bit to 0.  
Bit[0]: GPO_SEL  
GPO Output Type  
0: CMOS Output (Initial Value)  
1: NMOS Output  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/22  
TSZ2211115001  
BD7602GUL  
Timing Chart  
2.8V  
2.7V  
VBAT(External input)  
VBATUVLO(Internal signal)  
VREF  
2.3V (Reference)  
DVDD(External input)  
W/R Disable  
W/R Enable  
W/R Disable  
I2C Access  
LDO1 Output  
GPO Input  
500µsec  
W/R Disable  
Initial: Hi-Z  
W/R Operation  
Write Data  
W/R Disable  
Initial: Hi-Z  
GPO Output  
Figure 40. Timing Chart  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/22  
TSZ2211115001  
BD7602GUL  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply terminals.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Thermal Consideration  
Should by any chance the power dissipation (Pd) rating be exceeded, the rise in temperature of the chip may result in  
deterioration of its properties. The absolute maximum rating of the Pd stated in this specification is when the IC is  
mounted on a 1.64mm x 1.64mm x 0.57mm glass epoxy board. In case the absolute maximum rating has been  
exceeded, increase the board size and copper area to prevent exceeding the Pd rating.  
5. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
6. Rush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
8. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC‟s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
9. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/22  
25.Feb.2014 Rev.001  
TSZ2211115001  
BD7602GUL  
Operational Notes – continued  
10. Unused Input Terminals  
Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance  
and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input terminals should be connected to  
the power supply or ground line.  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 41.Example of monolithic IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Save Operating Range  
When using this IC, set output transistor not to exceed absolute maximum range or ASO.  
14. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be  
within the IC‟s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn off all output pins. When the Tj falls below the  
TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage  
15. Over Current Protection circuit  
Because output has an Over Current Protection (OCP) circuit that operates in accordance with the rated output  
capacity, IC is protected from breakage or possible damage when the load becomes shorted. This protection circuit is  
also effective in preventing damage to the IC in case of sudden and unexpected current surges only and not for its  
continuous protection.  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/22  
TSZ2211115001  
BD7602GUL  
Ordering Name information  
B D 7  
6
0
2 G U  
L
-
E 2  
Name of Product  
Package  
Packingforming specification  
GUL: VCSP50L1C  
E2: reel type emboss taping  
Package Dimensions  
Unit: mm  
< Tape and Reel Information >  
Tape  
Embossed carrier tape  
3000pcs  
Direction of feed E2  
Quantity  
The direction is the pin 1 of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
1234  
1234  
1234  
1234  
1234  
1234  
Direction of feed  
1pin  
Reel  
www.rohm.co.jp  
TSZ02011-0Q4Q0AB00010-1-2  
25.Feb.2014 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/22  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD7620KS2

Video-Audio Interface for LCD TV
ROHM

BD7628F

Silicon Monolithic Integrated Circuit
ROHM

BD7628FVM

Silicon Monolithic Integrated Circuit
ROHM

BD7672BG

PWM Control Type DC/DC Converter IC for AC/DC Driver
ROHM

BD7672BG-TR

PWM Control Type DC/DC Converter IC for AC/DC Driver
ROHM

BD7673AG

PWM Control Type DC/DC Converter IC for AC/DC Driver
ROHM

BD7673AG-TR

PWM Control Type DC/DC Converter IC for AC/DC Driver
ROHM

BD7679G

AC/DC用PWM控制器型DC/DC转换器BD7679G为所有存在插口的产品提供很好的系统。绝缘、非绝缘均可对应,可轻松设计各种形式的低功耗转换器。外接开关用MOSFET及电流检测电阻,可实现自由度高的电源设计。通过峰值电流控制,可进行逐周期电流限制,发挥带宽和瞬态响应的优异性能。BD7679G内置了软启动功能、脉冲串功能、逐周期过电流限制、VCC过电压保护、过负荷保护等各种保护功能。备有外部停止用端子(COMP端子),可通过外部信号停止开关(OFF)。此功能可用于过热保护及输出过电压保护等。开关频率固定为65kHz。内置跳频功能,有助于实现低EMI。
ROHM

BD7679G-GTR

Switching Controller, Current-mode, 1A, 65kHz Switching Freq-Max, PDSO6, SSOP-6
ROHM

BD7682FJ-LB

Low Noise Quasi-Resonant Control DC/DC converter IC for AC/DC Converter
ROHM

BD7682FJ-LB_16

Low Noise Quasi-Resonant Control DC/DC converter IC for AC/DC Converter
ROHM

BD7683FJ-LB

Low Noise Quasi-Resonant Control DC/DC converter IC for AC/DC Converter
ROHM