BD8355MWV [ROHM]

Regulators ICs for Digital Cameras and Camcorders System Switching Regulator IC with Built-in FET (10V); 稳压器IC,用于数码相机和摄像机系统开关稳压器IC具有内置FET ( 10V )
BD8355MWV
型号: BD8355MWV
厂家: ROHM    ROHM
描述:

Regulators ICs for Digital Cameras and Camcorders System Switching Regulator IC with Built-in FET (10V)
稳压器IC,用于数码相机和摄像机系统开关稳压器IC具有内置FET ( 10V )

稳压器 开关 数码相机 摄像机
文件: 总21页 (文件大小:1174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Regulators ICs for Digital Cameras and Camcorders  
System Switching Regulator IC  
with Built-in FET (10V)  
BD8355MWV  
No.11036EAT20  
Description  
BD8355MWV is a system switching regulator for Li 2 cell composed of 6 step-down synchronous rectification channels and  
1 step-up Di rectification channel for LED application. Using a charge-pump system for high side FET driver and including  
power MOSFET reduce the number of peripheral devices and realize high efficiency.  
Functions  
1) Includes step-down 6 CH (CH1~6), step-up for LED 1CH (7CH) total 7CH included.  
2) Includes Power MOSFET for all channels.  
3) Includes Charge-pump circuit for high side driver.  
4) Operating frequency of 750 kHz.  
5) CH1 and 4 are common, 3 and 5 are also common, and others are possible to turn ON/OFF independently.  
6) Includes Short Circuit Protection (SCP), Under Voltage Lock Out (UVLO) and Thermal Shut Down (TSD).  
7) Includes Short Circuit Protection for CH6 (SCP6).  
8) Includes Over Voltage Protection for CH7.  
9) Thermally enhanced UQFN056V7070 package (7mm×7mm, 0.4mm pitch)  
Applications  
For digital single-lens reflex camera, digital video camera  
Absolute maximum ratingsTa25)  
Parameter  
Symbol  
Ratings  
Unit  
VCC, VBAT, VHx1~6  
VLx1~6  
-0.3~11.0  
-0.3~VHx  
-0.3~28.0  
-0.3~15.0  
V
V
V
V
VLx7  
Power Supply Voltage  
HVREG  
CTL14, CTL2,  
CTL35, CTL6  
-0.3~11.0  
V
CTL7  
IomaxLx1, Lx4, Lx5  
IomaxLx2, Lx3  
IomaxLx6  
-0.3~7.0  
±1.5  
V
A
±0.8  
A
Maximum Current  
Power Dissipation  
±2.0  
A
IomaxLx7  
+1.0  
A
420 (*1)  
930 (*2)  
-25~+85  
-55~+125  
125  
mW  
mW  
Pd  
Operating Temperature  
Storage Temperature  
Junction Temperature  
Topr  
Tstg  
Tjmax  
*1 Without external heat sink, power dissipation degrades by 4.2mW/above 25.  
*2 Power dissipation degrades by 9.3mW/above 25, when mounted on a 74.2mm×74.2mm×1.6mmt grass epoxy PCB.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
1/20  
Technical Note  
BD8355MWV  
Recommended Operating Conditions(Ta=-25~+85)  
Ratings  
Typ.  
7.2  
Parameter  
Symbol  
Unit  
Min.  
4.0  
Max.  
10.0  
2.2  
VCC, VBAT, VHx1~6  
CVREGA  
CVREGD  
CHVREG  
CFLY  
V
μF  
μF  
μF  
μF  
kHz  
kΩ  
Power Supply Voltage  
0.47  
0.47  
0.47  
0.047  
500  
1.0  
VREGA Output Capacitor  
VREGD Output Capacitor  
HVREG Output Capacitor  
Flying Capacitor  
1.0  
2.2  
1.0  
2.2  
0.1  
0.22  
1800  
82  
Fosc  
750  
47  
Oscillator Frequency  
Timing Resistor  
RRT  
15  
Electrical Characteristics(Ta=25,Vcc=VBAT=7.2V, fosc=750kHz with no designation)  
Limits  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Reference Voltage】  
VREGA Output Voltage  
Line Regulation  
VREGA  
DVli  
3.54  
3.60  
3.66  
10  
V
VREGA=-1mA  
-
-
-
-
mV  
mV  
VCC=4V~10V, VREGA=-1mA  
VREGA=-1mA~-5mA  
Load Regulation  
DVlo  
10  
Bias Voltage】  
VREGD Output Voltage  
Charge Pump】  
VREGD  
3.50  
3.60  
3.70  
V
VREGD=-10mA  
VBAT VBAT  
+3.50 +3.60  
HVREG Output Voltage  
HVREG  
-
V
Iout=0mA, FB=2.5V  
Output Impedance  
Oscillator】  
RHVREG  
-
24  
40  
Iout=-30mA, CFLY=0.1µF  
Oscillator Frequency  
Oscillator Frequency cofficient  
PWM Comparator】  
CH7 0% Duty Threshold Voltage  
CH7 Max Duty  
fosc  
Df  
650  
-
750  
0
850  
2
kHz  
%
RT=47kꢀ  
VCC=4V~10V  
Vth0  
0.2  
86  
0.3  
92  
-
V
Dmax  
96  
%
Error Amplifier 1(CH1)  
Threshold Voltage  
Veth1  
VFBL1  
VFBH1  
Isink1  
0.790  
-
0.800  
0.03  
3.5  
0.810  
0.2  
-
V
V
Output Voltage L  
INV1=0.9V  
Output Voltage H  
3.3  
4.0  
-
V
INV1=0.7V  
Output Sink Current  
Output Source Current  
Input Bias Current  
17.0  
-140  
0
-
mA  
µA  
nA  
INV1=0.9V, FB1=1.75V  
INV1=0.7V, FB1=1.75V  
INV1=0V  
Isource1  
Ibias1  
-70  
100  
-100  
Error Amplifier 2(CH2~6)  
Threshold Voltage  
Veth  
VFBL  
VFBH  
Isink  
0.990  
-
1.000  
0.03  
3.5  
1.010  
0.2  
-
V
V
Output Voltage L  
INV=1.1V  
Output Voltage H  
3.3  
4.0  
-
V
INV=0.9V  
Output Sink Current  
Output Source Current  
Input Bias Current  
17.0  
-140  
0
-
mA  
µA  
nA  
INV=1.1V, FB=1.75V  
INV=0.9V, FB=1.75V  
INV=0V  
Isource  
Ibias  
-70  
100  
-100  
Error Amplifier 3(CH7)  
Threshold Voltage  
Veth7  
VFBL7  
VFBH7  
Isink7  
0.285  
-
0.300  
0.03  
3.5  
0.315  
0.2  
-
V
V
Output Voltage L  
INV=0.4V  
Output Voltage H  
3.3  
4.0  
-
V
INV=0.2V  
Output Sink Current  
Output Source Current  
Input Bias Current  
17.0  
-140  
0
-
mA  
µA  
nA  
INV=0.4V, FB=1.75V  
INV=0.2V, FB=1.75V  
INV7=0V  
Isource7  
Ibias7  
-70  
50  
-50  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
2/20  
Technical Note  
BD8355MWV  
Limits  
Typ.  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Max.  
Soft Start】  
CH1 Soft Start Time  
Tss1  
1.3  
1.5  
2.5  
3.1  
3.7  
4.6  
msec CH1  
msec CH2~6  
msec CH7  
CH2-6 Soft Start Time  
Tss2-6  
TDTC7  
CH7 Duty Restriction Time  
Driver】  
12.0  
15.0  
18.0  
RLx  
300  
500  
0.27  
0.15  
0.42  
0.30  
0.52  
0.20  
0.20  
0.30  
0.23  
0.22  
0.22  
0.30  
0.50  
700  
0.44  
0.24  
0.68  
0.48  
0.84  
0.32  
0.32  
0.48  
0.37  
0.36  
0.36  
0.48  
0.80  
CTL=0V  
CH1~6 Lx Pull-down Resistor  
CH1 High Side Nch FET On Resistor  
CH1 Low Side Nch FET On Resistor  
CH2 High Side Nch FET On Resistor  
CH2 Low Side Nch FET On Resistor  
CH3 High Side Nch FET On Resistor  
CH3 Low Side Nch FET On Resistor  
CH4 High Side Nch FET On Resistor  
CH4 Low Side Nch FET On Resistor  
CH5 High Side Nch FET On Resistor  
CH5 Low Side Nch FET On Resistor  
CH6 High Side Nch FET On Resistor  
CH6 Low Side Nch FET On Resistor  
CH7 Nch FET On Resistor  
Under Voltage Lock Out(UVLO)】  
Threshold Voltage1  
RonH1  
RonL1  
RonH2  
RonL2  
RonH3  
RonL3  
RonH4  
RonL4  
RonH5  
RonL5  
RonH6  
RonL6  
Ron7  
-
-
-
-
-
-
-
-
-
-
-
-
-
Lx1=-50mA  
Lx1=50mA  
Lx2=-50mA  
Lx2=50mA  
Lx3=-50mA  
Lx3=50mA  
Lx4=-50mA  
Lx4=50mA  
Lx5=-50mA  
Lx5=50mA  
Lx6=-50mA  
Lx6=50mA  
Lx7=50mA  
Vthuvlo1  
DVuv  
3.3  
25  
-
3.4  
100  
2.5  
3.5  
200  
2.7  
V
mV  
V
VCC pin voltage  
VCC pin voltage  
VREGA pin voltage  
VREGD pin voltage  
Hysteresis Voltage  
Vthuvlo2  
Vthuvlo3  
Threshold Voltage2  
-
3.15  
3.35  
V
Threshold Voltage3  
Short Circuit Protection(SCP)】  
Timer Start Voltage  
Vstart  
Vstart6  
Vscpth  
Vscp6th  
Iscp  
2.65  
0.45  
0.9  
0.9  
-1.4  
-1.4  
-
2.8  
0.50  
1.0  
1.0  
-1.0  
-1.0  
10  
2.95  
0.55  
V
V
FB1~5, 7 pin v oltage  
INV6 pin voltage  
CH6 Timer Start Voltage  
1.1  
V
SCP pin Threshold Voltage  
SCP6 pin Threshold Voltage  
SCP pin Source Current  
1.1  
V
-0.6  
-0.6  
100  
100  
µA  
µA  
mV  
mV  
SCP=0.1V  
Iscp6  
SCP6=0.1V  
SCP6 pin Source Current  
Vstscp  
Vstscp6  
CTL=3V, FB=0V  
CTL6=3V, INV6=1.0V  
SCP pin Stand-by Voltage  
-
10  
SCP6 pin Stand-by Voltage  
Over Voltage Protection(OVP)】  
CH7 OVP Threshold Voltage  
Control】  
VOVP7  
26.5  
28.0  
29.5  
V
Vo7 pin voltage  
VCTLH  
VCTLL  
VCTLH  
VCTLL  
RCTL  
2
-
-
VCC  
0.4  
V
V
Active  
CTL1-6  
Control Voltage  
-0.3  
2
Non-Active  
Active  
-
5.5  
V
CTL7  
Control Voltage  
-0.3  
0.6  
-
0.4  
V
Non-Active  
1.0  
1.4  
Mꢀ  
CTL pin Pull-Down Resistor  
Whole device】  
Istb1  
Istb2  
Istb3  
Icc  
-
-
-
-
0
0
5
5
µA  
µA  
µA  
mA  
CTL=0V  
VCC pin  
Hx1~6=10V, sum of Hx1~6  
Lx7=28V  
Stand-by Current  
Circuit Current  
Hx pin  
0
5
Lx7 pin  
6.0  
9.0  
CTL=3V, FB=2.5V  
This product is not designed for normal operation within a radioactive environment.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
3/20  
Technical Note  
BD8355MWV  
Package dimensions  
Fig. 1 Package dimension  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
4/20  
Technical Note  
BD8355MWV  
PIN Assignments  
Pin No. Pin Name  
Pin Descriptions  
CH7 Error Amplifier Negative Input Pin  
CH6 Error Amplifier Output Pin  
CH6 Error Amplifier Negative Input Pin  
CH5 Error Amplifier Output Pin  
CH5 Error Amplifier Negative Input Pin  
Ground Pin  
Pin No. Pin Name  
Pin Descriptions  
CTL35 CH3, 5 ON/OFF Control Pin  
CTL14 CH1, 4 ON/OFF Control Pin  
1
2
INV7  
FB6  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
3
INV6  
FB5  
PGND12 Ground Pin for CH1, 2 Output  
PGND12 Ground Pin for CH1, 2 Output  
4
5
INV5  
GND  
FB4  
Lx2  
Hx2  
Hx3  
Lx3  
Pin for Connecting to Inductor of CH2  
6
CH2 Highside Transistor and Driver Supply Voltage  
CH3 Highside Transistor and Driver Supply Voltage  
Pin for Connecting to Inductor of CH3  
7
CH4 Error Amplifier Output Pin  
CH4 Error Amplifier Negative Input Pin  
CH3 Error Amplifier Negative Input Pin  
CH3 Error Amplifier Output Pin  
CH2 Error Amplifier Negative Input Pin  
CH2 Error Amplifier Output Pin  
8
INV4  
INV3  
FB3  
9
PGND34 Ground Pin for CH3, 4 Output  
PGND34 Ground Pin for CH3, 4 Output  
10  
11  
12  
INV2  
FB2  
Lx4  
Lx4  
Pin for Connecting to Inductor of CH4  
Pin for Connecting to Inductor of CH4  
CH6 Short Circuit Protection Delay Time Setting Pin  
with External Capacitor  
13  
SCP6  
41  
CTL6  
CH6 ON/OFF Control Pin  
14  
15  
16  
CTL7  
INV1  
FB1  
CH7 ON/OFF Control Pin  
42  
43  
44  
CTL2  
Hx4  
CH2 ON/OFF Control Pin  
CH1 Error Amplifier Negative Input Pin  
CH1 Error Amplifier Output Pin  
CH4 Highside Transistor and Driver Supply Voltage  
CH4 Highside Transistor and Driver Supply Voltage  
Hx4  
CH1-5 and CH7 Short Circuit Protection Delay Time  
Setting  
17  
SCP  
45  
Hx5  
CH5 Highside Transistor and Driver Supply Voltage Pin  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RT  
Oscillator Frequency Adjustment Pin with External  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
Lx5  
Pin for Connecting to Inductor of CH5  
VREGA 3.6V Reference Output Voltage Pin  
VCC Input Supply Voltage Pin  
PGND56 Ground Pin for CH5, 6 Output  
PGND56 Ground Pin for CH5, 6 Output  
VREGD 3.6V Lowside Transistor Bias Voltage Output Pin  
CMINUS Pin for Connecting Chargepump Flying Capacitor  
HVREG Chargepump Voltage Output Pin  
Lx6  
Lx6  
Hx6  
Hx6  
Lx7  
Pin for Connecting to Inductor of CH6  
Pin for Connecting to Inductor of CH6  
CH6 Highside Transistor and Driver Supply Voltage  
CH6 Highside Transistor and Driver Supply Voltage  
Pin for Connecting to Inductor of CH7  
CPLUS Pin for Connecting Chargepump Flying Capacitor  
VBAT Chargepump Input Supply Voltage Pin  
Hx1  
Lx1  
Lx1  
CH1 Highside Transistor and Driver Supply Voltage  
Pin for Connecting to Inductor of CH1  
PGND7 Ground Pin for CH7 Output  
Vo7  
FB7  
Voltage Monitor Pin for CH7 Over Voltage Protection  
CH7 Error Amplifier Output Pin  
Pin for Connecting to Inductor of CH1  
PIN Assignments  
Fig. 2 Pin Assignments  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
5/20  
Technical Note  
BD8355MWV  
Block diagram and application circuit  
UNREG  
A
FB1  
HX1  
Lx1  
3.3kΩ  
16kΩ  
33kΩ  
HVREG  
DRIVER  
ERRORAMP1  
220pF  
4.7uF  
4.7uH  
330pF  
A
Vo1=1.15V  
CH1  
Step Down DC/DC  
(Current mode)  
INV1  
75kΩ  
VREGD  
DRIVER  
Iomax=1.2A  
10uF  
0.8V  
PGND12  
HX2  
FB2  
B
47kΩ  
HVREG  
DRIVER  
56kΩ  
20kΩ  
ERRORAMP2  
4.7uF  
1000pF  
INV2  
B
Vo2=3.8V  
CH2  
Lx2  
Iomax=0.6A  
VREGD  
DRIVER  
Step Down DC/DC  
(Current mode)  
10uH  
10uF  
1.0V  
C
FB3  
HX3  
Lx3  
6.8kΩ  
330pF  
12kΩ  
330pF  
43kΩ  
HVREG  
DRIVER  
ERRORAMP3  
4.7uF  
C
Vo3=1.8V  
CH3  
INV3  
FB4  
Iomax=0.6A  
91kΩ//130kΩ  
VREGD  
DRIVER  
Step Down DC/DC  
(Current mode)  
10uH  
10uF  
1.0V  
1.0V  
1.0V  
D
HX4  
Lx4  
39kΩ  
HVREG  
DRIVER  
36kΩ+36kΩ  
20kΩ  
ERRORAMP4  
4.7uF  
D
1000pF  
Vo4=4.6V  
CH4  
Step Down DC/DC  
(Current mode)  
INV4  
FB5  
Iomax=1.2A  
VREGD  
DRIVER  
10uH  
10uF  
PGND34  
E
HX5  
20kΩ  
HVREG  
DRIVER  
33kΩ  
15kΩ  
ERRORAMP5  
4.7uF  
1000pF  
E
Vo5=3.2V  
CH5  
Step Down DC/DC  
(Current mode)  
Lx5  
10uH  
INV5  
FB6  
Iomax=1.2A  
VREGD  
DRIVER  
10uF  
F
HX6  
39kΩ  
HVREG  
DRIVER  
4.7uF  
F
ERRORAMP6  
51kΩ  
16kΩ  
1000pF  
Vo6=4.2V  
CH6  
Step Down DC/DC  
(Current mode)  
Lx6  
10uH  
Iomax=1.8A  
INV6  
FB7  
VREGD  
DRIVER  
10uF  
1.0V  
PGND56  
2.7kΩ  
30kΩ  
560pF  
ERRORAMP7  
OCP  
6800pF  
1.0uF  
Vo7=WLED  
33uH  
G
Iomax=50mA  
1uF  
INV7  
VREGD  
DRIVER  
LX7  
CH7  
Step Up DC/DC  
(Voltage mode)  
0.3V  
PGND7  
Vo7  
SS TIMER  
PROTECTION  
Latch  
G
CTL7  
SCP6  
SCP  
10Ω  
SCP6  
TIMER  
UVLO  
0.047uF  
0.047uF  
0.5V  
HVREG  
OVPCOMP  
CP_SW  
C+  
1.0uF  
SCP  
TIMER  
VBAT  
CP  
DRIVER  
VREGD  
CP_SW  
0.1uF  
0.1uF  
2.8V  
C-  
VREGD=3.6V  
1.0uF  
VREGD  
SHUT DOWN  
OSC  
VREGA=3.6V  
1.0uF  
VREGA  
47kΩ  
10uF  
Fig. 3 Application circuit  
* We are confident that the above applied circuit diagram should be recommended, but please thoroughly confirm its cha-  
racteristics when using it. In addition, when using it with the external circuit’s constant changed, please make a decision  
that allows a sufficient margin in light of the fluctuations of external components and ROHM’s IC in terms of not only static  
characteristic but also transient characteristic.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
6/20  
Technical Note  
BD8355MWV  
Timing chart  
Fig. 4 CH1-6 startup sequence  
Fig. 5 CH7 startup sequence  
Fig. 6 stop sequence  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
7/20  
Technical Note  
BD8355MWV  
Functional Description / peripheral devices setting  
1. Internal Regulator (VREGA, VREGD)  
Both VREGA and VREGD are internal regulator of 3.6 V output. Bypass VREGA/VREGD to GND with a capacitor be-  
tween 0.47 µF and 2.2 µF. In addition, it needs care for the voltage between VREGA and VREGD not to excess 0.3 V  
to avoid IC malfunctions.  
2. Control block (SHUT DOWN)  
Inputting voltages to CTL14, 2, 35, 6, and 7 control ON/OFF of respective channels. Note that it is impossible to inde-  
pendently control CH1 and 4, and to independently control CH3 and 5. In addition, turn on any CTL1-6 and wait 500  
usec before turning on CTL7. Input higher voltage than 2 V to CTL14, 2, 35, or 6 to turn on each channel. Open or in-  
put voltage -0.3 ~ 0.4 V to those to turn off. Input 2 ~ 5.5 V to CTL7 to turn on CH7. Open or input voltage -0.3 ~ 0.4 V  
to CTL7 to turn off. The states of output terminals (Lx1-7), FB terminals, SCP/SCP6 terminals, and internal regulator  
(VREGA and VREGD) are written below.  
Each CTL terminal contains pull down resistor of 1M(typ.)  
CTL  
35  
L
L
L
Lx  
4
L
A
L
L
FB  
4
L
A
L
L
VREGA VREGD  
SCP6  
SCP  
14  
L
H
L
L
L
2
L
L
H
L
L
6
L
L
L
L
H
7
L
L
L
L
L
H
H
1
L
A
L
L
L
2
L
L
A
L
L
3
L
L
L
A
L
5
L
L
L
A
L
6
L
L
L
L
A
7
1
L
A
L
L
L
2
L
L
A
L
L
3
L
L
L
A
L
5
L
L
L
A
L
6
L
L
L
L
A
7
L
L
L
L
L
A
A
H-Z  
H-Z  
H-Z  
H-Z  
H-Z  
A
L
A
A
A
A
A
A
L
A
A
A
A
A
A
L
A
A
A
L
L
L
L
H
L
L
L
L
A
L*  
A
L* L* L* L*  
L* L* L* L* L* L*  
L* L* L* L* L* L*  
A
A
H
H
H
H
A
A
A
A
A
A
A
A
A
A
A
A
A
* Turn on any CTL1-6 before turn on CTL7. Conditions of Lx1 6, FB1 6, SCP6 are  
A: active  
changed with active channel.  
3. Output voltage/current setting  
Fig. 7 Setting of feedback resistance  
(a) Setting output voltage of CH1-6  
The reference voltages of ERROR AMP. are 0.8 V (CH1) and 1 V (CH2-6). The output voltages are determined as  
equation (1) and (2). Set the value of feedback resistance R1 and R2 which are connected to INV1-6 pin.  
(b) Setting output current of CH7  
The reference voltage of CH7 ERROR AMP. is 0.3 V. The current flowing LED is determined as equation (3). Set  
the value of feedback resistance R3, considering the tolerance current of LED.  
4. Startup/Stop sequence  
To avoid rush current on startup, each channel has soft start function. The output voltage of CH1 reaches to the target  
in Tss1=2.5msec (typ.) and the output voltage of CH2 ~ 6 reaches to the target in Tss2-6=3.1msec (typ.). In case of  
CH7, the output of error amplifier is restricted in TDTC7=15msec (typ.).  
Note that Tss1-6, TDTC7 vary from typical value Ttyp as following with setting of switching frequency.  
5. Protection matrix  
The following table displays state of outputs when protection is operating.  
VREGA VREGD HVREG  
FB1-6  
A
A
NA  
NA  
NA  
NA  
NA  
Lx1-5 Lx6 Lx7  
FB7  
A
A
NA  
NA  
NA  
A
SCP SCP6  
Short Circuit Protection (CH1-5,7) H-Z  
A
H-Z  
H-Z  
A
A
A
A
A
A
A
-
A
Short Circuit Protection (CH6)  
Under Voltage Lockout (VCC)  
A
A
-
H-Z H-Z H-Z  
A
-
A
A
A
A
-
A
NA  
NA  
NA  
-
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Under Voltage Lockout (VREGA) H-Z H-Z H-Z  
Under Voltage Lockout (VREGD) H-Z H-Z H-Z  
Under Voltage Lockout (HVREG) H-Z H-Z  
A
H-Z H-Z H-Z  
NA  
NA  
NA  
NA  
Thermal Shutdown TSD)  
A: active  
NA: non-active  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
8/20  
Technical Note  
BD8355MWV  
6. Short circuit protection (SCP, SCP6)  
For CH1 ~ 5 and 7, monitoring the output voltages of error am-  
plifier (FB voltage), if the voltages become more than 2.8 V, the  
output of SCPCOMP will become “L” level, and transistor “M1”  
will turn off. Thus the current “1µA” be supplied to CSCP the  
capacitor connected to SCP terminal. The outputs stop when  
SCP terminal voltage reaches 1 V. The time from short circuit  
detect to outputs stop (tscp) is set as shown below.  
Vo1  
FB1  
INV1  
FB1  
Vo2  
Vo3  
Vo4  
Vo5  
FB2  
INV2  
FB2  
FB3  
FB4  
FB5  
FB7  
tSCP[s] = 1.0 × CSCP[µF]  
On the other hand, short circuit of CH6 is detected when the  
error amplifier input of CH6 (INV6) becomes less than 0.5 V.  
The time from short circuit detect to output stop (tscp6) is set  
with CSCP6 as tscp.  
To release from short circuit protection latch state, turn CTL  
terminal to “L” level. Connect SCP/SCP6 terminal to GND  
when the function of short circuit protection is not used.  
FB3  
INV3  
1μA  
SCP  
SCP  
C
M1  
FB4  
2.8V  
INV4  
7. Over voltage protection(OVP)  
In CH7, when LED is open, INV7 become L and output voltage  
increase suddenly. If that condition continues Lx7 voltage in-  
crease and exceed break down voltage.CH7 has over voltage  
protection circuit (OVP) not to exceed break down voltage.  
When the voltage of VO7 terminal becomes more than 28V  
(typ.), OVP function works and CH7 stops operating. Once  
OVP is detected, CH7 becomes latch state. To release from  
latch state, turn off CTL7.  
FB5  
INV5  
Vo7  
FB7  
INV7  
8. Thermal shutdown circuit (TSD)  
The TSD circuit protects the IC against thermal runaway and  
heat damage. The TSD thermal sensor detects junction tem-  
perature. When the temperature reaches the TSD threshold  
(typ: 175 ), the circuit switches the outputs of all channels,  
VREGA, and VREGD OFF. At the same time, it sets the FB1-7  
terminals “L” level. The hysteresis width (typ: 15 ) provided  
between the TSD function start temperature (threshold) and  
the stop temperature serves to prevent malfunctions from tem-  
perature fluctuations.  
Fig. 8 Block diagram of short circuit protection circuit.  
Vo6  
1μA  
SCP6  
INV6  
SCP6  
C
FB6  
M2  
SS TIMER  
0.5V  
9. Under Voltage Lockout (UVLO)  
Under voltage lockout prevents IC malfunctions that could oth-  
erwise occur due to power supply fluctuation at power ON or  
abrupt power OFF. This system turns OFF each channel out-  
put when the VCC voltage becomes lower than 3.4 V. The  
UVLO detect voltage has 0.1 V hysteresis to prevent malfunc-  
tions from power supply fluctuation.  
Fig. 9 Block diagram of short circuit protection6 circuit.  
In addition, UVLO works when an internal regulator voltage  
drops down. The outputs of all channels are turned OFF  
when VREGD becomes lower than 3.15 V or VREGA becomes  
lower than 2.4 V. Moreover, the outputs of CH1-6 are turned  
OFF when HVREG becomes lower than VCC+2.5 V.  
The switching frequency  
The switching frequency is set by the resistor connected to the  
RT terminal. Set the frequency with referring fig. 19.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
9/20  
Technical Note  
BD8355MWV  
10. Selection of output inductor  
A combination of the output inductor and the output capacitor form a second-order smoothing filter for switch waveform  
and provide DC output voltage. If the inductance is low, its package size is minimized, but the penalty is higher ripple  
current, with lower efficiency and an increase of output noise. Conversely, higher inductance increases the package  
size, but lowers ripple current, consequently, and suppress the output ripple voltage. Generally, set inductance as that  
the ripple current is about 20-50 % of their output current. Below equations are the relations of between inductance  
and ripple current.  
(VIN[V]VOUT[V])  
V
OUT[V]  
1
(step down)  
L[H]ꢀ  
L[H]ꢀ  
I  
L[A]  
V
IN[V]  
f
osc [Hz]  
(VOUT[V]VIN[V])  
I [A]  
V
IN[V]  
1
(step up)  
L
V
OUT[V]  
f
osc [Hz]  
L: inductance  
VOUT: output voltage  
fosc: switching frequency  
VIN: input voltage  
IL: ripple current  
IOUT: output load current  
In addition, set larger values than Ipeak that is calculated from below equation.  
Ipeak=IOUT ꢃ ꢁIL 2  
(step down)  
(step up)  
V
INꢆ⁄ꢅ ⁄  
η 100 +IL 2  
ꢆꢇ  
OUT  
I
peak= I  
× VOUT  
η: efficiency[%])  
11. Phase Compensation  
The components shown will add poles and zeros to the loop gain as given by the following expression:  
CFB adds a pole whose frequency is given by:  
Application  
(A: error amplifier open loop gain)  
VOUT  
RFB adds a zero whose frequency is given by:  
COUT  
RL  
The output capacitor adds both a pole and a zero to the loop:  
VOUT  
RFB CFB  
R1  
ERRORAMP  
(INV)  
(FB)  
R2  
Fig. 10 Phase compensation setting  
Where, RL is output load resistance, and ESR is the equivalent series resistance of the output capacitor. CFB forms a  
pole and a zero. Changing the value of CFB moves the frequency of both the pole and the zero. The CFB pole is  
typically referred to as the dominant pole, and its primary function is to roll off loop gain and reduce the bandwidth.  
The RFB zero is required to add some positive phase shift to offset some of the negative phase shift from the two low-  
frequency poles. Without this zero, these two poles would cause -180° of phase shift at the unity-gain crossover,  
which is clearly unstable.  
12. Precaution in the layout of Printed Circuit Board  
When switching regulator is operating, large current flow through the path of Power Supply – Inductor – Output  
Capacitor. In laying a pattern of the board, make this line as short and wide as possible to decrease impedance.  
The switching noise on INV1-7 terminals may cause the output oscillation. To avoid interference of the noise, make  
the line between voltage divider resistor and INV terminals as shortened as possible and not crossed at switching  
line.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
10/20  
Technical Note  
BD8355MWV  
Reference data  
10.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
8.00  
6.00  
4.00  
2.00  
0.00  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
VCC [V]  
VCC [V]  
Fig. 11 Circuit current vs supply voltage (all cannels ON)  
Fig. 12 VREGA vs supply voltage  
3.64  
0.84  
0.82  
0.80  
0.78  
0.76  
3.62  
3.60  
3.58  
3.56  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature []  
Ambient Temperature []  
Fig. 13 VREGA vs ambient temperature  
Fig. 14 CH1 ErrorAmp. INV threshold vs ambient temperature  
1.04  
1.02  
1.00  
0.98  
0.96  
1.04  
1.02  
1.00  
0.98  
0.96  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature []  
Ambient Temperature []  
Fig. 15 CH2 ErrorAmp. INV threshold vs ambient temperature  
Fig. 16 CH6 ErrorAmp. INV threshold vs ambient temperature  
0.34  
900  
850  
800  
750  
0.32  
0.30  
0.28  
0.26  
700  
650  
600  
conditions‐  
RT=47kΩ  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature []  
Ambient Temperature []  
Fig. 18 Frequency vs ambient temperature  
Fig. 17 CH7 ErrorAmp. INV threshold vs ambient temperature  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
11/20  
Technical Note  
BD8355MWV  
10000  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
1000  
100  
0
1
2
3
4
10  
100  
CTL [V]  
RT [k]  
Fig. 20 CTL terminal characteristic  
Fig. 19 Switching frequency vs timing resistance  
CTL14  
CTL14  
Vo1  
(0.5V/div)  
Vo1  
(0.5V/div)  
1msec  
1msec  
Lx1  
(5V/div)  
Lx1 (5V/div)  
Iin (50mA)  
Iin  
(50mA)  
Fig. 21 CH1 startup waveform  
Fig. 22 CH1 stop waveform  
CTL2  
CTL2  
Vo2  
(2V/div)  
Vo2  
(2V/div)  
1msec  
1msec  
Lx2  
(5V/div)  
Lx2 (5V/div)  
Iin (50mA)  
Iin  
(50mA)  
Fig. 23 CH2 startup waveform  
Fig. 24 CH2 stop waveform  
CTL35  
CTL35  
Vo3  
(1V/div)  
1msec  
Vo3  
(1V/div)  
1msec  
Lx3  
(5V/div)  
Lx3 (5V/div)  
Iin (50mA)  
Iin  
(50mA)  
Fig. 25 CH3 startup waveform  
Fig. 26 CH3 stop waveform  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
12/20  
Technical Note  
BD8355MWV  
CTL14  
CTL4  
Vo4  
(2V/div)  
Vo4  
(2V/div)  
1msec  
1msec  
Lx4  
(5V/div)  
Lx4(5V/div)  
Iin (50mA)  
Iin  
(50mA)  
Fig. 27 CH4 startup waveform  
Fig. 28 CH4 stop waveform  
CTL35  
CTL35  
Vo5  
(2V/div)  
1msec  
Vo5  
(2V/div)  
1msec  
Lx5  
(5V/div)  
Lx5 (5V/div)  
Iin (50mA)  
Iin  
(50mA)  
Fig. 29 CH5 startup waveform  
Fig. 30 CH5 stop waveform  
CTL6  
CTL6  
Vo6  
(2V/div)  
Vo6  
(2V/div)  
1msec  
1msec  
Lx6  
(5V/div)  
Lx6 (5V/div)  
Iin (100mA)  
Iin  
(100mA)  
Fig. 31 CH6 startup waveform  
Fig. 32 CH6 stop waveform  
CTL7  
CTL7  
Vo7 (3V/div)  
Offset: 7.2V  
2msec  
Vo7 (3V/div)  
Offset: 7.2V  
2msec  
Lx7 (8V/div)  
Lx7 (8V/div)  
Iin (300mA)  
Iin (300mA)  
Fig. 33 CH7 startup waveform  
Fig. 34 CH7 stop waveform  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
13/20  
Technical Note  
BD8355MWV  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VBAT=4.2V  
VBAT=5.0V  
VBAT=7.2V  
VBAT=8.4V  
VBAT=10V  
VBAT=4.2V  
VBAT=5.0V  
VBAT=7.2V  
VBAT=8.4V  
VBAT=10V  
L2: DEM3518C 10uH  
(TOKO)  
Vo2=3.8V  
L1: DEM3518C 4.7uH  
(TOKO)  
Vo1=1.15V  
fosc=750kHz  
fosc=750kHz  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
200  
400  
600  
800  
1000  
1200  
1400  
Iout [mA]  
Iout [mA]  
Fig. 36 Efficiency vs load current (CH2)  
Fig. 35 Efficiency vs load current (CH1)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VBAT=4.2V  
VBAT=5.5V  
L4: DEM3518C 10uH  
(TOKO)  
Vo4=4.6V  
VBAT=5.0V  
VBAT=7.2V  
VBAT=8.4V  
VBAT=10V  
L3: DEM3518C 10uH  
(TOKO)  
Vo3=1.8V  
VBAT=7.2V  
VBAT=8.4V  
VBAT=10V  
fosc=750kHz  
fosc=750kHz  
0
0
0
100  
200  
300  
400  
500  
600  
700  
800  
1400  
70  
0
200  
400  
600  
800  
1000  
1200  
1400  
Iout [mA]  
Iout [mA]  
Fig. 37 Efficiency vs load current (CH3)  
Fig. 38 Efficiency vs load current (CH4)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VBAT=4.2V  
VBAT=5.5V  
L6: DEM4518C 10uH  
(TOKO)  
Vo6=4.2V  
VBAT=5.0V  
VBAT=7.2V  
VBAT=8.4V  
VBAT=10V  
L5: DEM3518C 10uH  
(TOKO)  
Vo5=3.2V  
VBAT=7.2V  
VBAT=8.4V  
VBAT=10V  
fosc=750kHz  
fosc=750kHzv  
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800 1000 1200 1400 1600 1800 2000  
Iout [mA]  
Iout [mA]  
Fig. 39 Efficiency vs load current (CH5)  
Fig. 40 Efficiency vs load current (CH6)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VBAT=10V  
VBAT=8.4V  
VBAT=7.2V  
VBAT=5.0V  
VBAT=4.2V  
L7: NR3015T330M 33uH  
(TAIYO YUDEN)  
LED x 4  
fosc=750kHzv  
10  
20  
30  
40  
50  
60  
Iout [mA]  
Fig. 41 Efficiency vs load current (CH7)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
14/20  
Technical Note  
BD8355MWV  
Power Dissipation Reduction  
Fig. 42 Power dissipation vs ambient temperature  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
15/20  
Technical Note  
BD8355MWV  
PIN equivalent circuit  
Pin name  
Equivalent circuit  
Pin name  
Equivalent circuit  
VREGA  
INV1  
INV2  
INV3  
INV4  
INV5  
INV6  
INV7  
FB1  
FB2  
FB3  
FB4  
FB5  
FB6  
INV  
GND  
CTL14  
CTL2  
CTL35  
CTL6  
CTL7  
FB7  
SCP  
SCP6  
VCC  
VREGA  
GND  
RT  
VREGD  
CMINUS  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
16/20  
Technical Note  
BD8355MWV  
Pin name  
Equivalent circuit  
Pin name  
Equivalent circuit  
HX1  
LX1  
HX2  
Hx  
HVREG  
VCC  
HVREG  
VREGD  
LX2  
PGND12  
HX3  
CPLUS  
Lx  
HVREG  
CPLUS  
VBAT  
LX3  
HX4  
LX4  
PGND34  
HX5  
LX5  
HX6  
VBAT  
GND  
PGND  
GND  
LX6  
PGND56  
Lx7  
PGND7  
Vo7  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
17/20  
Technical Note  
BD8355MWV  
Notes for use  
1.) Absolute maximum ratings  
This product is produced with strict quality control. However, the IC may be destroyed if operated beyond its absolute  
maximum ratings. If the device is destroyed by exceeding the recommended maximum ratings, the failure mode will be  
difficult to determine (e.g. short mode, open mode). Therefore, physical protection counter-measures (like fuse) should  
be implemented when operating conditions beyond the absolute maximum ratings anticipated.  
2.) GND potential  
Ensure a minimum GND pin potential in all operating conditions. In addition, ensure that no pins other than the GND  
pin carry a voltage lower than or equal to the GND pin, including during actual transient phenomena.  
3.) Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating condi-  
tions.  
4.) Inter-pin shorts and mounting errors  
Use caution direction and position the IC for mounting on printed circuit boards. Improper mounting may result in dam-  
age the IC. In addition, Output-output short and output-power supply/ground short condition may destroy the IC  
5.) Operation in a strong electromagnetic field  
Exposing the IC within a strong electric/magnetic field may cause malfunction.  
6.) Common impedance  
Power supply and ground wiring should reflect consideration of the need to lower common impedance and minimize  
ripple as much as possible (by making wiring as short and thick as possible or rejecting ripple by incorporating induc-  
tance and capacitance).  
7.) Voltage of CTL pins  
The threshold voltage of CTL pins are 0.4 V and 2.0 V. Standby state is set below 0.4 V while running state is set  
beyond 2.0 V. The region between 0.4 V and 2.0 V is not recommended and may cause improper operation.  
The rise and fall time must be under 10 msec. In case to put capacitors to CTL pins, it is recommended using under  
0.01µF.  
The maximum permissible voltage of CTL7 is 5.5 V. CTL7 pin should not be connected to VCC voltage.  
Turn on any CTL1-6 and wait more than 500 usec before turn on CTL7.  
8.) Thermal shutdown circuit (TSD circuit)  
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The TSD circuit is designed only to shut the IC off  
to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to  
use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.  
9.) Applications with modes that VCC/GND and other pins except Lx and HVREG potential are reversed may cause dam-  
age internal IC circuits. In addition, modes that each pins sink current may also cause damage the circuits. Therefore,  
It is recommended to insert a diode to prevent back current flow or bypass diodes.  
Bypass Di  
Counterdurrent  
prevention Di  
VCC  
Output pin  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
18/20  
Technical Note  
BD8355MWV  
10.) Rush current at the time of power supply injection.  
An IC which has plural power supplies could have momentary rush current at the time of power supply injection. Please  
take care about power supply coupling capacity and width of power Supply and GND pattern wiring  
11.) Please use it so that VCC and PVCC terminal should not exceed the absolute maximum ratings. Ringing might be  
caused by L element of the pattern according to the position of the input capacitor, and ratings be exceeded. Please  
will assume the example of the reference ,the distance of IC and capacitor, use it by 5.0mm or less when thickness of  
print pattern are 35um, pattern width are 1.0mm.  
12.) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to  
stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic  
measure, and use similar caution when transporting or storing the IC. Always turn the IC’s power supply off before  
connecting it to or removing it from a jig or fixture during the inspection process.  
13.) Thermal fin.  
There is no problem in the operating of IC even if the thermal fin on the back of package doesn’t connect anywhere.  
But it is recommended to connect GND on the PCB board for radiation.  
14.) IC Terminal Input  
This IC is a monolithic IC that has a P- board and P+ isolation for the purpose of keeping distance between elements.  
A P-N junction is formed between the P-layer and the N-layer of each element, and various types of parasitic elements  
are then formed. For example, an application where a resistor and transistor are connected to a terminal (shown in  
Fig.43)  
When GND > (terminal A) at the resistor and GND > (terminal B) at the transistor (NPN), the P-N junction oper-  
ates as a parasitic diode  
When GND > (terminal B) at the transistor (NPN), a parasitic NPN transistor operates as a result of the N layers  
of other elements in the proximity of the aforementioned parasitic diode.  
Parasitic elements are structurally inevitable in the IC due to electric potential relationships. The operation of parasitic  
elements induces the interference of circuit operations, causing malfunctions and possibly the destruction of the IC.  
Please be careful not to use the IC in a way that would cause parasitic elements to operate. For example, by applying  
a voltage that is lower than the GND (P-board) to the input terminal.  
(Terminal A)  
Resistor  
Transistor (NPN)  
(Terminal A)  
(Terminal A)  
Parasitic element  
GND  
GND  
(Terminal B)  
P
P
N
P-board  
P-board  
C
B
E
GND  
Parasitic element  
GND  
Parasitic element  
GND  
Neighboring element  
Parasitic element  
Fig. 43 Simple Structure of Bipolar IC (Sample)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
19/20  
Technical Note  
BD8355MWV  
Ordering part number  
B
D
8
3
5
5
M W V  
-
E
2
Part No.  
Part No.  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
MWV: UQFN056V7070  
UQFN056V7070  
7.0 0.1  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
1500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
1PIN MARK  
4.7 0.1  
S
(
)
0.08  
C0.2  
S
1
14  
56  
15  
28  
43  
Direction of feed  
1pin  
42  
0.9  
29 +0.05  
-0.04  
0.4  
0.2  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.A  
20/20  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD8372EFJ-M

LED Drivers for Automotive Light
ROHM

BD8372EFJ-ME2

LED Driver, 3-Segment, PDSO8, ROHS COMPLIANT, HTSOP-8
ROHM

BD8372HFP-M

LED Drivers for Automotive Light
ROHM

BD8372HFP-MTR

LED Drivers for Automotive Light
ROHM

BD8372UEFJ-M (新产品)

BD8372HFP-M, BD8372EFJ-M and BD8372UEFJ-M are LED source drivers capable of with standing high input voltage (50V MAX). The constant current output is set by either of two external resistors. It has built-in LED open/short protection, external resistance open/short protection and overvoltage protection that can achieve high reliability. It is possible to control all LEDs together and turn OFF even if LED causes short/open in a certain row when driving two or more LEDs by using multiple ICs.
ROHM

BD83732HFP-M

1ch Source Driver for Automotive
ROHM

BD83732HFP-MTR

1ch Source Driver for Automotive
ROHM

BD83732HFP-M_16

1ch Source Driver for Automotive
ROHM

BD83733HFP-M

AEC-Q100 Qualified
ROHM

BD83733HFP-MTR

1ch Source Driver for Automotive
ROHM

BD83740HFP-M

1ch Source Driver for Automotive
ROHM

BD83740HFP-MTR

1ch Source Driver for Automotive
ROHM