BD88220GUL [ROHM]

Coupling Capacitorless Headphone Amplifiers; 耦合电容的耳机放大器
BD88220GUL
型号: BD88220GUL
厂家: ROHM    ROHM
描述:

Coupling Capacitorless Headphone Amplifiers
耦合电容的耳机放大器

消费电路 商用集成电路 音频放大器 视频放大器
文件: 总26页 (文件大小:647K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Headphone Amplifiers  
Coupling Capacitorless  
Headphone Amplifiers  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
No.11102EAT05  
Description  
BD88xxxGUL is output coupling capacitorless headphone amplifier. This IC has a negative voltage generator of regulated  
type built-in and generates the direct regulated negative voltage from the supply voltage. It is possible to drive headphones  
in a ground standard with both voltage of the positive voltage (+2.4V) and the negative voltage (-2.4V). Therefore a  
large-capacity output coupling capacitor becomes needless and can reduce a cost, a board area, and the height of the part.  
In addition, there is not the signal decrement by the low range to happen by output coupling capacitor and output load  
impedance and can output a rich low tone.  
And, the function “Virtual ground” is embedded. Noise between IC and Headphone jack can be canceled by using “Virtual  
ground” function.  
Features  
1) 2.4V to 5.5V Single-Supply Operation  
2) No Bulky DC-Blocking Capacitors Required  
3) No Degradation of Low-Frequency Response Due to Output Capacitors  
4) Virtual Ground-Referenced Outputs  
5) Gain setting  
BD88200GUL: Variable gain with external resistors  
BD88210GUL: -1.0V/V  
BD88215GUL: -1.5V/V  
BD88220GUL: -2.0V/V  
6) Low THD+N  
7) Low Supply Current  
8) Integrated Negative Power Supply  
9) Integrated Short-Circuit and Thermal-Overload Protection  
10) Small package  
VCSP50L2 (2.1mm x 2.1mm)  
Applications  
Mobile Phones, Smart Phones, PDAs, Portable Audio Players, PCs, TVs, Digital Cameras, Digital Video Cameras,  
Electronic Dictionaries, Voice Recorders, Bluetooth Head-sets, etc  
Line up  
Supply Supply  
Voltage Current  
Maximum  
Output Power  
[mW]  
Noise  
Voltage  
[µVrms]  
Gain  
[V/V]  
THD+N  
[%]  
PSRR  
[dB]  
Type  
Package  
[V]  
[mA]  
Variable gain  
with external  
resister  
BD88200GUL  
BD88210GUL  
BD88215GUL  
BD88220GUL  
-1.0  
-1.5  
-2.0  
80  
0.006  
2.0  
-80  
(f=217Hz)  
VCSP50L2  
(2.1mm x 2.1mm)  
2.45.5 (No signal)  
10  
(VDD=3.3V,RL=16(VDD=3.3V,RL=16Ω  
THD+N1%,f=1kHz) Po=10mW,f=1kHz)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
1/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Absolute maximum ratings  
Parameter  
SGND to PGND voltage  
Symbol  
VGG  
VDD  
VSS  
Ratings  
0.0  
Unit  
V
SVDD to PVDD voltage  
SVSS to PVSS voltage  
-0.30.3  
V
0.0  
V
SGND or PGND to SVDD, PVDD voltage  
SVSS, PVSS to SGND or PGND voltage  
SGND to IN_- voltage  
VDG  
VSG  
VIN  
-0.36.0  
V
-3.50.3  
V
(SVSS-0.3)2.8  
(SVSS-0.3)2.8  
(PGND-0.3)(PVDD+0.3)  
(PVSS-0.3)(PGND+0.3)  
(SGND-0.3)(SVDD+0.3)  
-1010  
V
SGND to OUT_- voltage  
PGND to C1P- voltage  
VOUT  
VC1P  
VC1N  
VSH  
IIN  
V
V
PGND to C1N- voltage  
V
SGND to SHDN_B- voltage  
Input current  
V
mA  
mW  
Power Dissipation  
PD  
1350 *  
Storage Temperature Range  
-55150  
TSTG  
*
In operating over 25 , de-rate the value to 10.8mW/. This value is for mounted on the application board  
(Grass-epoxy, size: 40mm x 60mm, H=1.6mm, Top Copper area = 79.9%, Bottom Copper area = 80.2%).  
Operating conditions  
Parameter  
Ratings  
Typ.  
Symbol  
Unit  
Min.  
2.4  
Max.  
5.5  
Supply Voltage Range  
VSVDD,VPVDD  
TOPR  
-
-
V
Operating Temperature Range  
-40  
+85  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
2/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Electrical characteristics  
Unless otherwise specified, Ta=25, SVDD=PVDD=3.3V, SGND=PGND=0V, SHDNB=SVDD, C1=C2=2.2µF,  
RL=No Load, Ri=Rf=10kΩ  
Limits  
Parameter  
Supply Current  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Shutdown Supply Current  
IST  
-
-
-
0.1  
1.3  
2.0  
2
-
µA  
mA  
mA  
SHDNLB=SHDNRB=L  
(SHDNLB,SHDNRB)=(H,L) or (L,H),  
No signal  
IDD1  
IDD2  
Quiescent Supply Current  
SHDNLB=SHDNRB=H,  
No signal  
7.4  
SHDN_B Terminal  
H Level Input Voltage  
VIH  
VIL  
1.95  
-
-
-
-
V
V
L Level Input Voltage  
-
-
0.70  
±1  
Input Leak Current  
ILEAK  
µA  
Headphone Amplifier  
Shutdown to Full Operation  
tSON  
VIS  
-
80  
±0.5  
60  
-
µs  
mV  
mW  
mW  
%
SHDNLB=SHDNRB=LH  
Offset Voltage  
-
±5.0  
RL=32Ω, THD+N-40dB, f=1kHz,  
20kHz LPF, for Single Channel  
30  
-
Maximum Output Power  
POUT  
RL=16Ω, THD+N-40dB, f=1kHz,  
20kHz LPF, for Single Channel  
40  
80  
-
RL=32Ω, POUT=10mW, f=1kHz,  
20kHz LPF  
-
0.008  
0.006  
14  
0.056  
Total Harmonic Distortion  
+ Noise  
THD+N  
ZIN  
RL=16Ω, POUT=10mW, f=1kHz,  
20kHz LPF  
-
0.100  
%
SHDNLB=SHDNRB=H  
In BD88200GUL, ZIN = Ri  
Input Impedance  
BD88200GUL  
10  
19  
kΩ  
-
-1.00  
-1.00  
-1.50  
-2.00  
1
-
BD88210GUL  
Gain  
-1.05  
-0.95  
In BD88200GUL, Gain is variable  
by the external resister of Ri and Rf.  
AV  
V/V  
%
BD88215GUL  
-1.55  
-1.45  
BD88220GUL  
Gain match  
-2.06  
-1.94  
ΔAV  
VN  
-
-
Noise  
-
10  
-
µVrms 20kHz LPF + JIS-A  
Slew Rate  
SR  
-
0.15  
200  
-90  
-
V/µs  
pF  
Maximum Capacitive Load  
Crosstalk  
CL  
-
-
RL=32Ω, f=1kHz, VOUT=200mVP-P  
,
CT  
-
-
dB  
dB  
kHz  
1kHz BPF  
Power Supply  
Rejection Ratio  
f=217Hz, 100mVP-Pripple,  
217Hz BPF  
PSRR  
fOSC  
TSD  
THYS  
-
-80  
-
Charge-Pump  
Oscillator Frequency  
200  
300  
145  
5
430  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
-
-
-
-
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
3/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Electrical characteristic curves – General Items (Reference data)  
Unless otherwise specified, Ta=25, SGND=PGND=0V, SHDNLB=SHDNRB=SVDD, C1=C2=2.2µF,  
Input coupling capacitor=1µF, RL=No Load  
* In BD88200GUL the input resister(Ri)=10kΩ, feedback resister(Rf)=10kΩ.  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
1u  
SHDNLB=0V  
SHDNRB=0V  
SHDNLB=VDD  
SHDNLB=VDD  
SHDNRB=0V  
* This caracteristics has  
hysteresis (40mV typ) by  
UVLO.  
SHDNRB=VDD  
* This caracteristics has  
hysteresis (40mV typ) by  
UVLO.  
100n  
10n  
1n  
0.1n  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Supply Voltage [V]  
Supply Voltage [V]  
Supply Voltage [V]  
Fig.2 Monaural Operating  
Current vs. Supply Voltage  
Fig.3 Stereo Operating  
Current vs. Supply voltage  
Fig.1 Standby Current vs.  
Supply Voltage  
120  
100  
80  
60  
40  
20  
0
0
-0.5  
-1  
200  
180  
160  
140  
120  
100  
80  
RL=16 , in phase  
Ω
SHDNLB=SHDNRB  
=L->H  
VSS 90% Setup time  
No Load  
SHDNLB=VDD  
SHDNRB=VDD  
No Load  
RL=16 , out of phase  
Ω
-1.5  
-2  
RL=32 , in phase  
Ω
RL=32 , out of phase  
Ω
60  
THD+N -40dB  
20kHz LPF  
Stereo  
40  
-2.5  
-3  
20  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Supply Voltage [V]  
Supply Voltage [V]  
Fig.6 Maximum power vs.  
Supply Voltage  
Supply Voltage [V]  
Fig.4 Negative Voltage vs.  
Supply Voltage  
Fig.5 Setup time vs.  
Supply Voltage  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VDD=3.3V  
Ripple = 100mVp-p  
BPF  
VDD=5.5V  
Ripple = 100mVp-p  
BPF  
VDD=2.4V  
Ripple = 100mVp-p  
BPF  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Frequency [Hz]  
Fig.9 PSRR vs. Frequency  
(VDD=5.5V)  
Fig.8 PSRR vs. Frequency  
(VDD=3.3V)  
Fig.7 PSRR vs. Frequency  
(VDD=2.4V)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VDD=3.3V  
VOUT = 200mVp-p  
VDD=5.5V  
VOUT = 200mVp-p  
VDD=2.4V  
VOUT = 200mVp-p  
RL=32  
BPF  
RL=32  
BPF  
Ω
Ω
RL=32  
BPF  
Ω
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Frequency [Hz]  
Fig.12 Crosstalk vs.  
Frequency (VDD=5.5V)  
Fig.11 Crosstalk vs.  
Frequency (VDD=3.3V)  
Fig.10 Crosstalk vs.  
Frequency (VDD=2.4V)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
4/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Electrical characteristic curves – BD88215GUL (Reference data)  
VDD=2.4V  
f=1kHz  
BPF  
VDD=3.3V  
f=1kHz  
BPF  
VDD=5.5V  
f=1kHz  
BPF  
0
-20  
0
-20  
0
-20  
RL=32  
RL=32  
RL=32  
Ω
Ω
Ω
-40  
-40  
-40  
RL=16  
RL=16  
RL=16  
Ω
Ω
Ω
-60  
-60  
-60  
-80  
-80  
-80  
-100  
-100  
-120  
-100  
-120  
-120  
-120 -100 -80  
-60  
-40  
-20  
0
-120 -100 -80  
-60  
-40  
-20  
0
-120 -100 -80  
-60  
-40  
-20  
0
Input Voltage [dBV]  
Input Voltage [dBV]  
Input Voltage [dBV]  
Fig.15 Output Voltage vs.  
Input Voltage (VDD=5.5V)  
Fig.13 Output Voltage vs.  
Input Voltage (VDD=2.4V)  
Fig.14 Output Voltage vs.  
Input Voltage (VDD=3.3V)  
10  
8
10  
8
10  
8
RL=16  
RL=16  
Ω
RL=16  
Ω
6
Ω
6
6
4
4
4
2
2
2
RL=32  
RL=32  
Ω
RL=32  
Ω
Ω
0
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
VDD=2.4V  
Po=10mW  
VDD=3.3V  
Po=10mW  
VDD=5.5V  
Po=10mW  
RL=16  
RL=16  
Ω
RL=16  
Ω
Ω
Input coupling  
capacitor = 1.0uF  
Input coupling  
capacitor = 1.0uF  
Input coupling  
capacitor = 1.0uF  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Frequency [Hz]  
Fig.16 Gain vs. Frequency  
(VDD=2.4V)  
Fig.17 Gain vs. Frequency  
(VDD=3.3V)  
Fig.18 Gain vs. Frequency  
(VDD=5.5V)  
100  
10  
100  
10  
100  
10  
1
1
1
In phase  
In phase  
In phase  
0.1  
0.1  
0.1  
VDD=2.4V  
20kHz-LPF  
f=1kHz  
VDD=5.5V  
20kHz-LPF  
f=1kHz  
VDD=3.3V  
20kHz-LPF  
f=1kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
Stereo  
Stereo  
Stereo  
Out of phase  
Out of phase  
Out of phase  
RL=16  
RL=16  
Ω
RL=16  
Ω
Ω
1n  
100n  
10u  
1m  
100m  
1n  
100n  
10u  
1m  
100m  
1n  
100n  
10u  
1m  
100m  
Output Power [W]  
Output Power [W]  
Output Power [W]  
Fig.20 THD+N vs. Output  
Power (VDD=3.3V, RL=16Ω)  
Fig.21 THD+N vs. Output  
Power (VDD=5.5V, RL=16Ω)  
Fig.19 THD+N vs. Output  
Power (VDD=2.4V, RL=16Ω)  
100  
100  
100  
10  
1
10  
1
10  
1
In phase  
In phase  
In phase  
0.1  
0.1  
0.1  
VDD=2.4V  
20kHz-LPF  
f=1kHz  
VDD=3.3V  
20kHz-LPF  
f=1kHz  
VDD=5.5V  
20kHz-LPF  
f=1kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
Stereo  
Stereo  
Stereo  
Out of phase  
Out of phase  
Out of phase  
RL=32  
RL=32  
RL=32  
Ω
Ω
Ω
1n  
100n  
10u  
1m  
100m  
1n  
100n  
10u  
1m  
100m  
1n  
100n  
10u  
1m  
100m  
Output Power [W]  
Output Power [W]  
Output Power [W]  
Fig.24 THD+N vs. Output  
Fig.22 THD+N vs. Output  
Fig.23 THD+N vs. Output  
Power (VDD=5.5V, RL=32Ω)  
Power (VDD=2.4V, RL=32Ω)  
Power (VDD=3.3V, RL=32Ω)  
www.rohm.com  
2011.03 – Rev. A  
5/25  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Electrical characteristic curves – BD88215GUL (Reference data) – Continued  
100  
100  
10  
100  
VDD=3.3V  
RL=16  
20kHz-LPF  
Stereo (in phase)  
VDD=5.5V  
RL=16Ω  
20kHz-LPF  
VDD=2.4V  
RL=16  
20kHz-LPF  
Ω
10  
1
10  
1
Stereo (in phase)  
Stereo (in phase)  
1
Po=0.1mW  
Po=0.1mW  
Po=0.1mW  
Po=1mW  
Po=1mW  
Po=1mW  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
Po=10mW  
10k  
Po=10mW  
10k  
Po=10mW  
10k  
10  
100  
1k  
100k  
10  
100  
1k  
100k  
10  
100  
1k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Frequency [Hz]  
Fig. 26 THD+N vs. Frequency  
Fig. 27 THD+N vs. Frequency  
Fig.25 THD+N vs. Frequency  
(VDD=3.3V, RL=16Ω)  
(VDD=5.5V, RL=16Ω)  
(VDD=2.4V, RL=16Ω)  
100  
100  
100  
VDD=3.3V  
RL=32Ω  
20kHz-LPF  
Stereo (in phase)  
VDD=5.5V  
RL=32Ω  
20kHz-LPF  
Stereo (in phase)  
VDD=2.4V  
RL=32  
20kHz-LPF  
Ω
10  
1
10  
1
10  
1
Stereo (in phase)  
Po=0.1mW  
Po=0.1mW  
Po=0.1mW  
Po=10mW  
Po=10mW  
Po=10mW  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
Po=1mW  
10k  
Po=1mW  
10k  
Po=1mW  
10k  
10  
100  
1k  
100k  
10  
100  
1k  
100k  
10  
100  
1k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Frequency [Hz]  
Fig. 28 THD+N vs. Frequency  
Fig. 29 THD+N vs. Frequency  
Fig. 30 THD+N vs. Frequency  
(VDD=2.4V, RL=32Ω)  
(VDD=3.3V, RL=32Ω)  
(VDD=5.5V, RL=32Ω)  
0
0
0
VDD=3.3V  
Input connect  
VDD=5.5V  
Input connect  
VDD=2.4V  
Input connect  
-20  
-20  
-20  
to the ground  
with 1uF  
to the ground  
with 1uF  
to the ground  
with 1uF  
-40  
-40  
-40  
-60  
-80  
-60  
-80  
-60  
-80  
-100  
-100  
-100  
-120  
-140  
-120  
-140  
-120  
-140  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Frequency [Hz]  
Fig.32 Noise Spectrum  
(VDD=3.3V)  
Fig.33 Noise Spectrum  
(VDD=5.5V)  
Fig.31 Noise Spectrum  
(VDD=2.4V)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
6/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Electrical characteristic curves – BD88200GUL (Reference data)  
100  
10  
10  
VDD=3.3V  
f=1kHz  
BPF  
0
-20  
RL=32  
VDD=3.3V, Po=10mW  
Ω
8
6
Ri=10k , Input coupling  
Ω
capacitor = 1.0uF  
4
RL=16  
Ω
-40  
1
2
In phase  
RL=16  
Ω
0
-60  
0.1  
-2  
-4  
-6  
-8  
-10  
VDD=3.3V  
20kHz-LPF  
f=1kHz  
RL=32  
Ω
-80  
0.01  
0.001  
-100  
Stereo  
Out of phase  
RL=16  
Ω
-120  
1n  
100n  
10u  
1m  
100m  
10  
100  
1k  
Frequency [Hz]  
10k  
100k  
-120 -100 -80  
-60  
-40  
-20  
0
Input Voltage [dBV]  
Output Power [W]  
Fig.36 THD+N vs. Output  
Power (VDD=3.3V, RL=16Ω)  
Fig.34 Output Voltage vs.  
Input Voltage (VDD=3.3V)  
Fig.35 Gain vs. Frequency  
(VDD=3.3V)  
100  
100  
10  
100  
10  
VDD=3.3V  
RL=32  
20kHz-LPF  
Stereo (in phase)  
VDD=3.3V  
RL=16Ω  
20kHz-LPF  
Stereo (in phase)  
10  
1
1
In phase  
1
Po=0.1mW  
Po=1mW  
Po=0.1mW  
Po=1mW  
0.1  
0.1  
0.1  
VDD=3.3V  
20kHz-LPF  
f=1kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
Stereo  
Out of phase  
RL=32  
Ω
Po=10mW  
10k  
Po=10mW  
10  
100  
1k  
100k  
1n  
100n  
10u  
1m  
100m  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Output Power [W]  
Frequency [Hz]  
Fig. 37 THD+N vs. Output  
Fig.38 THD+N vs. Frequency  
Fig. 39 THD+N vs. Frequency  
Power (VDD=3.3V, RL=32Ω)  
(VDD=3.3V, RL=16Ω)  
(VDD=3.3V, RL=32Ω)  
0
VDD=3.3V  
-20  
Input connect  
to the ground  
with 1uF  
-40  
-60  
-80  
-100  
-120  
-140  
10  
100  
1k  
Frequency [Hz]  
10k  
100k  
Fig.40 Noise Spectrum  
(VDD=3.3V)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
7/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Electrical characteristic curves – BD88210GUL (Reference data)  
100  
10  
10  
VDD=3.3V  
f=1kHz  
BPF  
VDD=3.3V  
Po=10mW  
Input coupling  
capacitor = 1.0uF  
0
-20  
RL=32  
Ω
8
6
4
RL=16  
Ω
-40  
1
2
In phase  
RL=16  
Ω
0
-60  
0.1  
-2  
-4  
-6  
-8  
-10  
VDD=3.3V  
20kHz-LPF  
f=1kHz  
RL=32  
Ω
-80  
0.01  
0.001  
-100  
Stereo  
Out of phase  
RL=16  
Ω
-120  
1n  
100n  
10u  
1m  
100m  
10  
100  
1k  
10k  
100k  
-120 -100 -80  
-60  
-40  
-20  
0
Output Power [W]  
Input Voltage [dBV]  
Frequency [Hz]  
Fig.43 THD+N vs. Output  
Power (VDD=3.3V, RL=16Ω)  
Fig.41 Output Voltage vs.  
Input Voltage (VDD=3.3V)  
Fig.42 Gain vs. Frequency  
(VDD=3.3V)  
100  
100  
10  
100  
10  
VDD=3.3V  
RL=32Ω  
20kHz-LPF  
Stereo (in phase)  
VDD=3.3V  
RL=16Ω  
20kHz-LPF  
Stereo (in phase)  
10  
1
1
1
In phase  
Po=0.1mW  
Po=1mW  
Po=0.1mW  
Po=1mW  
0.1  
0.1  
0.1  
VDD=3.3V  
20kHz-LPF  
f=1kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
Stereo  
Out of phase  
Po=10mW  
Po=10mW  
10k  
RL=32  
Ω
10  
100  
1k  
100k  
1n  
100n  
10u  
1m  
100m  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Output Power [W]  
Frequency [Hz]  
Fig.45 THD+N vs. Frequency  
Fig. 46 THD+N vs. Frequency  
Fig. 44 THD+N vs. Output  
(VDD=3.3V, RL=16Ω)  
(VDD=3.3V, RL=32Ω)  
Power (VDD=3.3V, RL=32Ω)  
0
VDD=3.3V  
-20  
Input connect  
to the ground  
with 1uF  
-40  
-60  
-80  
-100  
-120  
-140  
10  
100  
1k  
Frequency [Hz]  
10k  
100k  
Fig.47 Noise Spectrum  
(VDD=3.3V)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
8/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Electrical characteristic curves – BD88220GUL (Reference data)  
10  
100  
10  
VDD=3.3V  
f=1kHz  
BPF  
0
-20  
RL=32  
Ω
RL=16  
8
6
Ω
4
RL=32  
Ω
-40  
2
1
In phase  
RL=16  
Ω
0
-60  
-2  
-4  
-6  
-8  
-10  
0.1  
VDD=3.3V  
20kHz-LPF  
f=1kHz  
-80  
VDD=3.3V  
Po=10mW  
Input coupling  
capacitor = 1.0uF  
0.01  
0.001  
-100  
Stereo  
Out of phase  
RL=16  
Ω
-120  
10  
100  
1k  
10k  
100k  
1n  
100n  
10u  
1m  
100m  
-120 -100 -80  
-60  
-40  
-20  
0
Input Voltage [dBV]  
Frequency [Hz]  
Output Power [W]  
Fig.48 Output Voltage vs.  
Input Voltage (VDD=3.3V)  
Fig.49 Gain vs. Frequency  
(VDD=3.3V)  
Fig.50 THD+N vs. Output  
Power (VDD=3.3V, RL=16Ω)  
100  
10  
100  
10  
100  
VDD=3.3V  
RL=16Ω  
20kHz-LPF  
Stereo (in phase)  
VDD=3.3V  
RL=32Ω  
20kHz-LPF  
Stereo (in phase)  
10  
1
1
1
In phase  
Po=0.1mW  
Po=1mW  
Po=0.1mW  
Po=1mW  
0.1  
0.1  
0.1  
VDD=3.3V  
20kHz-LPF  
f=1kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
Stereo  
Out of phase  
Po=10mW  
Po=10mW  
10k  
RL=32  
Ω
10  
100  
1k  
10k  
100k  
10  
100  
1k  
100k  
1n  
100n  
10u  
1m  
100m  
Frequency [Hz]  
Frequency [Hz]  
Output Power [W]  
Fig. 51 THD+N vs. Output  
Fig.52 THD+N vs. Frequency  
Fig. 53 THD+N vs. Frequency  
Power (VDD=3.3V, RL=32Ω)  
(VDD=3.3V, RL=16Ω)  
(VDD=3.3V, RL=32Ω)  
0
VDD=3.3V  
-20  
Input connect  
to the ground  
with 1uF  
-40  
-60  
-80  
-100  
-120  
-140  
10  
100  
1k  
Frequency [Hz]  
10k  
100k  
Fig.54 Noise Spectrum  
(VDD=3.3V)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
9/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Pin Arrangement  
1
2
3
4
D
C
B
A
SVDD  
INL  
OUTL  
OUTR  
SVSS  
PVSS  
C1N  
SHDNRB SHDNLB  
INR SGND  
PGND  
C1P  
PVDD  
(Bottom View)  
Pin Function  
Ball  
Pin name  
Function  
Symbol  
Matrix  
A1  
A2  
A3  
A4  
B1  
B2  
B4  
C1  
C2  
C4  
D1  
D2  
D3  
D4  
INR  
SGND  
PVDD  
C1P  
Headphone Amplifier (Rch) input  
Ground for Headphone Amplifier  
C
-
Positive Power Supply for Charge Pump  
Flying Capacitor (CF) Positive  
-
A
E
E
-
SHDNRB Headphone Amplifier (Rch) Shutdown Control (H:active, L:shutdown)  
SHDNLB Headphone Amplifier (Lch) Shutdown Control (H:active, L:shutdown)  
PGND  
INL  
Ground for Charge Pump  
Headphone Amplifier (Lch) input  
Headphone Amplifier (Rch) output  
Flying Capacitor (CF) Negative  
Ground for Headphone Amplifier  
Headphone Amplifier (Lch) output  
Negative Supply Voltage for Signal  
Negative Supply Voltage output  
C
D
B
-
OUTR  
C1N  
SVDD  
OUTL  
SVSS  
PVSS  
D
-
F
Pin equivalent circuit  
PGND PGND  
PVDD PVDD  
SVDD  
ꢀ ꢀ ꢀ ꢀ  
PAD  
-
PAD  
PAD  
ꢀ ꢀ ꢀ ꢀ  
+
ꢀ ꢀ ꢀ ꢀ  
PVSS PVSS  
PGND PGND  
B
SVSS  
A
C
SVDD  
SVDD  
PGND PGND  
ꢀ ꢀ ꢀ ꢀ  
-
ꢀꢀꢀꢀ  
PAD  
PAD  
PAD  
+
ꢀ ꢀ  
ꢀ ꢀ ꢀ  
SVSS  
D
SGND  
F
E
Fig.55 Pin equivalent circuit  
www.rohm.com  
2011.03 – Rev. A  
10/25  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Block Diagram  
B1  
C1  
SVDD  
D1  
SVDD  
Rfb  
Rin  
PVDD  
1.0μF  
A3  
SVDD  
-
OUTL  
D2  
R2=Rin  
C1P  
A4  
+
SGND  
R1=Rfb  
SVSS  
SVDD  
PGND  
SVDD  
TSD  
CHARGE  
PUMP  
UVLO/  
SHUTDOWN  
CONTROL  
B4  
C4  
SHORT  
PROTECTION  
COM  
B2  
C1N  
R1=Rfb  
SGND  
SVDD  
PVDD  
SVSS  
+
OUTR  
C2  
CHARGE  
PUMP  
CONTROL  
CLOCK  
GENERATOR  
R2=Rin  
PVSS  
D4  
-
SVDD  
Rin  
Rfb  
SVSS  
D3  
SVSS  
SGND  
A2  
A1  
Type  
Rin  
Rfb  
BD88200GUL  
BD88210GUL  
BD88215GUL  
BD88220GUL  
14kΩ@Typ.  
14kΩ@Typ.  
14kΩ@Typ.  
14kΩ@Typ.  
Open  
14kΩ@Typ.  
21kΩ@Typ.  
28kΩ@Typ.  
Fig.56 Block Diagram  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
11/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Functional descriptions  
The conventional headphone amplifier composition is occupied to Fig.57. In this composition, the signal is output by using  
the middle point bias circuit based on the middle point bias. Therefore, the output coupling capacitor that removes the DC  
voltage difference and does the AC coupling is necessary. This coupling capacitor and the impedance of the headphone  
composes the high-pass filter. Therefore, the signal degradation in the low frequency region learns by experience. The  
output coupling capacitor should be a large capacity, because the cutoff frequency of this high-pass filter becomes the  
following formula (1).  
1
fc   
(1)  
2πRLCC  
* Cc is the coupling capacitor, and RL is the impedance of the headphone.  
Moreover, POP noise by the middle point bias start-up is generated and the degradation of PSRR learns by experience.  
Vout  
Vhp  
VDD  
Input  
VDD  
-
Cc  
VDD/2  
+
0
0
time [s]  
time [s]  
GND  
Middle Point  
Bias Circuit  
Fig.57 Conventional headphone amplifier composition  
The composition of the series of BD882xxGUL is occupied to Fig.58. In this composition, the signal is output by using a  
negative voltage based on the ground level. Therefore, the amplifier output can be connected directly with the headphone.  
And, the output coupling capacitor becomes unnecessary. Additionally, the signal degradation in the low frequency region  
with the coupling capacitor is not generated, and the deep bass is achieved.  
Moreover, POP noise is controlled because of no middle point bias start-up. And, the degradation of PSRR doesn't occur by  
being based on the ground.  
Vout  
Vhp  
Input  
VDD  
HPVDD  
HPVDD  
-
+
0
CF : Flying  
Capacitor  
time [s]  
VSS  
Charge  
Pump  
CH : Hold  
Capacitor  
0
time [s]  
Fig.58 Composition of the series of BD882xxGUL  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
12/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
BD882□□GUL has the function “Virtual Ground-reference output“. “Virtual Ground-reference output” can be canceled  
Noise (see Fig.59 “Vn”) between IC and headphone jack by feedback ground of headphone jack to IC.  
Vout  
Input  
VDD  
Vo  
Vout  
Vo  
-
+
Vn=Vg  
0
0
time[s]  
time[s]  
Vn  
Charge  
Pump  
GND  
Vg  
(Ground-bias type)  
Vout  
Input  
VDD  
-
Vo  
Vout  
Vo  
Vn=Vg  
+
0
0
time[s]  
time[s]  
Vn  
Charge  
Pump  
GND  
Vg  
(Virtual ground-bias type)  
Fig.59. Ground noise canceling function by “virtual ground”  
Connect Pin “B2” (COM) to ground near headphone jack.  
In case of BD88200GUL, value error of external resistors makes noise rejection characteristic worse.  
Put “External resistors” that have high accuracy within 5%, near the LSI.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
13/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
[CHARGE PUMP / CHARGE PUMP CONTROL]  
The negative power supply circuit is composed of the regulated charge-pump. This circuit outputs the regulated negative  
voltage (PVSS) directly from power-supply voltage (PVDD). Therefore, it doesn't depend on the power-supply voltage, and  
a constant voltage is output (PVSS=-2.4V@Typ., refer to Fig.4). Moreover, there is not swinging of the power supply by the  
output current of the headphone amplifier, and it doesn't influence the headphone amplifier characteristic.  
0
Ta=25  
VDD=3.3V  
SHDN_B=SVDD  
CF=CH=2.2uF  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
20  
40  
60  
80  
Load Current [mA]  
Fig.60 Characteristics of load current regulation of PVSS (Reference data)  
Power control  
The power control is a logical sum of SHDNLB and SHDNRB. The negative power supply circuit starts when H level is  
input to either of SHDNLB or SHDNRB, and power is downed at the SHDNLB=SHDNRB=L level.  
Table.1 Control of the charge pump  
SHDNLB  
SHDNRB  
Control  
Power down  
Power on  
Power on  
Power on  
L
L
L
H
L
H
H
H
Operating Frequency  
The operating frequency of the negative power supply charge pump is designed for the temperature and the voltage  
dependence may decrease. The reference data (measurements) is occupied to Fig.61. Please note the interference with  
the frequency in the application board.  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
Ta=25  
Measure : C1P  
CF=CH=2.2uF  
VDD=3.3V  
Measure : C1P  
CF=CH=2.2uF  
2.0  
3.0  
4.0  
Supply Voltage[V]  
5.0  
6.0  
-50.0  
0.0  
50.0  
100.0  
Ta []  
Fig.61 Temperature characteristic and Voltage characteristic of operating frequency (Reference data)  
The flying capacitor and the hold capacitor  
The flying capacitor (CF) and the hold capacitor (CH) greatly influence the characteristic of the charge pump. Therefore,  
please connect the capacitor with an excellent temperature characteristic and voltage characteristic of 2.2µF as much as  
possible near IC.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
14/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
[HEADPHONE AMP]  
The headphone amplifier is driven by the internal positive voltage (+2.4V) and negative voltage (SVSS, -2.4V) based on  
ground (SGND). Therefore, the headphone can be connected without the output coupling capacitor. As a result, it brings the  
improved low-frequency characteristic compared with the headphone of the conventional coupling capacitor type.  
Power control  
L channel and R channel of the headphone amplifier can be independently controlled by SHDNLB and SHDNRB logic.  
When the SVSS voltage is -1.1V@Typ. or more, the headphone amplifier does not operate to protect from illegal operation.  
And in addition, the overcurrent protection circuit is built in. The amplifier is shutdown when the overcurrent occurs  
because of the output short-circuit etc., and IC is protected from being destroyed.  
Table.2 Control of the headphone amplifier  
SHDNLB  
SHDNRB  
L channel  
Power down  
Power down  
Power on  
R channel  
Power down  
Power on  
L
L
L
H
L
H
H
Power down  
Power on  
H
Power on  
[V]  
SHDNxB  
VDD  
0
[time]  
[time]  
[V]  
0
-1.1V  
SVSS  
Amprilier  
Disable  
Amplifier  
Enable  
Fig.62 Area of headphone amplifier can operate  
SVSS does not have internal connection with PVSS. Please connect SVSS with PVSS on the application board.  
Input coupling capacitor  
Input DC level of BD882xxGUL is 0V (SGND). The input coupling capacitor is necessary for the connection with the  
signal source device. The signal decrease happens in the low frequency because of composing the high-pass filter by  
this input coupling capacitor and the input impedance of BD882xxGUL.  
The input impedance of BD882xxGUL is Rin (14kΩ@Typ.). The cutoff frequency of this high-pass filter becomes the  
following formula. (In BD88200GUL, Rin becomes external resistance Ri. )  
1
fc  
(2)  
2πRinCin  
* Cin is the input coupling capacitor.  
9.0  
6.0  
Rin=14k  
Ω
3.0  
Cin=10uF  
0.0  
-3.0  
-6.0  
Cin=4.7uF  
Cin=2.2uF  
Cin=1uF  
-9.0  
-12.0  
-15.0  
-18.0  
-21.0  
1
10  
Frequency [Hz]  
100  
Fig.63 Frequency response by the input coupling capacitor (Reference data)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
15/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
And, the degradation of THD+N happens because of the input coupling capacitor. Therefore, please consider these about  
the selection of parts.  
0
BD88215GUL  
-10  
VDD=3.3V  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Po=10mW  
RL=16  
20kHz LPF  
Cin=1.0µF  
Cin=0.47µF  
Cin=0.22µF  
Cin=2.2µF  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
* Capacitor size: 1608  
Fig.64 THD+N by the input coupling capacitor (Reference data)  
State of terminal when power down  
The state of the terminal changes by the power control of the headphone amplifier. When it is shutdown, the input  
impedance of the input terminal becomes 7.1kΩ@Typ. (In BD88200GUL, become Ri + 7.1kΩ). The time constant can be  
reduced when the input coupling capacitor is charged.  
The input voltage changes while charging up the input coupling capacitor. Therefore, do not operate the headphone  
amplifier while charging.  
Rin =7.1kΩ  
Output  
Bias  
Vs  
Vin  
Vout  
Audio  
Source  
Cin  
VDD  
-
0
0
time [s]  
+
Output  
Bias  
VSS  
time [s]  
Fig.65 Input voltage transition with input coupling capacitor  
This charge time constant becomes the following formula (3) by using the input coupling capacitor and the input  
impedance. And the calculation value of the convergence to the wait time is indicated in Fig.66.  
τ RinCin  
(3)  
* Rin=7.1kΩ@Typ.. In BD88200GUL, Rin=Ri+7.1kΩ  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0τ  
1τ  
2τ  
3τ  
4τ  
5τ  
6τ  
7τ  
8τ  
Wait time [s]  
Fig.66 Wait time and convergence (Reference)  
www.rohm.com  
2011.03 – Rev. A  
16/25  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
[UVLO / SHUTDOWN CONTROL]  
BD882xxGUL has low voltage protection function (UVLO: Under Voltage Lock Out). And protect from the illegal operation of  
IC by a low power supply voltage.  
The detection voltage is 2.13V@Typ., so it does not influence 2.4V of recommended operation voltage. UVLO controls the  
whole of IC, and does both the negative power supply charge pump and the headphone amplifier in power down.  
[TSD]  
BD882xxGUL has overheating protection function (TSD: Thermal Shutdown). And the headphone amplifier becomes  
shutdown when illegally overheating by the headphone amplifier illegally operation.  
Timming Chart  
(Usually Operation)  
PVDD,SVDD  
SHDNLB  
SHDNRB  
Amp enable  
PVSS,SVSS  
INL,INR  
OUTL  
OUTR  
Shutdown Setup  
Signal output  
Shutdown  
Fig.67 Usually Operation  
(UVLO Operation)  
PVDD,SVDD  
SHDNLB,  
SHDNRB  
PVSS,SVSS  
OUTL  
OUTR  
Signal output  
UVLO  
Setup Signal output  
Fig.68 UVLO Operation  
(TSD Operation)  
Hysteresis = 5℃  
Ta  
PVDD,SVDD  
SHDNLB,  
SHDNRB  
PVSS,SVSS  
OUTL  
OUTR  
Signal output  
TSD  
Signal output  
Fig.69 TSD Operation  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
17/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
SHUTDOWN  
Control  
Lch Input  
Application Circuit  
1.0μF  
C1  
3.3V  
B1  
SVDD  
D1  
SVDD  
3.3V  
Rin  
Rfb  
1.0μF  
PVDD  
A3  
SVDD  
-
OUTL  
1.0μF  
C1P  
D2  
Part  
CF  
Function  
value  
2.2µF  
Remarks  
R2=Rin  
+
A4  
Flying  
Capacitor  
Temp. Characteristic:  
Class-B  
SGND  
R1=Rfb  
SVSS  
SVDD  
Hold  
Capacitor  
Bypass  
Capacitor  
Bypass  
Capacitor  
Coupling  
Capacitor  
Coupling  
Capacitor  
Temp. Characteristic:  
Class-B  
Temp. Characteristic:  
Class-B  
Temp. Characteristic:  
Class-B  
Temp. Characteristic:  
Class-B  
CH  
Cpvdd  
Csvdd  
Cil  
2.2µF  
1.0µF  
1.0µF  
1.0µF  
1.0µF  
PGND  
SVDD  
C1  
CHA RGE  
B4  
UVLO/  
SHUTDOWN  
CONTROL  
SHORT  
PROTECTION  
PUMP  
2.2μF  
TSD  
C2  
COM  
2.2μF  
C1N  
B2  
R1=Rfb  
SVDD  
PVDD  
C4  
SVSS  
+
SGND  
OUTR  
CHARGE  
PUMP  
CONTROL  
CLOCK  
GENERATOR  
R2=Rin  
C2  
PVSS  
D4  
-
Temp. Characteristic:  
Class-B  
Cir  
SVDD  
Rin  
Rfb  
SVSS  
SVSS  
SGND  
D3  
A2  
A1  
1.0μF  
Rch Input  
Fig.70 BD88210GU/BD88215GUL/BD88220GUL application circuit  
Part  
CF  
Function  
Flying  
Capacitor  
value  
2.2µF  
Remarks  
Temp. Characteristic:  
Class-B  
Hold  
Capacitor  
Bypass  
Capacitor  
Bypass  
Capacitor  
Coupling  
Capacitor  
Coupling  
Capacitor  
Input  
Resistor  
Feedback  
Resistor  
Temp. Characteristic:  
Class-B  
Temp. Characteristic:  
Class-B  
Temp. Characteristic:  
Class-B  
Temp. Characteristic:  
Class-B  
Temp. Characteristic:  
Class-B  
MCR006YZPJ103  
(ROHM)  
MCR006YZPJ103  
(ROHM)  
CH  
Cpvdd  
Csvdd  
Cil  
2.2µF  
1.0µF  
1.0µF  
1.0µF  
1.0µF  
10kΩ  
10kΩ  
Cir  
Ri  
Rf  
Fig.71 BD88200GUL application circuit  
In BD88200GUL, the Pass Gain becomes the following formula (4). The Pass Gain and the resister Rf is limited by table.3.  
Rf  
Gain   
(4)  
Ri  
Table.3 Pass Gain and Resister Limit  
Item  
Min.  
Typ.  
Max.  
Unit  
Pass Gain  
0.5  
1.0  
-
1.0  
10  
10  
2.0  
V/V  
kΩ  
kΩ  
Rf  
Ri  
-
-
Ri is not limited. But, if this resister Ri is very small, the signal decrease happens in the low frequency (Refer to formula 2).  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
18/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Thermal Derating Curve  
The reference value of the thermal derating curve is indicated in Fig.72.  
(Conditions)  
This value is for mounted on the ROHM application board  
Board size40mm x 60mm x 1.6mm  
Top Copper Area79.9%  
Bottom Copper Area80.2%  
Board LayoutFig.75  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75  
Ta [  
100  
125  
150  
]
Fig.72 Thermal Derating Curve  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
19/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Evaluation Board  
BD882XXFV Evaluation Board loads with the necessary parts. It can operate only by it. It is using RCA Connector for input  
terminal and Headphone jack (φ=3.5mm) for output terminal. Therefore it can easily connect between Audio equipments.  
And it can operate by single supply (2.4 to 5.5V). The switch on the board (SDB) can control shutdown.  
(Spec.)  
Item  
Limit  
Unit  
Supply Voltage Range (VDD)  
Maximum Supply Current  
Operating Temperature Range  
Input Voltage Range  
3.0 to 5.5  
1.0  
V
A
-40 to 85  
-2.5 to 2.5  
-2.5 to 2.5  
15  
V
Output Voltage Range  
V
Minimum Load Impedance  
Ω
(Schematic)  
OUTL OUTR  
R6  
R5  
CN1  
R
L
Headphone  
Jack  
D2  
C1  
C2  
OUTL  
OUTR  
INR  
A1  
A4  
C4  
IN<L>  
IN<R>  
INL  
IN<L>  
IN<R>  
C6  
1µF  
C4  
BD88210GUL  
/ BD88215GUL  
/ BD88220GUL  
1µF  
RCA(White)  
VDD  
RCA(Red)  
C1P  
A3  
D1  
C1  
2.2µF  
3.3V  
PVDD  
SVDD  
C1N  
+
C7  
10u  
F
C2  
1µF  
C5  
1µF  
B4  
A2  
D4  
D3  
GND  
GND  
PGND  
SGND  
PVSS  
SVSS  
C3  
2.2µF  
GND  
VSS  
VDD  
VDD  
GND  
SHDNR  
SHDNLB  
SW2  
B2  
B1  
B
(Open)  
SHDNLB  
SHDNRB  
(Open)  
SW1  
GND  
Fig.73 Evaluation Board Schematic (BD88210GUL/BD88215GUL/BD88220GUL)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
20/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
OUTL OUTR  
R6  
R5  
CN1  
R
L
Headphone  
Jack  
D2  
C1  
C2  
A1  
A4  
C4  
OUTL  
OUTR  
INR  
R4  
10k  
Ω
R2  
10k  
Ω
IN<L>  
IN<R>  
INL  
IN<L>  
IN<R>  
R3  
10kΩ  
R1  
C6  
1µF  
C4  
1µF  
10kΩ  
RCA(White)  
VDD  
RCA(Red)  
BD88200GUL  
C1P  
C1N  
A3  
D1  
C1  
2.2µF  
3.3V  
PVDD  
SVDD  
+
C7  
10u  
F
C2  
1µF  
C5  
1µF  
B4  
A2  
D4  
D3  
GND  
GND  
PGND  
SGND  
PVSS  
SVSS  
C3  
2.2µF  
GND  
VSS  
VDD  
GND  
SHDNB  
SW1  
COM  
B1  
B2  
(Open)  
SHDNL  
COM  
R8  
R7  
10kΩ  
10kΩ  
Fig.74 Evaluation Board Schematic (BD88200GUL)  
(Parts List)  
Parts name  
Type  
CSP-14pin  
Value  
Size  
U1  
C1, C3  
C2, C4C6  
C7  
BD882xxGUL  
2.2µF  
1.0µF  
10µF  
2.1mm x 2.1mm  
Chip Ceramic capacitor  
Chip Ceramic capacitor  
Tantalum capacitor  
Chip Resistor  
1608  
1608  
3216  
R1R4  
R5, R6  
CN1  
10kΩ  
Open  
1608  
Chip Resistor  
-
Headphone jack  
-
φ=3.5mm  
1608  
R1R4 *  
Chip Resistor  
10kΩ  
*About BD88200GUL, R1R4 of is the resistor for the gain setting.  
(Operation procedure)  
Turn off the switch (SHNDLB/SHDNRB) on evaluation board.  
Connect the positive terminal of the power supply to the VDD pin and ground terminal to the GND pin.  
Connect the left output of the audio source to the INL and connect the right output to the INR.  
Turn on the power supply.  
Turn on the switch (SHDNLB/SHDNRB) on the evaluation board. (H)  
Input the audio source.  
www.rohm.com  
2011.03 – Rev. A  
21/25  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
(Board Layout)  
(TOP SILKSCREEN – TOP VIEW)  
(TOP LAYER - TOP VIEW)  
(BOTTOM LAYER – TOP VIEW)  
(BOTTOM SILKSCREEN – TOP VIEW)  
Fig.75 ROHM Application Board Layout (BD88210GUL/BD88215GUL/BD88220GUL)  
(TOP SILKSCREEN – TOP VIEW)  
(TOP LAYER - TOP VIEW)  
(BOTTOM LAYER – TOP VIEW)  
(BOTTOM SILKSCREEN – TOP VIEW)  
Fig.76 ROHM Application Board Layout (BD88200GUL)  
www.rohm.com  
2011.03 – Rev. A  
22/25  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Notes for use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc.,  
can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If  
any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical  
safety measures including the use of fuses, etc.  
(2) Operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected. The  
electrical characteristics are guaranteed under the conditions of each parameter.  
(3) Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the  
breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s  
power supply terminal.  
(4) Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this  
regard, for the digital block power supply and the analog block power supply, even though these power supplies has  
the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus  
suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the  
wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.  
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal.  
At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the  
capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus  
determining the constant.  
(5) GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric  
transient.  
(6) Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting  
can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or  
between the terminal and the power supply or the GND terminal, the ICs can break down.  
(7) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8) Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.  
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set  
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to  
the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In  
addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention  
to the transportation and the storage of the set PCB.  
(9) Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of  
the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input  
terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not  
apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power  
supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the  
guaranteed value of electrical characteristics.  
(10) Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND  
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that  
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of  
the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.  
(11) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(12) About the rush current  
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal  
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring,  
width of GND wiring, and routing of wiring.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
23/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
Ordering part number  
B
D
8
8
2
0
0
G U  
L
-
E
2
Part No.  
BD  
Part No.  
88200  
88210  
88215  
88220  
Package  
GUL: VCSP50L2  
Packaging and forming specification  
E2: Embossed tape and reel  
VCSP50L2(BD88200GUL)  
<Tape and Reel information>  
1PIN MARK  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
2.10 0.05  
(
)
S
φ
14- 0.25 0.05  
0.06  
S
0.05  
A B  
A
D
C
B
A
B
(φ0.15)INDEX POST  
Direction of feed  
1pin  
1
2
3
4
0.30 0.05  
P=0.5×3  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
VCSP50L2(BD88210GUL)  
<Tape and Reel information>  
1PIN MARK  
Tape  
Embossed carrier tape  
Quantity  
3000pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
2.10 0.05  
(
)
S
φ
14- 0.25 0.05  
0.06  
S
0.05  
A B  
A
D
C
B
A
B
(φ0.15)INDEX POST  
Direction of feed  
1pin  
1
2
3
4
0.30 0.05  
P=0.5×3  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
VCSP50L2(BD88215GUL)  
<Tape and Reel information>  
1PIN MARK  
Tape  
Embossed carrier tape  
Quantity  
3000pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
2.10 0.05  
(
)
S
φ
14- 0.25 0.05  
0.06  
S
0.05  
A B  
A
D
C
B
A
B
(φ0.15)INDEX POST  
Direction of feed  
1pin  
1
2
3
4
0.30 0.05  
P=0.5×3  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
24/25  
Technical Note  
BD88200GUL,BD88210GUL,BD88215GUL,BD88220GUL  
VCSP50L2(BD88220GUL)  
<Tape and Reel information>  
1PIN MARK  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
2.10 0.05  
(
)
S
φ
14- 0.25 0.05  
0.06  
S
0.05  
A B  
A
D
C
B
A
B
(φ0.15)INDEX POST  
Direction of feed  
1pin  
1
2
3
4
0.30 0.05  
P=0.5×3  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.03 – Rev. A  
25/25  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD88220GUL-E2

Coupling Capacitorless Headphone Amplifiers
ROHM

BD88400FJ

BD88400FJ是无需输出耦合电容器的耳机放大器。本IC内置有稳压电荷泵型负电源发生电路,可从电源电压直接生成稳定的-2.4V负电压。通过采用+2.4V的正电压与该负电压的两种电压来驱动耳机放大器,以ground level为基准进行输出。因此,无需大容量的输出耦合电容器,可直接连接耳机。由此,可降低成本,缩减电路板面积,降低部件的高度。此外,没有因输出耦合电容器与输出负载阻抗引起的低音区域的信号衰减,可输出丰富的低音。
ROHM

BD88400GUL

Coupling Capacitorless Headphone Amplifiers
ROHM

BD88400GUL-E2

Coupling Capacitorless Headphone Amplifiers
ROHM

BD88410GUL

Coupling Capacitorless Headphone Amplifiers
ROHM

BD88410GUL-E2

Coupling Capacitorless Headphone Amplifiers
ROHM

BD88415GUL

Coupling Capacitorless Headphone Amplifiers
ROHM

BD88415GUL-E2

Coupling Capacitorless Headphone Amplifiers
ROHM

BD88420GUL

Coupling Capacitorless Headphone Amplifiers
ROHM

BD88420GUL-E2

Coupling Capacitorless Headphone Amplifiers
ROHM

BD8876FV

Output Coupling Capacitor-less Line Amplifier
ROHM

BD8876FV-E2

Output Coupling Capacitor-less Line Amplifier
ROHM