BD9573MUF-M [ROHM]

BD9573MUF-M is a Power Management Integrated Circuit (PMIC) designed specifically for use on R-Car series processor for In-Vehicle Infotainment (IVI) systems and Instrument Cluster Panel.;
BD9573MUF-M
型号: BD9573MUF-M
厂家: ROHM    ROHM
描述:

BD9573MUF-M is a Power Management Integrated Circuit (PMIC) designed specifically for use on R-Car series processor for In-Vehicle Infotainment (IVI) systems and Instrument Cluster Panel.

集成电源管理电路
文件: 总84页 (文件大小:3390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Power Management IC  
For Automotive R-Car Series  
BD9573MUF-M  
General Description  
Key Specifications  
BD9573MUF-M is a Power Management Integrated  
Circuit (PMIC) designed specifically for use on R-Car  
series processor for In-Vehicle Infotainment (IVI)  
systems and Instrument Cluster Panel.  
Input Voltage Range:  
3.0 V to 3.6 V  
5 V (Typ)  
0.2 A (Max)  
1.8 V (Typ)  
1.0 A (Max)  
VOUT1 (VD50) Output Voltage:  
VOUT1 (VD50) Output Current:  
VOUT2 (VD18) Output Voltage:  
VOUT2 (VD18) Output Current:  
VOUT3 (DDR) Output Voltage:  
Features  
1.35 V (Typ, DDR3L)(Note 2)  
1.50 V (Typ, DDR3)(Note 2)  
AEC-Q100 Qualified(Note 1)  
Customizable Power Up / Down Sequence and  
State Control  
VOUT3 (DDR) Output Current:  
VOUT4 (VD10A, VD10B) Output Voltage:  
1.03 V (Typ)  
VOUT4 (VD10A, VD10B) Output Current:  
2.0 A (Max)  
Fewer External Components Count / Compact Size  
Power Control Logic with Processor Interface and  
Event Detection  
5.2 A (Max)  
2.5 V (Typ)  
0.15 A (Max)  
Built-in UVLO, SCP, OVP, UVP, OCP and TSD  
Protection  
VOUTL1 (VL25) Output Voltage:  
VOUTL1 (VL25) Output Current:  
(Note 1) Grade 2  
VOUTS1 (VS33) Output Voltage: VIN7 = 3.3 V (Typ)  
Applications  
VOUTS1 (VS33) Output Current:  
0.3 A (Max)  
In-Vehicle Infotainment (IVI) Systems  
Instrument Cluster Panel  
Operating Ambient Temperature Range:  
-40 °C to +105 °C  
(Note 2) Select Voltage by the DDR_SEL pin.  
Special Characteristics  
Output Voltage:  
(VOUT1 (VD50), VOUT2 (VD18), VOUT3 (DDR),  
VOUT4 (VD10A, VD10B), VOUTL1 (VL25),  
VOUTS1 (VS33))  
Package  
W (Typ) x D (Typ) x H (Max)  
VQFN56FV8080  
(Wettable Flank)  
8.0 mm x 8.0 mm x 1.0 mm  
Enlarge
VQFN56FV8080  
Wettable Flank Package  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
1/81  
 
 
 
 
 
 
BD9573MUF-M  
Block Diagram  
VREF  
OSC  
Boost Converter VD50  
L_VOUT2  
TSD  
I2C  
Buck Converter VD18  
Buck Converter DDR  
C_VOUT2  
L_VOUT3  
C_VOUT3  
Control  
L_VOUT4A  
Buck Converter VD10A  
Buck Converter VD10B  
C_VOUT4  
L_VOUT4B  
ERROR  
WDT  
LDO25 VL25  
RESET  
TEST  
SW VS33  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
2/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
 
BD9573MUF-M  
Pin Configuration  
(TOP VIEW)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
3/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
 
BD9573MUF-M  
Pin Description  
Pin No.  
Pin Name  
I/O  
Function  
1
2
3
4
5
6
7
PGND2  
PGND2  
SW2  
-
Power GND for VOUT2  
Power GND for VOUT2  
-
High side MOSFET source / Low side MOSFET sink pin for  
VOUT2  
High side MOSFET source / Low side MOSFET sink pin for  
VOUT2  
O
SW2  
O
VIN2  
I (POWER)  
I (POWER)  
I
Power supply for VOUT2  
Power supply for VOUT2  
Feedback pin for VOUT2  
VIN2  
FB2  
VOUT3 Voltage is changed by DDR_SEL.  
DDR_SEL = H: 1.5 V, DDR_SEL = L: 1.35 V  
(internal 100 kΩ pull down)  
8
DDR_SEL  
I
9
VIN3  
VIN3  
I (POWER)  
Power supply for VOUT3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I (POWER)  
Power supply for VOUT3  
High side MOSFET source / Low side MOSFET sink pin for  
SW3  
O
VOUT3  
High side MOSFET source / Low side MOSFET sink pin for  
VOUT3  
SW3  
O
PGND3  
PGND3  
FB3  
-
Power GND for VOUT3  
Power GND for VOUT3  
Feedback pin for VOUT3  
GND  
-
I
AGND  
WDO  
-
O (O.D.)(Note 1)  
Watchdog Timer error signal.  
Power On (internal 100 kΩ pull down)  
Reset signal for SoC  
RSTB  
PRESETB  
SYNC  
INTB  
I
O (O.D.)(Note 1)  
I
External sync for DCDC (internal 100 kΩ pull down)  
Interrupt signal  
O (O.D.)(Note 1)  
Clock signal input as Watch Dog Timer function.  
(internal 100 kΩ pull down)  
Watch Dog Timer function setting ON/OFF.  
(internal 100 kΩ pull down)  
WDI  
I
WDEN  
SDA  
I
I/O (O.D.)(Note 1)  
I2C Data  
SCL  
I/O (O.D.)(Note 1)  
I2C CLK  
PGD  
O (O.D.)(Note 1)  
POWER Good Function  
Feedback pin for VOUT4  
Power GND for VOUT4  
Power GND for VOUT4  
FB4  
I
PGND4  
PGND4  
SW4  
-
-
High side MOSFET source / Low side MOSFET sink pin for  
VOUT4  
High side MOSFET source / Low side MOSFET sink pin for  
VOUT4  
O
SW4  
O
VIN4  
I (POWER)  
I (POWER)  
I
Power supply for VOUT4  
VIN4  
Power supply for VOUT4  
Adjust shutdown timing of VD18. Multi-threshold PIN.  
(internal 2 MΩ pull down)  
SEQCNT[1]  
35  
36  
VOUT1_EN  
TEST  
I
I
Enable control pin for VOUT1 (internal 100 kΩ pull down)  
Connected to AGND. TEST MODE PIN  
Adjust start and OFF timing. Multi-threshold PIN.  
(internal 2 MΩ pull down)  
37  
38  
39  
SEQCNT[0]  
VIN5  
I
I (POWER)  
I (POWER)  
Power supply for VOUT4  
VIN5  
Power supply for VOUT4  
(Note 1) O.D. = Open Drain  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
4/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
 
BD9573MUF-M  
Pin Description - continued  
Pin No.  
40  
Pin Name  
SW5  
I/O  
O
Function  
High side MOSFET source / Low side MOSFET sink pin for  
VOUT4  
High side MOSFET source / Low side MOSFET sink pin for  
VOUT4  
41  
SW5  
O
42  
43  
44  
45  
46  
47  
PGND5  
PGND5  
VOUTL1  
VIN6  
-
Power GND for VOUT4  
Power GND for VOUT4  
Output of VOUTL1  
-
O
I (POWER)  
I (POWER)  
O
Power supply for VOUTL1  
Power supply for VOUTS1  
SW Output  
VIN7  
VOUTS1  
Control Gate of External PMOS SW. When use External PMOS.  
If External PMOS SW is not used, please connect to GND.  
48  
GATECNT  
O
49  
50  
51  
52  
53  
54  
55  
56  
VFIL  
VIN  
O
Output of filtering VIN.  
Power supply for PMIC  
Feedback pin for VOUT1  
Power supply for VOUT1  
Output of LDSW  
I (POWER)  
FB1  
I
VIN1  
I (POWER)  
VLSO  
VOUT1  
SW1  
O
O
O
-
Output of VOUT1  
High side MOSFET source / Low side MOSFET sink pin for  
VOUT1  
PGND1  
Power GND for VOUT1  
GND  
-
-
EXP-PAD (CORNER)  
EXP-PAD (CENTER)  
-
-
(EXP-PAD (CORNER) short-circuit with EXP-PAD (CENTER)  
into the Package)  
GND (Connect to common GND of PCB)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
5/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
Daattaasshheeeett  
BD9573MUF-M  
Physical Dimension and Packing Information  
Package Name  
VQFN56FV8080  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
6/81  
BD9573MUF-M  
Footprint Dimension  
Package Name  
VQFN56FV8080  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
7/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
 
BD9573MUF-M  
Ordering Information  
B D 9 5 7 3 M U F -  
ME 2  
Part Number  
Package  
Product Rank  
MUF: VQFN56FV8080  
M: for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
VQFN56FV8080 (TOP VIEW)  
Part Number Marking  
B D 9 5 7 3 M U F  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
8/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
 
 
BD9573MUF-M  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Special Characteristics ...................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Block Diagram ................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Description................................................................................................................................................................................4  
Physical Dimension and Packing Information.................................................................................................................................6  
Footprint Dimension........................................................................................................................................................................7  
Ordering Information.......................................................................................................................................................................8  
Marking Diagram ............................................................................................................................................................................8  
Contents .........................................................................................................................................................................................9  
Device Feature...................................................................................................................................................................13  
Output Voltage Table ......................................................................................................................................................13  
Signal Line Diagram for PMIC........................................................................................................................................14  
Application .........................................................................................................................................................................15  
Electrical Characteristics....................................................................................................................................................17  
Absolute Maximum Ratings............................................................................................................................................17  
Thermal Resistance .......................................................................................................................................................18  
Recommended Operating Conditions ............................................................................................................................19  
DC Characteristics .........................................................................................................................................................20  
Protection Mode (Under Voltage Lock Out)....................................................................................................................24  
Protection Mode (Thermal Shutdown)............................................................................................................................24  
Protection Mode .............................................................................................................................................................24  
Function Description ..........................................................................................................................................................25  
Pin Control Function.......................................................................................................................................................25  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
4.1.7  
4.1.8  
4.1.9  
4.1.10  
VOUT1_EN Input.................................................................................................................................................25  
RSTB Input ..........................................................................................................................................................25  
PIN Setting Judge Timing ....................................................................................................................................25  
Output Power-ON / Output Power-OFF Sequence..............................................................................................26  
VOUT2 (VD18) Discharge Start Timing ...............................................................................................................27  
Countermeasures for Hang-Up............................................................................................................................27  
Interval Setting.....................................................................................................................................................28  
Initializing Control Circuit .....................................................................................................................................29  
VOUT1 Mode Setting...........................................................................................................................................29  
State Machine ..................................................................................................................................................31  
Whole Sequence Control................................................................................................................................................33  
4.2.1  
Whole Sequence (State Chart)............................................................................................................................33  
General Sequence Description............................................................................................................................33  
I2C Accessible State Condition............................................................................................................................33  
EEPROM Load Function and Internal OSC Stable Time.....................................................................................34  
Prevention of Repetition for Protection Error, EEPROM CRC Error ....................................................................34  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
VOUT1/VOUTL1 Disable Setting without EEPROM.......................................................................................................35  
VOUTS1 Disable Setting without EEPROM, Internal/External SW Mode Setting ..........................................................36  
I2C I/F.............................................................................................................................................................................37  
Interrupt Function ...........................................................................................................................................................41  
4.6.1  
4.6.2  
Interrupt Function Description..............................................................................................................................41  
Interruption Factor ...............................................................................................................................................42  
Power Abnormality Monitoring Function (Protection Error Detection).............................................................................45  
SYNC Function...............................................................................................................................................................47  
WDT Function ................................................................................................................................................................48  
Register Specification ........................................................................................................................................................51  
Register Map..................................................................................................................................................................51  
Register Description.......................................................................................................................................................52  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
5.2.9  
5.2.10  
5.2.11  
5.2.12  
Recognition Code Indicator..................................................................................................................................52  
FuSa Mode (Error Detection/Rectification Mode) ................................................................................................52  
Spread Spectrum Clock Generation Control for Internal OSC.............................................................................53  
SMRB control Using I2C Control (Software Manual Reset for PRESETB) ..........................................................54  
Watch Dog Timer Setting.....................................................................................................................................54  
Oscillator Enable in STANDBY State...................................................................................................................54  
The PGD pin output assert condition Setting.......................................................................................................55  
PMIC Internal Status............................................................................................................................................55  
I2C FuSa mode Error bit location.........................................................................................................................56  
INTB Interruption Factor and Mask Condition ..................................................................................................57  
POW Setting ....................................................................................................................................................60  
VOUT Voltage SET ..........................................................................................................................................63  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
9/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
 
BD9573MUF-M  
5.2.13  
VOUTS1 OCP SET ..........................................................................................................................................65  
Typical Performance Curves..............................................................................................................................................66  
Line Regulation ..............................................................................................................................................................66  
Load Regulation .............................................................................................................................................................68  
Power Efficiency.............................................................................................................................................................70  
Power ON Waveform......................................................................................................................................................72  
Power OFF Waveform....................................................................................................................................................74  
Load Transient................................................................................................................................................................76  
Operational Notes..............................................................................................................................................................78  
Revision History.................................................................................................................................................................81  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
10/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Table 1: Output Voltage Table of Each State .........................................................................................................................13  
Table 2: Application Circuit Components List.........................................................................................................................16  
Table 3: Absolute Maximum Ratings......................................................................................................................................17  
Table 4: Recommended Operating Conditions ......................................................................................................................19  
Table 5: DC Characteristics (Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = 3.3 V)............................................20  
Table 6: Logic Characteristics (Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = 3.3 V).........................................23  
Table 7: Protection Mode (General).......................................................................................................................................24  
Table 8: Protection Mode (VD50, DDR, VD18, VD10) ...........................................................................................................24  
Table 9: Protection Mode (VL25) ...........................................................................................................................................24  
Table 10: Protection Mode (VS33).........................................................................................................................................24  
Table 11: SEQCNT[0] Operation Mode..................................................................................................................................28  
Table 12: SEQCNT[1] Operation Mode..................................................................................................................................28  
Table 13: Initializing Control Circuit........................................................................................................................................29  
Table 14: I2C Accessible Condition .......................................................................................................................................33  
Table 15: Interruption at Primary Level ..................................................................................................................................43  
Table 16: Interruption at Secondary Level 2 ..........................................................................................................................44  
Table 17: WDT setting (NG_RATIO[1:0] = “00”).....................................................................................................................49  
Table 18: WDT setting (NG_RATIO[1:0] = “01”).....................................................................................................................49  
Table 19: WDT setting (NG_RATIO[1:0] = “10”).....................................................................................................................49  
Table 20: WDT setting (NG_RATIO[1:0] = “11”).....................................................................................................................49  
Table 21: I2C I/F Register Map..............................................................................................................................................51  
Table 22: PMIC Internal State................................................................................................................................................55  
Table 23: PON/POFF Trigger Signal......................................................................................................................................61  
Table 24: PON/POFF Interval................................................................................................................................................62  
Table 25: VOUT1 Tuning Voltage ..........................................................................................................................................63  
Table 26: VOUT2 Tuning Voltage ..........................................................................................................................................63  
Table 27: VOUT3 Tuning Voltage ..........................................................................................................................................64  
Table 28: VOUT4 Tuning Voltage ..........................................................................................................................................64  
Table 29: VOUTL1 Tuning Voltage ........................................................................................................................................65  
Table 30: VOUTS1 OCP Current (Internal) and Voltage (External)........................................................................................65  
Figure 1. An Example of Signal Line Diagram for PMIC ........................................................................................................14  
Figure 2. Application Circuit...................................................................................................................................................15  
Figure 3. Application Circuit (External MOS) .........................................................................................................................15  
Figure 4. RSTB Operation Timing Chart................................................................................................................................25  
Figure 5. Output Power-ON Operation Timing Chart (Default Register Setting)....................................................................26  
Figure 6. Output Power-OFF Operation Timing Chart (Default Register Setting) ..................................................................26  
Figure 7. VOUT2 Discharge Start Timing ..............................................................................................................................27  
Figure 8. SEQCNT Circuit .....................................................................................................................................................28  
Figure 9. Whole Sequence1 (Mode B)...................................................................................................................................29  
Figure 10. Whole Sequence2 (Mode B).................................................................................................................................29  
Figure 11. Error Case (Mode B).............................................................................................................................................30  
Figure 12. Main State Machine..............................................................................................................................................31  
Figure 13. Sub State Machine ...............................................................................................................................................32  
Figure 14. Whole Sequence (State Chart).............................................................................................................................33  
Figure 15. Sequence at Protection Error Occurrence (Timing Chart) ....................................................................................34  
Figure 16. VOUT1 Disable Setting without EEPROM............................................................................................................35  
Figure 17. VOUTL1 Disable Setting without EEPROM..........................................................................................................35  
Figure 18. VOUT1 and VOUTL1 OFF Circuit ........................................................................................................................35  
Figure 19. VOUTS1 Disable Setting without EEPROM .........................................................................................................36  
Figure 20. VOUTS1 Internal/External Setting........................................................................................................................36  
Figure 21. VOUTS1 OFF Circuit and SW Mode Selection.....................................................................................................36  
Figure 22. I2C Basic Protocol................................................................................................................................................37  
Figure 23. I2C Protocol (Each Access Mode)........................................................................................................................37  
Figure 24. I2C Protocol (FuSa Mode)....................................................................................................................................38  
Figure 25. I2C Data Format (FuSa Mode type2 = ECC at Calculation) .................................................................................40  
Figure 26. Error Detection Judgement by ECC Calculation...................................................................................................40  
Figure 27. Error Correction Calculation .................................................................................................................................40  
Figure 28. Interruption Factor/Mask/Request ........................................................................................................................41  
Figure 29. Interrupt Function Description...............................................................................................................................41  
Figure 30. System Diagram of Interruption Function .............................................................................................................42  
Figure 31. Power Abnormality Monitoring Circuit...................................................................................................................45  
Figure 32. Timing Chart when Protection Error Factor Occur 1.............................................................................................45  
Figure 33. Timing Chart when Protection Error Factor Occur 2.............................................................................................46  
Figure 34. WDT Function.......................................................................................................................................................48  
Figure 35. WDT NG RATIO ...................................................................................................................................................48  
Figure 36. WDT Detection Time when NG_RATIO[1:0] = “00”...............................................................................................50  
Figure 37. WDT Detection Time when NG_RATIO[1:0] = “01”...............................................................................................50  
Figure 38. Modulation Waveform of SSCG............................................................................................................................53  
Figure 39. VOUT1 Output Voltage vs VIN .............................................................................................................................66  
Figure 40. VOUT2 Output Voltage vs VIN .............................................................................................................................66  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
11/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Figure 41. VOUT3 Output Voltage vs VIN (VOUT3 = 1.35 V Setting)....................................................................................66  
Figure 42. VOUT3 Output Voltage vs VIN (VOUT3 = 1.5 V Setting)......................................................................................66  
Figure 43. VOUT4 Output Voltage vs VIN .............................................................................................................................67  
Figure 44. VOUTL1 Output Voltage vs VIN ...........................................................................................................................67  
Figure 45. VOUT1 Output Voltage vs IOUT...........................................................................................................................68  
Figure 46. VOUT2 Output Voltage vs IOUT...........................................................................................................................68  
Figure 47. VOUT3 Output Voltage vs IOUT (VOUT3 = 1.35 V Setting).................................................................................68  
Figure 48. VOUT3 Output Voltage vs IOUT (VOUT3 = 1.5 V Setting)...................................................................................68  
Figure 49. VOUT4 Output Voltage vs IOUT...........................................................................................................................69  
Figure 50. VOUTL1 Output Voltage vs IOUT.........................................................................................................................69  
Figure 51. VOUT1 Power Efficiency vs IOUT........................................................................................................................70  
Figure 52. VOUT2 Power Efficiency vs IOUT........................................................................................................................70  
Figure 53. VOUT3 Power Efficiency vs IOUT (VOUT3 = 1.35 V Setting) ..............................................................................70  
Figure 54. VOUT3 Power Efficiency vs IOUT (VOUT3 = 1.5 V Setting) ................................................................................70  
Figure 55. VOUT4 Power Efficiency vs IOUT........................................................................................................................71  
Figure 56. VOUT1 Power ON Waveform...............................................................................................................................72  
Figure 57. VOUT2 Power ON Waveform...............................................................................................................................72  
Figure 58. VOUT3 Power ON Waveform (VOUT3 = 1.35 V Setting) .....................................................................................72  
Figure 59. VOUT3 Power ON Waveform (VOUT3 = 1.5 V Setting).......................................................................................72  
Figure 60. VOUT4 Power ON Waveform...............................................................................................................................73  
Figure 61. VOUTL1 Power ON Waveform.............................................................................................................................73  
Figure 62. VOUTS1 Power ON Waveform.............................................................................................................................73  
Figure 63. VOUT1 Power OFF Waveform.............................................................................................................................74  
Figure 64. VOUT2 Power OFF Waveform.............................................................................................................................74  
Figure 65. VOUT3 Power OFF Waveform (VOUT3 = 1.35 V Setting) ...................................................................................74  
Figure 66. VOUT3 Power OFF Waveform (VOUT3 = 1.5 V Setting) .....................................................................................74  
Figure 67. VOUT4 Power OFF Waveform.............................................................................................................................75  
Figure 68. VOUTL1 Power OFF Waveform...........................................................................................................................75  
Figure 69. VOUTS1 Power OFF Waveform...........................................................................................................................75  
Figure 70. VOUT1 Load Transient (IOUT = 0 A to 100 mA (SR = 100 mA/µs)) .....................................................................76  
Figure 71. VOUT2 Load Transient (IOUT = 0 A to 0.5 A (SR = 1 A/µs)).................................................................................76  
Figure 72. VOUT3 Load Transient (VOUT3 = 1.35 V Setting, IOUT = 0 A to 1 A (SR = 1 A/µs)) ...........................................76  
Figure 73. VOUT3 Load Transient (VOUT3 = 1.5 V Setting, IOUT = 0 A to 1 A (SR = 1 A/µs)) .............................................76  
Figure 74. VOUT4 Load Transient (IOUT = 0 A to 2.05 A (SR = 1 A/µs))...............................................................................77  
Figure 75. VOUTL1 Load Transient (IOUT = 0 A to 75 mA (SR = 100 mA/µs).......................................................................77  
Figure 76. Example of Monolithic IC Structure ......................................................................................................................79  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
12/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Device Feature  
Output Voltage Table  
Table 1: Output Voltage Table of Each State  
Channel  
VD50  
VD18  
DDR  
Rail name  
VOUT1  
Output [V]  
5.0  
Iomax [A]  
0.2  
STANDBY  
OFF  
ACTIVE  
ON  
VOUT2  
1.8  
1.0  
OFF  
ON  
1.35 (DDR3L)  
1.50 (DDR3)  
VOUT3  
2.0  
OFF  
ON  
VD10A  
VD10B  
VOUT4  
1.03  
2.50  
5.2  
OFF  
ON  
VL25  
VS33  
VOUTL1  
VOUTS1  
0.15  
0.3  
OFF  
ON  
VIN7  
(Analog Switch)  
OFF  
ON  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
13/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
1. Device Feature - continued  
Signal Line Diagram for PMIC  
Bidirectional Voltage Level  
Translator  
R-car D3  
BD9573MUF-M  
I2C_SCL  
I2C_SDA  
INTB (Open Drain)  
PRESETB (Open Drain)  
PGD (Open Drain)  
DDR_SEL  
VIN or GND  
100 kΩ  
SYNC  
WDI  
GND (When not in use)  
100 kΩ  
GND (When not in use)  
GND (When not in use)  
WDEN  
100 kΩ  
100 kΩ  
WDO (Open Drain)  
SEQCNT[1:0]  
GND or VMID_L  
or VMID_H or VIN  
2 MΩ  
RSTB  
System Controller  
100 kΩ  
100 kΩ  
VOUT1_EN  
Figure 1. An Example of Signal Line Diagram for PMIC  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
14/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Application  
LOAD  
VREF  
OSC  
Boost Converter VD50  
L_VOUT2  
TSD  
I2C  
LOAD  
Buck Converter VD18  
Buck Converter DDR  
C_VOUT2  
L_VOUT3  
LOAD  
C_VOUT3  
Control  
L_VOUT4A  
LOAD  
Buck Converter VD10A  
Buck Converter VD10B  
C_VOUT4  
L_VOUT4B  
ERROR  
WDT  
LDO25 VL25  
LOAD  
LOAD  
RESET  
TEST  
SW VS33  
Figure 2. Application Circuit  
Figure 3 shows the case of external FET for VOUTS1.  
When output current is over 0.3 A or more, external FET is used.  
VIN  
VIN  
VIN7  
C_VIN  
R_M  
F_PMOS  
VOUTS1  
SW VS33  
C_VOUTS1  
GATECNT  
Figure 3. Application Circuit (External MOS)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
15/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
2. Application - continued  
Table 2: Application Circuit Components List  
Value  
Parts Name  
Unit  
Vendor  
Parts Number  
Size (mm)  
Min(Note 1)  
Typ  
Max  
C_VINx  
C_VFIL  
-
10  
-
μF  
μF  
μF  
μF  
μF  
μH  
μH  
μF  
μF  
μF  
μF  
μH  
μF  
μF  
μF  
μF  
μH  
μH  
μF  
μF  
μF  
μF  
μF  
μF  
μF  
μF  
-
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
TDK  
GCM21BR70J106KE22  
GCM188R71C105KA64  
GCM21BR70J106KE22  
GCM31CR71A226KE02  
GCM31CR71A226KE02  
TFM252012ALMA2R2MTAA  
TFM252012ALMAR22MTAA  
GCM31CR70J226KE26  
CGA4J1X7T0J226M  
GCM31CR70J226KE26  
CGA4J1X7T0J226M  
TFM252012ALMAR33MTAA  
GCM31CR70J226KE26  
CGA4J1X7T0J226M  
GCM31CR70J226KE26  
CGA4J1X7T0J226M  
TFM252012ALMAR22MTAA  
TFM252012ALMAR22MTAA  
GCM32ER70J476KE19  
CGA4J1X7T0J226M  
GCM32ER70J476KE19  
CGA4J1X7T0J226M  
GCM21BR70J106KE22  
-
2012  
1608  
2012  
3216  
3216  
2520  
2520  
3216  
2012  
3216  
2012  
2520  
3216  
2012  
3216  
2012  
2520  
2520  
3225  
2012  
3225  
2012  
2012  
-
-
1
-
C_LSO  
-
10 x 2  
-
C_VOUT1  
C_LOAD1  
L_VOUT1  
L_VOUT2  
-
22  
-
22  
-
-
-
2.2  
-
-
0.22  
-
TDK  
-
22  
-
MURATA  
TDK  
C_VOUT2  
-
or 22  
-
22 x 2  
-
-
MURATA  
TDK  
C_LOAD2  
L_VOUT3  
C_VOUT3  
or 22 x 2  
-
-
-
0.33  
-
TDK  
-
22  
-
MURATA  
TDK  
-
or 22  
-
22 x 3  
-
-
MURATA  
TDK  
C_LOAD3  
or 22 x 3  
-
-
L_VOUT4A  
L_VOUT4B  
-
0.22  
-
TDK  
-
0.22  
-
TDK  
-
47 x 2  
-
MURATA  
TDK  
C_VOUT4  
C_LOAD4  
-
or 22 x 4  
-
47 x 4  
-
-
-
MURATA  
TDK  
or 22 x 8  
-
C_VOUTL1  
C_LOADL1  
C_VOUTS1  
C_LOADS1  
F_PMOS  
R_M  
-
1
-
10  
-
-
MURATA  
-
300  
10  
-
-
MURATA  
-
GCM21BR70J106KE22  
-
2012  
-
1
-
300  
-
-
-
-
-
-
-
-
-
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
RQ1A070ZPHZG  
TSMT8  
1005  
1005  
1005  
1005  
1005  
1005  
1005  
-
100  
10  
10  
10  
1
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
MCR01MZPF1003  
R_PGD  
-
MCR01MZPF1002  
R_EEROR  
R_RESET  
R_SDA  
-
MCR01MZPF1002  
-
MCR01MZPF1002  
-
MCR01MZPF1001  
R_SCL  
-
1
MCR01MZPF1001  
R_WDO  
-
10  
MCR01MZPF1002  
(Note 1) Please set in consideration of temperature properties and DC bias properties not to become less than the minimum.  
Please consider it based on enough evaluations with the actual model.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
16/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Electrical Characteristics  
Absolute Maximum Ratings  
Table 3: Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
-0.3 to +7.0  
-0.3 to +7.0  
-0.3 to VIN+0.3  
-0.3 to VIN1+0.3  
-0.3 to +7.0  
-0.3 to VINx+0.3  
-0.3 to +7.0  
-0.3 to VINx+0.3  
-0.3 to +10.0  
-0.3 to +7.0  
-0.3 to VIN+0.3  
-0.3 to VIN+0.3  
-0.3 to +7.0  
-0.3 to VIN+0.3  
-3.0  
Unit  
V
Input Voltage 1  
VIN, VIN1, VIN2, VIN3, VIN4, VIN5, VIN6, VIN7  
Input Voltage 2  
FB1, FB2, FB3, FB4  
V
Output Voltage 1  
VFIL  
V
Output Voltage 2  
VLSO  
VOUT1  
V
Output Voltage 3  
V
Output Voltage 4  
VOUTL1, VOUTS1  
GATECNT  
V
Output Voltage 5  
V
SW to GND Voltage 1  
SW to GND Voltage 2  
Logic Input Voltage 1  
Logic Input Voltage 2  
Logic Input Voltage 3  
Logic Output Voltage 1  
Logic Output Voltage 2  
Logic Output Pin Current Low 1  
Logic Output Pin Current Low 2  
Storage Temperature Range  
SW2, SW3, SW4, SW5  
SW1  
V
V
RSTB, SDA, SCL  
SYNC, WDI, WDEN, VOUT1_EN, DDR_SEL  
SEQCNT[0], SEQCNT[1]  
INTB, PGD, WDO  
PRESETB  
V
V
V
V
V
PRESETB, INTB, PGD, WDO  
SDA, SCL  
mA  
mA  
°C  
°C  
-20.0  
Tstg  
-55 to +150(Note 1)  
Maximum Junction  
Temperature  
Tjmax  
150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open  
circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case  
the IC is operated over the absolute maximum ratings.  
Caution2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of  
the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration  
by increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Operation is not guaranteed.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
17/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
3. Electrical Characteristics - continued  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VQFN56FV8080  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
59.8  
4.0  
22.2  
2.0  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Thermal Via(Note 5)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
18/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
3. Electrical Characteristics - continued  
Recommended Operating Conditions  
Table 4: Recommended Operating Conditions  
Parameter  
Symbol  
VIN  
Min  
3.0  
Typ  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
-
Max  
3.6  
Unit  
V
Power Supply Voltage  
Power Supply Voltage 1  
Power Supply Voltage 2  
Power Supply Voltage 3  
Power Supply Voltage 4  
Power Supply Voltage 5  
Power Supply Voltage 6  
Power Supply Voltage 7  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VIN6  
VIN7  
3.0  
3.6  
V
3.0  
3.6  
V
3.0  
3.6  
V
3.0  
3.6  
V
3.0  
3.6  
V
3.0  
3.6  
V
3.0  
3.6  
V
RSTB, SYNC, WDI,  
Logic Input Voltage Low 1  
Logic Input Voltage High 1  
Logic Input Voltage Low 2  
Logic Input Voltage High 2  
Input Voltage Low 3  
-0.3  
1.2  
+0.5  
V
WDEN, VOUT1_EN, DDR_SEL  
RSTB, SYNC, WDI,  
WDEN, VOUT1_EN, DDR_SEL  
-
VIN + 0.3  
+0.5  
V
SCL, SDA  
-0.3  
1.2  
-
V
SCL, SDA  
-
VIN + 0.3  
VIN x 0.1  
VIN x 0.5  
VIN x 0.8  
VIN x 0.3  
2.2  
V
SEQCNT[0], SEQCNT[1]  
-0.3  
VIN x 0.2  
VIN x 0.6  
VIN x 0.9  
1.8  
-
V
SEQCNT[0], SEQCNT[1]  
Input Voltage Middle Low 3  
Input Voltage Middle High 3  
Input Voltage High 3  
-
V
SEQCNT[0], SEQCNT[1]  
-
V
SEQCNT[0], SEQCNT[1]  
-
V
SYNC Input Frequency Range  
SYNC Input Pulse Duty Range  
SYNC  
SYNC  
Ta  
2.0  
50  
25  
25  
MHz  
%
°C  
°C  
45  
55  
Operating Ambient  
Temperature  
Operating Junction  
Temperature  
-40  
+105  
+150  
Tj  
-40  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
19/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
3. Electrical Characteristics - continued  
DC Characteristics  
Table 5: DC Characteristics (Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = 3.3 V)  
Standard Value  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[General]  
STANDBY  
(VIN, VIN1 to VIN7 total)  
ACTIVE  
Bias Current 1  
ICC_1  
ICC_2  
-
-
0.5  
6
-
mA  
Bias Current 2  
12  
mA (VIN, VIN1 to VIN7 total,  
Switching stop)  
VFIL UVLO  
Threshold Voltage  
VFIL UVLO  
Hysteresis Voltage  
VIN1 to VIN7 UVP  
Threshold Voltage  
VIN1 to VIN7 UVP Hysteresis  
Voltage  
VFIL_UVLO  
dVFIL_UVLO  
VIN1-7_UVP  
2.7  
-
2.8  
0.1  
2.7  
2.9  
-
V
V
V
VFIL: Sweep down  
VFIL: Sweep up  
VIN1 to VIN7: Sweep  
down  
2.6  
2.8  
dVIN1-7_UVP  
R_VFIL  
-
-
0.1  
10  
-
-
V
VIN1 to VIN7: Sweep up  
-
VFIL Resistance  
Ω
[VOUT1 (VD50)]  
Output Voltage  
VOUT1  
4.91  
1.912  
1.8  
5.00  
2.250  
2.0  
5.09  
2.588  
2.2  
V
Io = 0 mA  
Switching Frequency  
Synchronization Frequency  
Fosc_VOUT1  
Fsync_VOUT1  
MHz SSCG = OFF  
MHz SYNC = 2 MHz  
VIN to VOUT1  
V/ms (DCDC converter  
Soft-start time rate)  
Soft-Start Time Rate  
Tssr_VOUT1  
-
4.2  
-
0 V to 5 V  
(Include LDSW on time)  
VOUT1 Soft Start time  
Tss_VOUT1  
-
1.57  
-
ms  
Upper-Side ON Resistance  
Lower-Side ON Resistance  
Ronh_VOUT1  
Rohl_VOUT1  
-
-
250  
200  
500  
400  
mΩ  
mΩ  
-
-
Detect a peak current  
flowing in Low-side FET  
Over Current Protection  
SCP Detecting Voltage  
OCP_VOUT1  
SCP_VOUT1  
1.2  
-
-
A
V
VOUT1  
x 0.7  
VOUT1  
x 0.8  
VOUT1  
x 0.9  
-
VOUT1  
x 1.13  
VOUT1  
x 1.2  
VOUT1  
x 1.27  
OVP Detecting Voltage  
OVP_VOUT1  
Ron_LS  
V
mΩ  
A
-
Load Switch ON Resistance  
-
2.2  
-
200  
400  
-
Load Switch  
Over Current Protection  
OCP_LDSW  
Rdis_VOUT1  
-
-
-
Output Discharge Resistance  
25  
50  
Ω
VOUT1 Discharge  
[VOUT2 (VD18)]  
Output Voltage  
VOUT2  
1.7676  
1.8000  
2.250  
2.0  
1.8324  
2.588  
2.2  
V
Io = 0 mA  
Switching Frequency  
Synchronization Frequency  
Soft-Start Time Rate  
Upper-Side ON Resistance  
Lower-Side ON Resistance  
Fosc_VOUT2  
Fsync_VOUT2  
Tss_VOUT2  
Ronh_ VOUT2  
Rohl_VOUT2  
1.912  
MHz SSCG = OFF  
MHz SYNC = 2 MHz  
1.8  
-
-
-
1.0  
-
V/ms  
mΩ  
-
-
-
160  
320  
200  
100  
mΩ  
Detect a peak current  
flowing in High-side FET  
Over Current Protection  
SCP Detecting Voltage  
OCP_VOUT2  
SCP_VOUT2  
2.5  
-
-
A
V
VOUT2  
x 0.73  
VOUT2  
x 1.13  
VOUT2  
x 0.80  
VOUT2  
x 1.2  
VOUT2  
x 0.87  
VOUT2  
x 1.27  
-
OVP Detecting Voltage  
OVP_VOUT2  
Rdis_VOUT2  
V
-
Output Discharge Resistance  
20  
55  
150  
Ω
FB2 Discharge  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
20/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
3.4 DC Characteristics - continued  
(Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = 3.3 V)  
Standard Value  
Typ  
Parameter  
[VOUT3 (DDR)]  
Symbol  
Unit  
Conditions  
Min  
Max  
Io = 0 mA  
DDR_SEL = L  
Io = 0 mA  
Output Voltage 1  
Output Voltage 2  
VOUT3_1  
VOUT3_2  
1.3257  
1.473  
1.3500  
1.500  
1.3743  
1.527  
V
V
DDR_SEL = H  
Switching Frequency  
Fosc_VOUT3  
Fsync_VOUT3  
Tss_VOUT3  
1.912  
2.250  
2.0  
2.588  
2.2  
-
MHz SSCG = OFF  
MHz SYNC = 2 MHz  
Synchronization Frequency  
Soft-Start Time Rate  
1.8  
-
-
-
1.0  
V/ms  
mΩ  
-
-
-
Upper-Side ON Resistance  
Lower-Side ON Resistance  
Ronh_VOUT3  
Rohl_VOUT3  
100  
70  
200  
140  
mΩ  
Detect a peak current  
flowing in High-side FET  
Over Current Protection  
SCP Detecting Voltage  
OCP_VOUT3  
SCP_VOUT3  
3.6  
-
-
A
V
VOUT3  
x 0.73  
VOUT3  
x 1.13  
VOUT3  
x 0.80  
VOUT3  
x 1.2  
VOUT3  
x 0.87  
VOUT3  
x 1.27  
-
OVP Detecting Voltage  
OVP1_VOUT3  
Rdis_VOUT3  
V
-
Output Discharge Resistance  
20  
40  
80  
Ω
FB3 Discharge  
[VOUT4 (VD10A, VD10B) ]  
Output Voltage  
VOUT4  
1.0115  
1.912  
1.8  
1.0300  
2.250  
2.0  
1.0485  
2.588  
2.2  
V
Io = 0 mA  
Switching Frequency  
Synchronization Frequency  
Soft-Start Time Rate  
Fosc_VOUT4  
Fsync_VOUT4  
Tss_VOUT4  
MHz SSCG = OFF  
MHz SYNC = 2 MHz  
-
1.0  
-
V/ms  
mΩ  
-
-
Ronh_VOUT4A  
Ronh_VOUT4B  
Rohl_VOUT4A  
Rohl_VOUT4B  
OCP_VOUT4A  
OCP_VOUT4B  
Upper-Side ON Resistance  
Lower-Side ON Resistance  
Over Current Protection  
SCP Detecting Voltage  
-
-
100  
70  
-
200  
140  
-
mΩ  
A
-
Detect a peak current  
flowing in High-side FET  
3.6  
VOUT4  
x 0.73  
VOUT4  
x 0.80  
VOUT4  
x 0.87  
SCP_VOUT4  
V
-
VOUT4  
x 1.07  
VOUT4  
x 1.14  
VOUT4  
x 1.21  
OVP Detecting Voltage  
OVP_VOUT4  
Rdis_VOUT4  
V
-
Output Discharge Resistance  
15  
30  
60  
Ω
FB4 Discharge  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
21/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
3.4 DC Characteristics - continued  
(Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = 3.3 V)  
Standard Value  
Typ  
Parameter  
Symbol  
Unit  
V
Conditions  
Min  
Max  
[VOUTL1 (VL25)]  
Output Voltage  
VOUTL1  
2.455  
2.500  
2.545  
Io = 0 mA  
Soft-Start Time Rate  
On Resistance  
Tss_VOUTL1  
Ron_VOUTL1  
OCP_VOUTL1  
-
-
1.0  
-
2
-
V/ms -  
-
-
Ω
Ids = 50 mA  
Over Current Protection  
350  
mA  
-
-
VOUTL1 VOUTL1 VOUTL1  
x 0.73 x 0.8 x 0.87  
VOUTL1 VOUTL1 VOUTL1  
SCP Detecting Voltage  
SCP_ VOUTL1  
V
OVP Detecting Voltage  
OVP_ VOUTL1  
Rdis_ VOUTL1  
V
-
x 1.13  
x 1.2  
x 1.27  
Output Discharge Resistance  
75  
150  
300  
Ω
VOUTL1 Discharge  
[VOUTS1 (VS33)]  
Soft-Start Time Rate  
Tss_VOUTS1  
Rdis_VOUTS1  
Ron_VOUTS1  
Ron_GATECNT  
-
1
30  
-
50  
V/ms -  
Output Discharge Resistance  
SW ON Resistance  
15  
100  
10  
Ω
mΩ  
Ω
VOUTS1 Discharge  
250  
25  
450  
50  
-
GATECNT ON Resistance  
GATECNT = 0.5 V  
GATECNT  
Rup_GATECNT  
OCP_VOUTS1_IN  
OCP_VOUTS1_EX  
-
2
-
-
-
MΩ  
mA  
-
-
Pull Up Resistance  
SW OCP Detecting Current  
(Internal)  
SW OCP Detecting Voltage  
(External)  
510  
60  
90  
120  
mV ΔV = VIN7-VOUTS1  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
22/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
3.4 DC Characteristics - continued  
Table 6: Logic Characteristics (Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = 3.3 V)  
Standard Value  
Parameter  
[Logic Block]  
[Logic Input 1] (RSTB, SYNC, WDI, WDEN, VOUT1_EN, DDR_SEL)  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
Input Voltage Low 1  
Input Voltage High 1  
Pull down Resistance 1  
VIL1  
VIH1  
RIN1  
-0.3  
1.2  
-
-
-
+0.5  
VIN+0.3  
-
V
V
-
-
-
100  
kΩ  
[Logic Input 2] (SDA, SCL)  
Input Voltage Low 2  
Input Voltage High 2  
Input Current 2  
VIL2  
VIH2  
IIN2  
-0.3  
1.2  
-1  
-
-
+0.5  
VIN+0.3  
+1  
V
V
-
-
-
0
-
μA  
V
Acknowledge ON Voltage  
VACK  
-0.3  
+0.4  
Iload = -20 mA  
[Logic Input 3] (SEQCNT[0], SEQCNT[1])  
Input Voltage Low 3  
VIL3  
-0.3  
VIN x 0.2  
VIN x 0.6  
VIN x 0.9  
-
-
-
VIN x 0.1  
VIN x 0.5  
VIN x 0.8  
VIN x 0.3  
-
V
V
-
-
-
-
-
Input Voltage Middle Low 3  
Input Voltage Middle High 3  
Input Voltage High 3  
VIML3  
VIMH3  
VIH3  
-
V
-
V
Pull down Resistance 3  
RIN3  
2
MΩ  
[Logic Output Voltage Low1] (Open Drain Output)  
INTB, PGD, WDO Logic_out_low1  
-0.3  
-0.3  
-
-
+0.7  
+0.5  
V
V
Iload = -3 mA  
Iload = -3 mA  
[Logic Output Voltage Low2] (Open Drain Output)  
PRESETB Logic_out_low2  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
23/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
3. Electrical Characteristics - continued  
Protection Mode (Under Voltage Lock Out)  
All power supply shuts down at the same time when the VFIL UVLO signal is detected. There is no sequence in this  
shutdown mode and the BD9573MUF-M cannot receive any external signals during this time.  
Protection Mode (Thermal Shutdown)  
Built-in internal Thermal Shutdown (TSD) circuit is provided to protect IC from heat destruction. Operation usage should  
stay within the allowable loss range. Continuous use beyond this range can cause chip temperature Tj to increase and  
consequently activate the TSD circuit. Threshold is 175 °C (Typ). TSD over 10 µs shuts down all power supplies at the  
same time. Please consider the set design not to exceed TSD for safety use.  
Protection Mode  
Table 7: Protection Mode (General)  
Protection Mode  
UVLO Protection (VFIL)  
Thermal Shutdown  
SW  
Hi-Z  
Hi-Z  
Output  
Function  
PMIC is shut down immediately.  
All Registers are reset.  
PMIC is shut down immediately.  
Some registers (SEQ reset Register) are reset.  
Low (Discharge)  
Low (Discharge)  
Table 8: Protection Mode (VD50, DDR, VD18, VD10)  
Protection Mode  
SW  
Output  
Function  
Under Voltage Protection[UVP]  
(VIN1 to VIN5)(Note 1)  
PMIC is shut down immediately.  
Some registers (SEQ reset Register) are reset.  
Timer latch (1 ms).  
Hi-Z  
Low (Discharge)  
Short Circuit Protection  
Over Voltage Protection  
Hi-Z  
Hi-Z  
Low (Discharge)  
Low (Discharge)  
PMIC is shut down.  
Some registers (SEQ reset Register) are reset.  
PMIC is shut down immediately.  
Some registers (SEQ reset Register) are reset.  
Duty is restricted.  
Timer latch (1 ms).  
PMIC is shut down.  
Over Current Protection  
Hi-Z  
Low (Discharge)  
Some registers (SEQ reset Register) are reset.  
(Note 1) VOUT1 or VOUTL1 output can be set to disable by connecting the VIN1 pin or the VIN6 pin to GND.  
Please refer to section 4.3 VOUT1/VOUTL1 Disable Setting without EEPROM.  
Table 9: Protection Mode (VL25)  
Protection Mode  
Output  
Function  
Under Voltage Protection[UVP]  
(VIN6)(Note 1)  
PMIC is shut down immediately.  
Some registers (SEQ reset Register) are reset.  
Timer latch (1 ms).  
Low (Discharge)  
Short Circuit Protection  
Over Voltage Protection  
Low (Discharge)  
Low (Discharge)  
PMIC is shut down.  
Some registers (SEQ reset Register) are reset.  
PMIC is shut down immediately.  
Some registers (SEQ reset Register) are reset.  
(Note 1) VOUT1 or VOUTL1 output can be set to disable by connecting the VIN1 pin or the VIN6 pin to GND.  
Please refer to section 4.3 VOUT1/VOUTL1 Disable Setting without EEPROM.  
Table 10: Protection Mode (VS33)  
Protection Mode  
Output  
Function  
Under Voltage Protection[UVP]  
(VIN7)  
PMIC is shut down immediately.  
Some registers (SEQ reset Register) are reset.  
Timer latch (1 ms).  
Low (Discharge)  
Over Current Protection  
Low (Discharge)  
PMIC is shut down.  
Some registers (SEQ reset Register) are reset.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
24/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Function Description  
Pin Control Function  
4.1.1 VOUT1_EN Input  
VOUT1 Mode is selected by VOUT1_EN (pin) condition at UVLO release timing.  
At the judgement timing, VOUT1 output voltage is  
Mode A: controlled sequentially by the register setting. (VOUT1_EN (pin) = H at UVLO release timing).  
Mode B: controlled by VOUT1_EN (pin) individually, and register setting is ignored.  
(VOUT1_EN (pin) = L at UVLO release timing).  
(Note) Most of timing charts in this data sheet are based on Mode A. Regarding Mode B, please refer to section 4.1.9 VOUT1 Mode Setting.  
4.1.2 RSTB Input  
The RSTB pin input is control signal to start Output Power-ON / Output Power-OFF.  
Output Power-ON starts by inputting RSTB = H level and Output Power-OFF starts by inputting RSTB = L level.  
Between the completion of Output Power-OFF and beginning of Output Power-ON (STANDBY state),  
internal functions (except particular functions) are initialized and stops the circuit oscillator for low power  
consumption with OSC_EN register = “0” setting.  
Even though in STANDBY state, circuit oscillation starts with OSC_EN register = “1” setting.  
(Note) In case RSTB = L level is detected during Power-ON Sequence, Power-OFF sequence starts immediately.  
Figure 4. RSTB Operation Timing Chart  
4.1.3 PIN Setting Judge Timing  
The SEQCNT[1:0] pin (Select Power-ON / Power-OFF interval) and the DDR_SEL pin (select DDR output voltage)  
settings are judged just before EEPROM Load.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
25/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.1 Pin Control Function – continued  
4.1.4 Output Power-ON / Output Power-OFF Sequence  
Output Power-ON starts by input of RSTB = H level.  
In Output Power-ON operation,  
(1) Internal Oscillation Operation (OSC Stable), (2) EEPROM Load, (3) Delay and (4) Power-ON sequence  
are consecutively activated as shown in the following figure.  
Regarding the interval T1 and T4, please refer to section 4.1.7 Interval Setting.  
(1)  
(2)  
(3)  
(4)  
Internal Oscillation Operation: BD9573MUF-M waits 110 µs (Max) for stable oscillation internally.  
EEPROM Load: Some of the functions can be selected by EEPROM setting value (Max 2 ms).  
Delay: BD9573MUF-M execute delay for internal setting (Max 2 ms) before Power-ON.  
Power-ON sequence: Activates Output Power-ON and PRESETB = H negate in order and with interval as in  
following figure. PGD is asserted when all output voltage levels are over 75 % (Typ) x VOUT  
.
Figure 5. Output Power-ON Operation Timing Chart (Default Register Setting)  
Output Power-OFF starts by input of RSTB = L level.  
For Output Power-OFF operation, Power-OFF sequence activates as in following figure.  
Regarding the interval T2 and T3, please refer to section 4.1.7 Interval Setting.  
PGD is negated when one of the output power starts discharging.  
Power-OFF operation is completed when all SHDN (= output voltage levels are under 200 mV (Typ)) is asserted.  
Figure 6. Output Power-OFF Operation Timing Chart (Default Register Setting)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
26/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.1 Pin Control Function – continued  
4.1.5 VOUT2 (VD18) Discharge Start Timing  
In case all previous output’s SHDN is not asserted after the interval T3, VOUT2 output does not start discharging  
until all previous output’s SHDN assertion.  
4.1.6 Countermeasures for Hang-Up  
In case any SHDN signal keeps low (shutdown is not detected) during Power-Off sequence, the sequence is never  
completed and sequence cannot shift to next. As countermeasure for this Hang-Up situation, Hang-Up Timer is  
implemented.  
Hang-Up Timer counts the time of Power-OFF Sequence, and if it continues over 400 ms, internal state transitions  
to STANDBY automatically. In Mode B, VOUT1 also has Hang-Up Timer individually. If VOUT1 Power-OFF  
Sequence continues over 100 ms, internal state transitions to STANDBY automatically.  
Figure 7. VOUT2 Discharge Start Timing  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
27/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
Daattaasshheeeett  
BD9573MUF-M  
4.1 Pin Control Function – continued  
4.1.7 Interval Setting  
Regarding the interval T1, T2, T3 and T4, they are set by the voltage setting of the SEQCNT[0] pin and the  
SEQCNT[1] pin.  
The SEQCNT[1:0] pin input value is judged just before EEPROM Load. If EEPROM connection is detected in the  
state of EEPROM Load, interval setting by the SEQCNT[1:0] pin is discarded and the setting by EEPROM is used.  
If I2C write command to POW Trigger VOUTx (VOUTx = VOUT1 to VOUT4, VOUTL1, VOUTS1) or POW Wait  
VOUTx registers is detected, interval setting by the SEQCNT[1:0] pin is discarded and the setting by I2C write  
command is used. Also in this case, by EEPROM connection interval setting by the SEQCNT[1:0] pin or I2C write  
command are discarded and the setting by EEPROM is used.  
Table 11: SEQCNT[0] Operation Mode  
SEQCNT[0]  
SEQCNT[0]_DATA[2:0]  
T1  
T2  
T4  
VIN  
“111”  
“011”  
“001”  
“000”  
10 ms  
8 ms  
4 ms  
2 ms  
10 ms  
8 ms  
4 ms  
2 ms  
25 ms  
15 ms  
10 ms  
8 ms  
VMD_H(Note 1)  
VMD_L(Note 2)  
GND  
(Note 1) VMD_H: VIN x 0.55 < Input Voltage < VIN x 0.85  
(Note 2) VMD_L: VIN x 0.15 < Input Voltage < VIN x 0.55  
Table 12: SEQCNT[1] Operation Mode  
SEQCNT[1]  
SEQCNT[1]_DATA[2:0]  
T3  
VIN  
“111”  
“011”  
“001”  
“000”  
50 ms  
40 ms  
30 ms  
20 ms  
VMD_H(Note 1)  
VMD_L(Note 2)  
GND  
(Note 1) VMD_H: VIN x 0.55 < Input Voltage < VIN x 0.85  
(Note 2) VMD_L: VIN x 0.15 < Input Voltage < VIN x 0.55  
VIN  
VIN x 0.85  
VIN x 0.55  
VIN x 0.15  
3
SEQCNT[0]_DATA[2:0] =  
“111”, “011”, “001”, “000”  
VIN  
R1  
R2  
VIN or VMID_H or  
VMID_L or GND  
SEQCNT[0]  
(SEQCNT[1])  
2 M(Typ)  
Ex)  
VMID_H (SEQCNT_DATA[2:0] = “011”) : R1 = 24 k, R2 = 52 kΩ → VIN x 0.68  
VMID_L (SEQCNT_DATA[2:0] = “001”) : R1 = 45 k, R2 = 24 kΩ → VIN x 0.35  
Please connect resistors of the total less than 200 k.  
Figure 8. SEQCNT Circuit  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
28/81  
BD9573MUF-M  
4.1  
Pin Control Function – continued  
4.1.8 Initializing Control Circuit  
There are 2 initialize conditions. Details of the initializing conditions are shown in following table.  
Table 13: Initializing Control Circuit  
Reset Name  
VDD reset  
Initializing Condition  
UVLO of VFIL  
Initializing Target Circuit  
Every Control Circuit  
Every Control Circuit except some I2C registers.  
In more detail, please refer Table 21 I2C I/F Register Map.  
SEQ reset state transition to STANDBY state  
4.1.9 VOUT1 Mode Setting  
In Mode B, VOUT1 is managed in Sub State. Regarding Main State and Sub State, please refer State Machine.  
VOUT1 Sub State is activated only in limited Main State. Regarding the “limited Main State”, and Sub State, please  
refer Figure 12 Main State Machine and Figure 13 Sub State Machine.  
Figure 9. Whole Sequence1 (Mode B)  
Figure 10. Whole Sequence2 (Mode B)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
29/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.1.9  
VOUT1 Mode Setting – continued  
When protection error or Hang Up Timer Overflow occurs, all outputs start to Power-OFF at the same time  
regardless the error is due to VOUT1 or other channels. In this case, VOUT1_EN (pin) = L and RSTB (pin) = L is  
needed to Re Power-ON.  
Figure 11. Error Case (Mode B)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
30/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.1 Pin Control Function – continued  
4.1.10 State Machine  
BD9573MUF-M has two State Machine, Main and Sub. Sub State Machine is for VOUT1 individual control in  
Mode B.  
Figure 12. Main State Machine  
31/81  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.1.10 State Machine - continued  
Figure 13. Sub State Machine  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
32/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4. Function Description – continued  
Whole Sequence Control  
4.2.1 Whole Sequence (State Chart)  
Figure 14. Whole Sequence (State Chart)  
4.2.2 General Sequence Description  
(SHUTDOWN to STANDBY)  
BD9573MUF-M is in SHUTDOWN state during VIN Power off.  
After the input of VIN power, internal state starts transition from SHUTDOWN to STANDBY.  
In STANDBY state,  
Case1: OSC disable (OSC_EN register = “0” setting)  
Case2: OSC enable (OSC_EN register = “1” setting)  
In Case2, I2C write in STANDBY state is possible since OSC clock is supplied.  
[Output Power-ON] (STANDBY to ACTIVE)  
By the input of RSTB (pin) = H level, internal state starts transition from STANDBY to ACTIVE, and it initiate  
Output Power-ON. PGD (pin) output is asserted when all output voltage levels are over 75 % (Typ) x VOUT  
PRESETB (pin) is asserted with the interval setting. Then, the transition to ACTIVE state is completed.  
.
[Output Power-OFF] (ACTIVE to STANDBY)  
By the input of RSTB (pin) = L level, internal state starts transition from ACTIVE to STANDBY and it initiate  
Output Power-OFF.  
After Power-OFF sequence is completed, BD9573MUF-M is initialized and stops OSC, then completes  
transition to STANDBY state.  
(STANDBY to SHUTDOWN)  
UVLO of VFIL becomes effective during VIN power OFF.  
4.2.3 I2C Accessible State Condition  
I2C accessibility is restricted to only in STANDBY state and ACTIVE state.  
Table 14: I2C Accessible Condition  
Internal State  
I2C read  
I2C write  
Disable (with OSC_EN register = “0”) /  
Enable (with OSC_EN register = “1”)  
STANDBY  
Enable  
Disable  
Enable  
Enable  
EEPROM Load  
Disable  
Enable  
Disable  
Power-ON STANDBY, ACTIVE,  
Power-OFF STANDBY  
Other  
(Note) Only OSC_EN register can be written without OSC_EN register = “1” setting in STANDBY State.  
Some register I2C read value in STANDBY State are 0x00 (initial value), and they may differ from the value after Power-ON.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
33/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.2 Whole Sequence Control – continued  
4.2.4 EEPROM Load Function and Internal OSC Stable Time  
By connecting external EEPROM to I2C I/F pin (I2C_SCL, I2C_SDA), functions can be customized by the  
parameters written in EEPROM.  
EEPROM load operates before Power-ON sequence started by RSTB = H level.  
If EEPROM is connected, 2 ms (Max) EEPROM load time is needed.  
Case1: with EEPROM and correct response from EEPROM, EEPROM parameters are loaded.  
Case2: with EEPROM and no response (not Acknowledgement) from EEPROM, initial value is used.  
Case3: with EEPROM and can not read check code (CON_CHK_CODE is not 0x8E), initial value is used.  
Case4: with EEPROM and CRC error has occurred, internal state returns to STANDBY.  
In Case2 and Case3, NO_EEP register is set to “1”.  
In Case4, EEP_CRC_ERR register is set to “1”.  
Regarding “CON_CHK_CODE” and detailed EEPROM setting, please refer to BD9573MUF-M EEPROM setting  
sheet.  
4.2.5 Prevention of Repetition for Protection Error, EEPROM CRC Error  
When Protection Function is activated by VR (Voltage Regulator)’s malfunction, every output power is turned off at  
once and transitions to STANDBY state. In this case, there is a possibility that RSTB = H level is maintained and  
internal state starts transition from STANDBY to ACTIVE. At that time, every output power is turned off at once  
again and it may be repeated if the factor of malfunction is not removed.  
This kind of repetition is also concerned for EEPROM CRC Error case.  
To prevent this repetition, state transition from STANDBY does not start until the input of RSTB = L level.  
Figure 15. Sequence at Protection Error Occurrence (Timing Chart)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
34/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4. Function Description - continued  
VOUT1/VOUTL1 Disable Setting without EEPROM  
Without EEPROM setting, VOUT1 or VOUTL1 output can be set to disable by connecting VIN1 or VIN6 to GND.  
In this case, disable setting outputs are excluded from the Power-ON / Power-OFF sequence automatically.  
VOUT1 and VOUTL1 disable setting is judged just before EEPROM Load.  
Figure 16. VOUT1 Disable Setting without EEPROM  
Figure 17. VOUTL1 Disable Setting without EEPROM  
LDO25  
Boost Converter  
Figure 18. VOUT1 and VOUTL1 OFF Circuit  
35/81  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4. Function Description - continued  
VOUTS1 Disable Setting without EEPROM, Internal/External SW Mode Setting  
VOUTS1 output mode is selected by GATECNT (pin).  
Mode1: Using VOUTS1 internally (GATECNT = L)  
Mode2: Using VOUTS1 externally (GATECNT = H)  
Without EEPROM setting, VOUTS1 output can be set to disable by connecting VIN7 and GATECNT to GND.  
In this case, disable setting outputs are excluded from the Power-ON / Power-OFF sequence automatically.  
Internal/External setting is judged at the end of Self Diagnosis, and Disable setting is judged just before EEPROM Load.  
When Power-On, VOUTS1 is used as internal SW for 4.1 ms (±15 %). VOUTS1 changes to external SW after  
POWER-ON completion. Therefore, voltage drop may occur in VOUTS1 when big current is loaded from VOUTS1 before  
POWER-ON completion.  
Figure 19. VOUTS1 Disable Setting without EEPROM  
Figure 20. VOUTS1 Internal/External Setting  
VS33 (SW)  
VS33 (SW)  
VS33 (SW)  
OFF  
EXTERNAL SW ON (GATECNT = H)  
INTERNAL SW ON (GATECNT = L)  
Figure 21. VOUTS1 OFF Circuit and SW Mode Selection  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
36/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4. Function Description - continued  
I2C I/F  
I2C Slave Interface of 1ch is installed in BD9573MUF-M.  
I2C Protocol  
1 to 7  
Figure 22. I2C Basic Protocol  
Single Mode  
<Single I2C Register Write Protocol>  
S
0
1
1
0
0
0
0
0
0
A
A
A
A
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data  
A
P
W
Slave Address  
<Single I2C Register Read Protocol>  
Register Address  
Register Address  
S
0
1
1
0
0
0
0
S
0
1
1
0
0
0
0
1
A
D7 D6 D5 D4 D3 D2 D1 D0 NA  
Read Data  
P
W
R
Slave Address  
Slave Address  
Mutiple Mode  
<Multiple I2C Register Write Protocol>  
S
0
1
1
0
0
0
0
0
A
A
A
A
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data (Addr: N)  
A
A
FromMaster to Slave  
FromSlave to Master  
START condition  
STOPcondition  
W
Slave Address  
Register Address ( = N)  
S
P
A
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data (Addr: N+1)  
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data  
P
Acknow ledge  
NA Not Acknow ledge  
<Multiple I2C Register Read Protocol>  
S
0
1
1
0
0
0
0
0
A
A
A
A
S
0
1
1
0
0
0
0
1
A
P
D7 D6 D5 D4 D3 D2 D1 D0  
Read Data (Addr: N)  
A
W
R
Slave Address  
Register Address ( = N)  
Slave Address  
D7 D6 D5 D4 D3 D2 D1 D0  
Read Data (Addr: N+1)  
D7 D6 D5 D4 D3 D2 D1 D0 NA  
Read Data  
Figure 23. I2C Protocol (Each Access Mode)  
Slave Address  
Support 7 bit Address mode  
Slave Address: 0x30 (When 8 bit description, it is 0x60 in Write mode and 0x61 in Read mode)  
Speed Mode  
(1) Fast mode  
(2) Fast mode plus  
Frequency  
(1) Fast mode: 400 kHz (Max)  
(2) Fast mode plus: 1 MHz (Max)  
I2C accessible State condition  
(1) I2C read condition: except EEPROM Load state  
(2) I2C write condition: In STANDBY state (with OSC_EN register = “1” setting) or ACTIVE state  
(Note) For I2C write condition in STANDBY state, 110 µs (Max) wait time after OSC_EN register = “1” is needed.  
ACK/NACK Criterion  
NACK is output when the Slave Address is not set to 0x30.  
NACK is output without the I2C accessible State condition.  
ACK is output even with read/write access to register address that is not being used.  
ACK is output even with write access to RO attribute register.  
Bus Clear  
If the data line (SDA) is stuck LOW, please send 18 clock pulses. SDA bus is released by this procedure.  
If not, then use the Hardware reset or cycle power to clear the bus.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
37/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
 
BD9573MUF-M  
4.5 I2C I/F – continued  
FuSa Mode (Error Detection / Rectification Mode)  
FuSa (Functional Safety) mode is a function to detect/rectify transfer error. The 2nd byte of writing data at I2C transfer  
is given as a FuSa byte to confirm.  
Normal I2C mode or FuSa mode (type1 and type2) is selectable by I2C FuSa mode register.  
The transfer protocol for this uses the same conventional I2C protocol.  
Continuous data write with register address increment is supported.  
(Odd-bytes of writing data are the actual data and even-bytes are FuSa byte for confirmation. Address increments  
every 2 bytes.)  
(If FuSa byte returns with error, then the corresponding byte is not written. If the FuSa byte returns without error, then  
the corresponding byte is written).  
FuSa Mode is applied not only write data but also read data by I2C FuSa mode register setting.  
Mode switching is valid from the next transferred byte after settings are changed.  
Single Mode  
<Single I2C Register Write Protocol>  
FromMaster to Slave  
FromSlave to Master  
START condition  
STOPcondition  
S
0
1
1
0
0
0
0
0
A
A
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data  
A
A
P
W
S
P
A
Slave Address  
Register Address  
Register Address  
FuSa Byte  
Acknow ledge  
NA Not Acknow ledge  
<Single I2C Register Read Protocol>  
S
0
1
1
0
0
0
0
0
A
A
S
0
1
1
0
0
0
0
1
A
D7 D6 D5 D4 D3 D2 D1 D0  
Read Data  
A
NA P  
W
R
Slave Address  
Slave Address  
FuSa Byte  
Multiple Mode  
<Multiple I2C Register Write Protocol>  
S
0
1
1
0
0
0
0
0
A
A
A
A
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data (Addr: N)  
A
A
A
W
Slave Address  
Register Address ( = N)  
FuSa Byte (Addr: N+1)  
FuSa Byte (Addr: N)  
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data (Addr: N+1)  
P
<Multiple I2C Register Read Protocol>  
S
0
1
1
0
0
0
0
0
A
A
A
A
S
0
1
1
0
0
0
0
1
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
A
W
R
Slave Address  
Register Address ( = N)  
FuSa Byte (Addr: N+1)  
Slave Address  
Read Data (Addr: N)  
NA  
FuSa Byte (Addr: N)  
A
Read Data (Addr: N+1)  
FuSa Byte  
Figure 24. I2C Protocol (FuSa Mode)  
[FuSa Mode Type1 : Compare Write Data and FuSa Byte]  
Write Data 8 bit  
Write Data 8 bit  
FuSa Byte 8 bit  
FuSa Byte 8 bit  
Writes properly to register.  
==  
==  
(1) Does not write in register.  
(2) Asserts interrupt while changing bit of I2C / Thermal  
Error Status register. (MD1 interrupt)  
I2C_IMASK = “1” (Mask setting)  
=> Do no assert  
I2C_IMASK = “0” (Mask released)  
=> Assert the INTB pin output  
MD1 bit is cleared by writing in “1”.  
[FuSa Mode Type2 : Error Correction by FuSa Byte (1 bit error)]  
Writes properly to register.  
Write Data 8 bit  
Write Data 8 bit  
FuSa Byte 8 bit  
FuSa Byte 8 bit  
(1) Rectify with FuSa Byte and writes to register.  
(2) Asserts interrupt while changing bit of I2C / Thermal  
Error Status register. (MD2_E1 interrupt)  
I2C_IMASK = “1” (Mask setting)  
=> Do not assert the INTB pin output  
I2C_IMASK = “0” (Mask released)  
ECC Calculation (1 bit error)  
=> Assert the INTB pin output  
MD2_E1 bit is cleared by writing in “1”.  
(3) The cause of error is indicated in the I2C MD2_E1  
Bit1 register by asserting the corresponding bit.  
This is indicated in I2C MD2_E1 Bit2 register if  
P[4:0] has an error. (Error rectification is  
unnecessary.)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
38/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.5 I2C I/F – continued  
[FuSa Mode Type2: Error Correction by FuSa Byte (Error more than 2 bit)]  
ECC Calculation (No error)  
Writes properly to register.  
Write Data 8 bit  
FuSa Byte 8 bit  
FuSa Byte 8 bit  
(1) Does not write in register.  
Write Data 8 bit  
(2) Asserts interrupt while changing bit of I2C /  
Thermal Error Status register. (MD2_E2 interrupt)  
I2C_IMASK = “1” (Mask setting)  
=> Do not assert the INTB pin output  
I2C_IMASK = “0” (Mask released)  
ECC Calculation (2 bit error)  
=> Assert the INTB pin output  
MD2_E2 bit is cleared by writing in “1”.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
39/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.5 I2C I/F – continued  
ECC Calculation Specification  
Arrange and add P[4:0] on LSB as FuSa byte[7:0] for FuSa mode type2.  
I2C Data Stream  
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data (Addr: N)  
A
0
0
0
P4 P3 P2 P1 P0  
FuSa byte (Addr: N)  
Figure 25. I2C Data Format (FuSa Mode type2 = ECC at Calculation)  
Transmitter [Encode]  
Calculation method of P[4:0] added to DI[7:0] data (“^” means XOR calculation)  
^
Receiver [Decode]  
Error detecting and rectifying method by ECC Factor, receiving DI[7:0] and P[4:0].  
ECC Factor Calculation Method  
=> Error Detection Judgment/Error  
(1) Error Detection Judgment  
Error Detection Judgment based on ECC Factor  
Figure 26. Error Detection Judgement by ECC Calculation  
(2) Error Rectification  
Error Correction is operated by following calculation for Single bit Error.  
Figure 27. Error Correction Calculation  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
40/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4. Function Description - continued  
Interrupt Function  
4.6.1 Interrupt Function Description  
Interruptions are notified from the INTB pin when interruption requests are enabled by any interruption factors.  
The meaning of the words relevant to interruption are defined as followed.  
“Interruption Factor”:  
“Interruption Mask”:  
Factor of any condition where an interruption is made.  
Controls which interruption factors cause an interruption to occur.  
(Masked: No interruption / No Mask: interruption occurs).  
Interruption request only becomes active when the interruption factor is active and the  
interruption is not masked.  
“Interruption Request”:  
Interruption Factor  
(1: With Factor / 0: Without Factor)  
Interruption Request  
(1: With request / 0: Without request)  
Interruption Mask  
(1: Mask / 0: Mask released)  
Figure 28. Interruption Factor/Mask/Request  
Each factor can be masked, read or cleared by I2C. Also, INTB utilizes active-low pin operation.  
Figure 29. Interrupt Function Description  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
41/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.6 Interrupt Function – continued  
4.6.2 Interruption Factor  
Interruption request notice function is implemented in 2 levels for the factor.  
(1)  
(2)  
Primary level interruption register of final stage  
Interruption register in secondary level of each function block stage  
Following figure shows the logical flowchart of Interruption Factor/Mask/Request implemented in BD9573MUF-M.  
Figure 30. System Diagram of Interruption Function  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
42/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.6.2 Interruption Factor – continued  
Following Shows All Interruption Factors.  
(A) Interruption in Primary level  
Interruption Factor register: INT IntReq register  
Interruption Mask register: INT IntMask register  
Table 15: Interruption at Primary Level  
Interruption Factor  
(INT IntReq Register) (INT IntMask Register)  
Interruption Mask  
Active Condition of Interruption  
Factor  
Detail of Interruption Factor  
I2C Transfer Error,  
Thermal Error (TSD)  
Error judged at writing register,  
Thermal Error detection  
I2CTHM_INT  
I2CTHM_IMASK  
OVP_INT  
SCP_INT  
OCP_INT  
UVP_INT  
SYS_INT  
OVP_IMASK  
SCP_IMASK  
OCP_IMASK  
UVP_IMASK  
SYS_IMASK  
OVP Error Status  
SCP Error Status  
OCP Error Status  
UVP Error Status  
System Error Status  
OVP detection  
SCP detection  
OCP detection  
UVP detection  
System Error detection  
(B) Interruption in Secondary Level  
Regarding factors in Secondary Level, please refer the next page.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
43/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.6.2 Interruption Factor – continued  
Table 16: Interruption at Secondary Level 2  
Interruption Request  
MD1  
Interruption Mask  
Detail of Interruption Factor  
FuSa Mode Type1 error  
MD2_E1  
I2C_IMASK  
-
FuSa Mode Type2 error 1 bit  
MD2_E2  
FuSa Mode Type2 error more than 2 bit  
Thermal Shutdown  
TSD  
VOUT1_OVP  
VOUT2_OVP  
VOUT3_OVP  
VOUT4_OVP  
VOUTL1_OVP  
VOUT1_OCP  
VOUT2_OCP  
VOUT3_OCP  
VOUT4A_OCP  
VOUT4B_OCP  
VOUTS1_OCP  
LDSW_OCP  
VOUT1_SCP  
VOUT2_SCP  
VOUT3_SCP  
VOUT4_SCP  
VOUTL1_SCP  
VIN1_UVP  
VD50 power Output over voltage protection  
VD18 power Output over voltage protection  
DDR power Output over voltage protection  
VD10 power Output over voltage protection  
VL25 power Output over voltage protection  
VD50 power Output over current protection  
VD18 power Output over current protection  
DDR power Output over current protection  
VD10A power Output over current protection  
VD10B power Output over current protection  
VS33 power Output over current protection  
LDSW power Output over current protection  
VD50 power Output short circuit protection  
VD18 power Output short circuit protection  
DDR power Output short circuit protection  
VD10 power Output short circuit protection  
VL25 power Output short circuit protection  
VD50 power Input under voltage protection  
VD18 power Input under voltage protection  
DDR power Input under voltage protection  
VD10A power Input under voltage protection  
VD10B power Input under voltage protection  
VL25 power Input under voltage protection  
VS33 power Input under voltage protection  
WDI Input Clock Frequency Error  
-
-
-
-
VIN2_UVP  
VIN3_UVP  
VIN4_UVP  
VIN5_UVP  
VIN6_UVP  
VIN7_UVP  
WDT_ERR  
WDT_E_IMASK  
EEPCRC_E_IMASK  
EEP_END_IMASK  
POFFHUT_E_IMASK  
V1_HUT_E_IMASK  
EEP_CRC_ERR  
EEP_END  
CRC Error during EEPROM Load  
EEPROM Load End  
POFF_HUT_ERR  
V1_HUT_ERR  
Hang-Up Timer counts over 400 ms  
Hang-Up Timer for VOUT1 (only for Mode B), 100 ms  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
44/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4. Function Description – continued  
Power Abnormality Monitoring Function (Protection Error Detection)  
VIN  
VIN  
VIN  
C_VIN  
L_VOUT  
SW  
DCDC Converter  
C_VOUT  
PGND  
FB  
EN  
SCP  
OVP  
Logic  
Figure 31. Power Abnormality Monitoring Circuit  
Power Abnormality Monitoring Function for SCP and OCP work as follows:  
LDSW_OCP function is excluded.  
Figure 32. Timing Chart when Protection Error Factor Occur 1  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
45/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.7 Power Abnormality Monitoring Function (Protection Error Detection) – continued  
Power Abnormality Monitoring Function for OVP and TSD work as follows:  
Figure 33. Timing Chart when Protection Error Factor Occur 2  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
46/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4. Function Description – continued  
SYNC Function  
The SYNC pin is used to synchronize the DC/DC switching frequency with external pulse clock signal.  
SYNC input frequency range is from 1.8 MHz to 2.2 MHz, and SYNC input pulse duty range is from 45 % to 55 %.  
Entering abnormal clock through the SYNC pin (e.g. out of range signal) may cause malfunction.  
The external pulse clock signal is reflected in ACTIVE mode. This pin can be remained open if synchronization is not  
needed. The SYNC pin needs 10 kΩ external pull down resistor when synchronization signal is supplied from R-car  
SoC.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
47/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4. Function Description – continued  
WDT Function  
Watch Dog Timer (WDT) monitors the WDI pin input by detecting the rising edge of WDI input pulse.  
This function is enabled by WDEN (pin) = H in ACTIVE state. If WDT Error is detected, the WDO pin output is negated.  
WDT starts from rising edge of WDIN  
The detection guaranteed  
The detection guaranteed  
WDT  
WDT Fast N.G.  
WDT Slow N.G.  
WDIN  
Trigger Open Window  
tWF (Min)  
t (ms)  
tWF (Max)  
tOK (Typ)  
tWS (Min)  
tWS (Max)  
Figure 34. WDT Function  
WDT FAST N.G. Detection  
1. WDI input signal is ignored when WDEN = L or internal state is not ACTIVE. WDT is activated when WDEN = H.  
2. For the initial duration just after WDEN goes to high, only SLOW N.G. time detection works and FAST N.G. does not  
work. If rise edge of WDI comes within SLOW N.G. time, then  
(1) both FAST N.G. and SLOW N.G. time detections start to work. (TYPE register (0x16[5]) = H)  
(2) only SLOW N.G. time detection starts to work. (TYPE register (0x16[5]) = L)  
3. These time detection monitors the time until next rising edge and when it detects WDI edge within FAST N.G. time  
(tWF), WDO becomes LOW. WDO goes back to High after 100 ms (Typ) delay.  
4. When WDO becomes High, WDT is activated again and operation resumes.  
Only SLOW N.G. time detection works until the next first rising edge, and both SLOW and FAST N.G. starts at the  
first rising edge like state 1.  
When WDEN is Low, WDO becomes H and WDT is disabled. During this period, WDI input signal is ignored and WDO  
output is not affected.  
Regarding WDI input signal, over 200 μs H level is required to be detected as “H” level.  
FAST/SLOW N.G. Detection Area is determined by FAST_NG[2:0] and NG_RATIO[1:0] register setting.  
WDIN input clock duration is set by FAST_NG[2:0] register value.  
rise edge of WDI  
OK Area  
Fast NG : OK Area = 1 : 1  
NG_RATIO[1:0] = "00"  
Slow NG  
Fast NG  
Fast NG  
Fast NG  
Fast NG  
Fast NG : OK Area = 1 : 3  
NG_RATIO[1:0] = "01"  
Slow NG  
OK Area  
Fast NG : OK Area = 1 : 7  
NG_RATIO[1:0] = "10"  
Slow NG  
OK Area  
Fast NG : OK Area = 1 : 15  
NG_RATIO[1:0] = "11"  
OK Area  
Slow NG  
Figure 35. WDT NG RATIO  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
48/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
 
BD9573MUF-M  
4.9 WDT Function – continued  
Table 17: WDT setting (NG_RATIO[1:0] = “00”)  
Fast NG Detection (ms)  
FAST_NG[2:0]  
Slow NG Detection (ms)  
tOK (ms)  
(Typ)  
tWF (Min)  
tWF (Max)  
tWS (Min)  
3.6  
tWS (Max)  
4.6  
“000”  
“001”  
“010”  
“011”  
“100”  
“101”  
“110”  
“111”  
1.7  
2.3  
3.0  
6.0  
3.4  
4.6  
7.4  
9.2  
6.8  
9.2  
12.0  
24.0  
48.0  
96.0  
192.0  
384.0  
14.5  
18.5  
13.5  
27.5  
55.0  
110.0  
220.0  
18.5  
36.5  
73.0  
146.0  
292.0  
29.5  
36.5  
59.5  
73.0  
119.0  
238.0  
476.0  
146.0  
292.0  
583.0  
Table 18: WDT setting (NG_RATIO[1:0] = “01”)  
Fast NG Detection (ms)  
FAST_NG[2:0]  
Slow NG Detection (ms)  
tOK (ms)  
(Typ)  
tWF (Min)  
tWF (Max)  
tWS (Min)  
7.2  
tWS (Max)  
9.2  
“000”  
“001”  
“010”  
“011”  
“100”  
“101”  
“110”  
“111”  
1.7  
2.3  
4.8  
9.7  
3.4  
4.6  
14.8  
18.4  
6.8  
9.2  
19.0  
39.0  
78.0  
156.0  
311.0  
622.0  
29.0  
37.0  
13.5  
27.5  
55.0  
110.0  
220.0  
18.5  
36.5  
73.0  
146.0  
292.0  
59.0  
73.0  
119.0  
238.0  
476.0  
952.0  
146.0  
292.0  
584.0  
1166.0  
Table 19: WDT setting (NG_RATIO[1:0] = “10”)  
Fast NG Detection (ms)  
FAST_NG[2:0]  
Slow NG Detection (ms)  
tOK (ms)  
(Typ)  
tWF (Min)  
tWF (Max)  
tWS (Min)  
14.4  
tWS (Max)  
18.4  
“000”  
“001”  
“010”  
“011”  
“100”  
“101”  
“110”  
“111”  
1.7  
2.3  
8.4  
17.0  
3.4  
4.6  
29.6  
36.8  
6.8  
9.2  
33.5  
58.0  
74.0  
13.5  
27.5  
55.0  
110.0  
220.0  
18.5  
36.5  
73.0  
146.0  
292.0  
68.0  
118.0  
238.0  
476.0  
952.0  
1904.0  
146.0  
292.0  
584.0  
1168.0  
2332.0  
137.0  
275.0  
550.0  
1100.0  
Table 20: WDT setting (NG_RATIO[1:0] = “11”)  
Fast NG Detection (ms)  
FAST_NG[2:0]  
Slow NG Detection (ms)  
tOK (ms)  
(Typ)  
tWF (Min)  
tWF (Max)  
tWS (Min)  
28.8  
tWS (Max)  
36.8  
“000”  
“001”  
“010”  
“011”  
“100”  
“101”  
“110”  
“111”  
1.7  
2.3  
15.5  
32.0  
3.4  
4.6  
59.2  
73.6  
6.8  
9.2  
63.0  
116.0  
236.0  
476.0  
952.0  
1904.0  
3808.0  
148.0  
292.0  
584.0  
1168.0  
2336.0  
4664.0  
13.5  
27.5  
55.0  
110.0  
220.0  
18.5  
36.5  
73.0  
146.0  
292.0  
127.0  
256.0  
512.0  
1025.0  
2050.0  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
49/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
4.9 WDT Function – continued  
Figure 36. WDT Detection Time when NG_RATIO[1:0] = “00”  
Figure 37. WDT Detection Time when NG_RATIO[1:0] = “01”  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
50/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Register Specification  
Register Map  
Initializes at either VIN reset (VFIL UVLO) or  
SEQ reset (STANDBY transition)  
Initializes only at VIN reset (VFIL UVLO)  
Table 21: I2C I/F Register Map  
Address  
0x00  
Register Name  
Vendor Code  
Bit[7]  
Bit[6]  
1
1
0
Bit[5]  
Bit[4]  
1
1
0
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
R/W  
RO  
RO  
RO  
-
Default  
0xDB  
0x73  
0x01  
-
1
0
0
-
0
1
0
-
1
0
0
-
0
0
0
-
1
1
0
-
1
1
1
-
0x01  
0x02  
-
Product Code  
Product Revision  
-
-
-
I2C_SMOD[1:0]  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
-
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
-
I2C FuSa Mode  
-
-
-
-
-
-
-
-
-
-
SMOD_read  
-
-
-
-
-
-
-
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
0x00  
0x00  
0x03  
0x00  
0x00  
0x01  
0x20  
0x00  
0x3F  
-
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x20  
-
-
-
-
-
-
-
-
-
-
SSCG_FORM[1:0]  
SSCG Cnt  
SMRB Write Protect  
SMRB Cnt  
Watch Dog Timer setting  
SSCG_PERI  
SSCG_EN  
SMRB_WP[7:0]  
-
-
-
-
-
-
-
-
-
-
-
-
-
TYPE  
-
SMRB_hist  
NG_RATIO[1:0]  
-
-
-
-
SMRB_asrt  
OSC_EN  
-
FAST_NG[2:0]  
OSC Enable  
PGD Setting  
-
-
-
PGD_SETTING[5:0]  
-
-
-
-
-
-
-
PMIC_STATE[3:0]  
I2C_MD2_E1_BIT[7:0]  
I2C_MD2_E1_BIT_P[4:0]  
PMIC Internal Status  
I2C MD2_E1 Bit 1  
I2C MD2_E1 Bit 2  
I2C / Thermal Error Status  
NO_EEP  
RO  
RO  
RO  
-
-
-
-
-
-
-
-
-
-
-
TSD  
-
-
MD2_E2  
-
MD2_E1  
MD1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
I2C / Thermal Error Mask  
-
-
-
-
I2C_IMASK  
VOUTL1_OVP  
VOUT4_OVP VOUT3_OVP VOUT2_OVP VOUT1_OVP  
OVP Error Status  
SCP Error Status  
OCP Error Status  
VOUTL1_SCP  
VOUT4_SCP VOUT3_SCP VOUT2_SCP VOUT1_SCP  
-
-
VOUTS1_OCP  
VOUT4B_OCP VOUT4A_OCP VOUT3_OCP VOUT2_OCP VOUT1_OCP  
LDSW_OCP  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UVP Error Status  
System Status  
System Status Mask  
VIN7_UVP VIN6_UVP VIN5_UVP VIN4_UVP VIN3_UVP VIN2_UVP VIN1_UVP  
EEP_CRC_ERR  
V1_HUT_ERR  
HUT_ERR  
EEP_END  
EEP_END_IMASK EEPCRC_E_IMASK  
-
-
-
-
-
-
-
-
WDT_ERR  
WDT_E_IMASK  
-
-
V1_HUT_E_IMASK HUT_E_IMASK  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SYS_INT  
UVP_INT  
I2CTHM_INT  
0x30  
0x31  
-
INT IntReq  
INT IntMask  
OCP_INT  
SCP_INT  
OVP_INT  
R/W  
R/W  
-
0x00  
0x00  
-
I2CTHM_IMASK  
SYS_IMASK UVP_IMASK  
OCP_IMASK SCP_IMASK OVP_IMASK  
-
-
-
-
-
-
-
POW_WP[7:0]  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
-
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
POW Write Protect  
POW Trigger VOUT1  
POW Trigger VOUT2  
POW Trigger VOUT3  
POW Trigger VOUT4  
POW Trigger VOUTL1  
POW Trigger VOUTS1  
POW Trigger PRESETB  
POW Wait VOUT1  
POW Wait VOUT2  
POW Wait VOUT3  
POW Wait VOUT4  
POW Wait VOUTL1  
POW Wait VOUTS1  
POW Wait PRESETB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
0x00  
0x20  
0x61  
0x45  
0x73  
0x36  
0x52  
0x04  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
-
0x00  
0x43  
0x43  
0x00  
0x37  
0x37  
0x00  
0x3E/0x27  
0x23/0x27  
0x00  
0x19  
0x19  
0x00  
0x40  
0x40  
0x10/0x06  
0x16/0x08  
0x33  
POFF_TRG_VOUT1[3:0]  
POFF_TRG_VOUT2[3:0]  
POFF_TRG_VOUT3[3:0]  
POFF_TRG_VOUT4[3:0]  
POFF_TRG_VOUTL1[3:0]  
POFF_TRG_VOUTS1[3:0]  
POFF_TRG_PRESETB[3:0]  
POFF_WAIT_VOUT1[3:0]  
POFF_WAIT_VOUT2[3:0]  
POFF_WAIT_VOUT3[3:0]  
POFF_WAIT_VOUT4[3:0]  
POFF_WAIT_VOUTL1[3:0]  
POFF_WAIT_VOUTS1[3:0]  
POFF_WAIT_PRESETB[3:0]  
PON_TRG_VOUT1[3:0]  
PON_TRG_VOUT2[3:0]  
PON_TRG_VOUT3[3:0]  
PON_TRG_VOUT4[3:0]  
PON_TRG_VOUTL1[3:0]  
PON_TRG_VOUTS1[3:0]  
PON_TRG_PRESETB[3:0]  
PON_WAIT_VOUT1[3:0]  
PON_WAIT_VOUT2[3:0]  
PON_WAIT_VOUT3[3:0]  
PON_WAIT_VOUT4[3:0]  
PON_WAIT_VOUTL1[3:0]  
PON_WAIT_VOUTS1[3:0]  
PON_WAIT_PRESETB[3:0]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V1_SIGN  
VOUT1_TUNE[2:0]  
VOUT1 TUNE  
RO  
-
-
-
-
-
-
-
-
-
-
R/W  
R/W  
RO  
R/W  
R/W  
RO  
R/W  
R/W  
RO  
R/W  
R/W  
RO  
R/W  
R/W  
R/W  
R/W  
R/W  
V2_SIGN  
VOUT2_TUNE[2:0]  
VOUT2 TUNE  
-
-
-
-
-
-
-
-
-
-
V3_SIGN  
VOUT3_TUNE[4:0]  
VOUT3 TUNE  
(Note 1)  
(Note 2)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V4_SIGN  
VOUT4_TUNE[4:0]  
VOUT4 TUNE  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VL1_SIGN  
VOUTL1_TUNE[2:0]  
VOUTL1 TUNE  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(Note 3)  
(Note 4)  
VOUTS1_OCP[5:0]  
VOUTS1 OCP  
-
-
-
-
-
-
-
(Note) Please do not access to the address except above.  
(Note 1) DDR_SEL (pin) = L: Default value is 0x3E.  
DDR_SEL (pin) = H: Default value is 0x27.  
(Note 2) DDR_SEL (pin) = L: Default value is 0x23.  
DDR_SEL (pin) = H: Default value is 0x27.  
(Note 3) GATECNT (pin) = L: Default value is 0x10.  
GATECNT (pin) = H: Default value is 0x06.  
(Note 4) GATECNT (pin) = L: Default value is 0x16.  
GATECNT (pin) = H: Default value is 0x08.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
51/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5. Register Specification – continued  
Register Description  
5.2.1 Recognition Code Indicator  
Register Name  
Vendor Code  
Address  
0x00  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
1
D2  
0
D1  
1
D0  
1
R/W Default  
RO 0xDB  
Vendor Recognition Code  
0xDB: Rohm  
Register Name  
Product Code  
Address  
0x01  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
0
D2  
0
D1  
1
D0  
1
R/W Default  
RO 0x73  
Product Recognition Code  
0x73: BD9573MUF-M  
Register Name  
Address  
0x02  
D7  
0
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
R/W Default  
RO 0x01  
Product Revision  
0
Product Revision Recognition Code  
0x01: Rev.1 Sample  
5.2.2 FuSa Mode (Error Detection / Rectification Mode)  
Register Name  
I2C FuSa Mode  
Address  
0x10  
D7  
-
D6  
-
D5  
-
D4  
D3  
-
D2  
-
D1  
D0  
R/W Default  
0x00  
SMOD_  
read  
I2C_SMOD[1:0] R/W  
I2C_SMOD[1:0]  
FuSa Mode Setting  
“00”: General mode (NO FuSa mode) => Normal I2C format without FuSa byte.  
“01”: FuSa mode type1  
FuSa byte = Write data. (No error if 2 transferring data bytes are the same value.)  
When error is detected  
=> Do not execute writing and assert MD1 Interruption Factor bit of I2C / Thermal Error Status  
register.  
(Assert the INTB pin output if I2C_IMASK mask is released by I2C / Thermal Error Mask register.)  
“10”: FuSa mode type2  
FuSa byte = ECC data. (Refer to section 4.5 I2C I/F for details regarding ECC mathematical operation  
specification)  
As a result of ECC mathematical operation,  
At 1 bit Error (Rectify error of relevant bit)  
=> Execute rectification writing and assert MD2_E1 Interruption Factor bit of I2C / Thermal Error  
Status register.  
(Assert the INTB pin output if I2C_IMASK mask is released by I2C / Thermal Error Mask  
register, and also indicate location of relevant bit on I2C MD2_E1 Bit1 register and I2C MD2_E1  
Bit2 register (for P[4:0])).  
At 2 bit Error (Error Detection)  
=> Do not execute writing and assert MD2_E2 Interruption Factor bit of I2C / Thermal Error Status  
register.  
(Assert the INTB pin output if I2C_IMASK mask is released by I2C / Thermal Error Mask  
register.)  
“11”: Reserved  
SMOD_read  
FuSa Mode Read Setting  
0: FuSa Mode is applied only for I2C write data.  
1: FuSa Mode is applied not only I2C write data, but also I2C read data.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
52/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2 Register Description – continued  
5.2.3 Spread Spectrum Clock Generation Control for Internal OSC  
BD9573MUF-M has built-in SSCG (Spread Spectrum Clock Generator) with center spread.  
Register Name  
SSCG Cnt  
Address  
0x13  
D7  
-
D6  
D5  
SSCG_  
FORM[1:0]  
D4  
D3  
-
D2  
-
D1  
-
D0  
R/W Default  
R/W 0x00  
SSCG_  
PERI  
SSCG_  
EN  
SSCG_EN  
Enable signal of SSCG  
0: SSCG Disable  
1: SSCG Enable  
SSCG_FORM[1:0]  
Selection of SSCG modulation waveform  
“00”: Normal Triangle  
“01”: Original waveform1 (A:B:C = 4:1:4)  
“10”: Original waveform2 (A:B:C = 3:3:3)  
“11”: Original waveform3 (A:B:C = 2:5:2)  
f
+2.5 %  
A
B
C
t
0 %  
Modulation period  
(1/SSCG_RERI)  
-2.5 %  
Figure 38. Modulation Waveform of SSCG  
SSCG_PERI  
0: 122 Hz  
1: 7.813 kHz  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
53/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2 Register Description – continued  
5.2.4 SMRB control Using I2C Control (Software Manual Reset for PRESETB)  
The PRESETB pin output can be controlled by these registers.  
Register Name  
Address  
0x14  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
R/W 0x00  
SMRB Write Protect  
SMRB_WP[7:0]  
SMRB_WP[7:0]  
Protection register for SMRB_asrt (Software Manual Reset for PRESETB)  
0x9D: SMRB assert is enabled.  
Others: SMRB assert is disabled.  
Register Name  
SMRB Cnt  
Address  
0x15  
D7  
-
D6  
-
D5  
-
D4  
D3  
-
D2  
-
D1  
-
D0  
R/W Default  
R/W 0x01  
SMRB_  
hist  
SMRB_  
asrt  
SMRB_asrt  
SMRB assert register  
When this register is set to “0”, PRESETB is asserted to L. After 5ms, this register value is reset to “1” and  
PRESETB is negated to H automatically.  
SMRB_hist  
SMRB status register  
If SMRB assert is occurred, this register is set to “1”. Register value does not be initialized during STANDBY state  
transition. Clear condition is I2C writing “1” or UVLO.  
5.2.5 Watch Dog Timer Setting  
Register Name  
Address  
0x16  
D7  
-
D6  
-
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
R/W 0x20  
Watch Dog Timer  
setting  
TYPE  
NG_RATIO[1:0]  
FAST_NG[2:0]  
FAST_NG[2:0], NG_RATIO[1:0]  
WDT N.G. detection area setting  
Regarding these registers’ function, please refer to section 4.9 WDT Function.  
TYPE  
0: timeout detection (SLOW N.G.)  
WDT detecting type setting  
1: window detection (FAST/SLOW N.G.)  
(Note) I2C write to Watch Dog Timer setting register when the WDEN pin H level is prohibited.  
5.2.6 Oscillator Enable in STANDBY State  
Register Name  
OSC Enable  
Address  
0x17  
D7  
-
D6  
-
D5  
-
D4  
-
D3  
-
D2  
-
D1  
-
D0  
R/W Default  
R/W 0x00  
OSC_  
EN  
OSC_EN  
Oscillator Enable/Disable Selection in STANDBY state  
0: Oscillator Disable in STANDBY state  
1: Oscillator Enable in STANDBY state  
(Note) For I2C write condition in STANDBY state, 110 µs (Max) wait time after OSC_EN register = “1” is needed.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
54/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2 Register Description – continued  
5.2.7 The PGD pin output assert condition Setting  
Register Name  
PGD Setting  
Address  
0x18  
D7  
-
D6  
-
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
R/W 0x3F  
PGD_SETTING[5:0]  
PGD_SETTING[5:0]  
The PGD pin output assert condition  
PGD_SETTING[0] = 0: VOUT1 PGD is not the factor of the PGD pin output,  
1: VOUT1 PGD is the factor of the PGD pin output.  
PGD_SETTING[1] = 0: VOUT2 PGD is not the factor of the PGD pin output,  
1: VOUT2 PGD is the factor of the PGD pin output.  
PGD_SETTING[2] = 0: VOUT3 PGD is not the factor of the PGD pin output,  
1: VOUT3 PGD is the factor of the PGD pin output.  
PGD_SETTING[3] = 0: VOUT4 PGD is not the factor of the PGD pin output,  
1: VOUT4 PGD is the factor of the PGD pin output.  
PGD_SETTING[4] = 0: VOUTL1 PGD is not the factor of the PGD pin output,  
1: VOUTL1 PGD is the factor of the PGD pin output.  
PGD_SETTING[5] = 0: VOUTS1 PGD is not the factor of the PGD pin output,  
1: VOUTS1 PGD is the factor of the PGD pin output.  
For example, the PGD pin output is asserted by VOUT1, VOUT2, VOUT3 and VOUT4 PGD when  
PGD_SETTING[5:0] = 0x0F.  
In this case, the PGD pin output is negated at any one of VOUT1, VOUT2, VOUT3 or VOUT4 discharge start  
timing.  
5.2.8 PMIC Internal Status  
Register Name  
Address  
0x20  
D7  
-
D6  
-
D5  
-
D4  
D3  
D2  
D1  
D0  
R/W Default  
RO 0x00  
NO_  
EEP  
PMIC Internal Status  
PMIC_STATE[3:0]  
PMIC_STATE[3:0]  
PMIC Internal State  
PMIC Internal State is shown in the following table.  
Table 22: PMIC Internal State  
PMIC_STATE[3:0] Setting Value  
PMIC Internal State  
0x0  
0x1  
0x2  
SHUTDOWN  
STANDBY  
OSC Stable  
Delay  
0x3  
0x4  
0x5  
Power-ON STANDBY  
Power-ON  
0x6  
ACTIVE  
0x7  
Power-OFF  
0x8  
0x9 to 0xF  
Power-OFF STANDBY  
State transition  
NO_EEP  
Judgement for EEPROM installation  
0: With ACK from EEPROM (EEPROM is installed)  
1: Without ACK from EEPROM (EEPROM is not installed)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
55/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2 Register Description – continued  
5.2.9 I2C FuSa mode Error bit location  
Register Name  
Address  
0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
RO  
Default  
0x00  
I2C MD2_E1 Bit 1  
I2C_MD2_E1_BIT[7:0]  
I2C_MD2_E1_BIT[7:0]  
Error bit location at FuSa mode type2  
Set “1” to the bit location where error is detected and rectified in FuSa mode type2.  
Register Name  
Address  
0x22  
D7  
-
D6  
-
D5  
-
D4  
D3  
D2  
D1  
D0  
R/W  
RO  
Default  
0x00  
I2C MD2_E1 Bit 2  
I2C_MD2_E1_BIT_P[4:0]  
I2C_MD2_E1_BIT_P[4:0]  
Error bit location (P code) at FuSa mode type2  
Set “1” to the bit (P code value) location where error is detected and rectified in FuSa mode type2.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
56/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2 Register Description – continued  
5.2.10 INTB Interruption Factor and Mask Condition  
(Note) Clear condition of Status registers is I2C writing “1” or UVLO.  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
I2C / Thermal Error  
Status  
MD2_  
E2  
MD2_  
E1  
0x23  
-
-
-
TSD  
-
MD1  
R/W  
0x00  
MD1  
I2C Write Error Status in FuSa Mode Type1  
0: No Interruption Factor  
1: with Interruption Factor  
MD2_E1  
I2C Write Error Status in FuSa Mode Type2 with 1 bit error  
0: No Interruption Factor  
1: with Interruption Factor  
MD2_E2  
I2C Write Error Status in FuSa Mode Type2 with more than 2 bit error  
Thermal Shutdown Detection  
0: No Interruption Factor  
1: with Interruption Factor  
TSD  
0: No Interruption Factor  
1: with Interruption Factor  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
I2C_  
IMASK  
I2C / Thermal Error Mask  
0x24  
-
-
-
-
-
-
-
R/W  
0x00  
I2C_IMASK  
FuSa Mode Error (MD1, MD2_E1, MD2_E2) Interruption Factor Mask  
0: Mask Disable  
1: Mask Enable  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
VOUTL1  
_OVP  
VOUT4  
_OVP  
VOUT3  
_OVP  
VOUT2  
_OVP  
VOUT1  
_OVP  
OVP Error Status  
0x25  
-
-
-
R/W  
0x00  
VOUTx_OVP (x = 1 to 4 and L1)  
0: No Interruption Factor  
1: with Interruption Factor  
Over Voltage Protection Detection  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
VOUTL1  
_SCP  
VOUT4  
_SCP  
VOUT3  
_SCP  
VOUT2  
_SCP  
VOUT1  
_SCP  
SCP Error Status  
0x26  
-
-
-
R/W  
0x00  
VOUTx_SCP (x = 1 to 4 and L1)  
0: No Interruption Factor  
1: with Interruption Factor  
Short Circuit Protection Detection  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
LDSW  
OCP  
VOUTS1  
OCP  
VOUT4B VOUT4A  
_OCP _OCP  
VOUT3  
_OCP  
VOUT2  
_OCP  
VOUT1  
_OCP  
OCP Error Status  
0x27  
-
R/W  
0x00  
VOUTx_OCP (x = 1 to 3, 4A, 4B and S1), LDSW_OCP  
0: No Interruption Factor  
Over Current Protection Detection  
1: with Interruption Factor  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
57/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2.10 INTB Interruption Factor and Mask Condition - continued  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
VIN7_  
UVP  
VIN6_  
UVP  
VIN5_  
UVP  
VIN4_  
UVP  
VIN3_  
UVP  
VIN2_  
UVP  
VIN1_  
UVP  
UVP Error Status  
0x2A  
-
R/W  
0x00  
VINx_UVP (x = 1 to 7)  
Under Voltage Protection  
0: No Interruption Factor  
1: with Interruption Factor  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
V1_HUT_  
ERR  
HUT_  
ERR  
EEP_  
END  
EEP_CRC  
_ERR  
WDT_  
ERR  
System Status  
0x2B  
-
-
-
R/W  
0x00  
WDT_ERR  
Watch Dog Timer Error  
0: No Interruption Factor  
1: with Interruption Factor  
EEP_CRC_ERR  
CRC Error during EEPROM Load  
0: No Interruption Factor  
1: with Interruption Factor  
EEP_END  
Notification of EEPROM Load Internal State completion  
0: Before EEPROM Load Completion  
1: EEPROM Load is completed  
HUT_ERR  
Power-OFF Sequence Hang-Up Timer counts over 400 ms  
0: No Interruption Factor  
1: with Interruption Factor  
V1_HUT_ERR  
V1 Power-OFF Hang-Up Timer counts over 100 ms  
0: No Interruption Factor  
1: with Interruption Factor  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
V1_HUT_  
E_IMASK  
HUT_E_  
IMASK  
EEP_END  
_IMASK  
EEPCRC  
_E_IMASK  
WDT_E_  
IMASK  
System Status Mask  
0x2C  
-
-
-
R/W  
0x20  
WDT_E_IMASK  
0: Mask Disable  
1: Mask Enable  
Watch Dog Timer Error Interruption Factor Mask  
EEPCRC_E_IMASK  
0: Mask Disable  
1: Mask Enable  
CRC Error during EEPROM Load Interruption Factor Mask  
EEP_END_IMASK  
0: Mask Disable  
1: Mask Enable  
Notification of EEPROM Load Internal State completion Interruption Factor Mask  
Hang-Up Timer Interruption Factor Mask  
HUT_E_IMASK  
0: Mask Disable  
1: Mask Enable  
V1_HUT_E_IMASK  
0: Mask Disable  
1: Mask Enable  
V1 Hang-Up Timer Interruption Factor Mask  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
58/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2.10 INTB Interruption Factor and Mask Condition - continued  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
UVP_  
INT  
OCP_  
INT  
SCP_  
INT  
OVP_  
INT  
I2CTHM  
_INT  
INT IntReq  
0x30  
SYS_INT  
-
-
R/W  
0x00  
I2CTHM_INT  
Primary Level Interruption Factor of I2C / Thermal Error Status Register  
Primary Level Interruption Factor of OVP Error Status Register  
Primary Level Interruption Factor of SCP Error Status Register  
Primary Level Interruption Factor of OCP Error Status Register  
Primary Level Interruption Factor of UVP Error Status Register  
Primary Level Interruption Factor of System Status Register  
0: No Interruption Factor  
1: with Interruption Factor  
OVP_INT  
0: No Interruption Factor  
1: with Interruption Factor  
SCP_INT  
0: No Interruption Factor  
1: with Interruption Factor  
OCP_INT  
0: No Interruption Factor  
1: with Interruption Factor  
UVP_INT  
0: No Interruption Factor  
1: with Interruption Factor  
SYS_INT  
0: No Interruption Factor  
1: with Interruption Factor  
Register Name  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
SYS_  
IMASK  
UVP_  
IMASK  
OCP_  
IMASK  
SCP_  
IMASK  
OVP_  
IMASK  
I2CTHM  
_IMASK  
INT IntMask  
0x31  
-
-
R/W  
0x00  
I2CTHM_IMASK  
0: Mask Disable  
1: Mask Enable  
Primary Level Interruption Factor of I2C / Thermal Error Status Register Mask  
Primary Level Interruption Factor of OVP Error Status Register Mask  
Primary Level Interruption Factor of SCP Error Status Register Mask  
Primary Level Interruption Factor of OCP Error Status Register Mask  
Primary Level Interruption Factor of UVP Error Status Register Mask  
Primary Level Interruption Factor of System Status Register Mask  
OVP_IMASK  
0: Mask Disable  
1: Mask Enable  
SCP_IMASK  
0: Mask Disable  
1: Mask Enable  
OCP_IMASK  
0: Mask Disable  
1: Mask Enable  
UVP_IMASK  
0: Mask Disable  
1: Mask Enable  
SYS_IMASK  
0: Mask Disable  
1: Mask Enable  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
59/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2 Register Description – continued  
5.2.11 POW Setting  
Register Name  
Address  
0x40  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
R/W 0x00  
POW WriteProtect  
POW_WP[7:0]  
POW_WP[7:0]  
Protection register for POW Trigger and POW Wait  
0xAB: Access for POW registers is enabled.  
Others: Access for POW registers is disabled.  
Register Name  
Address  
0x41  
D7  
D7  
D7  
D7  
D7  
D7  
D6  
D5  
D4  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D3  
D2  
D1  
D0  
D0  
D0  
D0  
D0  
D0  
R/W Default  
R/W 0x20  
POW Trigger VOUT1  
POFF_TRG_VOUT1  
PON_TRG_VOUT1  
Register Name  
Address  
0x42  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x61  
POW Trigger VOUT2  
POFF_TRG_VOUT2  
PON_TRG_VOUT2  
Register Name  
Address  
0x43  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x45  
POW Trigger VOUT3  
POFF_TRG_VOUT3  
PON_TRG_VOUT3  
Register Name  
Address  
0x44  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x73  
POW Trigger VOUT4  
POFF_TRG_VOUT4  
PON_TRG_VOUT4  
Register Name  
Address  
0x45  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x36  
POW Trigger VOUTL1  
POFF_TRG_VOUTL1  
PON_TRG_VOUTL1  
Register Name  
Address  
0x46  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x52  
POW Trigger  
VOUTS1  
POFF_TRG_VOUTS1  
PON_TRG_VOUTS1  
Register Name  
Address  
0x47  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
R/W 0x04  
POW Trigger  
PRESETB  
POFF_TRG_PRESETB  
PON_TRG_PRESETB  
PON_TRG_VOUTx(Note 1)  
POFF_TRG_VOUTx(Note 1)  
Trigger Signal Setting in Power-ON Sequence  
Trigger Signal Setting in Power-OFF Sequence  
The Order of Power-ON Sequence and Power-OFF Sequence is selected by POW Trigger VOUTx(Note 1) registers.  
POW Trigger VOUTx(Note 1) registers’ value can be changed by EEPROM. Regarding default value of each registers,  
please refer register map.  
(e.g.)  
By setting PON_TRG_VOUT2 = 0x1 (VOUT1 Enable Signal), VOUT2 starts Power-ON after VOUT1.  
By setting POFF_TRG_VOUTL1 = 0x03 (VOUT3 Enable Signal), VOUTL1 starts Power-OFF after VOUT3.  
By setting PON_TRG_VOUTL1 = 0xFF (Always OFF Setting), VOUTL1 never Power-ON. In this case, VOUTL1 is  
excluded from the Power-ON / Power-OFF sequence automatically.  
Setting over 2 signals triggering one Enable Signal is prohibited.  
(Note 1) VOUTx = VOUT1 to VOUT4, VOUTL1 and VOUTS1  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
60/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2.11 POW Setting – continued  
Table 23: PON/POFF Trigger Signal  
PON_TRG_VOUTx(Note 1)  
/ POFF_TRG_VOUTx(Note 1)  
PON_TRG_PRESETB  
Trigger Signal  
/ POFF_TRG_PRESETB  
0x0  
0x1  
RSTB (pin) = H level (Power-ON) / L level (Power-OFF)  
VOUT1 Enable Signal  
0x2  
VOUT2 Enable Signal  
0x3  
VOUT3 Enable Signal  
0x4  
VOUT4 Enable Signal  
0x5  
VOUTL1 Enable Signal  
VOUTS1 Enable Signal  
PRESETB (pin)  
0x6  
0x7  
0x8 to 0xF  
Always OFF Setting  
Register Name  
Address  
0x48  
D7  
D7  
D6  
D5  
D4  
D4  
D3  
D3  
D2  
D1  
D0  
D0  
R/W Default  
R/W 0x00  
POW Wait VOUT1  
POFF_WAIT_VOUT1  
PON_WAIT_VOUT1  
Register Name  
Address  
0x49  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x00  
POW Wait VOUT2  
POFF_WAIT_VOUT2  
PON_WAIT_VOUT2  
Register Name  
Address  
0x4A  
D7  
D7  
D7  
D7  
D7  
D6  
D5  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D2  
D1  
D0  
D0  
D0  
D0  
D0  
R/W Default  
R/W 0x00  
POW Wait VOUT3  
POFF_WAIT_VOUT3  
PON_WAIT_VOUT3  
Register Name  
Address  
0x4B  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x00  
POW Wait VOUT4  
POFF_WAIT_VOUT4  
PON_WAIT_VOUT4  
Register Name  
Address  
0x4C  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x00  
POW Wait VOUTL1  
POFF_WAIT_VOUTL1  
PON_WAIT_VOUTL1  
Register Name  
Address  
0x4D  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x00  
POW Wait VOUTS1  
POFF_WAIT_VOUTS1  
PON_WAIT_VOUTS1  
Register Name  
Address  
0x4E  
D6  
D5  
D2  
D1  
R/W Default  
R/W 0x00  
POW Wait PRESETB  
POFF_WAIT_PRESETB  
PON_WAIT_PRESETB  
PON_WAIT_VOUTx(Note 1)  
POFF_WAIT_VOUTx(Note 1)  
Interval Setting in Power-ON Sequence  
Interval Setting in Power-OFF Sequence  
The Interval of Power-ON Sequence and Power-OFF Sequence is selected by POW Wait VOUTx(Note 1) registers.  
POW Wait VOUTx(Note 1) registers’ value can be changed by EEPROM. Regarding default value of each registers,  
please refer register map.  
(Note 1) VOUTx = VOUT1 to VOUT4, VOUTL1 and VOUTS1  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
61/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2.11 POW Setting – continued  
Table 24: PON/POFF Interval  
PON_WAIT_VOUTx(Note 1)  
/ POFF_WAIT_VOUTx(Note 1)  
PON_WAIT_PRESETB  
Interval  
/ POFF_WAIT_PRESETB  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
2 µs  
500 µs  
1 ms  
2 ms  
4 ms  
5 ms  
8 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
40 ms  
45 ms  
50 ms  
60 ms  
Please set Power-OFF interval not to exceed totally 400 ms (Power-OFF Sequence Hang Up Timer).  
(Note 1) VOUTx = VOUT1 to VOUT4, VOUTL1 and VOUTS1  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
62/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2 Register Description – continued  
5.2.12 VOUT Voltage SET  
These VOUT voltage tuning registers are set via external EEPROM.  
Register Name  
VOUT1 TUNE  
Address  
0x50  
D7  
D6  
-
D5  
-
D4  
-
D3  
-
D2  
D1  
D0  
R/W Default  
V1_  
SIGN  
VOUT1_TUNE[2:0]  
RO  
0x00  
V1_SIGN  
VOUT1 Sign Bit  
0: Plus  
1: Minus  
VOUT1_TUNE[2:0]  
VOUT1 Tuning Bit  
VOUT1 output voltage is tuned from default value (5.0 V) by these registers. Step: 100 mV.  
Table 25: VOUT1 Tuning Voltage  
VOUT1_TUNE[2:0]  
Tuning Voltage (mV)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0
100  
200  
300  
400  
500  
Clipped to 500  
Clipped to 500  
Register Name  
VOUT2 TUNE  
Address  
0x53  
D7  
D6  
-
D5  
-
D4  
-
D3  
-
D2  
D1  
D0  
R/W  
RO  
Default  
0x00  
V2_  
SIGN  
VOUT2_TUNE[2:0]  
V2_SIGN  
VOUT2 Sign Bit  
0: Plus  
1: Minus  
VOUT2_TUNE[2:0]  
VOUT2 Tuning Bit  
VOUT2 output voltage is tuned from default value (1.8 V) by these registers. Step: 20 mV.  
Table 26: VOUT2 Tuning Voltage  
VOUT2_TUNE[2:0] Tuning Voltage (mV)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0
20  
40  
60  
80  
100  
120  
140  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
63/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2.12 VOUT Voltage SET – continued  
Register Name  
VOUT3 TUNE  
Address  
0x56  
D7  
D6  
-
D5  
-
D4  
D3  
D2  
D1  
D0  
R/W Default  
V3_  
SIGN  
VOUT3_TUNE[4:0]  
RO  
0x00  
V3_SIGN  
VOUT3 Sign Bit  
0: Plus  
1: Minus  
VOUT3_TUNE[4:0]  
VOUT3 Tuning Bit  
VOUT3 output voltage is tuned from default value (1.35 V, 1.5 V) by these registers. Step: 10 mV.  
Table 27: VOUT3 Tuning Voltage  
VOUT3_TUNE[4:0] Tuning Voltage (mV)  
0x0  
0x1  
0
10  
0x2  
20  
……  
……  
0x1D  
0x1E  
0x1F  
……  
……  
290  
300  
310  
Register Name  
VOUT4 TUNE  
Address  
0x59  
D7  
D6  
-
D5  
-
D4  
D3  
D2  
D1  
D0  
R/W Default  
V4_  
SIGN  
VOUT4_TUNE[4:0]  
RO  
0x00  
V4_SIGN  
VOUT4 Sign Bit  
0: Plus  
1: Minus  
VOUT4_TUNE[4:0]  
VOUT4 Tuning Bit  
VOUT4 output voltage is tuned from default value (1.03 V) by these registers. Step: 10 mV.  
Table 28: VOUT4 Tuning Voltage  
VOUT4_TUNE[4:0] Tuning Voltage (mV)  
0x0  
0x1  
0
10  
0x2  
20  
……  
……  
0x1D  
0x1E  
0x1F  
……  
……  
290  
300  
310  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
64/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
5.2.12 VOUT Voltage SET – continued  
Register Name  
VOUTL1 TUNE  
Address  
0x5C  
D7  
D6  
-
D5  
-
D4  
-
D3  
-
D2  
D1  
D0  
R/W Default  
RO 0x00  
VL1_  
SIGN  
VOUTL1_TUNE[2:0]  
VL1_SIGN  
VOUTL1 Sign Bit  
0: Plus  
1: Minus  
VOUTL1_TUNE[2:0]  
VOUTL1 Tuning Bit  
VOUTL1 output voltage is tuned from default value (2.5 V) by these registers. Step: 40 mV.  
Table 29: VOUTL1 Tuning Voltage  
VOUTL1_TUNE[2:0] Tuning Voltage (mV)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0
40  
80  
120  
160  
200  
240  
280  
5.2.13 VOUTS1 OCP SET  
Register Name  
VOUTS1 OCP  
Address  
0x60  
D7  
-
D6  
-
D5  
D4  
D3  
D2  
D1  
D0  
R/W Default  
0x16/  
R/W  
VOUTS1_OCP[5:0]  
0x08  
VOUTS1_OCP[5:0]  
VOUTS1 OCP setting. Step: 50 mA (Internal Mode), 10 mV (External Mode)  
Default value is determined by GATECNT (pin) condition.  
GATECNT (pin) = L: Default value is 0x16 (Internal: 1100 mA).  
GATECNT (pin) = H: Default value is 0x08 (External: 90 mV).  
Table 30: VOUTS1 OCP Current (Internal) and Voltage (External)  
VOUTS1_OCP_SET[5:0]  
Internal OCP Current (mA) External OCP Voltage (mV)  
0x00  
0x00 to 0x05  
0x06  
Function Disable  
Function Disable  
Clipped to 300  
300  
Clipped to 70  
70  
350  
400  
0x07  
80  
90  
0x08  
……  
……  
1100  
……  
0x16  
230  
……  
……  
……  
1350  
0x1B  
280  
Clipped 1350  
0x1C to 0x3F  
Clipped to 280  
Internal OCP Current has ±50 % of deviation.  
This is because it depends on Ron of internal SW.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
65/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Typical Performance Curves  
Unless otherwise specified: VIN = 3.3 V, Ta = 25 °C, IOUT = 0 A  
Line Regulation  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
3.00  
3.30  
3.60  
3.00  
3.30  
3.60  
VIN [V]  
VIN [V]  
Figure 39. VOUT1 Output Voltage vs VIN  
Figure 40. VOUT2 Output Voltage vs VIN  
1.55  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.40  
1.39  
1.38  
1.37  
1.36  
1.35  
1.34  
1.33  
1.32  
1.31  
1.30  
3.00  
3.30  
3.60  
3.00  
3.30  
3.60  
VIN [V]  
VIN [V]  
Figure 41. VOUT3 Output Voltage vs VIN  
(VOUT3 = 1.35 V Setting)  
Figure 42. VOUT3 Output Voltage vs VIN  
(VOUT3 = 1.5 V Setting)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
66/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6.1 Line Regulation - continued  
2.60  
2.55  
2.50  
2.45  
2.40  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
3.00  
3.30  
3.60  
3.00  
3.30  
3.60  
VIN [V]  
VIN [V]  
Figure 44. VOUTL1 Output Voltage vs VIN  
Figure 43. VOUT4 Output Voltage vs VIN  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
67/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6. Typical Performance Curves – continued  
Load Regulation  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
0.00  
0.50  
1.00  
0
100  
200  
IOUT [A]  
IOUT [mA]  
Figure 46. VOUT2 Output Voltage vs IOUT  
Figure 45. VOUT1 Output Voltage vs IOUT  
1.55  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.40  
1.39  
1.38  
1.37  
1.36  
1.35  
1.34  
1.33  
1.32  
1.31  
1.30  
0.00  
1.00  
2.00  
0.00  
1.00  
2.00  
IOUT [A]  
IOUT [A]  
Figure 47. VOUT3 Output Voltage vs IOUT  
(VOUT3 = 1.35 V Setting)  
Figure 48. VOUT3 Output Voltage vs IOUT  
(VOUT3 = 1.5 V Setting)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
68/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6.2 Load Regulation - continued  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
2.60  
2.55  
2.50  
2.45  
2.40  
0
50  
100  
150  
0.00  
1.00  
2.00  
3.00  
4.00  
5.00  
IOUT [mA]  
IOUT [A]  
Figure 49. VOUT4 Output Voltage vs IOUT  
Figure 50. VOUTL1 Output Voltage vs IOUT  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
69/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6. Typical Performance Curves – continued  
Power Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
50  
100  
150  
200  
0
0.25  
0.5  
0.75  
1
IOUT [mA]  
IOUT [A]  
Figure 51. VOUT1 Power Efficiency vs IOUT  
Figure 52. VOUT2 Power Efficiency vs IOUT  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
IOUT [A]  
IOUT [A]  
Figure 53. VOUT3 Power Efficiency vs IOUT  
(VOUT3 = 1.35 V Setting)  
Figure 54. VOUT3 Power Efficiency vs IOUT  
(VOUT3 = 1.5 V Setting)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
70/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6.3 Power Efficiency -continued  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
IOUT [A]  
Figure 55. VOUT4 Power Efficiency vs IOUT  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
71/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6. Typical Performance Curves – continued  
Power ON Waveform  
VOUT1 (1 V/div)  
VOUT2 (500 mV/div)  
SW1 (2 V/div)  
SW2 (2 V/div)  
500 µs/div  
500 µs/div  
Figure 56. VOUT1 Power ON Waveform  
Figure 57. VOUT2 Power ON Waveform  
VOUT3 (500 mV/div)  
VOUT3 (500 mV/div)  
SW3 (2 V/div)  
SW3 (2 V/div)  
500 µs/div  
500 µs/div  
Figure 58. VOUT3 Power ON Waveform  
(VOUT3 = 1.35 V Setting)  
Figure 59. VOUT3 Power ON Waveform  
(VOUT3 = 1.5 V Setting)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
72/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6.4 Power ON Waveform- continued  
VOUTL1 (500 mV/div)  
VOUT4 (500 mV/div)  
SW4 (2 V/div)  
SW5 (2 V/div)  
500 µs/div  
500 µs/div  
Figure 60. VOUT4 Power ON Waveform  
Figure 61. VOUTL1 Power ON Waveform  
VOUTS1 (500 mV/div)  
500 µs/div  
Figure 62. VOUTS1 Power ON Waveform  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
73/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6. Typical Performance Curves – continued  
Power OFF Waveform  
VOUT1 (1 V/div)  
VOUT2 (500 mV/div)  
SW1 (2 V/div)  
SW2 (2 V/div)  
2 ms/div  
5 ms/div  
Figure 63. VOUT1 Power OFF Waveform  
Figure 64. VOUT2 Power OFF Waveform  
VOUT3 (500 mV/div)  
VOUT3 (500 mV/div)  
SW3 (2 V/div)  
SW3 (2 V/div)  
5 ms/div  
5 ms/div  
Figure 65. VOUT3 Power OFF Waveform  
(VOUT3 = 1.35 V Setting)  
Figure 66. VOUT3 Power OFF Waveform  
(VOUT3 = 1.5 V Setting)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
74/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6.5 Power OFF Waveform- continued  
VOUT4 (500 mV/div)  
VOUTL1 (500 mV/div)  
SW4 (2 V/div)  
SW5 (2 V/div)  
2 ms/div  
5 ms/div  
Figure 67. VOUT4 Power OFF Waveform  
Figure 68. VOUTL1 Power OFF Waveform  
VOUTS1 (500 mV/div)  
500 µs/div  
Figure 69. VOUTS1 Power OFF Waveform  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
75/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6. Typical Performance Curves – continued  
Load Transient  
IOUT (200 mA/div)  
IOUT (50 mA/div)  
VOUT (20 mV/div)  
VOUT (10 mV/div)  
20 µs/div  
50 µs/div  
Figure 70. VOUT1 Load Transient  
(IOUT = 0 A to 100 mA (SR = 100 mA/µs))  
Figure 71. VOUT2 Load Transient  
(IOUT = 0 A to 0.5 A (SR = 1 A/µs))  
IOUT (500 mA/div)  
IOUT (500 mA/div)  
VOUT (10 mV/div)  
VOUT (10 mV/div)  
20 µs/div  
20 µs/div  
Figure 72. VOUT3 Load Transient  
Figure 73. VOUT3 Load Transient  
(VOUT3 = 1.35 V Setting, IOUT = 0 A to 1 A (SR = 1 A/µs))  
(VOUT3 = 1.5 V Setting, IOUT = 0 A to 1 A (SR = 1 A/µs))  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
76/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
6.6 Load Transient- continued  
IOUT (30 mA/div)  
IOUT (1 A/div)  
VOUT (10 mV/div)  
VOUT (20 mV/div)  
20 µs/div  
100 µs/div  
Figure 74. VOUT4 Load Transient  
(IOUT = 0 A to 2.05 A (SR = 1 A/µs))  
Figure 75. VOUTL1 Load Transient  
(IOUT = 0 A to 75 mA (SR = 100 mA/µs)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
77/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging  
on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However,  
pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground due  
to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below ground  
will not cause the IC and the system to malfunction by examining carefully all relevant factors and conditions such as  
motor characteristics, supply voltage, operating frequency and PCB wiring to name a few.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on  
the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of  
connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
78/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
7. Operational Notes – continued  
8.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 76. Example of Monolithic IC Structure  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
79/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
7.  
Operational Notes – continued  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be  
within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. The IC should  
be powered down and turned ON again to resume normal operation because the TSD circuit keeps the outputs at the  
OFF state even if the Tj falls below the TSD threshold.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not  
be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
80/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
BD9573MUF-M  
Revision History  
Date  
Revision  
001  
Changes  
29.May.2020  
New Release  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
81/81  
TSZ02201-0A1A0AM00360-1-2  
29.May.2020 Rev.001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD9575FV

Switching Regulators for DDR-SDRAM Cores
ROHM

BD9575FV-E2

Switching Regulators for DDR-SDRAM Cores
ROHM

BD9576MUF-C

BD9576MUF-C is a Power Management Integrated Circuit (PMIC) designed specifically for use on R-Car series processor for In-Vehicle Infotainment (IVI) Systems, Instrument Cluster Panel and Advanced Driver Assistance Systems (ADAS).
ROHM

BD95820F-LBE2

Analog Circuit, 1 Func, PDSO8, 6.20 X 5 MM, 1.71 MM HEIGHT, ROHS COMPLIANT, SOP-8
ROHM

BD95820N-LB

Analog Circuit, 1 Func, PSIP8, SIP-8
ROHM

BD95821MUV

BD95821MUV是可在输入电压范围(7.5V~15V)内通过大电流输出实现输出电压(0.8V~5.5V)的1ch降压开关稳压器。通过内置开关晶体管用的N-MOSFET,可实现省空间的高效同步整流开关稳压器。采用H3Reg™罗姆的ONTIME固定控制模式,无需相位补偿部件,即可实现高速瞬态响应特性。具有软启动功能、Power Good功能、带计时锁存的短路输出 / 过电压保护电路功能,适用于数字AV设备用电源。
ROHM

BD95821MUV-E2

Switching Regulator, 800kHz Switching Freq-Max, VQFN-16
ROHM

BD9582F-E

EARTH LEAKAGE CURRENT DETECTOR IC
ROHM

BD9582F-M-E

Automotive EARTH LEAKAGE CURRENT DETECTOR IC
ROHM

BD9582SIP8-E2

EARTH LEAKAGE CURRENT DETECTOR IC
ROHM

BD9582SOP8-E2

EARTH LEAKAGE CURRENT DETECTOR IC
ROHM

BD95830MUV

Silicon Monolithic Integrated Circuit
ROHM