BD9596BMWV-M [ROHM]

BD9596BMWV-M (Jarrell Cove) is a Power Management Integrated Circuit (PMIC) designed specifically for use on Intel® Atom™ E3800 series processors (Bay Trail-I platform) for in-vehicle infotainment (IVI) systems, industrial control systems.;
BD9596BMWV-M
型号: BD9596BMWV-M
厂家: ROHM    ROHM
描述:

BD9596BMWV-M (Jarrell Cove) is a Power Management Integrated Circuit (PMIC) designed specifically for use on Intel® Atom™ E3800 series processors (Bay Trail-I platform) for in-vehicle infotainment (IVI) systems, industrial control systems.

集成电源管理电路
文件: 总78页 (文件大小:2744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Power Management IC for  
Intel® AtomTM E3800 series  
BD9596BMWV-M (Code name: Jarrell Cove)  
General Description  
Key Specifications  
BD9596BMWV-M (Jarrell Cove) is a Power Management  
Integrated Circuit (PMIC) designed specifically for use on  
Intel® AtomTM E3800 series processors (Bay Trail-I  
platform) for in-vehicle infotainment (IVI) systems,  
industrial control systems.  
Input Voltage Range:  
VCC Output Voltage Range:  
VCC Output Current:  
(Output current depends on external component)  
VNN Output Voltage Range:  
VNN Output Current:  
3.5V to 5.5V  
0.5V to 1.2V  
13.541A (Max)  
0.5V to 1.2V  
13.207A (Max)  
Features  
(Output current depends on external component.)  
Complicated Power up / down sequence and state  
control are embedded.  
V1P0A Output Voltage:  
V1P0A Output Current:  
V1P0S Output Voltage:  
V1P0S Output Current:  
1.0V (Typ)  
0.7A (Max)  
1.0V (Typ)  
Fewer external components count / compact size.  
Controlling power regulation for each state (S4/S5, S3  
and S0) results in a low power consumption.  
Built-in reference clock (RTCCLK): 32.768kHz±5% to  
reduce boot up time.  
2.667A (Max)  
(Output current depends on external component)  
V1P05S Output Voltage:  
V1P05S Output Current:  
V1P24A Output Voltage:  
V1P24A Output Current:  
V1P24S Output Voltage:  
V1P24S Output Current:  
VSFR Output Voltage:  
VSFR Output Current:  
V1P8A Output Voltage:  
V1P8A Output Current:  
V1P8S Output Voltage:  
V1P8S Output Current:  
VSDIO Output Voltage:  
VSDIO Output Current:  
V3P3A Output Voltage:  
V3P3A Output Current:  
V3P3S Output Voltage:  
V3P3S Output Current:  
VRTC Output Voltage:  
VRTC Output Current:  
VDDQ Output Voltage Range:  
VDDQ Output Current:  
1.05V (Typ)  
1.322A (Max)  
1.24V (Typ)  
0.05A (Max)  
1.24V (Typ)  
0.05A (Max)  
1.35V (Typ)  
0.5A (Max)  
Power control logic with processor interface and event  
detection.  
SVID interface for control and register access.  
Error mode indicator for debugging.  
Built-in UVLO, SCP, OVP and TSD protection.  
AEC-Q100 qualified (Note1)  
.
1.8V (Typ)  
1.8A (Max)  
1.8V (Typ)  
0.8A (Max)  
(Note1:Grade3)  
Applications  
In-vehicle infotainment (IVI) systems  
Industrial control systems  
Intelligent vending systems  
ATM  
Point-of-sale (POS) terminals  
etc  
1.8V or 3.3V (Typ)  
0.02A (Max)  
3.3V (Typ)  
0.1A (Max)  
3.3V (Typ)  
0.5A (Max)  
3.3V (Typ)  
0.12A (Max)  
1.2V to 1.6V  
4.51A (Max)  
(Output current depends on external component.)  
VTT Output Voltage:  
VDDQ/2 (Typ)  
0.53A (Max)  
1MHz (Typ)  
120mΩ(Typ)  
VTT Output Current:  
Switching Frequency:  
Pch FET ON Resistance:  
(V1P0A, V1P8A, V1P05S)  
120mΩ(Typ)  
Nch FET ON Resistance:  
(V1P0A, V1P8A, V1P05S)  
Operating Temperature Range:  
-40to +95℃  
Package(s)  
UQFN88MV0100  
W(Typ) x D(Typ) x H(Max)  
10.0mm x 10.0mm x 1.00mm  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
.www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/75  
TSZ2211114001  
Daattaasshheeeett  
BD9596BMWV-M  
Block Diagram  
3.5V-5.5V  
C1  
5VIN_D  
5VIN_A  
U1  
5VIN_A  
DCDC5  
VDD3  
R1  
C3  
C25  
C2  
BG (1.2V)  
UVLO  
TSD  
L5  
Reference  
block  
SW_V1P05S  
V1P05S  
LDO1  
VRTC  
3.3V/0.12A  
1.05V/1.332A  
C26  
S0  
VDD3  
PGND  
LDO2  
LDO3  
LDO4  
LDO5  
V3P3A  
S4/S5  
FB_V1P05S  
BOOT_VCC  
3.3V/0.1A  
C4  
C5  
C6  
V3P3S  
3.3V/0.5A  
S0  
C28  
M5  
M6  
C27  
HG_VCC  
SW_VCC  
LG_VCC  
S0  
L6  
DCDC6  
VCC  
V1P24A  
1.24V/0.05A  
S4/S5  
VID for VCC  
C29  
0.51.2V/13.541A  
output current  
depends on  
external  
R6  
C30  
PGND  
Is+_VCC  
VSDIO  
3.3V or 1.8V  
/0.02A  
SDMMC3_PWREN_B  
VDD1  
R10  
Is-_VCC  
C7  
component  
Remote+_VCC  
Remote-_VCC  
SDMMC3_1P8EN_B  
5VIN_A  
VCC+  
VCC-  
VDD2  
BOOT_VNN  
C8  
L1  
SW_V1P0A  
C32  
M7  
M8  
V1P0A  
1.0V/0.7A  
DCDC1  
S4/S5  
VDD3  
C31  
HG_VNN  
SW_VNN  
LG_VNN  
L7  
S0  
VNN  
C9  
DCDC7  
PGND  
C33  
VID for VNN  
FB_V1P0A  
0.51.2V/13.207A  
output current  
depends on  
external  
R7 C34  
R11  
PGND  
Is+_VNN  
BOOT_V1P0S  
Is-_VNN  
Remote+_VNN  
Remote-_VNN  
M1  
M2  
C10  
component  
C11  
L2  
HG_V1P0S  
SW_V1P0S  
LG_V1P0S  
VNN+  
VNN-  
V1P0S  
DCDC2  
S0  
1.0V/2.667A  
output current  
depends on  
external  
C13  
C12  
R2  
PGND  
VRTC  
Reference  
clock  
IS+_V1P0S  
IS-V1P0S  
FB_V1P0S  
RTCCLK  
R8  
R12  
R15  
component  
R13  
R14  
TEMP_COMP  
OCP setting  
voltage  
5VIN_A  
DCDC3  
VDD1  
C14  
V3P3DIN  
S0  
S3 S4/S5  
VRTC  
L3  
SW_V1P8A  
V1P8A  
S4/S5  
1.8V/1.8A  
RSMRST_B (Bay Trail)  
DRAMPWROK (Bay Trail)  
C15  
PGND  
COREPWROK (Bay Trail)  
RTEST_B (Bay Trail)  
PWRBTN_B (Bay Trail)  
SUS_STAT_B (ICM)  
FB_V1P8A  
V1P8A_IN1  
C16  
UVLO  
TSD  
SLP_S3_B (Bay Trail)  
SLP_S4_B (Bay Trail)  
SRTC_RST_B (Bay Trail)  
SUSPWRDNACK (Bay Trail)  
SW1  
Controller  
V1P8S  
1.8V/0.8A  
S0  
C17  
V1P8A_IN2  
V1P24S  
1.24V/0.05A  
LDO6  
LDO8  
SDMMC3_PWREN_B (Bay Trail)  
SDMMC3_1P8_EN (Bay Trail)  
POWER_ON (ICM)  
SYNC (ICM)  
S0  
S0  
C18  
C35  
VDD2  
VSFR  
1.35V/0.5A  
ERROR  
BOOT_VDDQ  
VRTC VRTC  
M3  
M4  
C19  
C20  
L4  
HG_VDDQ  
SW_VDDQ  
LG_VDDQ  
VDDQ  
4.7kohm  
4.7kohm  
1.2-1.6V/4.51A  
output current  
depends on  
external  
DCDC4  
S3  
DATA  
CLK  
C22  
R3  
C21  
PGND  
VID for VCC VID for VNN  
component  
IS+_VDDQ  
R9  
IS-_VDDQ  
FB_VDDQ  
R4  
R5  
SVID_DATA (Bay Trail)  
SVID_CLK (Bay Trail)  
SVID_ALERT_B (Bay Trail)  
SVID  
Interface  
VDDQIN  
PGND  
C23  
C24  
spare pin  
AGND  
LDO7  
VTT  
S0  
VDDQ/2 V/0.530A  
Figure 1. Block Diagram  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Component Selection  
Table 1: Component Selection  
Part No  
Value  
Compan  
y
Part name  
Part No  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
Value  
10uF  
10uF  
10uF  
10uF  
10uF  
10uF  
1uF  
22uF  
47uF  
22uF  
0.1uF  
47uF x 2  
0.1uF  
22uF  
47uF x 2  
10uF  
10uF  
Company  
Part name  
U1  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
-
1
560  
1k  
11k  
16k  
620  
620  
1k  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
MURATA  
ROHM  
ROHM  
Taiyo  
BD9596BMWV-M  
C8  
C9  
R8  
R9  
2k  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
R10  
R11  
R12  
R13  
R14  
R15  
L1  
910  
910  
8.2k  
10k  
8.2k  
2.7k  
6.8uH  
NCP18X103F0SRB  
NR3012  
Yuden  
L2  
L3  
L4  
L5  
L6  
L7  
1.0uH  
3.3uH  
1.0uH  
3.3uH  
Taiyo  
Yuden  
Taiyo  
Yuden  
VISHAY  
NRS4018  
NRS4018  
C18  
C19  
C20  
C21  
C22  
C23  
10uF  
10uF x 2  
0.1uF  
IHLP-2020-CZ  
ER1R0MA1e3  
NRS4018  
Taiyo  
Yuden  
47uF x 2  
0.1uF  
0.33uH VISHAY  
0.33uH VISHAY  
IHLP-2020-CZ  
ER0R33MA1e3  
IHLP-2020-CZ  
ER0R33MA1e3  
SQA410EJ  
SQA410EJ  
SQA410EJ  
10uF  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
Infineon  
C24  
C25  
C26  
C27  
10uF  
10uF x 2  
47uF x 2  
10uF x 4  
0.1uF  
220uF x 2  
47uF x 2  
0.1uF  
SQA410EJ  
IPG20N04S4L-08  
C28  
C29_1  
C29_2  
C30  
Panasonic  
Panasonic  
2R5TAE220M9  
2R5TAE220M9  
Infineon  
IPG20N04S4L-08  
C31  
C32  
C33_1  
C33_2  
C34  
10uF x 4  
0.1uF  
220uF x 2  
47uF x 2  
0.1uF  
C35  
10uF  
*These values and parts may be changed for improvement etc.  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Pin Configuration  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
1
2
66  
REMOTE_P_VNN  
IS_M_VNN  
IS_P_VNN  
PGND1  
IS_P_VDDQ  
65  
IS_M_VDDQ  
3
64  
FB_VDDQ  
4
63  
BOOT_VDDQ  
5
62  
LG_VNN  
HG_VDDQ  
6
61  
SW_VNN  
SW_VDDQ  
7
60  
HG_VNN  
LG_VDDQ  
8
59  
BOOT_VNN  
VDD1  
PGND5  
9
58  
FB_V1P0A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
57  
SW_V1P8A  
PGND2  
VDD2  
56  
SW_V1P0A  
55  
FB_V1P8A  
V1P8S  
PGND4  
54  
VDDQ_IN  
53  
V1P8S  
VTT  
52  
V1P8A_IN1  
V1P8A_IN1  
VSFR  
PGND3  
51  
RTEST_B  
50  
RSMRST_B  
49  
V1P8A_IN2  
V1P24S  
DRAMPWROK  
48  
COREPWROK  
47  
SRTC_RST_B  
SUS_STAT_B  
ERROR  
DATA  
46  
CLK  
45  
PWRBTN_B  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Figure 2. Pin Configuration  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Pin Description  
Table 2: BD9596BMWV-M Pin Description  
Pin No.  
Pin Name  
Connect to  
PMIC  
I/O  
I
Function  
VNN output remote sensing pin  
1
REMOTE_P_VNN  
2
IS_M_VNN  
IS_P_VNN  
PGND1  
PMIC  
PMIC  
-
I
Negative input of current sensing pin for VNN  
Positive input of current sensing pin for VNN  
Power GND pin1  
3
I
4
-
5
LG_VNN  
External  
External  
External  
PMIC  
POWER  
External  
-
O
Low side MOSFET gate driver pin for VNN  
High side MOSFET source pin for VNN  
High side MOSFET gate driver pin for VNN  
6
SW_VNN  
O
7
HG_VNN  
O
8
BOOT_VNN  
VDD1  
I
High side MOSFET driver power supply pin for VNN  
Power supply pin for V1P8A  
High side MOSFET source pin for V1P8A  
Power GND pin2  
9
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SW_V1P8A  
PGND2  
O
-
FB_V1P8A  
V1P8S  
PMIC  
SOC  
I
Feedback pin for V1P8A  
Output voltage for V1P8S  
Output voltage for V1P8S  
1.8V power supply pin1  
O
V1P8S  
SOC  
O
V1P8A_IN1  
V1P8A_IN1  
VSFR  
POWER  
POWER  
SOC  
I
I
1.8V power supply pin1  
O
Output voltage for VSFR  
1.8V power supply pin2  
V1P8A_IN2  
V1P24S  
POWER  
SOC  
I
O
Output voltage for V1P24S  
RTC detect signal pin  
SRTC_RST_B  
SUS_STAT_B  
ERROR  
SOC  
O
Platform  
-
O
SUS_STAT_B pin  
O
ERROR signal pin  
Input signal from Bay Trail; indicates S4 state entry upon  
assertion and exit upon de-assertion  
Input signal form Bay Trail; indicates S3 state entry upon  
assertion and exit upon de-assertion  
SLP_S4_B  
SLP_S3_B  
SDMMC3_1P8_EN  
SDMMC3_PWR_EN_B  
SYNC  
SOC  
I
SOC  
I
SOC  
I
Input signal from SOC (select 1.8V or 3.3V for SD)  
Input signal to enable SD card power  
External synchronous clock input  
Spare pin1  
SOC  
I
Platform  
-
I
SPARE1  
O (OD)  
I
SVID_CLK  
SVID_DATA  
SOC  
SVID clock  
SOC  
I/O (OD) SVID data  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Pin Description – continued  
Pin No.  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
Pin Name  
SVID_ALERT_B  
SUSPWRDNACK  
RTCCLK  
Connect to  
SOC  
SOC  
SOC  
POWER  
POWER  
-
I/O  
Function  
O (OD)  
SVID alert  
Input signal from Bay Trail that turns off the SUS rails in  
junction with the assertion of SLP_S4_B.  
I
O
32kHz clock output pin  
V3P3DIN  
V5IN_A  
I
Logic power supply pin  
I
5V power supply pin  
AGND1  
-
Analog GND pin1  
V3P3S  
SOC  
POWER  
SOC  
-
O
Output voltage for V3P3S  
5V power supply pin  
V5IN_D  
I
V3P3A  
O
Output voltage for V3P3A  
Output voltage for VRTC  
Output voltage for V1P24A  
Output voltage for VSDIO  
Over current protect voltage setting pin  
POWER_ON pin  
VRTC  
O
V1P24A  
SOC  
SOC  
PMIC  
Platform  
SOC  
-
O
VSDIO  
O
TEMP_COMP  
POWER_ON  
PWRBTN_B  
CLK  
I
I
O (OD)  
Boot up signal output pin  
Connect 4.7kohm resisters to VRTC  
Connect 4.7kohm resisters to VRTC  
-
DATA  
-
-
COREPWROK asserts when all voltage rails that are ON in  
S0  
DRAMPWROK asserts when voltage rail VDDQ is within  
10% of its normal voltage  
COREPWROK  
DRAMPWROK  
RSMRST_B  
RTEST_B  
PGND3  
SOC  
SOC  
SOC  
SOC  
-
O (OD)  
O (OD)  
O (OD)  
RSMRST_B asserts when voltage rail V3P3A is valid  
TEST Pin  
O (OD)  
-
O
I
Power GND pin3  
VTT  
DDR  
POWER  
-
Output voltage for VTT  
VDDQ_IN  
PGND4  
VDDQ power supply pin  
-
Power GND pin4  
SW_V1P0A  
VDD2  
External  
POWER  
PMIC  
-
O
I
High side MOSFET source pin for V1P0A  
Power supply pin for V1P0A  
Feedback pin for V1P0A  
FB_V1P0A  
PGND5  
I
-
Power GND pin5  
LG_VDDQ  
SW_VDDQ  
HG_VDDQ  
External  
External  
External  
O
O
O
Low side MOSFET gate driver pin for VDDQ  
High side MOSFET source pin for VDDQ  
High side MOSFET gate driver pin for VDDQ  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
6/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Pin Description – continued  
Pin No.  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
Pin Name  
BOOT_VDDQ  
FB_VDDQ  
Connect to  
PMIC  
PMIC  
PMIC  
PMIC  
PMIC  
External  
External  
External  
-
I/O  
I
Function  
High side MOSFET driver power supply pin for VDDQ  
Feedback pin for VDDQ  
I
IS_M_VDDQ  
IS_P_VDDQ  
BOOT_V1P0S  
HG_V1P0S  
SW_V1P0S  
LG_V1P0S  
PGND6  
I
Negative input of current sensing pin for VDDQ  
Positive input of current sensing pin for VDDQ  
High side MOSFET driver power supply pin for V1P0S  
High side MOSFET gate driver pin for V1P0S  
High side MOSFET source pin for V1P0S  
Low side MOSFET gate driver pin for V1P0S  
Power GND pin6  
I
I
O
O
O
-
IS_P_V1P0S  
IS_M_V1P0S  
FB_V1P0S  
FB_V1P05S  
PGND7  
PMIC  
PMIC  
PMIC  
PMIC  
-
I
Positive input of current sensing pin for V1P0S  
Negative input of current sensing pin for V1P0S  
Feedback pin for V1P0S  
I
I
I
Feedback pin for V1P05S  
-
Power GND pin7  
SW_V1P05S  
VDD3  
External  
POWER  
PMIC  
External  
External  
External  
-
O
I
High side MOSFET source pin for V1P05S  
Power supply pin for V1P05S  
BOOT_VCC  
HG_VCC  
I
High side MOSFET driver power supply pin for VCC  
High side MOSFET gate driver pin for VCC  
High side MOSFET source pin for VCC  
Low side MOSFET gate driver pin for VCC  
Power GND pin8  
O
O
O
-
SW_VCC  
LG_VCC  
PGND8  
IS_P_VCC  
PMIC  
PMIC  
PMIC  
PMIC  
PMIC  
I
Positive input of current sensing pin for VCC  
Negative input of current sensing pin for VCC  
VCC output remote sensing pin  
IS_M_VCC  
REMOTE_P_VCC  
REMOTE_M_VCC  
REMOTE_M_VNN  
I
I
I
VCC GND remote sensing pin  
I
VNN GND remote sensing pin  
*OD=Open Drain  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
7/75  
Datashheeeett  
BD9596BMWV-M  
Package Outline  
(UNIT: mm)  
PKG: UQFN88MV0100  
Figure 3. Package Outline  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
8/75  
Daattaasshheeeett  
BD9596BMWV-M  
Footprint Dimension  
(UNIT: mm)  
PKG: UQFN88MV0100  
Figure 4. Footprint Dimension  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
9/75  
Datashheeeett  
BD9596BMWV-M  
Ordering Information  
B D 9 5 9 6 B M W V  
ME 2  
Part Number  
Package  
Packaging and forming specification  
MWV: UQFN88MV0100 E2: Embossed tape and reel  
Physical Dimension Tape and Reel Information  
<Tape and Real Information>  
Tape  
Embossed carrier tape (with dry pack)  
Quantity  
1000pcs  
E2  
Direction of feed  
Marking Diagram  
Table 3: Marking Diagram and 3D image of package  
UQFN88MV0100  
10.00mm x 10.00mm x 1.00mm  
UQFN88MV0100 (TOP VIEW)  
Part Number Marking  
LOT Number  
1234567890  
1PIN MARK  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
10/75  
Daattaasshheeeett  
BD9596BMWV-M  
Table of Contents  
1.  
2.  
Device Feature...................................................................................................................................................................12  
Output Features..............................................................................................................................................................12  
Output Voltage Table ......................................................................................................................................................12  
Power Management Diagram for Jarrell Cove PMIC......................................................................................................13  
Power Rail Diagram for Jarrell Cove PMIC ....................................................................................................................14  
Application .........................................................................................................................................................................15  
Power-up Sequence.......................................................................................................................................................15  
Power-down Sequence ..................................................................................................................................................17  
Logic Block Diagram.......................................................................................................................................................19  
Input Capacitor Selection ...............................................................................................................................................20  
Bootstrap Capacitor........................................................................................................................................................20  
Inductor Current Sensing................................................................................................................................................20  
SYNC function................................................................................................................................................................21  
Electrical Characteristics....................................................................................................................................................22  
Absolute Maximum Ratings (Ta=25ºC)...........................................................................................................................22  
Recommended Operating Conditions (Ta=25ºC)............................................................................................................23  
DC Characteristics..........................................................................................................................................................24  
Protection Mode (Under Voltage Lock Out)....................................................................................................................28  
Protection Mode (Thermal Shut Down) ..........................................................................................................................28  
Protection Mode .............................................................................................................................................................28  
DAC Code for VCC and VNN .........................................................................................................................................29  
Serial VID Command......................................................................................................................................................31  
Register Code.................................................................................................................................................................32  
Typical Performance Curves..............................................................................................................................................37  
Load Regulation .............................................................................................................................................................37  
Temperature Characteristics...........................................................................................................................................41  
Efficiency ........................................................................................................................................................................45  
Transient Response........................................................................................................................................................47  
Sequence...........................................................................................................................................................................51  
State Machine.................................................................................................................................................................51  
Cold Boot Timing Chart ..................................................................................................................................................52  
Cold Off Timing Chart .....................................................................................................................................................53  
Enter SOC S4 Timing Chart ...........................................................................................................................................54  
Exit SOC S4 Timing Chart..............................................................................................................................................55  
Enter SOC S3 Timing Chart ...........................................................................................................................................56  
Exit SOC S3 Timing Chart..............................................................................................................................................57  
I/O Interface Signals.......................................................................................................................................................58  
I/O Equivalent Circuit .........................................................................................................................................................61  
Operational Notes ..............................................................................................................................................................71  
Power Dissipation ..............................................................................................................................................................73  
Soldering Condition............................................................................................................................................................74  
History................................................................................................................................................................................75  
1.1  
1.2  
1.3  
1.4  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
3.  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.  
5.  
4.1  
4.2  
4.3  
4.4  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
6.  
7.  
8.  
9.  
10.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
11/75  
Daattaasshheeeett  
BD9596BMWV-M  
1. Device Feature  
1.1 Output Features  
(Bay Trail)  
IMVP7Lite compliant DC/DC regulator VCC (0.5V-1.2V / 13.541A (output current depends on external component))  
IMVP7Lite compliant DC/DC regulator VNN (0.5V-1.2V / 13.207A (output current depends on external component))  
DCDC regulator V1P0A (1.0V / 0.700A)  
DCDC regulator V1P0S (1.0V / 2.667A (output current depends on external component))  
DCDC regulator V1P05S (1.05V / 1.322A)  
LDO V1P24A (1.24V / 0.050A)  
LDO V1P24S (1.24V / 0.050A)  
LDO VSFR (1.35V / 0.500A)  
DCDC regulator V1P8A (1.8V / 1.800A)  
Load switch V1P8S (1.8V / 0.800A)  
LDO VSDIO (1.8V or 3.3V / 0.020A)  
LDO V3P3A (3.3V / 0.100A)  
LDO V3P3S (3.3V / 0.500A)  
LDO VRTC (3.3V / 0.120A)  
DCDC regulator VDDQ (1.2-1.6V / 4.510A (output current depends on external component))  
LDO VTT (VDDQ/2 V / 0.530A)  
*IMVP7Lite compliant DC/DC regulators do not have full features. (IMVP7Lite)  
1.2 Output Voltage Table  
Table 4: Output voltage table of each S-state  
Channel  
DCDC1  
DCDC2  
DCDC3  
DCDC4  
DCDC5  
DCDC6  
DCDC7  
SW1  
LDO1  
LDO2  
LDO3  
LDO4  
Rail name  
V1P0A  
V1P0S  
V1P8A  
VDDQ  
V1P05S  
VCC  
VNN  
V1P8S  
VRTC  
V3P3A  
V3P3S  
V1P24A  
VSDIO  
V1P24S  
VTT  
Source [V]  
1.0V  
Iomax [mA]  
700 (Note 1)  
2667 (Note 2)  
1800 (Note 1)  
4510 (Note 2)  
1322 (Note 1)  
13541 (Note 2)  
13207 (Note 2)  
800 (Note 1)  
120 (Note 1)  
100 (Note 1)  
500 (Note 1)  
50 (Note 1)  
S4/S5  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
S3  
ON  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
ON  
S0  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
1.0V  
1.8V  
1.2-1.6V  
1.05V  
0.5V-1.2V  
0.5V-1.2V  
1.8V  
3.3V  
3.3V  
3.3V  
1.24V  
1.8V or 3.3V  
1.24V  
VDDQ/2 V  
1.35V  
Bay  
Trail  
LDO5  
LDO6  
LDO7  
LDO8  
20 (Note 1)  
OFF  
OFF  
OFF  
OFF  
50 (Note 1)  
530 (Note 1)  
500 (Note 1)  
VSFR  
Note 1 Do not exceed Pd.  
Note 2 Iomax depends on the external component.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
12/75  
Daattaasshheeeett  
BD9596BMWV-M  
1.3 Power Management Diagram for Jarrell Cove PMIC  
RSMRST_B(Open Drain)  
DRAMPWROK(Open Drain)  
COREPWROK(Open Drain)  
RTEST_B (Open Drain)  
PWRBTN_B(Open Drain)  
SLP_S3_B (1.8V)  
SLP_S4_B (1.8V)  
SRTC_RST_B (3.3V)  
Bay Trail  
SUSPWRDNACK(1.8V)  
SDMMC3_1P8_EN_B(1.8V)  
SDMMC3_PWREN_B(1.8V)  
Jarrell Cove  
PMIC  
SVID_DATA (1.0V)  
SVID_CLK(1.0V)  
SVID_ALERT_B(Open Drain)  
ERROR (3.3V)  
POWER_ON (3.3V)  
SYNC (3.3V)  
ICM  
Interface  
SUS_STAT_B (3.3V)  
Figure 5. Power Management Diagram for Jarrell Cove PMIC  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
13/75  
Daattaasshheeeett  
BD9596BMWV-M  
1.4 Power Rail Diagram for Jarrell Cove PMIC  
V1P0A (1.0V)  
V1P24A(1.24V)  
V1P8A (1.8V)  
V3P3A (3.3V)  
V1P0S (1.0V)  
V1P05S(1.05V)  
V1P24S(1.24V)  
V1P8S (1.8V)  
Bay Trail  
V3P3S (3.3V)  
VNN (0.5V – 1.2V)  
VCC (0.5V – 1.2V)  
VSDIO (1.8Vor 3.3V)  
VSFR (1.35V)  
Jarrell Cove  
PMIC  
VDDQ (1.21.6V)  
VTT (VDDQ/2 V)  
DDR3  
VRTC (3.3V)  
Figure 6. Power Rail Diagram for Jarrell Cove PMIC  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
14/75  
Daattaasshheeeett  
BD9596BMWV-M  
2. Application  
2.1 Power-up Sequence  
(Note)  
It is not allowed to move a rail to other rail group and select a signal of other rail group for the trigger.  
Figure 7. Power-up Sequence  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Table 5: Power-up Sequence Wait Time  
No.  
Register Name  
PON_WAIT_SRTCRST  
PON_WAIT_RTEST  
PON_WAIT_V1P8A  
PON_WAIT_V1P0A  
PON_WAIT_V1P24A  
PON_WAIT_V3P3A  
PON_WAIT_RSMRST  
PON_WAIT_VDDQ  
PON_WAIT_DRAMPWROK  
PON_WAIT_VNN  
Description  
Default Setting  
Specific  
Specific  
Short  
Min  
9
Typ  
Max  
11  
11  
16  
16  
16  
16  
16  
16  
16  
16  
5
Units  
ms  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ms  
1
VRTC stable to SRTCRST_B high  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
VRTC stable to RTEST_B high  
9
3
POWER_ON asserted to first A rail turn-on delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
A rails valid to RSMRST_B de-assertion  
SLP_S4_B de-assertion to VDDQ turn-on delay  
VDDQ valid to DRAMPWROK assertion  
SLP_S3_B de-assertion to first S rail turn-on delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
Voltage rail to subsequent rail delay  
S rails valid to COREPWROK assertion  
10  
10  
10  
10  
10  
10  
10  
10  
0
4
Short  
5
Short  
6
Short  
7
Short  
8
Short  
9
Short  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Short  
PON_WAIT_VCC  
Immediately  
Immediately  
Short  
PON_WAIT_V1P0S  
PON_WAIT_V1P05S  
PON_WAIT_VSFR  
0
5
10  
10  
10  
10  
10  
10  
100  
16  
16  
16  
16  
16  
16  
140  
Short  
PON_WAIT_V1P8S  
PON_WAIT_V1P24S  
PON_WAIT_V3P3S  
PON_WAIT_VTT  
Short  
Short  
Short  
Short  
PON_WAIT_COREPWROK  
Specific  
(Note) Values in the logic block are guaranteed by design  
(Note) Values exclude the delay time from “enable-on” to “turn-on”  
[No.3,8,10]  
[No.4 to 6,11 to 18]  
assertion  
Control Signal  
(Note1)  
Power-rail  
Enable of  
WAIT  
WAIT  
Enable of power-rail  
Power-rail  
enable on  
turn-on  
Subsequent power-rail  
enable on  
turn-on  
Subsequent power-rail  
[No.7,9,19]  
Power-rail  
(Note 1) Power-Good Level  
100% : VCC,VNN  
90% : VDDQ  
(Note1)  
WAIT  
80% : V1P0A,V1P8A,V1P0S,V1P05S,VTT  
70% : V1P24A,V3P3A,V1P8S,V1P24S,V3P3S,VSFR  
Control Signal  
assertion  
[No.1,2]  
VRTC  
Reset of Logic  
Control Signal  
WAIT  
assertion  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
2.2 Power-down Sequence  
(Note)  
It is not allowed to move a rail to other rail groups and select a signal of other rail groups as the trigger.  
Figure 8. Power Down Sequence  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Table 6: Power-down Sequence Wait Time  
No.  
Register Name  
POFF_WAIT_COREPWROK  
POFF_WAIT_VTT  
Description  
Default Setting  
Short  
Short  
Long  
Min  
10  
Typ  
Max  
16  
16  
1
Units  
µs  
1
SLP_S3_B assertion to COREPWROK de-assertion  
COREPWROK de-assertion to first S rail starts to turn-off  
Voltage rail to subsequent rail delay  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
10  
µs  
3
POFF_WAIT_V3P3S  
POFF_WAIT_V1P24S  
POFF_WAIT_V1P8S  
POFF_WAIT_VSFR  
POFF_WAIT_V1P05S  
POFF_WAIT_V1P0S  
POFF_WAIT_VCC  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
µs  
4
Voltage rail to subsequent rail delay  
Long  
1
5
Voltage rail to subsequent rail delay  
Long  
1
6
Voltage rail to subsequent rail delay  
Long  
1
7
Voltage rail to subsequent rail delay  
Long  
1
8
Voltage rail to subsequent rail delay  
Long  
1
9
Voltage rail to subsequent rail delay  
Long  
1
10  
11  
12  
13  
14  
15  
16  
17  
POFF_WAIT_VNN  
Voltage rail to subsequent rail delay  
Long  
1
POFF_WAIT_DRAMPWROK  
POFF_WAIT_VDDQ  
POFF_WAIT_RSMRST  
POFF_WAIT_V3P3A  
POFF_WAIT_V1P24A  
POFF_WAIT_V1P0A  
POFF_WAIT_V1P8A  
SLP_S4_B assertion to DRAMPWROK de-assertion  
DRAMPWROK de-assertion to VDDQ starts to turn-off  
VDDQ down to RSMRST_B assertion  
RSMRST_B de-assertion to first A rail starts to turn-off  
Voltage rail to subsequent rail delay  
Short  
Short  
Short  
Short  
Long  
16  
16  
16  
16  
1
10  
µs  
10  
µs  
10  
µs  
0.5  
0.5  
0.5  
ms  
ms  
ms  
Voltage rail to subsequent rail delay  
Long  
1
Voltage rail to subsequent rail delay  
Long  
1
(Note) Values in the logic block are guaranteed by design  
(Note) Values exclude the delay time from “enable-off” to “turn-off”  
[No.2,12,14]  
[No.3 to 10,15 to 17]  
assertion  
Control Signal  
(Note1)  
WAIT  
Power-rail  
Enable of  
WAIT  
Enable of power-rail  
Power-rail  
enable off  
turn-off  
Subsequent power-rail  
enable off  
turn-off  
Subsequent power-rail  
[No.13]  
(Note 1) Shut-down Level  
(Note1)  
WAIT  
0.2V : VCC,VNN,VDDQ  
0.5V : other power rails  
Power-rail  
Control Signal  
assertion  
[No.1,11]  
assertion  
Control Signal  
Control Signal  
WAIT  
assertion  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
2.3 Logic Block Diagram  
LOGIC BLOCK  
SVID  
I/F  
VID_VCC  
VID_VNN  
VCC DAC  
VNN DAC  
Register  
SVID  
VID  
Control  
Register  
PON_**  
POFF_**  
PON_WAIT**  
POFF_WAIT**  
PON_TGL  
POFF_TGL  
from ANALOG block  
(PGD,SHDN,SCP)  
PGD/SHDN  
Select  
Power Rails  
Enable Signals  
Retiming  
Sequencing  
State Machine  
Control Signals  
from VLV2 or ICM interface  
OSC Clock  
Clock  
Control  
Error Output  
Error  
Gen.  
Figure 9. Logic Block Diagram  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
2.4 Input Capacitor Selection  
The input capacitor reduces the input voltage ripple caused by the switching current on VDD1, VDD2 and VDD3. Place the input  
capacitor as close as possible to the VDD1, VDD2 and VDD3 pin. A 22uF or 47uF ceramic capacitor is recommended. To prevent  
large voltage transients from occurring, a low ESR input capacitor sized for the maximum RMS current should be used. The  
maximum RMS current is given by the following formula.  
VOUT  
VIN  
VIN  
IRMS IOUT (MAX )  
1  
1
   
VOUT  
2.5 Bootstrap Capacitor  
A 0.1uF ceramic capacitor must be connected between the BOOT and SW pins to provide the gate drive voltage for the high-side  
MOSFET. The capacitor should have 10V or higher voltage rating.  
2.6 Inductor Current Sensing  
VIN  
The inductor current is sensed by current sense amplifier through resistor R.  
Current sense amplifier monitors difference voltage (=R*IL) and controls DCDC  
system. R should be above 5m.  
L
R
VOUT  
When the inductor current is sensed by inductor DC resistance (=RL), use the r, C  
and rb.  
IL  
Co  
The resistor r calculated from following formula. Vs to be about 12mV, set the  
value of resistor r.  
VIN VOUT  
C r 1MHz VIN  
VOUT  
Vs   
Current Sense Amplifier  
VIN  
Current Limit is determined by the value of rb and Temp_comp Voltage.  
Over Current Protection (OCP) operate when Vs larger than Vocp. Vocp and Vs  
are calculated from following formula.  
IL  
Vocp 0.091VTEMP _ COMP  
L
r
RL  
Vs  
2
rb  
VOUT  
Vs   
RL IOUT   
r rb  
OCP temp coefficiency which is caused by DCR of inductor can be compensated  
by changing TEMP_COMP voltage with the external temperature. Thermistor can  
be used to it.  
Co  
C
rb  
Vs  
Current Sense Amplifier  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/75  
TSZ2211115001  
7.Jan.2015 Rev.001  
Daattaasshheeeett  
BD9596BMWV-M  
2.7 SYNC function  
The SYNC pin is used to synchronize the DC/DC switching frequency with external clock. SYNC input frequency range is from  
1.8MHz to 2.2MHz, and SYNC input pulse duty range is from 45% to 55%. SYNC input clock is divided to half frequency  
internally for DC/DC switching clock. Thus DC/DC switching frequency will be 0.9MHz to 1.1MHz. The clock input can be applied  
at anytime. This pin can be remained open if synchronization is not need. (Default frequency is 1MHz.)  
SW_V1P0A  
(2V/div)  
SW_V1P0A  
(2V/div)  
Frequency: 1MHz  
No SYNC signal  
Frequency: 1MHz  
SYNC: 2MHz  
SYNC  
(2V/div)  
SYNC  
(2V/div)  
SW_V1P0A  
(2V/div)  
SW_V1P0A  
(2V/div)  
Frequency: 0.9MHz  
SYNC: 1.8MHz  
Frequency: 1.1MHz  
SYNC: 2.2MHz  
SYNC  
(2V/div)  
SYNC  
(2V/div)  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
3. Electrical Characteristics  
3.1 Absolute Maximum Ratings (Ta=25ºC)  
Table 7: Absolute Maximum Ratings  
Parameter  
Symbol  
V5IN_D, V5IN_A  
1.8VIN  
Rating  
7 (Note 1)  
4.5 (Note 1)  
4.5 (Note 1)  
7 (Note 1)  
4.5  
Unit  
V
Input Voltage1  
Input Voltage2  
Input Voltage3  
Input Voltage4  
Input Voltage5  
V
VDDQIN  
V
VDD1, VDD2, VDD3  
V3P3DIN  
V
V
BOOT_V1P0S-SW_V1P0S,  
BOOT_VNN-SW_VNN,  
BOOT_VCC-SW_VCC,  
BOOT_VDDQ-SW_ VDDQ  
SW_V1P0A,  
BOOT to SW Voltage  
7 (Note 1)  
V
V
SW_V1P0S,  
SW_V1P8A,  
SW_VNN,  
SW to GND Voltage  
7 (Note 1)  
SW_VCC,  
SW_VDDQ  
SLP_S3_B, SLP_S4_B, SUSPWRDNACK,  
SDMMC3_PWREN_B, SDMMC3_1P8_EN,  
SVID_CLK, SVID_DATA, POWER_ON, SYNC,  
DATA  
RSMRST_B, DRAMPWROK, COREPWROK,  
RTEST_B, PWRBTN_B, SUS_STAT_B,  
SVID_ALERT_B, CLK, DATA, SRTC_RSR_B,  
ERROR, SPARE OUTPUT, SVID_DATA  
RSMRST_B, DRAMPWROK, COREPWROK,  
RTEST_B, PWRBTN_B, SUS_STAT_B, CLK,  
DATA, SRTC_RSR_B, ERROR, SPARE  
OUTPUT  
Logic Input Voltage  
4.5  
4.5  
-3  
V
V
Logic Output Voltage  
Logic Output Pin Current Low1  
mA  
Logic Output Pin Current Low2  
Logic Output Pin Current High  
Power Dissipation  
SVID_ALERT_B, SVID_DATA  
-20  
3
mA  
mA  
W
SUS_STAT_B, SRTC_RSR_B, ERROR  
Pd  
9.5(Note 2)  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
-40 to +95  
°C  
-55 to +150  
°C  
(Note 3)  
Junction Temperature Range  
Tjmax  
+150  
°C  
(Note 1) Do not exceed Pd.  
(Note 2) A measure value at mounting on 8 layers board of 95mm*95mm*1.6mm.  
(Surface: product pattern + 7 layers: all copper foil area)  
In the case of exceeding Ta=25°C, 75.7 W should be reduced per 1 °C.  
(Note 3) Operation is not guaranteed.  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
3.2 Recommended Operating Conditions (Ta=25ºC)  
Table 8: Recommended Operating Conditions  
Parameter  
Symbol  
V5IN_D, V5IN_A  
1.8VIN  
MIN  
TYP  
5.0  
MAX  
Unit  
Power Supply Voltage1  
Power Supply Voltage2  
Power Supply Voltage3  
Power Supply Voltage4  
Power Supply Voltage5  
3.5  
5.5  
V
V
V
V
V
-
-
V1P8A  
VDDQ  
5.0  
-
-
VDDQIN  
VDD1, VDD2, VDD3  
V3P3DIN  
3.5  
-
5.5  
-
VRTC  
BOOT_V1P0S-SW_V1P0S,  
BOOT_VNN-SW_VNN,  
BOOT_VCC-SW_VCC,  
BOOT_VDDQ-SW_ VDDQ  
BOOT to SW Voltage  
3.5  
-
5.5  
V
Logic Input Voltage Low1  
(3.3V Input)  
Logic Input Voltage High1  
(3.3V Input)  
Logic Input Voltage Low2  
(1.8V Input)  
Logic Input Voltage High2  
(1.8V Input)  
Logic Input Voltage Low3  
(1.8V Input)  
Logic Input Voltage High3  
(1.8V Input)  
Logic Input Voltage Low4  
(1.0V Input)  
Logic Input Voltage High4  
(1.0V Input)  
POWER_ON, SYNC, DATA  
POWER_ON, SYNC, DATA  
-0.3  
VRTC-0.7  
-0.3  
-
-
-
-
-
-
-
-
0.7  
V
V
V
V
V
V
V
V
VRTC+0.3  
V1P8A*1/3  
V1P8A+0.3  
V1P8S*1/3  
V1P8S+0.3  
0.45  
SLP_S3_B, SLP_S4_B,  
SUSPWRDNACK  
SLP_S3_B, SLP_S4_B,  
SUSPWRDNACK  
SDMMC3_PWREN_B,  
SDMMC3_1P8_EN  
SDMMC3_PWREN_B,  
SDMMC3_1P8_EN  
V1P8A*2/3  
-0.3  
V1P8S*2/3  
-0.3  
SVID_CLK, SVID_DATA  
SVID_CLK, SVID_DATA  
0.65  
1.0  
TEMP_COMP Voltage  
TEMP_COMP  
SYNC  
0.28  
1.8  
45  
-
2
1.0  
2.2  
55  
V
MHz  
%
SYNC Input Frequency Range  
SYNC Input Pulse Duty Range  
SYNC  
50  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
23/75  
Daattaasshheeeett  
BD9596BMWV-M  
3.3 DC Characteristics  
Table 9: DC Characteristics  
(Unless otherwise noted, Ta=25°C, V5IN_D=V5IN_A=5V, POWER_ON=3.3V)  
Standard value  
Parameter  
Symbol  
Unit  
Conditions  
MIN  
TYP  
MAX  
[Total Block]  
S4/S5 state, non-switching  
FB1=1.15V, FB2=1.9V,  
IS-3=1.2V, IS-5=1V, FB4=3.4V  
S3 state, non-switching  
FB1=1.15V, FB2=1.9V,  
IS-3=1.2V, IS-5=1V, FB4=3.4V  
S0 state, non-switching  
FB1=1.15V, FB2=1.9V,  
IS-3=1.2V, IS-5=1V, FB4=3.4V  
Bias Current1  
Bias Current2  
Bias Current3  
ICC_V5IN_A_1  
ICC_V5IN_A_2  
ICC_V5IN_A_3  
-
-
-
6.5  
9.0  
9.5  
mA  
mA  
mA  
12.6  
30.5  
22.0  
[Under Voltage Lock-Out Block]  
V5IN_A Threshold Voltage  
V5IN_A Hysterics Voltage  
V5IN_A_UVLO  
dV5IN_A_UVLO  
3.1  
50  
3.3  
100  
3.5  
150  
V
mV  
V5IN_A: Sweep up  
V5IN_A: Sweep down  
(S4/S5 State)  
[VRTC Block]  
Output Voltage  
On Resistance  
Over Current Protection  
SCP Detecting Voltage  
VRTC  
Ronvrtc  
OCP_vrtc  
SCP_vrtc  
3.168  
-
140  
3.300  
-
-
3.432  
1.4  
-
V
mA  
V
Io=0mA  
Ids=50mA  
VRTCx0.55 VRTCx0.7 VRTCx0.85  
[Reference Clock Block]  
Reference Clock Frequency  
FRTC  
31.130  
32.768  
34.406  
KHz  
[V3P3A Block]  
Output Voltage  
On Resistance  
Over Current Protection  
SCP Detecting Voltage  
V3P3A  
3.234  
-
140  
3.300  
-
-
3.366  
1.4  
-
V
mA  
V
Io=0mA  
Ids=50mA  
Ronv3p3a  
OCP_v3p3a  
SCP_v3p3a  
V3P3Ax0.55 V3P3Ax0.7 V3P3Ax0.85  
[V1P24A Block]  
Output Voltage  
On Resistance  
Over Current Protection  
SCP Detecting Voltage  
V1P24A  
1.215  
-
60  
1.240  
-
-
1.265  
10  
-
V
mA  
V
Io=0mA  
Ids=50mA  
Ronv1p24a  
OCP_v1p24a  
SCP_v1p24a  
V1P24Ax0.55 V1P24Ax0.7 V1P24Ax0.85  
[V1P0A Block]  
Output Voltage  
V1P0A  
Foscv1p0a  
Fsync  
Tss_v1p0a  
Ronh_ v1p0a  
Rohnl_v1p0a  
OCP_v1p0a  
SCP_v1p0a  
OVP_v1p0a  
0.980  
900  
-
-
-
-
1.000  
1000  
1.0  
1
120  
120  
-
1.020  
1100  
V
KHz  
MHz  
ms  
mΩ  
mΩ  
mA  
V
Io=0mA  
Switching Frequency  
Synchronization Frequency  
Soft Start Time  
Upper Side On Resistance  
Lower Side On Resistance  
Over Current Protection  
SCP Detecting Voltage  
OVP Detecting Voltage  
-
-
-
-
-
SYNC=2MHz  
900  
V1P0Ax0.55 V1P0Ax0.7 V1P0Ax0.85  
V1P0Ax1.1 V1P0Ax1.2 V1P0Ax1.3  
V
[V1P8A Block]  
Output Voltage  
V1P8A  
Foscv1p8a  
Fsync  
Tss_v1p8a  
Ronh_ v1p8a  
Rohl_v1p8a  
OCP_v1p8a  
SCP_v1p8a  
OVP_v1p8a  
1.764  
900  
-
-
-
-
1.800  
1000  
1.0  
1
120  
120  
-
1.836  
1100  
V
KHz  
MHz  
ms  
mΩ  
mΩ  
mA  
V
Io=0mA  
Switching Frequency  
Synchronization Frequency  
Soft-Start Time  
Upper-Side On Resistance  
Lower-Side On Resistance  
Over-Current Protection  
SCP Detecting Voltage  
OVP Detecting Voltage  
-
-
-
-
-
SYNC=2MHz  
2800  
V1P8Ax0.55 V1P8Ax0.7 V1P8Ax0.85  
V1P8Ax1.1 V1P8Ax1.2 V1P8Ax1.3  
V
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
(S3 state)  
[VDDQ Block for DDR]  
Reference Voltage  
Switching Frequency  
Synchronization Frequency  
Soft-Start Time  
HG High-Side ON Resistance  
HG Low-Side ON Resistance  
LG High-Side ON Resistance  
LG Low-Side ON Resistance  
Over-Current Setting Voltage  
SCP Detecting Voltage  
OVP Detecting Voltage  
VREF_DDR  
Fosc_DDR  
Fsync  
0.784  
900  
-
-
-
-
-
-
45  
0.8  
1000  
1.0  
1
-
-
-
-
50  
0.816  
1100  
-
-
7
5
8
1.5  
55  
V
KHz  
MHz  
ms  
mV  
V
Io=0mA  
SYNC=2MHz  
Tss_DDR  
HGHRON  
HGLRON  
LGHRON  
LGLRON  
OCP_DDR  
SCP_DDR  
OVP_DDR  
(Note 1)  
(Note 1)  
(Note 2)  
(Note 2)  
TEMP_COMP=0.55V  
VDDQx0.55 VDDQx0.7 VDDQx0.85  
VDDQx1.1  
VDDQx1.2  
VDDQx1.3  
V
(S0 state)  
[VCC Block]  
Output Setting Voltage Range  
Output Voltage Accuracy  
Switching Frequency  
Synchronization Frequency  
Soft-Start Time  
HG High-Side ON Resistance  
HG Low-Side ON Resistance  
LG High-Side ON Resistance  
LG Low-Side ON Resistance  
Over-Current Setting Voltage  
SCP Detecting Voltage  
OVP Detecting Voltage  
VCC  
dVCC  
Foscvcc  
Fsync  
Tss_vcc  
HGHRON  
HGLRON  
LGHRON  
LGLRON  
OCP_vcc  
SCP_vcc  
OVP_vcc  
0.5  
SVIDx0.97  
-
1.2  
SVIDx1.03  
V
V
KHz  
MHz  
ms  
mV  
V
SVID  
1000  
1.0  
1
-
-
-
-
50  
Io=0mA  
900  
-
-
-
-
-
-
45  
1100  
-
-
7
5
8
1.5  
SYNC=2MHz  
(Note 1)  
(Note 1)  
(Note 2)  
(Note 2)  
55  
TEMP_COMP=0.55V  
SVIDx0.55  
1.40  
SVIDx0.7  
1.56  
SVIDx0.85  
1.72  
V
[VNN Block]  
Output Setting Voltage Range  
Output Voltage Accuracy  
Switching Frequency  
Synchronization Frequency  
Soft-Start Time  
HG High-Side ON Resistance  
HG Low-Side ON Resistance  
LG High-Side ON Resistance  
LG Low-Side ON Resistance  
Over-Current Setting Voltage  
SCP Detecting Voltage  
OVP Detecting Voltage  
VNN  
dVNN  
Foscvnn  
Fsync  
Tss_vnn  
HGHRON  
HGLRON  
LGHRON  
LGLRON  
OCP_vnn  
SCP_vnn  
OVP_vnn  
0.5  
SVIDx0.97  
-
1.2  
SVIDx1.03  
V
V
KHz  
MHz  
ms  
mV  
V
SVID  
1000  
1.0  
1
-
-
-
-
50  
Io=0mA  
900  
-
-
-
-
-
-
45  
1100  
-
-
7
5
8
1.5  
SYNC=2MHz  
(Note 1)  
(Note 1)  
(Note 2)  
(Note 2)  
55  
TEMP_COMP=0.55V  
SVIDx0.55  
1.40  
SVIDx0.7  
1.56  
SVIDx0.85  
1.72  
V
[V3P3S Block]  
Output Voltage  
On Resistance  
Over-Current Protection  
SCP Detecting Voltage  
V3P3S  
3.234  
-
600  
3.300  
-
-
3.366  
250  
-
V
mΩ  
mA  
V
Io=0mA  
Ids=50mA  
Ronv3p3s  
OCP_v3p3s  
SCP_v3p3s  
V3P3Sx0.55 V3P3Sx0.7 V3P3Sx0.85  
[V1P8S Block]  
On Resistance  
Over-Current Protection  
Ron_v1p8s  
OCP_v1p8s  
-
-
-
85  
-
mΩ  
mA  
Ids=50mA  
[V1P24S Block]  
Output Voltage  
On Resistance  
Over-Current Protection  
SCP Detecting Voltage  
V1P24S  
1.215  
-
700  
1.240  
-
-
1.265  
700  
-
V
mΩ  
mA  
V
Io=0mA  
Ids=50mA  
Ronv1p24s  
OCP_v1p24s  
SCP_v1p24s  
V1P24Sx0.55 V1P24Sx0.7 V1P24Sx0.85  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
[VTT Block]  
1/2×  
VDDQ-5%  
1/2×  
VDDQ+5%  
500  
500  
VTTx0.85  
Output Voltage  
VTT  
1/2×VDDQ  
V
Io=0mA  
High-Side On Resistance  
Low-Side On Resistance  
SCP Detecting Voltage  
[VSDIO Block]  
Hron_VTT  
Lron_VTT  
SCP_VTT  
-
-
-
-
mΩ  
mΩ  
V
Ids=50mA  
Ids=50mA  
VTTx0.55  
VTTx0.7  
Io=0mA  
SDMMC3_PWR_EN_B=0  
SDMMC3_1P8_EN=1  
Output Voltage 1  
Output Voltage 2  
VSDIO18  
VSDIO33  
1.764  
3.234  
1.800  
3.300  
1.836  
3.366  
V
V
Io=0mA  
SDMMC3_PWR_EN_B=0  
SDMMC3_1P8_EN=0  
Ids=50mA  
On Resistance  
Over-Current Protection  
SCP Detecting Voltage  
Ronvsdio  
OCP_vsdio  
SCP_vsdio  
-
40  
-
-
5
-
mA  
V
VSDIOx0.55 VSDIOx0.7 VSDIOx0.85  
[VSFR Block]  
Output Voltage  
On Resistance  
Over-Current Protection  
SCP Detecting Voltage  
VSFR  
Ronvsfr  
OCP_vsfr  
SCP_vsfr  
1.323  
-
700  
1.350  
-
-
1.377  
700  
-
V
mΩ  
mA  
V
Ids=50mA  
VSFRx0.55 VSFRx0.7 VSFRx0.85  
[V1P0S Block]  
Output Voltage  
Switching Frequency  
Synchronization Frequency  
Soft-Start Time  
HG High-Side ON Resistance  
HG Low-Side ON Resistance  
LG High-Side ON Resistance  
LG Low-Side ON Resistance  
Over-Current Setting Voltage  
SCP Detecting Voltage  
OVP Detecting Voltage  
V1P0S  
Foscv1p0s  
Fsync  
0.980  
900  
-
-
-
-
-
-
45  
1.000  
1000  
1.0  
1
-
-
-
-
50  
1.020  
1100  
-
-
7
5
8
1.5  
55  
V
KHz  
MHz  
ms  
mV  
V
Io=0mA  
SYNC=2MHz  
Tss_v1p0s  
HGHRON  
HGLRON  
LGHRON  
LGLRON  
OCP_v1p0s  
SCP_v1p0s  
OVP_v1p0s  
(Note 1)  
(Note 2)  
(Note 2)  
(Note 2)  
TEMP_COMP=0.55V  
V1P0Ax0.55 V1P0Ax0.7 V1P0Ax0.85  
V1P0Ax1.1 V1P0Ax1.2 V1P0Ax1.3  
V
[V1P05S Block]  
Output Voltage  
V1P05S  
Foscv1p05s  
Fsync  
Tss_v1p05s  
Ronh_ v1p05s  
Ronl_v1p05s  
OCP_v1p05s  
SCP_v1p05s  
OVP_v1p05s  
1.029  
900  
-
-
-
-
1.050  
1000  
1.0  
1
120  
120  
-
1.071  
1100  
V
KHz  
MHz  
ms  
mΩ  
mΩ  
mA  
V
Io=0mA  
Switching Frequency  
Synchronization Frequency  
Soft-Start Time  
Upper-Side On Resistance  
Lower-Side On Resistance  
Over-Current Protection  
SCP Detecting Voltage  
-
-
-
-
-
SYNC=2MHz  
2000  
V1P05S x0.55 V1P05S x0.7 V1P05S x0.85  
V1P05S x1.1 V1P05S x1.2 V1P05S x1.3  
OVP Detecting Voltage  
(Note 1) HG swings from SW to BOOT.  
(Note 2) LG swings from VDD to PGND.  
V
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Table 10: Logic Characteristics  
(Unless otherwise noted, Ta=25°C, V5IN_D=V5IN_A=5V, POWER_ON=3.3V)  
Standard Value  
Parameter  
Symbol  
Unit  
V
Conditions  
MIN  
TYP  
-
MAX  
[Logic Block]  
[Logic Output Voltage High1] (3.3V output)  
SRTC_RST_B  
SUS_STAT_B  
Logic_out_high1 VRTC-0.7  
VRTC+0.3  
Iload=3mA  
RTCCLK  
ERROR  
[Logic Output Voltage Low1] (3.3V output)  
SRTC_RST_B  
SUS_STAT_B  
Logic_out_low1  
-0.3  
-
0.7  
V
Iload=-3mA  
RTCCLK  
ERROR  
[Logic Output Voltage Low2] (open drain output)  
RSMRST_B  
DRAM_PWROK  
COREPWROK  
RTEST_B  
PWRBTN_B  
SPAREOUTPUT  
CLK,DATA  
Logic_out_low2  
-0.3  
-0.3  
-
-
0.5  
0.3  
V
V
Iload=-3mA  
[Logic Output Voltage Low3] (SVID output)  
SVID_ALERT_B  
SVID_DATA  
Logic_out_low3  
Iload=-20mA  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
3.4 Protection Mode (Under Voltage Lock Out)  
All power supplies will be shut down at the same time when the UVLO signal is detected. There is no sequence in this  
shutdown mode and BD9596BMWV-M cannot receive any external signals during this time.  
3.5 Protection Mode (Thermal Shut Down)  
A built-in internal shutdown (TSD) circuit is provided to protect the IC from heat destruction. Operation has to be done within the  
allowable loss range, and continuous use beyond the range will cause chip temperature Tj to increase and reach threshold  
consequently activating the TSD circuit to shut down all power supplies at the same time and latch OFF. There is no sequence  
in this shutdown mode and BD9596BMWV-M cannot receive any external signals during this time. It will reboot, if 5V supply  
or POWER_ON is toggled OFF and ON.  
Hence, make absolutely certain not to use the TSD function in set design.  
3.6 Protection Mode  
Table 11 : Protection Mode (DC/DC)  
Protection Mode  
UVLO Protection  
Short Circuit Protection  
Thermal Protection  
Over Voltage Protection  
HG  
Low  
Low  
Low  
Low  
LG  
Function  
Hysteresys  
Timer latch (1ms)  
Timer latch (10us)  
Timer latch (10us)  
Low  
Low  
Low  
Low  
Table 12 : Protection mode (LDO)  
Protection Mode  
Output  
Low  
Function  
Hysteresys  
UVLO Protection  
Short Circuit Protection  
Thermal Protection  
Low  
Low  
Timer latch (1ms)  
Timer latch (10us)  
Table 13 : Protection mode (SW)  
Protection Mode  
Output  
Low  
Function  
Hysteresys  
UVLO Protection  
Short Circuit Protection  
Thermal Protection  
Low  
Low  
Timer latch (1ms)  
Timer latch (10us)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
28/75  
Daattaasshheeeett  
BD9596BMWV-M  
3.7 DAC Code for VCC and VNN  
BD9596BMWV-M supports 2 SVID voltage regulators – VCC and VNN.  
[Address Index]  
0h : VCC  
1h : VNN  
Table 14: DAC Code Table (VCC / VNN)  
DAC Set point  
Accuracy  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
Voltage  
(Design  
guarantee)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
OFF  
0.5  
NA  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 8mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.6  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.7  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.8  
0.81  
0.82  
0.83  
0.84  
0.85  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
29/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
DAC Set point  
Accuracy  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
Voltage  
(Design  
guarantee)  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0.86  
0.87  
0.88  
0.89  
0.9  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 5mV  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
+- 0.5% VID  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.1  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.2  
*00h is off code that makes SVID bus idle, waiting for next instruction.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
30/75  
Daattaasshheeeett  
BD9596BMWV-M  
3.8 Serial VID Command  
Table 15: Serial VID Command Table  
Master  
Slave  
#
Command  
payload  
contents  
Extended  
command  
index  
payload  
contents  
Description  
00h  
Extended  
This command is not supported. The PMIC will respond with Reject  
acknowledge (11b).  
01h  
02h  
SetVID-fast  
(Individual  
address &  
VID code  
NA  
NA  
Applicable for VCC & VNN. Upon setting new VID target, VR changes to  
reach new VID target with controlled (up or down) slew rate programmed by  
the VR. When VR receives VID moving up command it will exit all low power  
states and proceed to the normal state. VR sets VR_settled bit and issues  
alert when VR has reached new VID target. Note that only one slew rate is  
supported (SR-fast=SR-slow). (see registers 24h, 25h)  
Applicable for VCC & VNN. Upon setting new VID target, VR changes to  
reach new VID target with controlled (up or down) slew rate programmed by  
the VR. When VR receives VID moving up command it will exit all low power  
states and proceed to the normal state. VR sets VR_settled bit and issues  
alert when VR has reached new VID target. Note that only one slew rate is  
supported (SR-fast=SR-slow). (see registers 24h, 25h)  
Applicable for VCC & VNN. Upon setting the VID target, VR changes to reach  
new VID target with controlled slew rate (mV/us).  
The SetVID_decay is only used in VID down direction.  
VR sets VR_settled bit but Alert line is not asserted for SetVID-decay.  
This command is not supported. Executing this command has no effect to  
the function of the PMIC. However PMIC responds with ACK=10b for  
SetPS(00h..03h). SetPS(04h..FFh) should be rejected with ACK=11b as  
these states are not supported or defined.  
all call address)  
SetVID-slow  
(Individual  
address &  
VID code  
VID code  
all call address)  
03h  
04h  
SetVID-decay  
(Individual  
address &  
all call address)  
SetPS  
NA  
NA  
Byte  
indicating  
power status  
of voltage  
rail  
05h  
06h  
07h  
SetRegADR  
(Individual  
address only.  
NAK all call  
address)  
SetRegDAT  
(Individual  
address only.  
NAK all call  
address)  
Address of  
the index  
in the data  
table  
NA  
NA  
Sets the address pointer in the data register table. Typically the next  
command SetRegDAT is the payload that gets loaded into this address.  
However for multiple writes to the same address, only one SetRegADR is  
needed.  
New data  
register  
contents  
Writes the contents to the data register that was previously identified by the  
address pointer with SetRegADR.  
GetReg  
Define  
which  
register  
Specified  
register  
contents  
Slave returns the contents of the specified register as the payload; see 3.9  
Register Code for list of registers. The majority of the VR monitoring data is  
accessed through the GetReg command.  
(Individual  
address only.  
NAK all call  
address)  
For the details of command transaction structure, please refer to VR12/ IMVP7 SVID Protocol (Document number: 456098).  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
31/75  
TSZ2211115001  
7.Jan.2015 Rev.001  
Daattaasshheeeett  
BD9596BMWV-M  
3.9 Register Code  
Table 16: Register Code Table  
Access  
(SOC)  
#
Register  
Description  
Default  
00h  
Vendor ID  
Required:  
RO  
Vendor  
Note 1  
1Fh  
Uniquely identifies the VR vendor. The  
vendor ID is assigned by Intel. This register  
is mandatory and the VR must return the  
assigned vendor ID.  
01h  
02h  
Product ID  
Required:  
RO  
Vendor  
Note 1  
20h  
Uniquely identifies the VR product. The VR  
vendor assigns this number.  
Required:  
Uniquely identifies the revision or stepping  
of the VR control IC. The vendor assigns  
this data.  
Product Revision  
RO  
Vendor  
Note 1  
06h  
03h  
04h  
05h  
06h  
Product date  
Code  
Optional:  
RO  
Note 1,3  
Note 1,3  
Note 1  
This function is not supported. The PMIC Vendor  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Required:  
PMIC response is ACK=10b. Content of Vendor  
payload is 01h.  
Lot Code  
RO  
Protocol ID  
Capability  
RO  
Required:  
RO  
00h  
Bit mapped register, identifies the SVID VR Vendor  
capabilities and which of the optional  
telemetry registers are supported. PMIC  
responds with ACK=10b, content of  
payload is 00h indicating none of the  
functions listed below are supported.  
Bit0= Iout ADC (15h)  
Note 2  
bit1= Vout ADC (16h)  
bit2= Pout ADC (18h)  
bit3= I input ADC (19h)  
Bit4= V input ADC (1Ah)  
bit5= P input ADC (1Bh)  
bit6= Temperature ADC (17h)  
bit7= 0 if (15h) is formatted 1A per LSB,  
Legacy for Servers Only bit7= 1 if (15h) is  
formatted FFh=Icc_max for Client and  
optional for server ADC formatting.  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
Optional:  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
32/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
10h  
Status_1  
Required:  
R-M  
00h  
Data register read after the alert# signal is W-PWM  
asserted. Conveying the status of the VR.  
See 6.2.1 in the IMVP7 SVID protocol.  
In Jarrell Cove, bit2 alerts SCP(OVP) and  
bit1 alerts TSD.  
Note 2  
11h  
12h  
Status_2  
Required:  
R-M  
00h  
Note 2  
Data Register showing status_2 data. W-PWM  
Conveying the status of the SVID bus.  
See 6.2.1 in the IMVP7 SVID protocol.  
Required, but not supported:  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is 00h.  
Temperature Zone  
RO  
00h  
Note 2  
13h  
14h  
15h  
Current Zones  
reserved  
Optional:  
RO  
RO  
RO  
Note 3  
Note 3  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Required but not supported:  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is 00h.  
Output Current  
00h  
Note 2  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
Output Voltage  
Optional:  
RO  
RO  
RO  
RO  
RO  
RO  
R-M  
Note 2,3  
Note 2,3  
Note 2,3  
Note 2,3  
Note 2,3  
Note 2,3  
Note 2  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Required:  
VR  
Temperature  
Output Power  
(Pout)  
Input current  
Input Voltage  
Input Power  
Status2_last read  
This register contains a copy of the status2 W-PWM  
data that was last read with the GetReg  
(status2) command. In the case of  
a
communications error or parity error, when  
the VR is sending the payload back to the  
master, the master can read the  
Status2_lastread register so the alert data  
is not lost.  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
V1P0A/VDDQ Output  
Current, Imon (H)  
Required but not supported:  
RO  
RO  
RO  
RO  
RO  
RO  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is 00h.  
V1P0A/VDDQ Output  
Current, Imon (L)  
Required but not supported:  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is 00h.  
V1P05S Output Current, Required but not supported:  
Imon (H) This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is 00h.  
V1P05S Output Current, Required but not supported:  
Imon (L)  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is 00h.  
ICC_MAX  
Required but not supported:  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is 00h.  
Temp max  
Required but not supported:  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is 00h.  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
33/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
23h  
24h  
DC_LL  
SR-fast  
Optional:  
RO  
RO  
Note 2,3  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Required:  
The PMIC supports only one slew rate.  
Fast slew rate is equal to slow slew rate.  
The PMIC responds with ACK=10b.  
Content of payload is 0Ah.  
0Ah = 10 mV/us  
Note 2  
25h  
26h  
SR-slow  
Vboot  
Required:  
RO  
RO  
0Ah = 10 mV/us  
Note 2  
The PMIC supports only one slew rate.  
Fast slew rate is equal to slow slew rate.  
The PMIC responds with ACK=10b.  
Content of payload is 0Ah.  
Required:  
Note 2  
Vboot=1.00V fix for VNN and VCC. No Pin  
programming is needed. PMIC responds  
with ACK=10b.Content of payload is 97h.  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Required but not supported:  
27h  
28h  
29h  
2Ah  
VR tolerance  
RO  
RO  
RO  
RO  
Note 3  
Note 3  
Note 3  
Note 2  
Current-offset  
Temperature offset  
VCC/VNN Imon  
Accuracy  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is FFh.  
2Bh  
2Ch  
V1P0A/VDDQ Imon  
Accuracy  
Required but not supported:  
RO  
RO  
Note 2  
Note 2  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is FFh.  
V1P05S Imon Accuracy  
Required but not supported:  
This function is not supported. The PMIC  
responds with ACK=10b. Content of  
payload is FFh.  
2Dh  
2Eh  
2Fh  
30h  
reserved  
reserved  
reserved  
Vout max  
Optional:  
RO  
RO  
RO  
Note 3  
Note 3  
Note 3  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Required:  
RW  
D3h  
This register is programmable by the  
master and sets the maximum VID the VR  
will be able to support. If a higher VID code  
is received, the VR will respond with  
“Reject, not supported” acknowledgement.  
VR12 VID data format. Must be  
programmed by MASTER during boot up  
sequence if a value other than default is  
desired. Offset (33h) does not affect  
master  
Note 2  
Vout_max IE VID  
>Vout_max  
+
offset can be  
31h  
32h  
VID setting  
Pwr state  
Required:  
RW  
00h  
Note 2  
Data  
register  
containing  
currently Master  
programmed VID voltage.  
VID data format: Default is 00h, zero volts  
out, VR off.  
Required but not supported:  
PMIC responds with ACK=10b. Content of  
payload is 00h.  
RO  
Note 2  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
34/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
33h  
Offset  
Required:  
RW  
00h  
Sets offset in VID steps added to the VID Master  
setting for voltage margining.  
Bit7 is sign bit,  
Note 2  
0=positive margin  
1= negative margin.  
Remaining 7 BITS are the number of VID  
steps for the margin 2s complement.  
00h= no margin.  
01h=+1 VID step,  
02h=+2 VID steps  
FFh=-1 VID step…  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
Multi VR config  
SetRegADR  
Trim code 1 revision  
Trim code 2 revision  
reserved  
Required but not supported:  
PMIC responds with ACK=10b. Content of  
payload is 00h.  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Note 2  
Note 3  
Note 2  
Note 2  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Required but not supported:  
PMIC responds with ACK=10b. Content of  
payload is 00h.  
Required but not supported:  
PMIC responds with ACK=10b. Content of  
payload is 00h.  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Optional:  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
This function is not supported. The PMIC  
responds with Reject acknowledge (11b).  
Notes:  
1.  
2.  
3.  
These registers only appear in 00h voltage rail. (“Reject” for 01h voltage rail.)  
These registers are per address and not shared.  
Optional register response – VR should respond with a  
Reject (11b) ACK if a GetReg command is issued to an optional data register.  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
35/75  
Daattaasshheeeett  
BD9596BMWV-M  
Status1 Register bit[2], bit[1] (10h)  
In Jarrell Cove, the function of the Status1 Register bit[2] and bit[1] are different from the original SVID Protocol. Bit[2] alerts  
SCP/OVP while bit[1] alerts TSD, and the ALERT# line is not asserted.  
Bit[2] of 00h voltage rail (VCC) shows the status of SCP/OVP for VCC.  
Bit[2] of 01h voltage rail (VNN) shows the status of SCP/OVP for VNN.  
Bit[1] of both VCC and VNN show the same status of TSD.  
The status of SCP/OVP for the power rails other than VCC and VNN are not shown in Status1 Register.  
When POWER_ON=0, the timer-latch is reset and the ERROR output is disabled. But the Status1 Register bit[2] and bit[1] are  
latched until they are read by GetReg command.  
POWER_ON  
Occured  
Timer  
Removed  
SCP/OVP/TSD  
Timer-latch  
Detective  
Latch  
Reset  
State-machine  
G3_P  
G3  
power-on-sequence  
S0  
GetReg Status1  
Reset  
Status1 bit2/bit1  
ALERT#  
(de-assertion)  
ERROR  
・・・・  
Figure 10. Status1 Timing Chart  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
36/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
4. Typical Performance Curves  
4.1 Load Regulation  
3.5  
3.4  
3.3  
3.2  
3.1  
3.5  
3.4  
3.3  
3.2  
3.1  
V5IN=5V  
Ta=25 C  
V5IN=5V  
Ta=25 C  
˚
˚
0.0  
20.0 40.0 60.0 80.0 100.0 120.0  
Output Current IVRTC[mA]  
0.0  
20.0  
40.0  
60.0  
80.0  
100.0  
Output Current IV3P3A[mA]  
Figure 11. Output Voltage VRTC vs Output  
Current IVRTC  
Figure 12. Output Voltage V3P3A vs Output  
Current IV3P3A  
1.02  
1.01  
1.00  
0.99  
0.98  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
V5IN=5V  
V5IN=5V  
Ta=25˚C  
Ta=25 C  
˚
0.0  
20.0  
40.0  
60.0  
80.0  
100.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Output Current IV1P24A[mA]  
Output Current IV1P0A[A]  
Figure 13. Output Voltage V1P24A vs Output  
Current IV1P24A  
Figure 14. Output Voltage V1P0A vs Output  
Current IV1P0A  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
37/75  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.38  
1.37  
1.36  
1.35  
1.34  
1.33  
1.32  
V5IN=5V  
Ta=25˚C  
V5IN=5V  
Ta=25˚C  
1.77  
1.76  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
Output Current IV1P8A[A]  
Output Current IVDDQ[A]  
Figure 15. Output Voltage V1P8A vs Output  
Current IV1P8A  
Figure 16. Output Voltage VDDQ vs Output  
Current IVDDQ  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
V5IN=5V  
Ta=25˚C  
V5IN=5V  
Ta=25˚C  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
Output Current IVCC[A]  
Output Current IVNN[A]  
Figure 17. Output Voltage VCC vs Output Current  
IVCC  
Figure 18. Output Voltage VNN vs Output Current  
IVNN  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
38/75  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
3.5  
3.4  
3.3  
3.2  
1.90  
1.85  
1.80  
1.75  
1.70  
V5IN=5V  
V5IN=5V  
Ta=25 C  
Ta=25 C  
˚
˚
3.1  
0.0  
100.0 200.0 300.0 400.0 500.0  
Output Current IV3P3S[mA]  
0.0  
200.0  
400.0  
600.0  
800.0  
Output Current IV1P8S[mA]  
Figure 19. Output Voltage V3P3S vs Output  
Current IV3P3S  
Figure 20. Output Voltage V1P8S vs Output  
Current IV1P8S  
0.71  
0.70  
0.69  
0.68  
0.67  
0.66  
0.65  
0.64  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
V5IN=5V  
V5IN=5V  
Ta=25˚C  
Ta=25 C  
˚
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
-600.0  
-300.0  
0.0  
300.0  
600.0  
Output Current IV1P24S[mA]  
Output Current IVTT[mA]  
Figure 21. Output Voltage V1P24S vs Output  
Current IV1P24S  
Figure 22. Output Voltage VTT vs Output Current  
IVTT  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
39/75  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
3.5  
3.4  
3.3  
3.2  
1.90  
1.85  
1.80  
1.75  
1.70  
V5IN=5V  
V5IN=5V  
Ta=25 C  
Ta=25 C  
˚
˚
3.1  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
Output Current IVSDIO[mA]  
Output Current IVSDIO[mA]  
Figure 24. Output Voltage VSDIO vs Output  
Current IVSDIO  
Figure 23. Output Voltage VSDIO vs Output  
Current IVSDIO  
(SDMMC3_1P8_EN = 3.3V)  
(SDMMC3_1P8_EN = 0V)  
1.020  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
V5IN=5V  
V5IN=5V  
Ta=25˚C  
Ta=25 C  
˚
0.0  
100.0 200.0 300.0 400.0 500.0  
Output Current IVSFR[mA]  
0.0  
1.0  
2.0  
3.0  
4.0  
Output Current IV1P0S[A]  
Figure 25. Output Voltage VSFR vs Output  
Current IVSFR  
Figure 26. Output Voltage V1P0S vs Output  
Current IV1P0S  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
40/75  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
1.07  
1.06  
1.05  
1.04  
V5IN=5V  
Ta=25˚C  
1.03  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Current IV1P05S[A]  
Figure 27. Output Voltage V1P05S vs Output  
Current IV1P05S  
4.2 Temperature Characteristics  
3.5  
3.5  
3.4  
3.3  
3.2  
3.1  
3.4  
3.3  
3.2  
3.1  
V5IN=5V  
IOUT=0A  
V5IN=5V  
IOUT=0A  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [ C]  
Temperature [ C]  
˚
˚
Figure 28. Output Voltage VSFR vs Temperature  
Figure 29. Output Voltage V3P3A vs Temperature  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
41/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
1.30  
1.28  
1.26  
1.24  
1.22  
1.02  
1.01  
1.00  
0.99  
0.98  
V5IN=5V  
IOUT=0A  
V5IN=5V  
IOUT=0A  
1.20  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [˚C]  
Temperature [˚C]  
Figure 30. Output Voltage V1P24A vs  
Temperature  
Figure 31. Output Voltage V1P0A vs Temperature  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
V5IN=5V  
IOUT=0A  
V5IN=5V  
IOUT=0A  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [˚C]  
Temperature [˚C]  
Figure 32. Output Voltage V1P8A vs Temperature  
Figure 33. Output Voltage VDDQ vs Temperature  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
42/75  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
1.03  
1.02  
1.01  
1.00  
0.99  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.98  
0.97  
V5IN=5V  
IOUT=0A  
V5IN=5V  
IOUT=0A  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [˚C]  
Temperature [˚C]  
Figure 34. Output Voltage VCC vs Temperature  
Figure 35. Output Voltage VNN vs Temperature  
3.5  
3.4  
3.3  
3.2  
3.1  
1.30  
1.28  
1.26  
1.24  
1.22  
V5IN=5V  
IOUT=0A  
V5IN=5V  
IOUT=0A  
1.20  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [˚C]  
Temperature [˚C]  
Figure 36. Output Voltage V3P3S vs Temperature  
Figure 37. Output Voltage V1P24S vs  
Temperature  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
43/75  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
0.71  
0.70  
0.69  
0.68  
0.67  
0.66  
3.5  
3.4  
3.3  
3.2  
3.1  
V5IN=5V  
IOUT=0A  
V5IN=5V  
IOUT=0A  
0.65  
0.64  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [˚C]  
Temperature [˚C]  
Figure 38. Output Voltage VTT vs Temperature  
Figure 39. Output Voltage VSDIO vs Temperature  
(SDMMC3_1P8_EN = 0V)  
1.87  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
1.73  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
V5IN=5V  
IOUT=0A  
V5IN=5V  
IOUT=0A  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [˚C]  
Temperature [˚C]  
Figure 40. Output Voltage VSDIO vs Temperature  
(SDMMC3_1P8_EN = 3.3V)  
Figure 41. Output Voltage VSFR vs Temperature  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
44/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
V5IN=5V  
IOUT=0A  
V5IN=5V  
IOUT=0A  
0.985  
0.980  
-40 -20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature [˚C]  
Temperature [˚C]  
Figure 42. Output Voltage V1P0S vs Temperature  
Figure 43. Output Voltage V1P05S vs  
Temperature  
4.3 Efficiency  
100%  
80%  
60%  
40%  
20%  
0%  
100%  
80%  
60%  
40%  
S3/S4  
S0  
20%  
V5IN=5V  
V5IN=5V  
Ta=25˚C  
Ta=25 C  
˚
0%  
0.01  
0.10  
1.00  
10.00  
0.01  
0.10  
1.00  
10.00  
Output Current IV1P0A[A]  
Output Current IV1P8A[A]  
Figure 45. Efficiency V1P8A vs Output Current  
IV1P8A  
Figure 44. Efficiency V1P0A vs Output Current  
IV1P0A  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
45/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
100%  
80%  
100%  
80%  
60%  
40%  
20%  
0%  
60%  
S3/S4  
40%  
S0  
20%  
V5IN=5V  
Ta=25 C  
V5IN=5V  
Ta=25˚C  
˚
0%  
0.01  
0.10  
1.00  
10.00  
0.01  
0.10  
1.00  
10.00  
Output Current IVCC[A]  
Output Current IVDDQ[A]  
Figure 47. Efficiency VCC vs Output Current IVCC  
Figure 46. Efficiency VDDQ vs Output Current  
IVDDQ  
100%  
100%  
80%  
60%  
40%  
80%  
60%  
40%  
20%  
0%  
20%  
V5IN=5V  
Ta=25 C  
V5IN=5V  
Ta=25 C  
˚
˚
0%  
0.01  
0.10  
1.00  
10.00  
0.01  
0.10  
1.00  
10.00  
Output Current IVNN[A]  
Output Current IV1P0S[A]  
Figure 48. Efficiency VNN vs Output Current IVNN  
Figure 49. Efficiency V1P0S vs Output Current  
IV1P0S  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
46/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
100%  
80%  
60%  
40%  
20%  
V5IN=5V  
Ta=25 C  
˚
0%  
0.01  
0.10  
1.00  
10.00  
Output Current IV1P05S[A]  
Figure 50. Efficiency V1P05S vs Output Current  
IV1P05S  
4.4 Transient Response  
V1P0A: 20mV/div  
V1P0A: 20mV/div  
I
V1P0A: 0.2A/div  
IV1P0A: 0.2A/div  
Figure 51. Transient Response V1P0A  
Figure 52. Transient Response V1P0A  
(V5INA=5V Ta=25˚C IV1P0A = 160mA to 600mA)  
(V5INA=5V Ta=25˚C IV1P0A = 600mA to 160mA)  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
47/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
V1P8A: 50mV/div  
V1P8A: 50mV/div  
IV1P8A: 1A/div  
IV1P8A: 1A/div  
Figure 53. Transient Response V1P8A  
Figure 54. Transient Response V1P8A  
(V5INA=5V Ta=25˚C IV1P8A = 360mA to 1440mA)  
(V5INA=5V Ta=25˚C IV1P8A = 1440mA to 360mA)  
VDDQ: 50mV/div  
VDDQ: 50mV/div  
IVDDQ: 2A/div  
I
VDDQ: 2A/div  
Figure 55. Transient Response VDDQ  
Figure 56. Transient Response VDDQ  
(V5INA=5V Ta=25˚C IVDDQ = 800mA to 3800mA)  
(V5INA=5V Ta=25˚C IVDDQ = 3800mA to 800mA)  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
48/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
VCC: 50mV/div  
VCC: 50mV/div  
I
VCC: 5A/div  
I
VCC: 5A/div  
Figure 57. Transient Response VCC  
Figure 58. Transient Response VCC  
(V5INA=5V Ta=25˚C IVCC = 2.7A to 11A)  
(V5INA=5V Ta=25˚C IVCC = 11A to 2.7A)  
VNN: 50mV/div  
VNN: 50mV/div  
I
VNN: 5A/div  
I
VNN: 5A/div  
Figure 59. Transient Response VNN  
Figure 60. Transient Response VNN  
(V5INA=5V Ta=25˚C IVNN = 2.7A to 11A)  
(V5INA=5V Ta=25˚C IVNN = 11A to 2.7A)  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
49/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
Typical Performance Curves - Continued  
V1P0S: 20mV/div  
V1P0S: 20mV/div  
IV1P0S: 1A/div  
IV1P0S: 1A/div  
Figure 61. Transient Response V1P0S  
Figure 62. Transient Response V1P0S  
(V5INA=5V Ta=25˚C IV1P0S = 533mA to 2135mA)  
(V5INA=5V Ta=25˚C IV1P0S = 2135mA to 533mA)  
V1P05S: 20mV/div  
V1P05S: 20mV/div  
I1P05S: 0.5A/div  
I1P05S: 0.5A/div  
Figure 63. Transient Response V1P05S  
Figure 64. Transient Response V1P05S  
(V5INA=5V Ta=25˚C IV1P05S = 264mA to 1058mA)  
(V5INA=5V Ta=25˚C IV1P05S = 1058mA to 264mA)  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
50/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
5. Sequence  
5.1 State Machine  
V5IN_A,V5IN_D = 5V  
When the state goes into an irregular state,  
it goes to "SOC G3_P" immediately.  
INI_SET:  
SRTCRST_B = 1  
RTEST_B = 1  
OTHERS  
INI_SET  
SOC G3  
(1)  
(1)  
else  
(2) POWER_ON = 0  
else  
SOC G3_P  
(1)  
(2) POWER_ON = 1  
PLA_RST:  
RSMRST_B = 0  
1st Power A rail OFF  
SUS_STAT_B = 0 @ Cold Off  
other Power A rails OFF  
PLA_SET:  
Power A rails ON  
RSMRST_B = 1  
SUS_STAT_B = 1 @ Cold Boot  
else  
else  
PLA_RST  
PLA_SET  
(1)  
(1)  
SUSPWRDNACK = 1 and SLP_S4_B = 0 and RSMRST_B = 1  
(3)  
else  
SOC S4  
(1)  
(2) SLP_S4_B = 1 and RSMRST_B = 1 and SLP_S3_B = 0  
PLU_RST:  
DRAMPWROK = 0  
Power U rails OFF  
PLU_SET:  
(SUS_STAT_B = 1 @ Exit SOC S4)  
Power U rails ON  
else  
else  
PLU_RST  
(1)  
PLU_SET  
(1)  
(SUS_STAT_B = 0 @ Enter SOC S4)  
DRAMPWROK = 1  
SLP_S4_B = 0 and RSMRST_B = 1 and SLP_S3_B = 0  
(3)  
else  
SOC S3  
(1)  
(2) SLP_S3_B = 1 and RSMRST_B = 1  
PLS_RST:  
COREPWROK = 0  
Power S rails OFF  
PLS_SET:  
(SUS_STAT_B = 1 @ Exit SOC S3)  
Power S rails ON  
else  
else  
PLS_RST  
PLS_SET  
(1)  
(1)  
(SUS_STAT_B = 0 @ Enter SOC S3)  
COREPWROK = 1  
SLP_S3_B = 0 and RSMRST_B = 1  
(2)  
else  
SOC S0  
(1)  
- The arrows (1) in the figure show SCP, OVP or TSD.  
When SCP, OVP or TSD is detected in any state, the state goes to "SOC G3_P" immediately.  
- (1), (2) and (3) in the figure show priority when events occur simultaneously.  
Figure 65. State Machine  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
51/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
5.2 Cold Boot Timing Chart  
Figure 66. Cold Boot Timing Chart  
(*) SRTCRST_B and RTEST_B remain High once they become High at INI_SET state, even when SCP, OVP, or TSD is detected.  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
52/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
5.3 Cold Off Timing Chart  
Figure 67. Cold Off Timing Chart  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
53/75  
Daattaasshheeeett  
BD9596BMWV-M  
5.4 Enter SOC S4 Timing Chart  
Figure 68. Enter SOC S4 Timing Chart  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
54/75  
Daattaasshheeeett  
BD9596BMWV-M  
5.5 Exit SOC S4 Timing Chart  
Figure 69. Exit SOC S4 Timing Chart  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
55/75  
Daattaasshheeeett  
BD9596BMWV-M  
5.6 Enter SOC S3 Timing Chart  
Figure 70. Enter SOC S3 Timing Chart  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
56/75  
Daattaasshheeeett  
BD9596BMWV-M  
5.7 Exit SOC S3 Timing Chart  
Figure 71. Exit SOC S3 Timing Chart  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
57/75  
Daattaasshheeeett  
BD9596BMWV-M  
5.8 I/O Interface Signals  
Table 17: I/O Interface Signals Table  
Pin Name  
Connect to  
Description  
I/O  
Valid while  
Sleep S3 trigger  
0=enter S3; 1=exit S3  
SLP_S3_B  
SOC  
I
RSMRST_B=1  
Sleep S4 trigger  
0=enter S4; 1=exit S4  
RSMRST_B=1  
SLP_S3_B=0  
SLP_S4_B  
SOC  
I
tells the PMIC to turn off the SUS rails  
in junction with assertion of SLP_S4_B  
RSMRST_B=1  
SLP_S4_B=0  
SUSPWRDNACK  
SRTCRST_B  
RSMRST_B  
DRAMPWROK  
COREPWROK  
RTEST_B  
SOC  
I
de-asserted when VRTC is stable,  
allows to detect when VRTC has been switched off  
SOC  
O
VRTC ON  
SOC  
Resume reset, de-asserted after all SUS rails turned on  
asserted after VDDQ turned on  
O (OD)  
-
SOC  
O (OD)  
-
SOC  
asserted after all core rails turned on  
O (OD)  
-
Test and debug,  
de-asserted when VRTC is stable  
SOC  
O (OD)  
-
PWRBTN_B  
POWER_ON  
SUS_STAT_B  
SYNC  
SOC  
level shifted copy of POWER_ON  
O (OD)  
RSMRST_B=1  
Platform  
Platform  
Platform  
SOC  
tells the PMIC to switch on the SUS rails  
I
-
-
-
Suspend status, informs platform that the desired suspend  
state has been reached  
O
DCDC synchronization clock  
I
select 1.8V or 3.3V for SD card  
0=3.3V; 1=1.8V  
RSMRST_B=1  
COREPWROK=1  
SDMMC3_1P8EN  
SDMMC3_PWREN_B  
RTCCLK  
I
SD card power (VSDIO) enable  
0=ON; 1=OFF  
RSMRST_B=1  
COREPWROK=1  
SOC  
I
SOC  
32kHz clock output  
O
-
asserted when the PMIC state machine has reached an error  
state, over current or over temperature condition occurred  
ERROR  
-
O
I
-
SVID_CLK  
SOC  
SVID clock  
SVID data  
SVID alert  
State='S0'  
State='S0'  
-
SVID_DATA  
SVID_ALERT_B  
SOC  
I/O (OD)  
O (OD)  
SOC  
OD=Open-drain  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
58/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
PWRBTN_B  
V1P8A  
VRTC  
POWER_ON  
Re-timing  
PWRBTN_B  
RSMRST_B  
Power A rails ON  
Power A rails OFF  
POWER_ON  
V1P8A  
RSMRST_B  
PWRBTN_B  
PWRBTN_B is copy of POWER_ON.  
(PWRBTN_B is valid while RSMRST_B=1.)  
Figure 72. PWRBTN_B Timing Chart  
ERROR  
Error Detective  
Type  
Error Output  
High  
C1:  
C2:  
C3:  
Error state  
SCP, OVP  
TSD  
Latch  
1ms Timer Latch (SCP)  
10μs Timer Latch (OVP)  
10μs Timer Latch  
Oscillating (0.5sec period)  
Oscillating (12.5sec period)  
* Latch is reset by POR(Power-on-reset) or POWER_ON=0.  
* In any case, the PMIC state machine goes to "SOC G3_P".  
[ERROR Output]  
C1 (Error state)  
Error Detective  
ERROR  
C2 (SCP,OVP), C3 (TSD)  
Error Detective  
Timer Latch  
ERROR  
Figure 73. ERROR Timing Chart  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
59/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
ALERT_B  
Voltage change by SVID  
Setting voltage 4VID  
Setting voltage 4VID  
VNN / VCC  
Voltage change by SVID  
ALERT_B  
ALERT_B is asserted if VCC/VNN output voltage is within ±4VID of setting voltage.  
Figure 74. ALERT_B Timing Chart  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
60/75  
Daattaasshheeeett  
BD9596BMWV-M  
6. I/O Equivalent Circuit  
Table 18: Pin Equivalent Circuit  
REMOTE_P_VNN (PIN1)  
REMOTE_P_VCC(PIN86)  
100kΩ  
1kΩ  
1kΩ  
AGND  
100kΩ  
AGND  
AGND  
AGND  
AGND  
IS_M_VNN (PIN2)  
IS_M_VCC (PIN85)  
IS_P_VNN (PIN3)  
IS_P_VCC (PIN84)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
61/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
LG_VNN (PIN5)  
LG_VDDQ (PIN60)  
V5INA  
LG_V1P0S (PIN70)  
LG_VCC (PIN82)  
1kΩ  
PGND  
10kΩ  
SW_VNN (PIN6)  
SW_VCC (PIN81)  
HG_VNN (PIN7)  
BOOT_VNN  
HG_VDDQ (PIN62)  
HG_V1P0S (PIN68)  
HG_VCC (PIN80)  
BOOT_VCC  
BOOT_V1P0S  
BOOT_VDDQ  
100kΩ  
100kΩ  
SW_VNN  
SW_VCC  
SW_V1P0S  
SW_VDDQ  
PGND  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
62/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
BOOT_VNN (PIN8)  
BOOT_VDDQ (PIN63)  
BOOT_V1P0S (PIN67)  
BOOT_VCC (PIN79)  
SW_V1P8A (PIN10)  
SW_V1P0A (PIN58)  
V1P8S (PIN13,14)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
63/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
VSFR (PIN17)  
V1P8A_IN  
V1P24S (PIN19)  
20k  
48k  
10k  
200k  
1k  
67k (V1P24S)  
58k (VSFR)  
AGND  
AGND  
AGND AGND  
SRTC_RST_B (PIN20)  
SUS_STAT_B (PIN21)  
ERROR (PIN22)  
RTCCLK (PIN33)  
SLP_S4_B (PIN23)  
SLP_S3_B (PIN24)  
SDMMC3_V1P8_EN (PIN25)  
SDMMC3_PWREN_B (PIN26)  
SUSPWRDNACK (PIN32)  
POWER_ON (PIN44)  
10k  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
64/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
SYNC (PIN27)  
VRTC  
10k  
300k  
SPARE (PIN28)  
SVID_CLK (PIN29)  
SVID_DATA (PIN30)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
65/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
SVID_ALERT_B (PIN31)  
PWRBTN_B (PIN45)  
OPEN DRAIN  
CLK (PIN46)  
COREPWROK (PIN48)  
DRAMPWROK (PIN49)  
RSMRST_B (PIN50)  
RTEST_B (PIN51)  
V3P3S (PIN37)  
V3P3A (PIN39)  
VRTC (PIN40)  
V1P24A (PIN41)  
VSDIO (PIN42)  
V5IN_D  
10k  
20k  
1k  
200k  
AGND  
AGND  
10k  
20k (V3P3S, V3P3A, VRTC, VSDIO)  
64k (V1P24A)  
AGND  
AGND  
DATA (PIN47)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
66/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
VTT (PIN53)  
FB_VDDQ (PIN64)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
67/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
IS_M_VDDQ (PIN65)  
IS_M_V1P0S (PIN73)  
IS_P_VDDQ (PIN66)  
IS_P_V1P0S (PIN72)  
1kΩ  
AGND  
AGND  
SW_VDDQ (PIN61)  
SW_V1P0S (PIN69)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
68/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
FB_V1P0S (PIN74)  
FB_V1P05S (PIN75)  
SW_V1P05S (PIN77)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
69/75  
Daattaasshheeeett  
BD9596BMWV-M  
I/O Equivalent Circuit – continued  
REMOTE_M_VCC (PIN87)  
REMOTE_M_VNN (PIN88)  
V5INA  
V5INA  
2.5kΩ  
100kΩ  
1kΩ  
AGND  
AGND AGND  
100kΩ  
AGND  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
70/75  
Daattaasshheeeett  
BD9596BMWV-M  
7. Operational Notes  
(1) Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting  
the power supply, such as mounting an external diode between the power supply and the IC’s power supply terminals.  
(2) Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and  
analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore,  
connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value  
when using electrolytic capacitors.  
(3) Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However, pins that  
drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground due to back EMF or  
electromotive force. In such cases, the user should make sure that such voltages going below ground will not cause the IC and  
the system to malfunction by examining carefully all relevant factors and conditions such as motor characteristics, supply voltage,  
operating frequency and PCB wiring to name a few.  
(4) Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected  
to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large  
currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground  
lines must be as short and thick as possible to reduce line impedance.  
(5) Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in deterioration of  
the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a  
70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and  
copper area to prevent exceeding the Pd rating.  
(6) Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The  
electrical characteristics are guaranteed under the conditions of each parameter.  
(7) Rush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of  
connections.  
(8) Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
71/75  
TSZ2211115001  
7.Jan.2015 Rev.001  
Daattaasshheeeett  
BD9596BMWV-M  
(9) Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to  
stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off  
completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static  
discharge, ground the IC during assembly and use similar precautions during transport and storage.  
(10) Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging  
the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be  
due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge  
deposited in between pins during assembly to name a few.  
(11) Unused Input Terminals  
Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired  
in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of  
the IC. So, unless otherwise specified, unused input terminals should be connected to the power supply or ground line.  
(12) Regarding Input Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor.  
For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference  
among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as  
applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.  
Figure 75. Example of monolithic IC structure  
(13) Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation  
(ASO).  
(14) Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the  
IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which  
will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are  
automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage.  
(15) Over Current Protection Circuit (OCP)  
This IC has a built-in overcurrent protection circuit that activates when the output is accidentally shorted. However, it is strongly  
advised not to subject the IC to prolonged shorting of the output.  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
72/75  
TSZ2211115001  
7.Jan.2015 Rev.001  
Datashheeeett  
BD9596BMWV-M  
8. Power Dissipation  
Use of a heat sink may be necessary depending on the environmental condition.  
UQFN88MV0100  
Measurement machine: TH-156 (Kuwano Denki)  
Measurement condition: mounted on a user’s specified board size  
Board size: 95mm×95mm×1.6mmt  
(With thermal via)  
Board (1): 8 layered board  
(Surface: product pattern + 7 layers: all copper foil area)  
Board (2): 8 layered board  
(Surface: product pattern + 2 layers: all copper foil area  
+ 5 layer: wiring pattern copper foil 70% occupied)  
Board (3): 8 layered board  
(Surface: product pattern + 2 layers: all copper foil area  
+ 5 layer: wiring pattern copper foil 50% occupied)  
(Note) This is a measured value, not guaranteed.  
Figure 76. Power Dissipation  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
73/75  
TSZ22111  
15001  
Daattaasshheeeett  
BD9596BMWV-M  
9. Soldering Condition  
Recommended temperature profile for reflow  
260°C MAX  
Preheating temperature :
130°C to 190°C  
Preheating zone  
Soldering temperature  
Soldering zone  
: 120sec MAX  
255°C  
:
2
2
0
°C t  
o
2
4
0°C  
Soldering temperature  
: 75sec MAX  
1 to 4°C/sec  
(Notice)  
Preheating  
Maximum 2-times soldering  
temperature  
Time  
10secMAX  
Preheating  
zone  
Soldering zone  
The wave soldering method is not supported.  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
74/75  
TSZ2211115001  
Daattaasshheeeett  
BD9596BMWV-M  
10. History  
Table 19: Revision History  
Rev.  
Date  
Notes  
Rev.001  
2015/01/07  
First release  
www.rohm.com  
TSZ02201-0A2A0AP00090-1-2  
7.Jan.2015 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
75/75  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD95F

isc Silicon NPN Power Transistor
ISC

BD9610AMUV

60V Synchronous Step-down Switching Regulator(Controller type)
ROHM

BD9610AMUV-E2

60V Synchronous Step-down Switching Regulator(Controller type)
ROHM

BD9611MUV

BD9611MUV是可输入高电压的具有大输入范围(VCC=10V~56V)的60V耐压降压同步整流DC/DC控制器。内置PWM、基于电压模式的控制电路、外接的2个Nch-FET的驱动电路。备有振荡频率及软启动的调整功能、过电流保护(打嗝动作的自动复位型)等保护功能、与外部时钟同步功能等,可进行自由设计。此外,CTL端子与具有高精度基准电压的低输入误动作防止电路(EXUVLO)连接,可通过VCC-GND间电阻比进行调整。还可对应预偏压,抑制启动时输出侧的电流进入。
ROHM

BD9615MUV-LB

本产品是面向工业设备市场的产品,保证可长期稳定供货。是适合这些用途的产品。本IC为开关稳压器用的支持高耐压(60V)的低边Nch-FET控制器。适用于需要升压、反激等低边FET的电路,是可应用于各种用途的IC。可通过1个外接电阻任意调整频率(100kHz~2500kHz)。能以高开关频率工作,可减少整体的安装面积。还具备与外部CLK同步的功能,可进行噪声管理。而且内置热关断、过电压保护、过流保护等保护功能,可对各种异常模式进行保护。
ROHM

BD9631GU

Switching Regulator ICs
ROHM

BD9631GU-E2

Switching Regulator ICs
ROHM

BD9634GU

Switching Regulator ICs
ROHM

BD9634GU-E2

Switching Regulator ICs
ROHM

BD9639MWV

Semiconductor integrated circuit
ROHM

BD9639MWV-E2

Switching Regulator, Voltage-mode, 2A, 1800kHz Switching Freq-Max, CMOS, 7 X 7 MM, ROHS COMPLIANT, UQFN-56
ROHM

BD9639MWV_11

Semiconductor integrated circuit
ROHM