BH30MA3WHFV-TR [ROHM]

Standard CMOS LDO Regulators; 标准CMOS LDO稳压器
BH30MA3WHFV-TR
型号: BH30MA3WHFV-TR
厂家: ROHM    ROHM
描述:

Standard CMOS LDO Regulators
标准CMOS LDO稳压器

稳压器
文件: 总9页 (文件大小:823K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS LDO Regulator Series for Portable Equipments  
Standard CMOS LDO Regulators  
BHFB1WG series, BHFB1WHFV series,  
BHLB1WG series, BHLB1WHFV series  
Large Current 300mA  
CMOS LDO Regulators  
BH MA3WHFV Series  
No.09020EBT02  
Description  
The BH□□FB1W, BH□□LB1W and BH□□MA3W series are low dropout CMOS regulators with 150 mA and 300 mA  
output that have ±1% high accuracy output voltage.  
The BH□□FB1W series combines 40µA low current consumption and a 70 dB high ripple rejection ratio by utilizing output  
level CMOS technology. The components can be easily mounted into the small standard SSOP5 and the ultra-small  
HVSOF5/HVSOF6 packages.  
Features  
1) High accuracy output voltage: ±1%  
2) High ripple rejection ratio: 70 dB (BH□□FB1WHFV/WG, BH□□LB1WHFV/WG)  
3) Low dropout voltage: 60 mV (when current is 100 mA) (BH□□MA3WHFV)  
4) Stable with ceramic output capacitors  
5) Low Bias current : 40µA (IO = 50 mA) (BH□□FB1WHFV/WG)  
6) Output voltage ON/OFF control  
7) Built-in over-current protection and thermal shutdown circuits  
8) Ultra-small power package: HVSOF5 (BH□□FB1WHFV, BH□□LB1WHFV)  
9) Ultra-small power package: HVSOF6 (BH□□MA3WHFV)  
Applications  
Battery-driven portable devices and etc.  
Line up  
150mA BH□□FB1W and BH□□LB1W Series  
Part Number  
1.5 1.8 1.85 2.5 2.8 2.9 3.0 3.1 3.3  
Package  
SSOP5  
BH□□FB1WG  
- - -  
HVSOF5  
SSOP5  
BH□□FB1WHFV - - -  
BH□□LB1WG  
- - - - - - -  
- - - - - -  
HVSOF5  
BH□□LB1WHFV  
300mA BH□□MA3WHFV series  
Part Number  
1.5 1.8 2.5 2.8 2.9 3.0 3.1 3.3  
Package  
BH□□MA3WHFV  
HVSOF6  
Part Number: B H □□ F B 1 W , B H □□ L B 1 W □  
Part Number: B H □□ M A 3 W □  
a
b
a
b
a
b
Symbol  
Details  
Output Voltage Designation  
Symbol  
Details  
Output Voltage Designation  
□□  
15  
18  
1J  
25  
Output Voltage (V)  
1.5V (Typ.)  
1.8V (Typ.)  
1.85V (Typ.)  
2.5V (Typ.)  
2.8V (Typ.)  
Output Voltage (V)  
2.9V (Typ.)  
3.0V (Typ.)  
3.1V (Typ.)  
3.3V (Typ.)  
□□  
15  
18  
25  
28  
Output Voltage (V)  
1.5V (Typ.)  
1.8V (Typ.)  
2.5V (Typ.)  
2.8V (Typ.)  
HFV : HVSOF6  
Output Voltage (V)  
2.9V (Typ.)  
3.0V (Typ.)  
3.1V (Typ.)  
3.3V (Typ.)  
□□  
29  
30  
31  
33  
□□  
29  
30  
31  
33  
a
b
a
b
Package:  
28  
Package:  
G : SSOP5 HFV : HVSOF5  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.11 - Rev. B  
1/8  
BH□□FB1WG series, BH□□FB1WHFV series,  
BH□□LB1WG series, BH□□LB1WHFV series, BH□□MA3WHFV series,  
Technical Note  
Absolute maximum ratings (Ta = 25°C)  
Parameter  
Symbol  
VMAX  
Limits  
Unit  
V
+
~
-0.3  
6.5  
Applied supply voltage  
680 (HVSOF6)  
410 (HVSOF5)  
540 (SSOP5)  
Pd  
mW  
Power dissipation  
+
Topr  
Tstg  
-
40  
~
~
°C  
°C  
85  
Operating temperature range  
Storage temperature range  
+
125  
-55  
Recommended operating range  
Parameter  
Symbol  
Min.  
2.5  
-
Typ.  
-
Max.  
5.5  
Unit  
V
Power supply voltage  
BH□□MA3W  
VIN  
-
300  
150  
150  
mA  
mA  
mA  
BH□□FB1W  
-
-
Output current  
IOUT  
BH□□LB1W  
-
-
Recommended operating conditions  
Parameter  
Input capacitor  
Symbol  
CIN  
Min.  
0.1  
Typ.  
-
Max.  
-
Unit  
µF  
Conditions  
Ceramic capacitor recommended  
Ceramic capacitor recommended  
Ceramic capacitor recommended  
Co  
1.0  
-
-
µF  
Output capacitor  
Noise decrease capacitor  
Cn  
-
0.01  
0.22  
µF  
BH□□FB1WHFV/WG , BH□□LB1WHFV/WG  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
V
Conditions  
VOUT  
VOUT  
I GND  
I STBY  
RR  
-
-
-
-
-
40  
-
70  
1.0  
-
µA  
µA  
dB  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
kΩ  
V
70  
50  
50  
250  
2
LTV1  
LTV2  
-
-
-
-
450  
20  
30  
-
VSAT  
VDL1  
VDL01  
ILMAX  
I SHORT  
RSTB  
-
-
-
10  
250  
50  
-
Vo=0V  
550  
1100  
-
-
2200  
VIN  
0.3  
VSTBH  
VSTBL  
1.5  
ON  
STBY  
control voltage  
-
0.3  
V
OFF  
BH□□MA3WHFV  
Parameter  
Symbol  
VOUT  
Min.  
Typ.  
VOUT  
65  
-
Max.  
Unit  
Conditions  
IOUT=1mA  
V
I GND  
-
-
-
-
-
-
-
-
-
-
95  
1.0  
-
µA  
IOUT=1mA  
µA  
STBY=0V  
I STBY  
RR  
60  
60  
2
dB  
VRR=-20dBv, fRR=1kHz, IOUT=10mA  
90  
20  
30  
mV  
VIN=0.98 X VOUT, IOUT=100mA  
VIN=VOUT+0.5V to 5.5V  
IOUT=1mA to 100mA  
VSAT1  
VDL1  
VDL01  
VDL02  
mV  
6
mV  
18  
mV  
IOUT=1mA to 300mA  
90  
-
+
ppm/°C IOUT=1mA, Ta=-40 to 85°C  
±
100  
mA  
mA  
600  
100  
-
-
Vo=VOUT X 0.85  
Vo=0V  
ILMAX  
I SHORT  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2/8  
2009.11 - Rev. B  
BH□□FB1WG series, BH□□FB1WHFV series,  
BH□□LB1WG series, BH□□LB1WHFV series, BH□□MA3WHFV series,  
Technical Note  
Typ i cal ch aract eri st i cs  
• Output voltage-input voltage  
4
3
2
1
0
4
3
2
1
0
2
1.5  
1
BH15LB1WHFV  
~ Condition ~  
BH28FB1WHFV  
~ Condition ~  
VIN=0 to 5.5V  
Cin=0.1µF  
BH30MA3WHFV  
~ Condition ~  
VIN=0 to 5.5V  
Cin=1.0µF  
VIN=0 to 5.5V  
Cin=0.1µF  
Co=1.0µF  
Co=1.0µF  
Co=1.0µF  
Cn=none  
ROUT= 1.5k Ω  
Ta= 2 5 °C  
ROUT= 2.8k Ω  
Ta= 2 5 °C  
ROUT= 3.0k Ω  
Ta= 2 5 °C  
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Fig.3  
Fig.1  
Fig.2  
GND current  
-input voltage  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
60  
BH15LB1WHFV  
~ Condition ~  
VIN=0 to 5.5V  
Cin=0.1µF  
BH28FB1WHFV  
~ Condition ~  
VIN=0 to 5.5V  
Cin=0.1µF  
BH30MA3WHFV  
~ Condition ~  
VIN=0 to 5.5V  
Cin=1.0µF  
Co=1.0µF  
50  
40  
30  
20  
10  
Co=1.0µF  
Co=1.0µF  
Cn=none  
ROUT= 2.8k  
Ta= 2 5 °C  
ROUT= 1.5k  
Ta= 2 5 °C  
ROUT= 3.0k  
Ta= 2 5 °C  
0
00.5  
1
1.5  
2
2.5  
3
3.5 4ꢁꢀ4.5 55.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5ꢀꢀꢀꢀ5.5  
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Fig.4  
Fig.6  
Fig.5  
• Output voltage-output current  
2
3.5  
3
3.5  
3
BH15LB1WHFV  
~ Condition ~  
BH28FB1WHFV  
~ Condition ~  
BH30MA3WHFV  
~ Condition ~  
VIN=3.5V  
VIN=3.8V  
VIN=4.0V  
VOUT=1.53V to 0V  
Cin=0.1µF  
Co=1.0µF  
VOUT=2.83V to 0V  
Cin=0.1µF  
VOUT=3.03V to 0V  
Cin=1.0µF  
Co=1.0µF  
1.5  
2.5  
2
2.5  
2
Co=1.0µF  
Ta=25°C  
Ta=25°C  
Cn=none  
Ta=25°C  
1
0.5  
0
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
50  
100  
150  
200  
250  
300  
0
100  
200  
300 400  
500 600  
700  
0
100  
200  
300  
400  
Output Current IOUT[mA]  
Output Current IOUT[mA]  
Output Current IOUT[mA]  
Fig.9  
Fig.7  
Fig.8  
• Dropout voltage-output current  
500  
300  
250  
200  
150  
100  
50  
BH28FB1WHFV  
~ Condition ~  
BH30MA3WHFV  
~ Condition ~  
VIN=2.74V  
IOUT=0 to 150mA  
Cin=0.1µF  
VIN=2.940V  
IOUT=0 to 300mA  
Cin=1.0µF  
Co=1.0µF  
400  
300  
200  
100  
Co=1.0µF  
Ta= 2 5 °C  
Cn=none  
Ta= 2 5 °C  
0
0
0
50  
100  
150  
0
50  
100  
150  
200  
250  
300  
Output Current IOUT[mA]  
Output Current IOUT[mA]  
Fig.11  
Fig.10  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
3/8  
2009.11 - Rev. B  
BH□□FB1WG series, BH□□FB1WHFV series,  
BH□□LB1WG series, BH□□LB1WHFV series, BH□□MA3WHFV series,  
Technical Note  
Typical Characteristics  
• Output voltage-temperature  
°
°
°
°
°
°
• Ripple reflection-frequency  
°
°
°
• Load response characteristics (CO = 1.0 µF)  
°
°
°
• Output voltage startup time  
°
°
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
4/8  
2009.11 - Rev. B  
BH□□FB1WG series, BH□□FB1WHFV series,  
BH□□LB1WG series, BH□□LB1WHFV series, BH□□MA3WHFV series,  
Technical Note  
Block diagrams  
Power supply input  
Ground  
Output voltage ON/OFF control  
(High: ON, Low: OFF)  
NO CONNECT  
Voltage output  
Output voltage ON/OFF control  
(High: ON, Low: OFF)  
Ground  
Power supply input  
Voltage output  
NO CONNECT  
Terminal No. Terminal Name Function  
Power supply input  
Voltage output  
Voltage output  
Noise reducing capacitor  
ground terminal  
Ground  
Output voltage ON/OFF control  
(High: ON, Low: OFF)  
Power dissipation Pd  
1. Power dissipation  
Power dissipation calculation include estimates of power dissipation characteristics and internal IC power consumption  
and should be treated as guidelines. In the event that the IC is used in an environment where this power dissipation is  
exceeded, the attendant rise in the junction temperature will trigger the thermal shutdown circuit, reducing the current  
capacity and otherwise degrading the IC's design performance. Allow for sufficient margins so that this power dissipation  
is not exceeded during IC operation.  
Calculating the maximum internal IC power consumption (PMAX)  
Input voltage  
Output voltage  
Output current  
2. Power dissipation characteristics (Pd)  
Board: 70 mm X 70 mm X 1.6 mm  
Material: Glass epoxy PCB  
Board: 70 mm X 70 mm X 1.6 mm  
Material: Glass epoxy PCB  
Board: 70 mm X 70 mm X 1.6 mm  
Material: Glass epoxy PCB  
°
°
°
Fig. 27: HVSOF5  
Fig. 28: SSOP5  
Power Dissipation/  
Power Dissipation Reduction (Example)  
Fig. 26: HVSOF6  
Power Dissipation/  
Power Dissipation Reduction (Example)  
Power Dissipation/  
Power Dissipation Reduction (Example)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
5/8  
2009.11 - Rev. B  
BH□□FB1WG series, BH□□FB1WHFV series,  
BH□□LB1WG series, BH□□LB1WHFV series, BH□□MA3WHFV series,  
Technical Note  
Input capacitor  
It is recommended to insert bypass capacitors between input and GND pins, positioning them as close to the pins as  
possible. These capacitors will be used when the power supply impedance increases or when long wiring routes are used, so  
they should be checked once the IC has been mounted.  
Ceramic capacitors generally have temperature and DC bias characteristics. When selecting ceramic capacitors, use X5R or  
X7R or better models that offer good temperature and DC bias characteristics and high torelant voltages.  
Examples of ceramic capacitor characteristics  
100  
95  
90  
85  
80  
75  
70  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
50V torelance  
50V torelance  
16V torelance  
X7R  
X5R  
16V torelance  
Y5V  
10V torelance  
10V torelance  
0
1
2
3
4
-
25  
0
25  
50  
75  
0
1
2
3
4
DC bias Vdc (V)  
Temperature (°C)  
DC bias Vdc (V)  
Fig. 29: Capacitance  
-bias characteristics (Y5V)  
Fig. 30: Capacitance  
-
bias characteristics (X5R, X7R)  
Fig. 31: Capacitance–temperature characteristics  
(X5R, X7R, Y5V)  
Output capacitor  
To prevent oscillation at the output, it is recommended that the IC be operated at the stable region show in below Fig. It  
operates at the capacitance of more than 1.0µF. As capacitance is larger, stability becomes more stable and characteristic of  
output load fluctuation is also improved.  
BH□□LB1WHFV/WG  
BH□□FB1WHFV/WG  
BH□□MA3WHFV  
Cout=1.0µF  
+
Cout=2.2µF  
+
Cout=1.0µF  
Cin=1.0µF  
+
Ta= 25°C  
Ta= 25°C  
Ta= 25°C  
100  
100  
100  
10  
1
10  
1
10  
1
Stable region  
Stable region  
Stable region  
0.1  
0.1  
0.01  
0.1  
0.01  
0.01  
0
50  
100  
150  
0
50  
Output current IOUT(mA)  
Fig. 33 BH□□FB1WHFV/WG  
Stable operating region characteristics (Example)  
100  
150  
0
100  
Output current IOUT(mA)  
Fig. 34 BH□□MA3WHFV  
Stable operating region characteristics (Example)  
200  
300  
Output current IOUT(mA)  
Fig. 32 BH□□LB1WHFV/WG  
Stable operating region characteristics (Example)  
Other precautions  
• Over current protection circuit  
The IC incorporates a built-in over current protection circuit that operates according to the output current capacity. This circuit  
serves to protect the IC from damage when the load is shorted. The protection circuits use fold-back type current limiting and  
are designed to limit current flow by not latching up in the event of a large and instantaneous current flow originating from a  
large capacitor or other component. These protection circuits are effective in preventing damage due to sudden and  
unexpected accidents. However, the IC should not be used in applications characterized by the continuous operation or  
transitioning of the protection circuits.  
• Thermal shutdown circuit  
This system has a built-in thermal shutdown circuit for the purpose of protecting the IC from thermal damage. As shown  
above, this must be used within the range of power dissipation, but if the power dissipation happens to be continuously  
exceeded, the chip temperature increases, causing the thermal shutdown circuit to operate. When the thermal shutdown  
circuit operates, the operation of the circuit is suspended. The circuit resumes operation immediately after the chip  
temperature decreases, so the output repeats the ON and OFF states. There are cases in which the IC is destroyed due to  
thermal runaway when it is left in the overloaded state. Be sure to avoid leaving the IC in the overloaded state.  
• Actions in strong magnetic fields  
Use caution when using the IC in the presence of a strong magnetic field as such environments may occasionally cause the chip  
to malfunction.  
• Back current  
In applications where the IC may be exposed to back current flow, it is recommended to create a route t dissipate this current  
by inserting a bypass diode between the VIN and VOUT pins.  
• GND potential  
Ensure a minimum GND pin potential in all operating conditions.  
In addition, ensure that no pins other than the GND pin carry a voltage less than or equal to the GND pin, including during  
actual transient phenomena.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
6/8  
2009.11 - Rev. B  
BH□□FB1WG series, BH□□FB1WHFV series,  
BH□□LB1WG series, BH□□LB1WHFV series, BH□□MA3WHFV series,  
Technical Note  
Noise terminal (BH□□MA3WHFV)  
The terminal is directly connected to inward normal voltage source. Because this has low current ability, load exceeding  
100nA will cause some instability at the output. For such reasons, we urge you to use ceramic capacitors which have less  
leak current. When choosing noise the current reduction capacitor, there is a trade-off between boot-up time and stability. A  
bigger capacitor value will result in lesser oscillation but longer boot-up time for VOUT.  
100  
BH30MA3WHFV  
~ Condition ~  
VIN=4.0V  
Cin=1.0µF  
10  
Co=1.0µF  
ROUT=3.0kΩ  
Ta=25°C  
1
0.1  
0.01  
100P  
1000P  
0.01µ  
0.1µ  
noise-filtering capacitor capacitance Cn (F)  
Fig. 35: VOUT startup time vs. noise-filtering capacitor capacitance characteristics (Example)  
Regarding input pin of the IC  
+ isolation and P substrate layers between adjacent  
This monolithic IC contains P  
elements in order to keep them isolated. P/N junctions are formed at the intersection of  
these P layers with the N layers of other elements to create a variety of parasitic elements.  
For example, when a resistor and transistor are connected to pins as shown in Fig.37  
The P/N junction functions as a parasitic diode when GND > (Pin A) for the resistor or  
GND > (Pin B) for the transistor (NPN).  
back current  
VCC  
OUT  
Similarly, when GND > (Pin B) for the transistor (NPN), the parasitic diode described  
above combines with the N layer of other adjacent elements to operate as a parasitic  
NPN transistor.  
CTL  
GND  
The formation of parasitic elements as a result of the relationships of the potentials of  
different pins is an inevitable result of the IC's architecture. The operation of parasitic  
elements can cause interference with circuit operation as well as IC malfunction and  
damage. For these reasons, it is necessary to use caution so that the IC is not used in a  
way that will trigger the operation of parasitic elements, such as by the application of  
voltage lower than the GND (P substrate) voltage to input pins.  
Fig. 36: Example of bypass  
diode connection  
Transistor (NPN)  
(Terminal B)  
B
Resistor  
(Terminal B)  
(Terminal A)  
C
E
E
O
B
GND  
N
N
Other adjacent elements  
(Terminal A)  
GND  
Parasitic elements  
+
+
P
P
P
+
+
P
P
P
N
N
P
N
N
N
P
P-board  
Parasitic element  
GND  
Parasitic element  
GND  
Parasitic elements  
GND  
Fig.37  
Part number selection  
B H  
3 0  
F B 1  
W
H F V - T R  
Package  
HFV : HVSOF6  
HVSOF5  
ROHM  
part number voltage  
Output  
Current capacity Shutdown  
Package specification  
TR : Embossed taping  
MA3 : 300mA  
FB1 : 150mA  
LB1 : 150mA  
switch  
W : With switch  
G : SSOP5  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
7/8  
2009.11 - Rev. B  
BH□□FB1WG series, BH□□FB1WHFV series,  
BH□□LB1WG series, BH□□LB1WHFV series, BH□□MA3WHFV series,  
Technical Note  
(Unit:mm)  
(Unit:mm)  
(Unit:mm)  
(1.8MAX.)  
+6°  
- 4°  
2.9±0.2  
1.6±0.05  
1.6±  
0.1  
4°  
5
4
0.8  
6
5
4
0.3  
1.0±0.05  
4
5
5
4
(1.2)  
(1.4)  
1
2
3
0.13±0.05  
1
2
3
3 2 1  
1
2
3
0.145±0.05  
0.13 +-0.053  
S
0.42 +0.05  
-0.04  
0.95  
0.1 S  
0.22±0.05  
0.1  
0.22±0.05  
0.5  
0.5  
SSOP5  
HVSOF5  
HVSOF6  
(Package Specification) HVSOF6  
(Package Specification) SSOP5, HVSOF5  
Package Form  
Embossed taping  
3000pcs  
Embossed taping  
3000pcs  
Package Form  
Package Quantity  
Package Quantity  
Package  
Orientation  
TR  
Package  
Orientation  
TR  
(When the reel is held with the left hand and the tape is drawn out with the right hand,  
the No. 1 pin of the product faces the upper right direction.)  
(When the reel is held with the left hand and the tape is drawn out with the right hand,  
the No. 1 pin of the product faces the upper right direction.)  
No. 1 pin  
Pulling side  
Reel  
* Please make orders in multiples of the package quantity.  
* Please make orders in multiples of the package quantity.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
8/8  
2009.11 - Rev. B  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,  
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of  
any of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
R0039  
A

相关型号:

BH30NB1WHFV

CMOS Type series regulator
ROHM

BH30NB1WHFV-E1

Regulator, 1 Output, CMOS, PDFP6,
ROHM

BH30NB1WHFV-E2

Regulator, 1 Output, CMOS, PDFP6,
ROHM

BH30NB1WHFV-TR

High-ripple rejection CMOS LDO Regulators for High-frequency Circuits
ROHM

BH30NB1WHFWHFV

1ch 150mA CMOS LDO Regulators
ROHM

BH30NB1WHFWHFV-TR

1ch 150mA CMOS LDO Regulators
ROHM

BH30PB1WHFV

Auto Power Save CMOS Type series regulator
ROHM

BH30PB1WHFV-E1

Regulator, 1 Output, CMOS, PDFP6,
ROHM

BH30PB1WHFV-E2

Regulator, 1 Output, CMOS, PDFP6,
ROHM

BH30PB1WHFV-TR

CMOS LDO Regulators with Auto Power Saving Function
ROHM

BH30RB1WGUT

CMOS Type series regulator
ROHM

BH30RB1WGUT-E2

Ultra Small Package CMOS LDO Regulators
ROHM