BH31PB1WHFV-TR [ROHM]

1ch 150mA CMOS LDO Regulators; 1路150毫安CMOS LDO稳压器
BH31PB1WHFV-TR
型号: BH31PB1WHFV-TR
厂家: ROHM    ROHM
描述:

1ch 150mA CMOS LDO Regulators
1路150毫安CMOS LDO稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总11页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS LDO Regulators for Portable Equipments  
1ch 150mA  
CMOS LDO Regulators  
BH□□PB1WHFV Series  
No.11020EBT05  
Description  
The BH□□PB1WHFV regulator series can respond to changes in output current by switching to a state in which regulator  
characteristics are ideal. The regulators cut power consumption by lowering their own current consumption to approximately  
2 A when the application is operating in the standby state. During normal-current operation it will automatically switch to  
high-speed operating mode. The IC's soft start function reduce the rush current that flows to the output capacitors during  
startup. The HVSOF5 package, which features excellent heat dissipation, contributes to space-saving application designs.  
Features  
1) Automatic switching between low-consumption and high-speed modes  
2) Built-in rush current prevention circuit  
3) Low-voltage 1.7 V operation  
4) High accuracy output voltage: ± 1%  
5) Circuit current during low-consumption operation: 2 A  
6) Stable with a ceramic capacitor (0.47 µF)  
7) Built-in temperature and overcurrent protection circuits  
8) Built-in output discharge during standby operation function  
9) Ultra-small HVSOF5 power package  
Applications  
Battery-driven portable devices, etc.  
Product lineup  
□□  
150 mA BH  
PB1WHFV Series  
Product name  
1.2  
1.5  
1.8  
2.5  
2.8  
2.9  
3.0  
3.1  
3.3  
Package  
HVSOF5  
BH□□PB1WHFV  
□□  
PB1W  
a
b
Model name: BH  
Symbol  
Description  
Output voltage specification  
□□  
□□  
29  
Output voltage (V)  
Output voltage (V)  
2.9 V (Typ.)  
12  
15  
18  
25  
28  
1.2 V (Typ.)  
1.5 V (Typ.)  
1.8 V (Typ.)  
2.5 V (Typ.)  
2.8 V (Typ.)  
30  
3.0 V (Typ.)  
a
31  
3.1 V (Typ.)  
33  
3.3 V (Typ.)  
b
Package HFV: HVSOF5  
www.rohm.com  
2011.01 - Rev.B  
1/10  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH□□PB1WHFV Series  
Absolute maximum ratings (Ta = 25°C)  
Parameter  
Power supply voltage  
Power dissipation  
Symbol  
Ratings  
0.3 to +6.5  
410 *1  
Unit  
V
VMAX  
Pd  
mW  
°C  
Operating temperature range  
Storage temperature range  
Junction temperature  
Topr  
Tslg  
40 to +85  
55 to +125  
125  
°C  
Tjmax  
°C  
*1: Reduced by 4.1 mW/°C over 25°C, when mounted on a glass epoxy board (70 mm 70 mm 1.6 mm)  
Recommended operating ranges (not to exceed Pd)  
Parameter  
Power supply voltage  
Output MAX current  
Symbol  
VIN  
Ratings  
1.7 to 5.5  
0 to 150  
Unit  
V
IMAX  
mA  
Recommended operating conditions  
Ratings  
Typ.  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Max.  
The use of ceramic capacitors is  
recommended.  
The use of ceramic capacitors is  
recommended.  
Input capacitor  
CIN  
CO  
0.33 *2  
0.47  
µF  
µF  
Output capacitor  
0.33 *2  
0.47  
*2: Make sure that the output capacitor value is not kept lower than this specified level across a variety of temperature, DC bias characteristic.  
And also make sure that the capacitor value can not change as time progresses.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
2/10  
Technical Note  
BH□□PB1WHFV Series  
Electrical characteristics  
(Unless otherwise specified, Ta = 25°C, VIN = VOUT + 1.0 V, STBY = 1.5 V, SEL = 0 V, CIN = 0.47 µF, CO = 0.47 µF)  
Limits  
Parameter  
Regulator】  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max..  
VOUT1  
×0.99  
VOUT1  
-0.025  
VOUT2  
×0.97  
VOUT1  
×1.01  
-
-
VOUT2.5V,IOUT=0.1mA,SEL=1.5V  
VOUT1.8V,IOUT=0.1mA,SEL=1.5V  
VOUT2.5V,IOUT=0.1mA,SEL=0V  
VOUT1.8V,IOUT=0.1mA,SEL=0V  
V
Output voltage  
(high-speed mode)  
VOUT1  
VOUT2  
VOUT1  
+0.025  
VOUT2  
×1.038  
VOUT2  
×1.043  
V
-
V
Output voltage  
(low-consumption mode)  
VOUT2  
×0.967  
-
V
Circuit current  
(high-speed mode)  
Circuit current  
(low-consumption mode)  
IOUT=0mA, VIN pin  
monitor,SEL=1.5V  
-
-
20  
2
40  
4
ICC1  
ICC2  
μA  
μA  
μA  
dB  
mV  
mV  
mV  
mV  
mV  
mV  
IOUT=0mA, VIN pin monitor, SEL=0V  
STBY=0V  
Circuit current (STBY)  
-
-
1.0  
-
ISTBY  
RR1  
Ripple rejection ratio  
(high-speed mode)  
VRR=-20dBv, fRR=1kHz,  
IOUT=10mA, SEL=1.5V  
42  
-
60  
100  
210  
315  
2
Dropout voltage 1 *1  
Dropout voltage 2 *1  
Dropout voltage 3 *1  
200  
400  
600  
20  
20  
40  
VIN=VOUT×0.98,IOUT=50mA  
VIN=VOUT×0.98,IOUT=100mA  
VIN=VOUT×0.98,IOUT=150mA  
VIN=VOUT+1V to 5.5V,IOUT=10mA  
VIN=VOUT+1V to 5.5V,IOUT=100μA  
IOUT=10mA to 100mA  
VSAT1  
VSAT2  
VSAT3  
VDL1  
VDL2  
VDLO  
-
-
Line regulation 1  
(high-speed mode)  
Line regulation 2  
(low-consumption mode)  
-
-
2
Load regulation  
-
10  
Mode switch】  
Current threshold  
(low-consumption mode)  
Current threshold  
(high-speed mode)  
0.09  
-
0.3  
1.2  
-
SEL=0V IOUT=3mA0mA sweep  
SEL=0V IOUT=0mA3mA sweep  
ITH1  
ITH2  
mA  
mA  
2.2  
Over Current Protection 1】  
Limit Current  
160  
20  
300  
50  
500  
100  
Vo=VOUT×0.90  
Vo=0V  
ILMAX  
mA  
mA  
Short current  
ISHORT  
Stand-by block】  
STBY pin sink current  
-
2
4
STBY=1.5V  
STBY=0V  
ISTB  
μA  
1.5  
-0.3  
-
-
VIN  
0.3  
ON VSTBH  
OFF VSTBL  
V
V
STBY control voltage  
Discharge resistance at standby  
SEL PIN】  
1.5  
2.2  
3.0  
RDCG  
kΩ  
Pull-down resistance of SEL pin  
0.5  
1.0  
2.0  
RSEL  
MΩ  
1.5  
-0.3  
-
-
VIN  
0.3  
Fixed high speed mode  
Automatic switch mode  
ON  
VSELH  
V
V
SEL control voltage  
OFF VSELL  
* Note: This IC is not designed to be radiation-resistant.  
*3: Except at VOUT 1.5 V.  
Electrical characteristics of each output voltage  
Output Voltage  
Parameter  
Min.  
Typ.  
120  
Max.  
Unit  
Conditions  
VCC = 1.7 V  
70  
150  
50  
1.2 V  
VCC = 2.0 V  
100  
VCC = 1.8 V  
Max. output  
current  
1.5 V  
mA  
150  
75  
VCC = 2.2 V  
143  
VCC = VOUT + 0.3 V  
VCC = VOUT + 0.6 V  
1.8 V VOUT  
150  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
3/10  
Technical Note  
BH□□PB1WHFV Series  
Typical characteristics  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
IO = 10 mA  
0.5  
IO = 10 mA  
IO = 10 mA  
0.0  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
Input Voltage VIN [V]  
Input Voltage VIN [V]  
Input Voltage VIN [V]  
Fig.1 Output Voltage vs Input Voltage  
(BH12PB1WHFV)  
Fig.2 Output Voltage vs Input Voltage  
(BH30PB1WHFV)  
Fig.3 Output Voltage vs Input Voltage  
(BH33PB1WHFV)  
3.5  
70  
400  
IO = no load  
60  
IO = no load  
IO = no load  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
300  
50  
40  
200  
30  
SEL = 1.5 V  
SEL = 1.5 V  
20  
100  
10  
SEL = 0 V  
300 400  
SEL = 0 V  
0
0
0
100  
200  
0
1
2
3
4
5
0
50  
100  
150  
Input Voltage VIN [V]  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
(BH33PB1WHFV)  
Fig.6 GND Current vsInput Voltage  
(BH30PB1WHFV)  
(BH12PB1WHFV)  
(BH33PB1WHFV)  
(BH30PB1WHFV)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
Output Current IOUT [mA]  
(BH30PB1WHFV)  
(BH12PB1WHFV)  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
Fig.8 Output Voltage vs Output Current  
(BH30PB1WHFV)  
Fig.9 Output Voltage vs Output Current  
(BH33PB1WHFV)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
0
100  
200  
300  
400  
0
50  
100  
150  
0
50  
100  
150  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
Fig.10 Dropout voltage vs Output Current  
(BH18PB1WHFV)  
Fig.12 Dropout voltage vs Output Current  
(BH33PB1WHFV)  
Fig.11 Dropout voltage vs Output Current  
(BH30PB1WHFV)  
www.rohm.com  
2011.01 - Rev.B  
4/10  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH□□PB1WHFV Series  
4
3
2
1
0
3.2  
3.1  
3.0  
2.9  
2.8  
6
5
4
3
2
1
0
0.0  
1.0  
2.0  
VSTBY[V]  
3.0  
4.0  
5.0  
0.0  
0.5  
1.0  
VSTBY[V]  
1.5  
2.0  
-50  
-25  
0
25  
Temp[  
50  
75  
100  
]
Fig.14 Standby Pin Threshold  
(BH30PB1WHFV)  
Fig.13 Output Voltage vs Temperature  
(BH30PB1WHFV)  
Fig.15 Standby Pin Sink Current  
(BH30PB1WHFV)  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
20  
10  
SEL  
1 V / div  
SEL = 0 V 1.5  
VOUT  
50 mV / div  
10 ms / div  
Co = 0.47 µF  
IO = 10 mA  
Co = 0.47 µF  
IO = 10 mA  
20  
IO = no load  
10  
100  
100  
1 k  
10 k  
100  
1 M  
1 k  
10 k  
100  
1 M  
Frequency f[Hz]  
Frequency f[Hz]  
Fig.17 Ripple Rejection  
(BH30PB1WHFV)  
Fig.16 Ripple Rejection  
(BH12PB1WHFV)  
Fig.18 Output Voltage Waveform  
During SEL Switching  
(BH30PB1WHFV)  
IOUT = 0 mA 10 mA  
IOUT = 1 mA 30 mA  
IOUT = 1 mA 100  
50 mV / div  
50 mV / div  
100 mV / div  
VOUT  
VOUT  
VOUT  
SEL = 0 V  
200 s / div  
100 s / div  
200 s / div  
SEL = 1.5 V  
(power-saving operation)  
Fig.20 Load Response (Co=1.0 µF)  
(BH30PB1WHFV)  
Fig.21 Load Response (Co=1.0 µF)  
(BH30PB1WHFV)  
Fig.19 Load Response (Co = 1.0 µF)  
(BH30PB1WHFV)  
100 m  
Rss = 10 k,  
IO = no load  
1 V / div  
1 V / div  
STBY  
STBY  
10 m  
VOUT  
1 V / div  
Co = 0.47 µF  
Co = 2.2 µF  
Co = 1 µF  
1.0µ  
Co = 0.47 µF  
Co = 10 µF  
VOUT  
1 V / div  
10 ms / div  
200 s / div  
100 µ  
0.01µ  
0.1 µ  
1.0µ  
Slow start capacitance Css (F)  
Fig.22 Output Voltage Rise Time  
(BH30PB1WHFV)  
Fig.23 Output Voltage Fall Time  
(BH30PB1WHFV)  
Fig.24 Soft Start Rise Time  
(BH30PB1WHFV)  
www.rohm.com  
2011.01 - Rev.B  
5/10  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH□□PB1WHFV Series  
Block diagram, recommended circuit diagram, and pin assignment table  
BH□□PB1WHFV  
PIN No.  
Symbol  
STBY  
GND  
Function  
1
2
3
4
Output voltage on/off control(High: ON, Low: OFF)  
Ground  
VIN  
Power supply input  
Voltage output  
VOUT  
Mode switching  
5
SEL  
(High: Fix in high-speed mode  
Low: Automatic low-consumption mode switching)  
VIN  
3
CH1  
-
-
+
Cin  
THERMAL &  
OVER CURRENT  
PROTECTION  
VOLTAGE  
REFERENCE  
VOUT  
GND  
4
2
Co  
-
-
+
CH2  
DISCHARGE  
SOFFT  
START  
Cin … 0.47 µF  
Co … 0.47 µF  
CURRENT  
MONITOR  
STBY  
Rss  
SEL  
CONTROL  
BLOCK  
1
5
(
)
(
)
Css  
Fig.25  
Auto Power-saving Function  
The IC incorporates a built-in auto power-saving function that  
continuously monitors the output current and switches  
automatically between a low current consumption regulator  
and a high-speed operation regulator. This function reduces  
the regulator's own current consumption to approximately 1/10  
or lower of normal levels when the output current falls below  
approximately 300 A.  
30  
20  
10  
0
Measurement conditions  
BH12PB1WHFV  
VCC = 2.2 V  
High-speed mode  
VSEL = open,  
VSTBY = 1.5 V  
Low-consumption mode  
To operate only the high-speed operation regulator without  
0
0.5  
1
1.5  
2
2.5  
3
using the auto power-saving function, fix the SEL pin to high.  
Output current  
IOUT [mA]  
Fig.26 Auto Power-Saving Function (Example)  
Power Dissipation (Pd)  
1. Power Dissipation (Pd)  
2. Power Dissipation/Heat Reduction (Pd)  
Power dissipation calculations include estimates of power  
dissipation characteristics and internal IC power consumption, and  
should be treated as guidelines. In the event that the IC is used in  
an environment where this power dissipation is exceeded, the  
attendant rise in the junction temperature will trigger the thermal  
shutdown circuit, reducing the current capacity and otherwise  
degrading the IC's design performance. Allow for sufficient margins  
so that this power dissipation is not exceeded during IC operation.  
HVSOF5  
0.6  
*Circuit design  
should allow a  
sufficient  
margin for the  
temperature  
410 mW  
0.4  
0.2  
0
range so that  
PMAX < Pd.  
Calculating the maximum internal IC power consumption (PMAX)  
0
25  
50  
Ta[  
75  
100  
125  
]
Fig.27 HVSOF5 Power Dissipation  
vs Heat Reduction (Example)  
VIN : Input voltage  
PMAX = (VIN - VOUT) IOUT (MAX.)  
VOUT : Output voltage  
IOUT (MAX) : Max. output current  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
6/10  
Technical Note  
BH□□PB1WHFV Series  
Input Output capacitors  
It is recommended to insert bypass capacitors between input and GND pins, positioning them as close to the pins as  
possible. These capacitors will be used when the power supply impedance increases or when long wiring paths are used, so  
they should be checked once the IC has been mounted. Ceramic capacitors generally have temperature and DC bias  
characteristics. When selecting ceramic capacitors, use X5R or X7R, or better models that offer good temperature and DC  
bias characteristics and high tolerant voltages.  
Typical ceramic capacitor characteristics  
120  
100  
80  
60  
40  
20  
0
100  
95  
90  
85  
80  
75  
70  
120  
100  
80  
60  
40  
20  
0
50 V rated voltage  
16 V rated voltage  
50 V rated voltage  
X7R  
X5R  
Y5V  
10V  
rated voltage  
16 V rated voltage  
10 V  
rated voltage  
-25  
0
25  
Temp[]  
50  
75  
0
1
2
3
4
0
1
2
3
4
DC bias Vdc (V)  
DC bias Vdc (V)  
Fig.28 Capacitance vs Bias  
(Y5V)  
Fig.29 Capacitance vs Bias  
(X5R, X7R)  
Fig.30 Capacitance vs Temperature  
(X5R, X7R, Y5V)  
Output capacitors  
Mounting input capacitor between input pin and GND(as close to pin as possible), and also output capacitor between output  
pin and GND(as close to pin as possible) is recommended. The input capacitor reduces the output impedance of the voltage  
supply source connected to the VCC. The higher value the output capacitor goes the more stable the whole operation  
becomes. This leads to high load transient response. Please confirm the whole operation on actual application board.  
Generally, ceramic capacitor has wide range of tolerance, temperature coefficient, and DC bias characteristic. And also its value goes  
lower as time progresses. Please choose ceramic capacitors after obtaining more detailed data by asking capacitor makers.  
BH□□PB1WHFV  
100  
10  
Stable region  
1
COUT = 0.47 µF  
Ta = +25°C  
0.1  
0.01  
0
50  
100  
mA)  
150  
Output Current  
Io (  
Fig.31 Stable Operation Region (Example)  
www.rohm.com  
2011.01 - Rev.B  
7/10  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH□□PB1WHFV Series  
Notes for use  
1. Absolute maximum ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break  
down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated  
values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.  
2. Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
3. Inter-pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if pins are shorted together.  
4. Thermal shutdown circuit (TSD)  
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit is designed only to shut  
the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not  
continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is  
assumed.  
5. Ground wiring patterns  
The power supply and ground lines must be as short and thick as possible to reduce line impedance. Fluctuating voltage  
on the power ground line may damage the device.  
6. Overcurrent protection circuit  
The IC incorporates a built-in overcurrent protection circuit that operates according to the output current capacity. This  
circuit serves to protect the IC from damage when the load is shorted. The protection circuit is designed to limit current  
flow by not latching in the event of a large and instantaneous current flow originating from a large capacitor or other  
component. These protection circuits are effective in preventing damage due to sudden and unexpected accidents.  
However, the IC should not be used in applications characterized by the continuous operation or transitioning of the  
protection circuits. At the time of thermal designing, keep in mind that the current capability has negative characteristics to  
temperatures.  
7. Actions in strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to  
malfunction.  
8. Back current  
In applications where the IC may be exposed to back current flow, it is recommended to create a path to dissipate this  
current by inserting a bypass diode between the VIN and VOUT pins.  
Back current  
VIN  
OUT  
STBY GND  
Fig.32 Example Bypass Diode Connection  
9. I/O voltage difference  
Using the IC in automatic switching mode when the I/O voltage differential becomes saturated (VIN - VOUT < 150 mV)  
may result in a large output noise level. If the noise level becomes problematic, use the IC with the SEL pin in the high  
state when the voltage differential is saturated.  
10.GND Voltage  
The potential of GND pin must be minimum potential in all operating conditions.  
www.rohm.com  
2011.01 - Rev.B  
8/10  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH□□PB1WHFV Series  
11. Preventing Rush Current  
By attaching the Rss and Css time constants to the STBY pin, sudden rises in the regulator output voltage can be  
prevented, dampening the flow of rush current to the output capacitors. The larger the time constant used, the greater the  
resulting reduction. However, large time constants also result in longer startup times, so the constant should be selected  
after considering the conditions in which the IC is to be used.  
100  
Rss = 10 k  
IO = no load  
10  
1.0 m  
100   
0.01   
0.1   
1.0   
Slow start capacitance Css (F)  
Fig.33 VOUT Startup Time vs CSS Capacitance (Reference)  
12.Regarding input Pin of the IC (Fig.34)  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example, the relation between each potential is as follows:  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes can occur inevitable in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes  
operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.  
Resistor  
Transistor (NPN)  
B
Pin A  
Pin B  
Pin B  
C
E
Pin A  
B
C
E
N
N
N
P+  
P+  
P+  
P+  
N
P
P
Parasitic  
element  
N
N
Parasitic  
element  
P substrate  
P substrate  
GND GND  
GND  
GND  
Parasitic element  
Parasitic element  
Other adjacent elements  
Fig.34  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
9/10  
Technical Note  
BH□□PB1WHFV Series  
Ordering part number  
B H  
3 0  
P B 1  
W
H F V - T R  
Part No.  
Output voltage Series  
Shutdown  
switch  
W : Includes  
switch  
Package  
HFV : HVSOF5  
Packaging and forming specification  
TR: Embossed tape and reel  
12: 1.2 V  
15: 1.5 V  
18: 1.8 V  
25: 2.5 V  
28: 2.8 V  
29: 2.9 V  
30: 3.0 V  
31: 3.1 V  
33: 3.3 V  
PB1:Auto power-  
saving type  
HVSOF5  
<Tape and Reel information>  
1.6 0.05  
(0.8)  
(0.3)  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
1.0 0.05  
TR  
Direction  
of feed  
5
1
4
3
4
5
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
3
2 1  
2
1pin  
0.13 0.05  
S
0.1  
0.22 0.05  
S
0.5  
M
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.08  
Reel  
(Unit : mm)  
www.rohm.com  
2011.01 - Rev.B  
10/10  
© 2011 ROHM Co., Ltd. All rights reserved.  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BH31RB1WGUT

CMOS Type series regulator
ROHM

BH31RB1WGUT-E2

1ch 150mA CMOS LDO Regulators
ROHM

BH32C1

HC-49/US Microprocessor Crystals
CALIBER

BH32C1-10.000MHZ-SP

Parallel - Fundamental Quartz Crystal, 10MHz Nom, HC49/US, 2 PIN
CALIBER

BH32C1-15.999MHZ-G

Parallel - Fundamental Quartz Crystal, 15.999MHz Nom, HC49/US, 2 PIN
CALIBER

BH32C1-16.000MHZ-SP

Parallel - Fundamental Quartz Crystal, 16MHz Nom, HC49/US, 2 PIN
CALIBER

BH32C1-16.000MHZ-TR

Parallel - Fundamental Quartz Crystal, 16MHz Nom, HC49/US, 2 PIN
CALIBER

BH32C1-30.000MHZ-I-AT

Parallel - Fundamental Quartz Crystal, 30MHz Nom, HC49/US, 2 PIN
CALIBER

BH32C1-30.000MHZ-L-AT

Parallel - Fundamental Quartz Crystal, 30MHz Nom, HC49/US, 3 PIN
CALIBER

BH32C1-5.000MHZ-G

Parallel - Fundamental Quartz Crystal, 5MHz Nom, HC49/US, 2 PIN
CALIBER

BH32C1-5.000MHZ-G1

Parallel - Fundamental Quartz Crystal, 5MHz Nom, HC49/US, 2 PIN
CALIBER

BH32C1-8.000MHZ-G1

Parallel - Fundamental Quartz Crystal, 8MHz Nom, HC49/US, 2 PIN
CALIBER