BH76809FVM-TR [ROHM]

Video Amplifier, 1 Channel(s), 1 Func, PDSO8, ROHS COMPLIANT, MSOP-8;
BH76809FVM-TR
型号: BH76809FVM-TR
厂家: ROHM    ROHM
描述:

Video Amplifier, 1 Channel(s), 1 Func, PDSO8, ROHS COMPLIANT, MSOP-8

放大器 光电二极管 商用集成电路
文件: 总17页 (文件大小:495K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Composite Video Amplifier  
Output Capacitor-less  
Video Drivers  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
No.14064EBT02  
Description  
The BH768xxFVM series video drivers are the optimum solution for high density integration systems such as, digital still  
cameras, mobile phones, and portable video devices. A built-in charge pump circuit eliminates the need for a large output  
coupling capacitor. Features include: a built-in LPF, low-voltage (2.5 V) operation, and 0 µA current consumption during  
standby mode.  
Features  
1)  
Select from four video driver amp gain settings: 6 dB, 9 dB, 12 dB, and 16.5 dB  
Large-output video driver with maximum output voltage of 5.2 VP-P  
Supports wide and low-voltage operation range.  
2)  
3)  
4)  
5)  
6)  
7)  
No output coupling capacitor is needed, which makes for a more compact design  
Built-in standby function sets circuit current to 0 µA (typ.) during standby mode  
Clear image reproduction by on-chip 8-order 4.5-MHz LPF (Low Pass Filter)  
Bias input method is used to support chroma, video, and RGB signals.  
MSOP8 compact package  
Applications  
Mobile telephones, DSCs (digital still cameras), DVCs (digital video cameras), portable game systems,  
portable media players, etc.  
Line up matrix  
Part No.  
Video driver amp gain  
Recommended input level  
BH76806FVM  
BH76809FVM  
BH76812FVM  
BH76816FVM  
6dB  
9dB  
1 VP-P  
0.7 VP-P  
0.5 VP-P  
0.3 VP-P  
12dB  
16.5dB  
Absolute maximum ratings Ta=25℃)  
Parameter  
Supply voltage  
Symbol  
Ratings  
3.55  
Unit  
V
VCC  
Pd  
Power dissipation  
0.47  
W
Operating temperature range  
Storage temperature range  
Topr  
Tstg  
-40 to +85  
-55 to +125  
Reduce by 4.7 mW/C over 25C, when mounted on a 70mm×70mm×1.6mm PCB board.  
www.rohm.com  
2014.08 - Rev.B  
1/16  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Operating range (Ta=25)  
Parameter  
Symbol  
VCC  
Min.  
2.5  
TYP.  
3.0  
Max.  
3.45  
Unit  
V
Supply voltage  
Electrical characteristics (Unless otherwise noted, Typ.: Ta=25, VCC=3V)  
Typical value  
BH76806 BH76809 BH76812 BH76816  
FVM FVM FVM FVM  
Parameter  
Symbol  
Unit  
Conditions  
Circuit current 1  
ICC1  
ICC2  
IthH  
16  
15  
mA  
μA  
μA  
V
No signal  
Circuit current 2  
0.0  
45  
Standby mode  
Standby SW input current  
High-Level  
When 3.0 V is applied to 4pin  
standby OFF  
Standby switching voltage  
High-Level  
VthH  
VthL  
GV  
(min.) 1.2  
Standby Switching voltage  
Low-Level  
(max.) 0.45  
V
standby ON  
Video driver amp gain  
Maximum output level  
Frequency characteristic 1  
Frequency characteristic 2  
Frequency characteristic 3  
Frequency characteristic 4  
Differential Gain  
6.0  
9.0  
12.0  
16.5  
dB  
VP-P  
dB  
dB  
dB  
dB  
%
Vo=100kHz, 1.0VP-P  
f=1kHz,THD=1%  
f=4.5MHz/100kHz  
f=8.0MHz/100kHz  
f=18MHz/100kHz  
f=23.5MHz/100kHz  
Vomv  
Gf1  
5.2  
-0.45  
-3.0  
-32  
Gf2  
Gf3  
Gf4  
-51  
Vo =1.0VP-P  
Standard stair step signal  
DG  
0.5  
Vo =1.0VP-P  
Standard stair step signal  
Differential Phase  
DP  
1.0  
deg  
Band = 100k to 6MHz  
75 termination  
100% chroma video signal  
Band = 100 to 500kHz  
75termination  
100%chroma video signal  
Band = 100 to 500kHz  
75termination  
Y signal output S/N  
SNY  
SNCA  
SNCP  
+74  
+77  
+73  
+76  
+70  
+75  
+70  
+75  
dB  
dB  
dB  
C signal output S/N (AM)  
C signal output S/N (PM)  
+65  
30  
100%chroma video signal  
4.5 V applied via 150 to  
output pin  
Output pin source current  
Output DC offset voltage  
lextin  
Voff  
mA  
mV  
(max.) ±50  
75 termination  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
2/16  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Measurement circuit  
1µ  
1
8
7
IN  
OUT  
1
2
CHARGE PUMP  
SW2  
2
A
1µ  
V2  
(VCC)  
NVCC  
GND  
V
10µ  
0.1µ  
6dB/9dB/12dB/16.5dB  
+
3
4
LPF  
6
5
0.1µ  
150k  
50  
OSC1  
-
4.7µ  
75  
V4  
75  
V
Test circuit is intended for shipment inspections, and differs from application circuit.  
Fig. 1  
Control pin settings  
Parameter  
States  
Note  
STBY(4pin)=H  
STBY(4pin)=L  
STBY(4pin)=OPEN  
STBY:OFF  
STBY:ON  
STBY:ON  
Standby control  
Block diagram  
C1 1  
8
7
C2  
IN  
OUT  
CHARGE PUMP  
VCC  
2
NVCC  
NVCC  
GND  
6dB/9dB/12dB/16.5dB  
+
-
3
4
LPF  
VIN  
6 GND  
150k  
STBY  
5
VOUT  
Fig. 2  
www.rohm.com  
2014.08 - Rev.B  
3/16  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Pin descriptions  
Pin  
No.  
Pin  
DC  
voltage  
equivalent circuit  
Functions  
name  
Flying capacitor "+" pin  
+VCC  
↑↓  
0V  
See function description for pins 7  
and 8  
1
C1  
2
VCC  
VCC  
VCC Pin  
Video signal input pin  
VIN  
1µF  
Adaptive input signal  
150k  
3
VIN  
0V  
Composite video signal/  
chroma signal/RGB signal, etc.  
STANBY control Pin  
Terminal  
Voltage  
MODE  
VCC  
to  
0V  
1.2V to VCC  
STBY:OFF  
( H )  
4
STBY  
0V to 0.45V  
STBY:ON  
( L )  
Video signal output pin  
VOUT  
5
VOUT  
0V  
75ꢀ  
75ꢀ  
6
GND  
GND Pin  
0V  
1 The DC voltage in the figure is VCC = 3.0 V. These values are for reference only and are not guaranteed.  
2 These values are for reference only and are not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
4/16  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Pin descriptions  
Flying capacitor “-”pin  
(8pin)  
VCC  
C1  
-VCC  
(-2.75V)  
7
NVCC  
0V  
C2  
0V  
↑↓  
-VCC  
(-2.75V)  
8
C2  
NVCC  
NVCC  
Load voltage pins (7 pins)  
1 The DC voltage in the figure is VCC = 3.0 V. These values are for reference only and are not guaranteed.  
2 These values are for reference only and are not guaranteed.  
Description of operations  
1) Principles of video driver with no output coupling capacitor  
Amp (Single power supply)  
Amp (Dual power supply)  
VCC  
VCC  
Output capacitor is required due to DC  
Output capacitor is not required since  
DC voltage is not applied to output pin  
voltage at output pin  
75ꢀ  
75ꢀ  
75ꢀ  
1000µF  
75ꢀ  
-VCC  
Fig.4  
1/2VCC Bias  
Fig.3  
When the amplifier operates using single voltage power supply, the operating potential point is approximately 1/2 Vcc.  
Therefore, a coupling capacitor is required to prevent DC output. For the video driver, the load resistance is 150 (75 ꢀ  
+ 75 ). Therefore, the coupling capacitor should be about 1000 µF when a low bandwidth for transmission is considered.  
(See Figure 3.)  
When the amplifier operates using a dual (±) power supply, the operating point can be set at GND level, and therefore,  
there is no need for a coupling capacitor to prevent DC output.  
Since a coupling capacitor is not needed, there is no sagging of low-frequency characteristics in output stage. (See Figure  
4.)  
2) Generation of negative voltage by charge pump circuit  
As is shown in Figure 5, the charge pump consists of a pair of switches (SW1 and SW2) and a pair of capacitors (flying  
capacitor and load capacitor), generating a negative voltage. When +3 V is applied to this IC, approximately -2.83 V of  
negative voltage is obtained.  
www.rohm.com  
2014.08 - Rev.B  
5/16  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Vcc +3V  
Vcc +3V  
charge current  
SW1 SW2  
charge current  
-Vcc is generated  
SW1  
SW2  
charge current  
Flying capacitor  
Load capacitor  
Load capacitor  
Flying capacitor  
charge transfer mode  
Vcc +3V  
charge current  
-Vcc is generated  
Fig. 5 Principles of Charge Pump Circuit  
1) Configuration of BH768xxFVM Series  
As is shown in Figure 6, in the BH768xxFVM Series, a dual power supply amplifier is integrated with a charge pump circuit  
in the same IC. This enables operation using a +3V single power supply while also using a dual power supply amplifier,  
which eliminates the need for an output coupling capacitor.  
Vcc  
3.3uF  
1µF  
75Ω  
VIDEO  
LPF  
AMP  
75Ω  
CHARGE  
PUMP  
1µF  
1µF  
Fig. 6 BH768xxFVM Configuration Diagram  
2) Input terminal type and sag characteristics  
BH768xxFVM Series devices provide both a low-voltage video driver and a large dynamic range (approximately 5.2 VP-P).  
A resistance termination method (150 ktermination) is used instead of the clamp method, which only supports video  
signals, since it supports various signal types.  
The BH768xxFVM series supports a wide range of devices such as, video signals, chroma signals, and RGB signals that  
can operate normally even without a synchronization signal.  
In addition, input terminating resistance (150 k) can use a small input capacitor without reducing the sag low-band  
It is recommended to use a H-bar signal when evaluating sag characteristics, since it makes sag more noticeable. (See  
Figures 7 to 10.)  
www.rohm.com  
2014.08 - Rev.B  
6/16  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Sag is determined  
by input capacitor  
and input  
resistance only.  
Cut-off frequency for input capacitor and input impedance is  
the same as when the output capacitor is set at 1000 µF with  
an ordinary 75 driver.  
1µF  
150k  
1 μF X 150 K= 1000 μF X 150 ꢀ  
(Input terminal time constant) (Output terminal time constant)  
Sag  
Fig. 7  
a) Sag-free TV Test Signal Generator Output(Sibasoku TG-7/1 , H-bar)  
H-bar signal's TV screen  
output image  
Fig. 8  
b) BH768xxFVM output (input = 1.0 µF, output, H-bar)  
VCC  
Monitor  
1μF  
75ꢀ  
75ꢀ  
TG-7/1  
-VCC  
BH768xxFVM  
Fig. 9  
Nearly identical sag characteristics  
c) 1000 µF + 150 sag waveform  
(TV Test Signal Generator Sibasoku TG-7/1 output, H-bar)  
Monitor  
75ꢀ  
75ꢀ  
1000μF  
TG-7/1  
Fig. 10  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
7/16  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Application circuit  
1.0µF  
(C18)  
1
8
7
IN  
OUT  
CHARGE PUMP  
10Ω(R2)  
2
3.3µF  
(C2)  
1.0µF(C7)  
NVCC  
GND  
VIDEO IN  
6dB/9dB/12dB/16.5dB  
3
4
LPF  
+
-
6
5
1.0µF(C3)  
150k  
75Ω(R5)  
Although ROHM is confident that the example application circuit reflects the best possible  
recommendations, be sure to verify circuit characteristics for your particular application.  
Fig. 11  
A large current transition occurs in the power supply pin when the charge pump circuit is switched.  
If this affects other ICs (via the power supply line), insert a resistor (approximately 10 ) in the  
VCC line to improve the power supply's ripple effects. Although inserting a 10 resistor lowers  
the voltage by about 0.2 V, this IC has a wide margin for low-voltage operation, so dynamic range  
problems or other problems should not occur.  
The effect of the resister inserted in the VCC line  
Vcc  
1.Effects of charge pump  
circuit’s current ripple  
cc端子  
3.3µF  
2.Current ripple affects DAC, etc.  
1µF  
1µF  
75Ω  
VIDEO  
AMP  
DAC etc  
LPF  
75Ω  
CHARGE  
PUMP  
1µF  
1µF  
Fig. 12 Effect of Charge Pump Circuit's Current Ripple on External Circuit  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
8/16  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
1) Decoupling capacitor only  
Current waveform (A)  
between single power supply and C2  
10mA/div  
Vcc  
Current waveform (B)  
between C2 and IC  
10mA/div  
A
C2  
(A)  
A
(B)  
VCC  
Fig.13  
2) Decoupling capacitor + Resistance 10ꢀ  
Current waveform (A)  
between single power supply and R2  
10mA/div  
Current waveform (B)  
between R2 and C2  
10mA/div  
Vcc  
Current waveform (C)  
between single power supply and C2  
10mA/div  
10Ω  
A
A
R2  
(A)  
(B)  
C2  
A
(C)  
Fig.14  
VCC  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
9/16  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Pattern diagram of evaluation board  
SW  
STBY  
ACT  
GND  
R2  
VIN  
GND  
R3  
VOUT  
R1  
C4  
C1  
C3  
C2  
CN1  
CN2  
VCC  
GND  
GND  
GND  
GND  
GND  
ROHM  
BH76806/09/12/16FVM  
Fig. 15  
List of external components  
Recommended  
value  
Symbol  
Function  
Remark  
C1  
C2  
C3  
C4  
R1  
R2  
Flying capacitor  
1μF  
1μF  
B characteristics are recommended  
B characteristics are recommended  
B characteristics are recommended  
B characteristics are recommended  
Tank capacitor  
Input coupling capacitor  
Decoupling capacitor  
Output resistor  
1μF  
3.3μF  
75ꢀ  
75ꢀ  
Not required when connecting to TV  
or video signal test equipment.  
Required when connecting to video  
signal test equipment.  
Output terminating resistance  
Input terminating resistance  
R3  
75ꢀ  
CN1  
CN2  
SW  
Input connector  
Output connector  
STBY control  
BNC  
RCA (pin jack)  
SW  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
10/16  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Reference data  
BH76812FVM  
Ta=25℃  
BH76812FVM  
Ta=25℃  
30  
25  
20  
15  
10  
5
1
0.8  
0.6  
0.4  
0.2  
0
0
0
1
2
3
4
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
POWER SUPPLY VOLTAGE [V]  
POWER SUPPLY VOLTAGE [V]  
Fig. 17 Circuit Current (Standby) vs. Supply Voltage  
Fig. 16 Circuit current vs. Supply voltage  
VCC=3V  
BH76812FVM  
BH76812FVM  
VCC=3V  
1
20  
18  
16  
14  
12  
10  
0.8  
0.6  
0.4  
0.2  
0
-50  
0
50  
100  
-50  
0
50  
TEMPERATURE []  
100  
TEMPERATURE []  
Fig. 18 Circuit current vs. Temperature  
Fig. 19 Circuit Current (Standby) vs. Temperature  
Ta=25℃  
BH76812FVM  
BH76812FVM  
VCC=3V  
50  
25  
50  
25  
0
0
-25  
-50  
-25  
-50  
-50  
0
50  
100  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
TEMPERATURE []  
POWER SUPPLY VOLTAGE [V]  
Fig. 21 VOUT DC offset voltage  
vs. Temperature  
Fig. 20 VOUT DC offset voltage  
vs. Supply voltage  
BH76812FVM  
Ta=25℃  
BH76812FVM  
VCC=3V Ta=25℃  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
5
-5  
-15  
-25  
-35  
-45  
-55  
11.9  
11.8  
11.7  
11.6  
11.5  
-65  
-75  
100  
10  
1
FREQUENCY [MHz]  
0.1  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
POWER SUPPLY VOLTAGE [V]  
Fig. 22 Frequency characteristic  
Fig. 23 Voltage gain vs. Supply voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
11/16  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
BH76812FVM  
VCC=3V  
BH76812FVM  
Ta=25℃  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
1
0.8  
0.6  
0.4  
0.2  
0
f=4. 5MHz/100kHz  
11.9  
11.8  
11.7  
11.6  
11.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-50  
0
50  
100  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
TEMPERATURE []  
POWER SUPPLY VOLTAGE:Vcc[V]  
Fig. 25 Frequency response 1 vs. Supply voltage  
Fig. 24 Voltage gain vs. Temperature  
BH76812FVM  
VCC=3V  
BH76812FVM  
Ta=25℃  
1
0.8  
0.6  
0.4  
0.2  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
f=4. 5MHz/100kHz  
f=8MHz/100kHz  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-50  
0
50  
100  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
TEMPERATURE[  
]
POWER SUPPLY VOLTAGE: Vcc [V]  
Fig. 27 Frequency response 2 vs. Supply voltage  
Fig. 26 Frequency response 1 vs. Temperature  
BH76812FVM  
Ta=25℃  
f=23.5MHz/100kHz  
BH76812FVM  
VCC=3V  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
0
-1  
-2  
-3  
-4  
-5  
-6  
f=8MHz/100kHz  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
POWER SUPPLY VOLTAGE:Vcc[V]  
-50  
0
50  
100  
TEMPERATURE []  
Fig. 28 Frequency response 2 vs. Temperature  
Fig.29 Frequency response 4 vs. Supply voltage  
BH76812FVM  
VCC=3V  
BH76812FVM  
Ta=25℃  
7
6
5
4
3
2
1
0
-40  
-45  
-50  
-55  
-60  
-65  
-70  
f=23.5MHz/100kHz  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
-50  
0
50  
100  
POWER SUPPLY VOLTAGE [V]  
TEMPERATURE []  
Fig. 31 Maximum output voltage level vs. Supply voltage  
Fig. 30 Frequency response 4 vs. Temperature  
www.rohm.com  
2014.08 - Rev.B  
12/16  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
BH76812FVM  
VCC=3V  
Ta=25℃  
BH76812FVM  
VCC=3V  
3
2
6
5.8  
5.6  
5.4  
5.2  
5
1
6dB  
9dB  
0
12dB  
16.5dB  
4.8  
4.6  
4.4  
4.2  
4
-1  
-2  
-3  
-1.5  
-1.0 -0.5  
0.0  
0.5  
1.0  
1.5  
-50  
0
50  
100  
INPUT DC VOLTAGE [V]  
TEMPERATURE[V]  
Fig. 32 Maximum output level vs. Temperature  
Fig. 33 Output DC voltage – Input DC voltage  
BH76812FVM  
VCC=3V  
BH76812FVM  
Ta=25℃  
300  
260  
220  
180  
140  
100  
300  
260  
220  
180  
140  
100  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
-50  
0
50  
100  
POWER SUPPLY VOLTAGE [V]  
TEMPERATURE []  
Fig. 35 Charge pump oscillation frequency  
vs. Temperature  
Fig. 34 Charge pump oscillation frequency  
vs. Supply voltage  
BH76812FVM  
BH76812FVM  
Ta=25℃  
VCC=3V Ta=25℃  
1.0  
0.5  
0
-0.5  
-1  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-1.5  
-2  
-2.5  
-3  
0.0  
1.0  
2.0  
3.0  
4.0  
0
10  
20  
30  
40  
POWER SUPPLY VOLTAGE [V]  
LOAD CURRENT [mA]  
Fig. 36 Charge pump output voltage  
vs. Supply voltage  
Fig. 37 Charge pump load regulation  
BH76812FVM  
BH76812FVM  
VCC=3V  
Ta=25℃  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0.5  
0
0
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
-50  
0
50  
100  
TEMPERATURE []  
POWER SUPPLY VOLTAGE [V]  
Fig. 39 Differential phase vs. Temperature  
Fig. 38 Differential phase vs. Supply voltage  
www.rohm.com  
2014.08 - Rev.B  
13/16  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
BH76812FVM  
BH76812FVM  
VCC=3V  
Ta=25℃  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-50  
0
50  
100  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
POWER SUPPLY VOLTAGE [V]  
TEMPERATURE []  
Fig. 40 Differential gain vs. Supply voltage  
Fig. 41 Differential gain vs. Temperature  
BH76812FVM  
VCC=3V  
Ta=25℃  
BH76812FVM  
80  
75  
70  
65  
60  
80  
75  
70  
65  
60  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
-50  
0
50  
100  
POWER SUPPLY VOLTAGE [V]  
TEMPERATURE []  
Fig.43 S/N(Y) vs. Temperature  
Fig. 42 S/N(Y) vs. Supply Voltage  
BH76812FVM  
Ta=25℃  
VCC=3V  
BH76812FVM  
80  
75  
70  
65  
60  
80  
75  
70  
65  
60  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
-50  
0
50  
100  
POWER SUPPLY VOLTAGE [V]  
TEMPERATURE []  
Fig. 44 S/N(C-AM) vs. Supply Voltage  
Fig. 45 S/N(C-AM) vs. Temperature  
BH76812FVM  
Ta=25℃  
BH76812FVM  
VCC=3V  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
70  
65  
60  
55  
50  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
-50  
0
50  
100  
POWER SUPPLY VOLTAGE: Vcc[V]  
TEMPERATURE []  
Fig. 46 S/N(C-PM) vs. Supply Voltage  
Fig. 47 S/N(C-PM) vs. Temperature  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
14/16  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
BH76812FVM  
VCC=3V Ta=25℃  
20  
15  
10  
5
0
0.0  
0.5  
1.0  
1.5  
2.0  
STBY TERMINAL VOLTAGE [V]  
Fig. 48 Circuit current vs. STBY terminal voltage  
Cautions on use  
1.  
2.  
Numbers and data in entries are representative design values and are not guaranteed values of the items.  
Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure  
to verify circuit characteristics for your particular application. Modification of constants for other externally connected  
circuits may cause variations in both static and transient characteristics for external components as well as this Rohm  
IC. Allow for sufficient margins when determining circuit constants.  
3.  
Absolute maximum ratings  
Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range  
(Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or  
open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented  
when using the IC at times where the absolute maximum ratings may be exceeded.  
Thermal design  
4.  
5.  
Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation  
(Pd) in actual states of use.  
Short circuit between terminals and erroneous mounting  
Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other  
components on the circuits, can damage the IC.  
6.  
7.  
Operation in strong electromagnetic field  
Using the ICs in a strong electromagnetic field can cause operation malfunction.  
Wiring from the decoupling capacitor C2 to the IC should be kept as short as possible.  
This capacitance value may have ripple effects on the IC, and may affect the S-N ratio. It is recommended to use  
as large a decoupling capacitor as possible. (Recommendations: 3.3 µF, B characteristics, 6.3 V or higher)  
Target capacitor  
8.  
It is recommended to use a ceramic capacitor with good temperature characteristics (B).  
The NVCC (7 pin) terminal generates a voltage that is used within the IC, so it should not be connected to a load  
unless necessary. This capacitor (C7) has a large capacitance value with low negative voltage ripple.  
Capacitors C18 and C2 should be placed as close as possible to the IC. If the wire length to the capacitor is too  
long, it can lead to switching noise. (Recommended C18: 1.0 µF; C2: 3.3 µF, B characteristics, 6.3 V or higher  
maximum voltage)  
9.  
10.  
11.  
The HPF consists of input coupling capacitor C3 and 150 kof the internal input.  
Be sure to check for video signal sag before determining the C3 value.  
The cut-off frequency fc can be calculated using the following formula.  
fc = 1/(2π× C3 × 150 k) (Recommendations: 1.0 µF, B characteristics, 6.3 V or higher maximum voltage)  
The output resistor R5 should be placed close to the IC.  
12.  
13.  
14.  
Improper mounting may damage the IC.  
A large current transition occurs in the power supply pin when the charge pump circuit is switched. If this affects  
other ICs (via the power supply line), insert a resistor (approximately 10 ) in the VCC line to improve the power  
supply's ripple effects. Although inserting a 10 resistor lowers the voltage by about 0.2 V, this IC has a wide margin  
for low-voltage operation, so dynamic range problems or other problems should not occur. (See Figures 12 to 14.)  
www.rohm.com  
2014.08 - Rev.B  
15/16  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH76806FVM, BH76809FVM, BH76812FVM, BH76816FVM  
Selection of order type  
8 0 6  
H 7 6  
T R  
B
F
M
V
Tape and Reel  
information  
Part. No.  
BH76806FVM  
BH76809FVM  
BH76812FVM  
BH76816FVM  
MSOP8  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit:mm)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2014.08 - Rev.B  
16/16  
Notice  
N o t e s  
1) The information contained herein is subject to change without notice.  
2) Before you use our Products, please contact our sales representative and verify the latest specifica-  
tions :  
3) Although ROHM is continuously working to improve product reliability and quality, semicon-  
ductors can break down and malfunction due to various factors.  
Therefore, in order to prevent personal injury or fire arising from failure, please take safety  
measures such as complying with the derating characteristics, implementing redundant and  
fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no  
responsibility for any damages arising out of the use of our Poducts beyond the rating specified by  
ROHM.  
4) Examples of application circuits, circuit constants and any other information contained herein are  
provided only to illustrate the standard usage and operations of the Products. The peripheral  
conditions must be taken into account when designing circuits for mass production.  
5) The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly,  
any license to use or exercise intellectual property or other rights held by ROHM or any other  
parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of  
such technical information.  
6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communi-  
cation, consumer systems, gaming/entertainment sets) as well as the applications indicated in  
this document.  
7) The Products specified in this document are not designed to be radiation tolerant.  
8) For use of our Products in applications requiring a high degree of reliability (as exemplified  
below), please contact and consult with a ROHM representative : transportation equipment (i.e.  
cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety  
equipment, medical systems, servers, solar cells, and power transmission systems.  
9) Do not use our Products in applications requiring extremely high reliability, such as aerospace  
equipment, nuclear power control systems, and submarine repeaters.  
10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with  
the recommended usage conditions and specifications contained herein.  
11) ROHM has used reasonable care to ensur the accuracy of the information contained in this  
document. However, ROHM does not warrants that such information is error-free, and ROHM  
shall have no responsibility for any damages arising from any inaccuracy or misprint of such  
information.  
12) Please use the Products in accordance with any applicable environmental laws and regulations,  
such as the RoHS Directive. For more details, including RoHS compatibility, please contact a  
ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting  
non-compliance with any applicable laws or regulations.  
13) When providing our Products and technologies contained in this document to other countries,  
you must abide by the procedures and provisions stipulated in all applicable export laws and  
regulations, including without limitation the US Export Administration Regulations and the Foreign  
Exchange and Foreign Trade Act.  
14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of  
ROHM.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
R1102  
A

相关型号:

BH76812FVM

Low voltage operation video driver with LPF
ROHM

BH76812FVM-TR

Output Capacitor-less Video Drivers
ROHM

BH76816FVM

Low voltage operation video driver with LPF
ROHM

BH76816FVM-TR

Output Capacitor-less Video Drivers
ROHM

BH76906GU

Low voltage operation video driver with LPF
ROHM

BH76906GU-E2

Consumer Circuit, PBGA8, 1.60 X 1.60 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, WLCSP-8
ROHM

BH76906GU_09

Ultra-compact Waferlevel Chip Size Packeage Output Capacitor-less Single Output Video Drivers
ROHM

BH76909GU

Low voltage operation video driver with LPF
ROHM

BH76909GU-E2

Consumer Circuit, PBGA8, 1.60 X 1.60 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, WLCSP-8
ROHM

BH76912GU

Low voltage operation video driver with LPF
ROHM

BH76912GU-E2

Consumer Circuit, PBGA8, 1.60 X 1.60 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, WLCSP-8
ROHM

BH76916GU

Low voltage operation video driver with LPF
ROHM