BM6101FV-C [ROHM]

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation; 隔离电压2500Vrms的1通道栅极驱动器提供电流隔离
BM6101FV-C
型号: BM6101FV-C
厂家: ROHM    ROHM
描述:

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
隔离电压2500Vrms的1通道栅极驱动器提供电流隔离

驱动器 栅极 栅极驱动
文件: 总34页 (文件大小:888K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic isolation Series  
Isolation voltage 2500Vrms  
1ch Gate Driver Providing Galvanic Isolation  
BM6101FV-C  
General Description  
Key Specifications  
The BM6101FV-C is a gate driver with isolation voltage  
2500Vrms, I/O delay time of 350ns, and minimum input  
pulse width of 180ns, and incorporates the fault signal  
output functions, undervoltage lockout (UVLO) function,  
thermal protection function, and short current protection  
(SCP, DESAT) function.  
Isolation voltage:  
Maximum gate drive voltage:  
I/O delay time:  
2500Vrms(Max.)  
24V(Max.)  
350ns(Max.)  
180ns(Max.)  
Minimum input pulse width:  
Package  
SSOP-B20W  
W(Typ.) x D(Typ.) x H(Max.)  
6.50mm x 8.10mm x 2.01mm  
Features  
Providing Galvanic Isolation  
Active Miller Clamping  
Fault signal output function  
(Adjustable output holding time)  
Undervoltage lockout function  
Thermal protection function  
Short current protection function  
(Adjustable reset time)  
Soft turn-off function for short current protection  
(Adjustable turn-off time)  
Applications  
Supporting Negative VEE2  
Automotive isolated IGBT/MOSFET inverter gate drive  
Automotive DC-DC converter  
Industrial inverters system  
UPS system  
Typical Application Circuits  
GND1  
PROOUT  
S
R
NC  
VEE2  
PRE  
LOGIC  
DRIVER  
Q
INB  
OUT1  
MASK  
FLTRLS  
VCC2  
LOGIC  
VEE2  
VCC1  
FLT  
VREG  
UVLO  
MASK  
FB  
TIMER  
TIMER  
UVLO  
OUT2  
SCPIN  
GND2  
VEE2  
MASK  
MASK  
MASK  
INA  
ECU  
FLT  
FLT  
ENA  
TEST  
GND1  
Input side  
chip  
Output side  
chip  
MASK  
VTSIN  
Temp Sensor  
Figure 1. For using 4-pin IGBT (for using SCP function)  
GND1  
NC  
PROOUT  
S
R
VEE2  
OUT1  
VCC2  
VREG  
OUT2  
SCPIN  
GND2  
PRE  
DRIVER  
LOGIC  
Q
INB  
MASK  
FLTRLS  
LOGIC  
VEE2  
VCC1  
FLT  
UVLO  
MASK  
FB  
TIMER  
TIMER  
UVLO  
MASK  
MASK  
INA  
ECU  
FLT  
FLT  
ENA  
MASK  
TEST  
VEE2  
Input side  
chip  
Output side  
chip  
MASK  
GND1  
VTSIN  
Temp Sensor  
Figure 2. For using 3-pin IGBT (for using DESAT function)  
Product structureSilicon integrated circuit This product is not designed protection against radioactive rays  
.
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
1/31  
TSZ2211114001  
Daattaasshheeeett  
BM6101FV-C  
Recommended range of external constants  
Recommended Value  
Pin Name  
Symbol  
Unit  
Min.  
-
Typ.  
0.01  
200  
3.3  
1.0  
-
Max.  
0.47  
1000  
10.0  
-
CFLTRLS  
RFLTRLS  
CVREG  
CVCC1  
uF  
kΩ  
uF  
uF  
uF  
FLTRLS  
50  
VREG  
VCC1  
VCC2  
1.0  
0.1  
0.33  
CVCC2  
-
Pin Configuration  
SSOP-B20W  
(TOP VIEW)  
1pin  
Figure 3. Pin configuration  
Pin Description  
Pin No.  
1
Pin Name  
VTSIN  
VEE2  
GND2  
SCPIN  
OUT2  
VREG  
VCC2  
OUT1  
VEE2  
PROOUT  
GND1  
NC  
Function  
Thermal detection pin  
2
Output-side negative power supply pin  
Output-side ground pin  
3
4
Short current detection pin  
5
MOS FET control pin for Miller Clamp  
6
Power supply pin for driving MOS FET for Miller Clamp  
Output-side positive power supply pin  
Output pin  
7
8
9
Output-side negative power supply pin  
Soft turn-off pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Input-side ground pin  
No Connect  
INB  
Invert / non-invert selection pin  
Fault output holding time setting pin  
Input-side power supply pin  
Fault output pin  
FLTRLS  
VCC1  
FLT  
INA  
Control input pin  
ENA  
Input enabling signal input pin  
Test mode setting pin  
TEST  
GND1  
Input-side ground pin  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
2/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Description of pins and cautions on layout of board  
1) VCC1 (Input-side power supply pin)  
The VCC1 pin is a power supply pin on the input side. To suppress voltage fluctuations due to the current to drive  
internal transformers, connect a bypass capacitor between the VCC1 and the GND1 pins.  
2) GND1 (Input-side ground pin)  
The GND1 pin is a ground pin on the input side.  
3) VCC2 (Output-side positive power supply pin)  
The VCC2 pin is a positive power supply pin on the output side. To reduce voltage fluctuations due to OUT1 pin output  
current and due to the current to drive internal transformers, connect a bypass capacitor between the VCC2 and the  
GND2 pins.  
4) VEE2 (Output-side negative power supply pin)  
The VEE2 pin is a power supply pin on the output side. To suppress voltage fluctuations due to OUT1 pin output current and  
due to the current to drive internal transformers, connect a bypass capacitor between the VEE2 and the GND2 pins. To use  
no negative power supply, connect the VEE2 pin to the GND2 pin.  
5) GND2 (Output-side ground pin)  
The GND2 pin is a ground pin on the output side. Connect the GND2 pin to the emitter / source of a power device.  
6) IN (Control input terminal)  
The IN pin is a pin used to determine output logic.  
ENA  
INB  
X
L
L
H
INA  
X
L
H
L
OUT1  
L
L
H
H
L
H
L
L
L
L
H
H
7) FLT (Fault output pin)  
The FLT pin is an open drain pin used to output a fault signal when a fault occurs (i.e., when the undervoltage lockout  
function (UVLO), short current protection function (SCP) or thermal protection function is activated).  
This pin is I/O pin and if L voltage is externally input, the output is set to L status regardless of other input logic.  
Consequently, be sure to connect the pull-up resistor between VCC1 pin and the FLT pin even if this pin is not used.  
Pin  
FLT  
While in normal operation  
Hi-Z  
When an Fault occurs  
(When UVLO, SCP or thermal protection is activated)  
L
8) FLTRLS (Fault output holding time setting pin)  
The FLTRLS pin is a pin used to make setting of time to hold a Fault signal. Connect a capacitor between the FLTRLS  
pin and the GND1 pin, and a resistor between it and the VCC1 pin.  
The Fault signal is held until the FLTRLS pin voltage exceeds a voltage set with the VFLTRLS parameter. To set holding  
time to 0 ms, do not connect the capacitor. Short-circuiting the FLTRLS pin to the VCC1 pin will cause a high current to  
flow in the FLTRLS pin and, in an open state, may cause the IC to malfunction. To avoid such trouble, be sure to connect  
a resistor between the FLTRLS and the VCC1 pins.  
9) OUT1 (Output pin)  
The OUT1 pin is a pin used to drive the gate of a power device.  
10) OUT2 (MOS FET control pin for Miller Clamp)  
The OUT2 pin is a pin for controlling the external MOS switch for preventing increase in gate voltage due to the miller  
current of the power device connected to OUT1 pin.  
11) VREG (Power supply pin for driving MOS FET for Miller Clamp)  
The VREG pin is a power supply pin for driving MOS FET for Miller Clamp. Be sure to connect a capacitor between  
VREG pin and VEE2 pin for preventing the oscillation and to reduce voltage fluctuations due to OUT2 pin output current.  
12) PROOUT (Soft turn-off pin)  
The PROOUT pin is a pin used to put the soft turn-off function of a power devise in operation when the SCP function is  
activated. This pin combines with the gate voltage monitoring pin for Miller Clamp.  
13) SCPIN (Short current detection pin)  
The SCPIN pin is a pin used to detect current for short current protection. When the SCPIN pin voltage exceeds a  
voltage set with the VSCDET parameter, the SCP function will be activated. This may cause the IC to malfunction in an  
open state. To avoid such trouble, short-circuit the SCPIN pin to the GND2 pin if the short current protection is not used.  
In order to prevent the wrong detection due to noise, the noise mask time tSCPMSK is set.  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
3/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
14) VTSIN (Thermal detection pin)  
The VTSIN pin is a temperature sensor voltage input pin, which can be used for thermal protection of an output device.  
If VTSIN pin voltage becomes VTSDET or less, OUT pin is set to L. In the open status, the IC may malfunction, so be sure  
to supply the VTSPIN more than VTSDET if the thermal protection function is not used. In order to prevent the wrong  
detection due to noise, the noise mask time tTSMSK is set.  
Description of functions and examples of constant setting  
1) Miller Clamp function  
When OUT1=L and PROOUT pin voltage < VOUT2ON, H is output from OUT2 pin and the external MOS switch is turned  
ON. When OUT1=H, L is output from OUT2 pin and the external MOS switch is turned OFF. While the short-circuit  
protection function is activated, L is output from OUT2 pin and the external MOS switch is turned OFF.  
Short current  
Detected  
SCPIN  
IN  
X
PROOUT  
X
OUT2  
L
Not less than  
VSCDET  
X
X
X
L
L
Not less than VOUT2ON  
Not more than VOUT2ON  
X
Hi-Z  
H
Not detected  
H
L
VCC2  
PREDRIV ER  
OUT1  
PREDRIV ER  
PROOUT  
PREDRIV ER  
REGULATOR  
LOGIC  
VREG  
OUT2  
PREDRIV ER  
PREDRIV ER  
+
-
GND2  
VEE2  
Figure 4. Block diagram of Miller Clamp function  
tPOFF tPON  
IN  
OUT1  
PROOUT  
(Monitor the gate voltage)  
VOUT2ON  
tOUT2ON  
OUT2  
Figure 5. Timing chart of Miller Clamp function  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
4/31  
Daattaasshheeeett  
BM6101FV-C  
2) Fault status output  
This function is used to output a fault signal from the FLT pin when a fault occurs (i.e., when the undervoltage lockout  
function (UVLO), short current protection function (SCP) or thermal protection function is activated) and hold the Fault  
signal until the set Fault output holding time is completed. The Fault output holding time tFLTRLS is given as the following  
equation with the settings of capacitor CFLTRLS and resistor RFLTRLS connected to the FLTRLS pin. For example, when  
CFLTRLS is set to 0.01F and RFLTRLS is set to 200k, the holding time will be set to 2 ms.  
tFLTRLS [ms]= CFLTRLS [F]•RFLTRLS [k]  
To set the fault output holding time to “0” ms, only connect the resistor RFLTRLS.  
Status  
Normal  
FLT pin  
Hi-Z  
L
Fault occurs  
Fault occurs  
(The UVLO, SCP or thermal protection)  
Status  
UVLO MASK  
S
R
MASK  
MASK  
SCP  
VTS  
FLT  
VFLTRLS  
FLTRLS  
FLT  
VCC1  
Hi-Z  
FLTRLS  
FLT  
-
+
L
H
MASK  
OUT  
L
LOGIC  
ECU  
GND1  
Fault output holding time (tFLTRLS)  
Figure 6. Fault Status Output Timing Chart  
Figure 7. Fault Output Block Diagram  
3) Undervoltage Lockout (UVLO) function  
The BM6101FV-C incorporates the undervoltage lockout (UVLO) function both on the low and the high voltage sides.  
When the power supply voltage drops to the UVLO ON voltage, the OUT pin and the FLT pin both will output the “L”  
signal. When the power supply voltage rises to the UVLO OFF voltage, these pins will be reset. However, during the fault  
output holding time set in “2) Fault status output” section, the OUT pin and the FLT pin will hold the “L” signal. In addition,  
to prevent malfunctions due to noises, mask time tUVLO1MSK and tUVLO2MSK are set on both low and high voltage sides.  
H
IN  
L
VUVLO1H  
VUVLO1L  
VCC1  
FLT  
Hi-Z  
L
H
OUT1  
L
Figure 8. Input-side UVLO Function Operation Timing Chart  
H
L
IN  
VUVLO2H  
VUVLO2L  
VCC2  
FLT  
OUT1  
Hi-Z  
L
H
Hi-Z  
L
Figure 9. Output-side UVLO Operation Timing Chart  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
5/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
4) Short current protection function (SCP, DESAT)  
When the SCPIN pin voltage exceeds a voltage set with the VSCDET parameter, the SCP function will be activated.  
When the SCP function is activated, the OUT1 pin voltage will be set to the “Hi-Z” level first, and then the PROOUT pin  
voltage to the “L” level (soft turn-off).Next, after tSTO has passed after the short-circuit current falls below the threshold  
value, OUT pin becomes L and PROOUT pin becomes L. Finally, when the fault output holding time set in “2) fault status  
output” section on page 5 is completed, the SCP function will be released.  
When OUT1=L or Hi-Z, internal MOSFET connected to SCPIN pin turns ON to discharge CBLANK. When OUT1=H,  
internal MOSFET connected to SCPIN turns OFF.  
VCOLLECTOR/VDRAIN which Desaturation Protection starts operation (VDESAT) and the blanking time (tBLANK) can be  
calculated by the formula below;  
R3 R2  
VDESAT  
V
VSCDET  
VSCDET  
VF  
D
R3  
R3 R2 R1  
R3  
VCC 2  
V
MIN  
VSCDET  
VCC 2  
R2 R1  
R3 R2 R1  
R3 R2 R1  
R3  
tBLANKouternal  
s  
   
R3(CBLANK 27 1012 ) ln(1  
) 0.65106  
Reference Value  
R2  
VDESAT  
R1  
R3  
4.0V  
4.5V  
5.0V  
5.5V  
6.0V  
6.5V  
7.0V  
7.5V  
8.0V  
8.5V  
9.0V  
9.5V  
10.0V  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
39 kΩ  
43 kΩ  
36 kΩ  
39 kΩ  
43 kΩ  
62 kΩ  
68 kΩ  
82 kΩ  
91 kΩ  
82 kΩ  
130 kΩ  
91 kΩ  
130 kΩ  
6.8 kΩ  
6.8 kΩ  
5.1 kΩ  
5.1 kΩ  
5.1 kΩ  
6.8 kΩ  
6.8 kΩ  
7.5 kΩ  
8.2 kΩ  
6.8 kΩ  
10 kΩ  
6.8 kΩ  
9.1 kΩ  
VCC2  
VCC1  
IN  
PREDRIVER  
OUT  
LOGIC  
LOGIC  
PREDRIVER  
PREDRIVER  
PROOUT  
STO  
R
S
R
+
FLTRLS  
FLT  
-
V
TFLTRLS  
+
-
SCPIN  
SCPMSK  
ECU  
GND1  
GND2  
VEE2  
Input Side  
Output Side  
Figure 10. Block Diagram for DESAT  
6/31  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
H
L
IN  
VSCDET  
SCPIN  
H
OUT1  
OUT2  
Hi-Z  
L
H
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
FLT  
L
tSTO  
tSTO  
Fault output holding time*7  
Fault output holding time *7  
*7: “2) Fault status output” section on page 5  
Figure 11. SCP Operation Timing Chart  
INA  
OUT1  
OUT2  
tSCPMSK+tcomp_delay  
(Typ. 0.95us)  
tSCPMSK+tcomp_delay  
PROOUT  
SCPIN  
FLT  
VSCDET (Typ. 0.7V)  
VSCDET  
tBLANKouternal  
tBLANK  
tBLANKouternal  
tBLANK  
tcomp_delay : Detection delay time of internal comparator  
Figure 12. DESAT sequence  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
7/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Start  
OUT1=L, OUT2=H  
No  
No  
VSCPIN>VSCDET  
Yes  
No  
VFLTRLS>VTFLTRLS  
Yes  
Exceed mask time  
Yes  
FLT=Hi-Z  
OUT1=Hi-Z, OUT2=L,  
PROOUT=L, FLT=L  
No  
IN=H  
No  
No  
Yes  
VSCPIN<VSCDET  
Yes  
OUT1=H, OUT2=L, PROOUT=Hi-Z  
Exceed tSTO  
Yes  
Figure 13. SCP Operation Status Transition Diagram  
VCC2  
OUT  
VCC1  
IN  
PREDRIVER  
LOGIC  
LOGIC  
PREDRIVER  
PREDRIVER  
PROOUT  
STO  
R
S
R
+
FLTRLS  
FLT  
-
V
TFLTRLS  
+
-
SCPIN  
SCPMSK  
ECU  
GND1  
GND2  
VEE2  
Input Side  
Output Side  
Figure 14. Block Diagram for SCP  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
8/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
5I/O condition table  
Input  
Output  
P
R
O
O
U
T
P
R
O
O
U
T
V
T
S
I
S
C
P
I
O
U
T
1
O
U
T
2
F
L
T
E
N
A
I
N
B
I
N
A
F
L
T
No.  
Status  
VCC1  
VCC2  
N
N
1
2
3
4
SCP  
X
X
X
X
X
X
X
H
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
L
Hi-Z  
L
L
L
L
L
L
L
L
L
L
UVLO  
UVLO  
X
Hi-Z Hi-Z  
Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
VCC1UVLO  
X
L
H
UVLO  
H
L
VCC2UVLO  
5
6
X
UVLO  
X
L
L
L
L
L
L
L
L
L
L
X
X
X
L
X
X
X
X
X
H
H
L
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
L
L
H
L
L
L
L
L
L
L
L
L
L
H
Thermal protection  
FLT external input  
Disable  
7
L
H
8
H
H
H
H
H
H
H
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
9
L
H
10  
11  
12  
13  
H
H
H
H
H
L
H
H
L
Non-invert operation  
L input  
L
L
L
H
Hi-Z Hi-Z  
Non-invert operation  
H input  
14  
15  
H
H
L
L
H
H
L
L
L
H
L
X
X
H
H
L
Hi-Z Hi-Z  
Invert operation L  
input  
H
L
Hi-Z Hi-Z  
16  
17  
H
H
L
L
H
H
L
L
H
H
H
H
H
L
L
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
Invert operation H  
input  
H
: VCC1 or VCC2 > UVLO, X:Don't care  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
9/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
6) Power supply startup / shutoff sequence  
IN  
H
L
VUVLO1L  
VUVLO1L  
VUVLO1L  
VUVLO2H  
VCC1  
0V  
VCC2  
VEE2  
OUT1  
VUVLO2H  
VUVLO2H  
0V  
0V  
H
Hi-Z  
L
H
Hi-Z  
L
OUT2  
PROOUT  
FLT  
Hi-Z  
L
Hi-Z  
L
H
L
IN  
VCC1  
VUVLO1L  
VUVLO2H  
VUVLO1H  
VUVLO1H  
0V  
VUVLO2L  
VUVLO2L  
VCC2  
0V  
0V  
VEE2  
H
Hi-Z  
OUT1  
OUT2  
PROOUT  
FLT  
L
H
Hi-Z  
L
Hi-Z  
L
Hi-Z  
L
H
L
IN  
VCC1  
VCC2  
VEE2  
OUT1  
OUT2  
VUVLO1L  
VUVLO1L  
VUVLO1H  
VUVLO2L  
0V  
VUVLO2H  
VUVLO2H  
0V  
0V  
H
Hi-Z  
L
H
Hi-Z  
L
Hi-Z  
PROOUT  
FLT  
L
Hi-Z  
L
H
L
IN  
VCC1  
VUVLO1H  
VUVLO2L  
VUVLO1H  
VUVLO1H  
0V  
VCC2  
VUVLO2L  
VUVLO2L  
0V  
0V  
VEE2  
H
Hi-Z  
L
OUT1  
OUT2  
PROOUT  
FLT  
H
Hi-Z  
L
Hi-Z  
L
Hi-Z  
L
: Since the VCC2 to VEE2 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z conditions.  
: Since the VCC1 pin voltage is low and the FLT output MOS does not turn ON, the  
output pins become Hi-Z conditions.  
Figure 15. Power supply startup / shutoff sequence  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
10/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC1  
Limits  
Unit  
V
Input-side supply voltage  
-0.3 to +7.0*1  
-0.3 to +30.0*2  
-15.0 to +0.3*2  
Output-side positive supply voltage  
Output-side negative supply voltage  
VCC2  
V
VEE2  
V
Maximum difference  
VMAX2  
36.0  
V
between output-side positive and negative voltages  
INA, INB, ENA pin input voltage  
FLT pin input voltage  
VIN  
VFLT  
-0.3 to +VCC1+0.3 or 7.0*1  
V
V
-0.3 to +VCC1+0.3 or 7.0*1  
FLTRLS pin input voltage  
VTSIN pin input voltage  
VFLTRLS  
VVTSIN  
VSCPIN  
IVREG  
IOUT1  
-0.3 to +VCC1+0.3 or 7.0*1  
V
-0.3 to +10.0*2  
V
SCPIN pin input voltage  
-0.3 to +10.0*2  
V
VREG pin output current  
OUT1 pin output current (DC)  
OUT1 pin output current (Peak 1us)  
OUT2 pin output current (DC)  
OUT2 pin output current (Peak 1us)  
PROOUT pin output current  
FLT output current  
10  
0.4*3  
mA  
A
IOUT1PEAK  
IOUT2  
5.0  
A
0.1*3  
A
IOUT2PEAK  
IPROOUT  
IFLT  
1
A
0.2*3  
A
10  
mA  
W
Power dissipation  
Pd  
1.19*4  
-40 to +125  
-55 to +150  
+150  
Topr  
Operating temperature range  
Storage temperature range  
Junction temperature  
Tstg  
Tjmax  
*1 Relative to GND1.  
*2 Relative to GND2.  
*3 Should not exceed Pd and Tj=150C.  
*4 Derate above Ta=25C at a rate of 9.5mW/C. Mounted on a glass epoxy of 70 mm 70 mm 1.6 mm.  
Recommended Operating Ratings  
Parameter  
Symbol  
Min.  
4.5  
14  
Max.  
5.5  
24  
Units  
V
*5  
Input-side supply voltage  
VCC1  
*6  
Output-side positive supply voltage  
Output-side negative supply voltage  
VCC2  
V
*6  
VEE2  
-12  
0
V
Maximum difference  
VMAX2  
14  
0
32  
5
V
V
between output-side positive and negative voltages  
*6  
VTSIN pin input voltage  
VVTSIN  
*5 Relative to GND1.  
*6 Relative to GND2.  
Insulation related characteristics  
Parameter  
Symbol  
RS  
Characteristic  
Units  
Insulation Resistance (VIO=500V)  
Insulation Withstand Voltage / 1min  
Insulation Test Voltage / 1sec  
>109  
2500  
3000  
Ω
VISO  
Vrms  
Vrms  
VISO  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
11/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Electrical Characteristics  
Unless otherwise specified Ta=-40to 125, V CC1=4.5V to 5.5V, VCC2=14V to 24V, VEE2=-12V to 0V)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Conditions  
General  
Input side circuit current 1  
Input side circuit current 2  
Input side circuit current 3  
Input side circuit current 4  
Output side circuit current 1  
Output side circuit current 2  
Output side circuit current 3  
Output side circuit current 4  
Output side circuit current 5  
ICC1  
ICC12  
ICC13  
ICC14  
ICC21  
ICC22  
ICC23  
ICC24  
ICC25  
ICC26  
0.20  
0.20  
1.2  
2.1  
1.9  
1.3  
2.1  
1.4  
2.4  
1.6  
0.45  
0.45  
2.0  
3.5  
3.2  
2.1  
3.5  
2.4  
4.0  
2.7  
0.70  
0.70  
2.8  
4.9  
4.5  
2.9  
4.9  
3.4  
5.6  
3.8  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
OUT=L  
OUT=H  
INA=10kHz, Duty=50%  
INA=20kHz, Duty=50%  
VCC2=14V, OUT=L  
VCC2=14V, OUT=H  
VCC2=18V, OUT=L  
VCC2=18V, OUT=H  
VCC2=24V, OUT=H  
VCC2=24V, OUT=L  
Output side circuit current 6  
Logic block  
Logic high level input voltage  
VINH  
VINL  
0.7×VCC1  
-
-
VCC1  
0.3×VCC1  
100  
V
INA, INB, ENA, FLT  
INA, INB, ENA, FLT  
INA, INB  
Logic low level input voltage  
Logic pull-down resistance  
Logic pull-up resistance  
Logic input mask time  
ENA, FLT mask time  
0
V
RIND  
25  
25  
80  
4
50  
50  
130  
10  
kΩ  
kΩ  
ns  
RINU  
100  
ENA  
tINMSK  
tFLTMSK  
180  
INA, INB  
20  
μs  
ENA, FLT  
Output  
IOUT=40mA  
IOUT=40mA  
OUT1 ON resistance (Source)  
OUT1 ON resistance (Sink)  
RONH  
RONL  
0.7  
0.4  
1.8  
0.9  
4.0  
2.0  
Ω
Ω
VCC2=18V  
Design assurance  
OUT1 maximum current  
IOUTMAX  
3.0  
4.5  
-
A
0.4  
180  
180  
0.9  
265  
265  
2.0  
350  
350  
IPROOUT=40mA  
PROOUT ON resistance  
Turn ON time  
RONPRO  
tPON  
Ω
ns  
Turn OFF time  
tPOFF  
ns  
Propagation distortion  
Rise time  
tPDIST  
tRISE  
-60  
-
0
50  
50  
4.5  
3.5  
2
60  
100  
100  
9.0  
7.0  
2.2  
50  
ns  
ns  
ns  
Ω
Ω
tPOFF - tPON  
10nF between OUT1-VEE2  
10nF between OUT1-VEE2  
IOUT2=40mA  
Fall time  
tFALL  
-
OUT2 ON resistance (Source)  
OUT2 ON resistance (Sink)  
OUT2 ON threshold voltage  
OUT2 output delay time  
VREG output voltage  
RON2H  
RON2L  
2.0  
1.5  
1.8  
-
IOUT2=40mA  
VOUT2ON  
tOUT2ON  
VREG  
V
ns  
V
Relative to VEE2  
15  
10  
-
9
11  
Relative to VEE2  
Common Mode Transient Immunity  
Protection functions  
CM  
100  
-
kV/μs Design assurance  
VCC1 UVLO OFF voltage  
VCC1 UVLO ON voltage  
VCC1 UVLO mask time  
VCC2 UVLO OFF voltage  
VCC2 UVLO ON voltage  
VCC2 UVLO mask time  
SCPIN Input voltage  
VUVLO1H  
VUVLO1L  
tUVLO1MSK  
VUVLO2H  
VUVLO2L  
tUVLO2MSK  
VSCPIN  
4.05  
4.25  
4.15  
10  
4.45  
4.35  
30  
V
V
3.95  
4
μs  
V
11.5  
12.5  
11.5  
10  
13.5  
12.5  
30  
10.5  
V
4
μs  
-
0.1  
0.22  
0.735  
1.05  
110  
V
V
ISCPIN=1mA  
SCP detection voltage  
SCP detection mask time  
Soft turn OFF release time  
Thermal detection voltage  
Thermal detection mask time  
FLT output low voltage  
VSCDET  
tSCPMSK  
tSTO  
0.665  
0.700  
0.8  
0.55  
30  
μs  
V
VTSDET  
tTSMSK  
1.60  
1.70  
10  
1.80  
30  
4
μs  
V
VFLTL  
-
0.18  
0.40  
0.64×VCC1  
+0.1  
IFLT=5mA  
0.64×VCC1  
-0.1  
FLTRLS threshold  
VTFLTRLS  
0.64×VCC1  
V
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
12/31  
Daattaasshheeeett  
BM6101FV-C  
50%  
50%  
tPON  
INA  
tPOFF  
90%  
90%  
50%  
50%  
10%  
OUT1  
10%  
tFALL  
tRISE  
Figure 16. INA-OUT1 Timing Chart  
Typical Performance Curves  
0.7  
0.7  
0.6  
0.5  
0.4  
0.3  
Ta=125℃  
0.6  
0.5  
0.4  
0.3  
0.2  
Vcc1=5.5V  
Vcc1=5.0V  
Vcc1=4.5V  
Ta=25℃  
Ta=-40℃  
0.2  
4.50  
-40 -20  
0
20  
40  
60  
80 100 120  
4.75  
5.00  
VCC1 [V]  
5.25  
5.50  
Ta [  
]
Figure 17. Input side circuit current (at OUT1=L)  
Figure 18. Input side circuit current (at OUT1=L)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
13/31  
Daattaasshheeeett  
BM6101FV-C  
0.7  
0.6  
0.5  
0.4  
0.3  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
Ta=125℃  
Vcc1=5.5V  
Vcc1=5.0V  
Ta=25℃  
Vcc1=4.5V  
Ta=-40℃  
0.2  
4.50  
4.75  
5.00  
VCC1 [V]  
5.25  
5.50  
-40 -20  
0
20  
40  
Ta [  
60  
]
80 100 120  
Figure 19. Input side circuit current (at OUT1=H)  
Figure 20. Input side circuit current (at OUT1=H)  
2.8  
2.4  
2.0  
1.6  
1.2  
2.8  
2.4  
2.0  
1.6  
1.2  
Ta=-40℃  
Vcc1=5.5V  
Vcc1=5.0V  
Vcc1=4.5V  
Ta=25℃  
Ta=125℃  
4.50  
4.75  
5.00  
5.25  
5.50  
-40 -20  
0
20  
40  
60  
80 100 120  
VCC1 [V]  
Ta [  
]
Figure 21. Input side circuit current  
(at INA=10kHz and Duty=50%)  
Figure 22. Input side circuit current  
(at INA=10kHz and Duty=50%)  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
14/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
4.9  
4.5  
4.1  
3.7  
3.3  
2.9  
2.5  
4.9  
4.5  
4.1  
3.7  
3.3  
2.9  
2.5  
2.1  
Ta=-40℃  
Vcc1=5.5V  
Vcc1=4.5V  
Ta=25℃  
Vcc1=5.0V  
Ta=125℃  
2.1  
4.50  
4.75  
5.00  
VCC1 [V]  
5.25  
5.50  
-40 -20  
0
20  
40  
Ta [  
60  
80 100 120  
]
Figure 23. Input side circuit current  
(at INA=20kHz and Duty=50%)  
Figure 24. Input side circuit current  
(at INA=20kHz and Duty=50%)  
5.6  
5.2  
4.8  
4.4  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
5.6  
5.2  
4.8  
4.4  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
Vcc2=24V  
Ta=125℃  
Vcc2=18V  
Vcc2=14V  
Ta=25℃  
Ta=-40℃  
1.2  
14  
-40 -20  
0
20  
40  
Ta [  
60  
80 100 120  
16  
18  
20  
22  
24  
]
VCC2 [V]  
Figure 25. Output side circuit current (at  
OUT1=L)  
Figure 26. Output side circuit current (at OUT1=L)  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
5.6  
5.2  
4.8  
4.4  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
5.6  
5.2  
4.8  
4.4  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
Vcc2=24V  
Ta=125℃  
Ta=25℃  
Vcc2=18V  
Vcc2=14V  
20 40  
Ta=-40℃  
1.2  
14  
-40 -20  
0
60  
]
80 100 120  
16  
18  
20  
22  
24  
Ta [  
VCC2 [V]  
Figure 27. Output side circuit current (at OUT1=H)  
Figure 28. Output side circuit current (at OUT1=H)  
24  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=125℃  
Ta=25℃  
Ta=-40℃  
20  
16  
12  
8
Vcc1=5V  
H level  
L level  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
4
0
4.50  
4.75  
5.00  
VCC1 [V]  
5.25  
5.50  
0
1
2
3
4
5
INA [V]  
Figure 29. Logic (INA/INB/ENA) High/Low level  
input voltage  
Figure 30. Logic (INA/INB/ENA) High/Low level  
input voltage at Ta=25℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
16/31  
Daattaasshheeeett  
BM6101FV-C  
100.0  
75.0  
50.0  
100.0  
75.0  
50.0  
25.0  
Ta=-40℃  
Ta=-40℃  
Ta=25℃  
Ta=25℃  
Ta=125℃  
Ta=125℃  
25.0  
4.50  
4.75  
5.00  
VCC1 [V]  
5.25  
5.50  
4.50  
4.75  
5.00  
VCC1 [V]  
5.25  
5.50  
Figure 31. Logic pull-down resistance  
Figure 32. Logic pull-up resistance  
180.0  
160.0  
140.0  
120.0  
100.0  
180.0  
160.0  
140.0  
120.0  
100.0  
80.0  
Ta=125℃  
Ta=125℃  
Ta=25℃  
Ta=-40℃  
Ta=25℃  
Ta=-40℃  
80.0  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
VCC1 [V]  
VCC1 [V]  
Figure 33. Logic (INA/INB) input mask time  
(High pulse)  
Figure 34. Logic (INA/INB) input mask time  
(Low pulse)  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
17/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
20  
16  
12  
8
20  
16  
12  
8
Ta=-40℃  
Ta=-40℃  
Ta=25℃  
Ta=25℃  
Ta=125℃  
Ta=125℃  
4
4
4.50  
4.75  
5.00  
VCC1 [V]  
5.25  
5.50  
4.50  
4.75  
5.00  
VCC1 [V]  
5.25  
5.50  
Figure 35. ENA input mask time  
Figure 36. FLT input mask time  
2.0  
1.6  
1.2  
0.8  
0.4  
3.7  
3.1  
2.5  
1.9  
1.3  
Ta=125℃  
Ta=25℃  
Ta=125℃  
Ta=25℃  
Ta=-40℃  
Ta=-40℃  
0.7  
14  
14  
16  
18  
20  
22  
24  
16  
18  
20  
22  
24  
VCC2 [V]  
VCC2 [V]  
Figure 37. OUT1 ON resistance (Source)  
Figure 38. OUT1 ON resistance (Sink)  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
2.0  
1.6  
1.2  
0.8  
340  
300  
260  
220  
180  
Ta=125℃  
Ta=-40℃  
Ta=125℃  
Ta=25℃  
Ta=25℃  
Ta=-40℃  
0.4  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
VCC2 [V]  
VCC2 [V]  
Figure 39. PROOUT ON resistance  
Figure 40. Turn ON time  
400  
350  
300  
250  
200  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=125℃  
Ta=-40℃  
Ta=125℃  
Ta=25℃  
Ta=25℃  
Ta=-40℃  
150  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
VCC2 [V]  
VCC2 [V]  
Figure 41. Turn OFF time  
Figure 42. Rise time (10nF between OUT1-VEE2)  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
19/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
Ta=125℃  
Ta=125℃  
Ta=25℃  
Ta=-40℃  
Ta=25℃  
Ta=-40℃  
0
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
VCC2 [V]  
VCC2 [V]  
Figure 44. OUT2 ON resistance (Source)  
Figure 43. Fall time (10nF between OUT1-VEE2)  
2.2  
2.1  
2.0  
1.9  
1.8  
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
Ta=125℃  
Ta=125℃  
Ta=25℃  
Ta=-40℃  
Ta=25℃  
Ta=-40℃  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
VCC2 [V]  
VCC2 [V]  
Figure 45. OUT2 ON resistance (Sink)  
Figure 46. OUT2 ON threshold voltage  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
20/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
11.0  
10.5  
10.0  
9.5  
50  
40  
30  
20  
10  
0
Ta=-40℃  
Ta=125℃  
Ta=25℃  
Ta=125℃  
Ta=25℃  
Ta=-40℃  
9.0  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
VCC2 [V]  
VCC2 [V]  
Figure 47. OUT2 output delay time  
Figure 48. VREG output voltage  
5
4
3
2
1
0
11.0  
Vcc2=24V  
Vcc2=18V  
Vcc2=14V  
10.5  
10.0  
9.5  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
9.0  
-40 -20  
0
20 40 60  
80 100 120  
3.95  
4.05  
4.15  
4.25  
4.35  
4.45  
Ta [  
]
VCC1 [V]  
Figure 49. VREG output voltage  
Figure 50. VCC1 UVLO ON/OFF voltage  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
6
5
4
3
2
1
0
28  
24  
20  
16  
12  
8
Ta=125℃  
Ta=25℃  
Ta=125℃  
Ta=25℃  
Ta=-40℃  
Ta=-40℃  
4
-40 -20  
0
20  
40  
Ta [  
60  
80 100 120  
10.5  
11.5  
12.5  
13.5  
]
VCC2 [V]  
Figure 51. VCC1 UVLO mask time  
Figure 52. VCC2 UVLO ON/OFF voltage  
(at VCC1=5V)  
0.22  
0.11  
0.00  
28  
24  
20  
16  
12  
8
Ta=125℃  
Ta=25℃  
Ta=-40℃  
4
14  
16  
18  
VCC2 [V]  
20  
22  
24  
-40 -20  
0
20  
40  
Ta [  
60  
80 100 120  
]
Figure 53. VCC2 UVLO mask time  
Figure 54. SCPIN input voltage (at ISCPIN=1mA)  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
22/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
0.73  
1.05  
0.95  
0.85  
0.75  
0.65  
0.55  
Ta=-40℃  
Ta=25℃  
0.70  
Ta=-40℃  
Ta=25Ta=125℃  
Ta=125℃  
0.67  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
VCC2 [V]  
VCC2 [V]  
Figure 55. SCP detection voltage  
Figure 56. SCP detection mask time  
110  
90  
1.8  
1.7  
1.6  
Ta=25℃  
Ta=125℃  
Vcc2=14V  
Vcc2=18V  
Vcc2=24V  
Ta=-40℃  
Vcc2=14V  
Vcc2=18V  
Vcc2=24V  
70  
Max.  
Min.  
50  
30  
-40 -20  
0
20 40  
Ta [  
60  
80 100 120  
14  
16  
18  
VCC2 [V]  
20  
22  
24  
]
Figure 57. Soft turn OFF release time  
Figure 58. Thermal detection voltage  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
23/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
0.4  
0.3  
0.2  
0.1  
0.0  
28.0  
24.0  
20.0  
16.0  
12.0  
8.0  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
4.0  
14  
16  
18  
20  
VCC2 [V]  
22  
24  
4.50  
4.75  
5.00  
VCC2 [V]  
5.25  
5.50  
Figure 59. Thermal detection mask time  
Figure 60. FLT output low voltage (IFLT=5mA)  
3.62  
3.41  
3.20  
2.99  
2.78  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
4.50  
4.75  
5.00  
5.25  
5.50  
VCC1 [V]  
Figure 61. FLTRLS threshold  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
24/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Selection of Components Externally Connected  
Recommended  
ROHM  
RSR025N3  
RSS065N03  
Recommended  
ROHM  
MCR03EZP  
GND1  
PROOUT  
S
R
NC  
PRE  
DRIVER  
VEE2  
OUT1  
VCC2  
LOGIC  
Q
INB  
MASK  
FLTRLS  
LOGIC  
VEE2  
UVLO  
MASK  
VCC1  
FLT  
VREG  
OUT2  
SCPIN  
GND2  
VEE2  
TIMER  
TIMER  
FB  
UVLO  
MASK  
MASK  
MASK  
INA  
ECU  
FLT  
FLT  
ENA  
TEST  
GND1  
Input side  
chip  
Output side  
chip  
MASK  
Temp Sensor  
VTSIN  
Figure 62. For using 4-pin IGBT (for using SCP function)  
Recommended  
ROHM  
MCR03EZP  
Recommended  
ROHM  
RSR025N3  
RSS065N03  
Recommended  
ROHM  
MCR03EZP  
GND1  
NC  
PROOUT  
S
VEE2  
OUT1  
VCC2  
VREG  
OUT2  
SCPIN  
GND2  
PRE  
DRIVER  
LOGIC  
Q
INB  
R
MASK  
FLTRLS  
LOGIC  
VEE2  
VCC1  
FLT  
UVLO  
MASK  
FB  
TIMER  
TIMER  
UVLO  
MASK  
MASK  
INA  
ECU  
FLT  
FLT  
ENA  
MASK  
TEST  
VEE2  
Input side  
chip  
Output side  
chip  
MASK  
GND1  
VTSIN  
Temp Sensor  
Figure 63. For using 3-pin IGBT (for using DESAT function)  
Recommended  
ROHM  
MCR03EZP  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
25/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Power Dissipation  
Measurement machineTH156Kuwano Electric)  
Measurement conditionROHM board  
Board size70×70×1.6mm3  
1.5  
1.19W  
1-layer board:θja=105.3/W  
1.0  
0.5  
0
0
25  
50  
75  
100  
125  
150  
Ambient Temperature:Ta[]  
Figure 64. SSOP-B20W Derating Curve  
Thermal design  
Please design that the IC’s chip temperature Tj is not over 150, while considering the IC’s power consumption (W),  
package power (Pd) and ambient temperature (Ta). When Tj=150is exceeded the functions as a semiconductor do not  
operate and some problems (ex. Abnormal operation of various parasitic elements and increasing of leak current) occur.  
Constant use under these circumstances leads to deterioration and eventually IC may destruct. Tjmax=150must be strictly  
obeyed under all circumstances.  
The IC’s consumed power (P) can be estimated roughly with following equation.  
2
2
PVCC1ICC1 + VCC2IGND2 +VCC2 + VEE2ICC2-IGND2+ ION RONHtONfPWM + IOFF RONLtOFFfPWM  
fPWM : PWM frequency  
ION : OUT pin outflow current when OUT is H state.  
tON : Current outflow time from OUT pin when OUT is H state.  
IOFF : OUT pin inflow current when OUT is L state.  
tOFF : Current inflow time to OUT pin when OUT is L state.  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
26/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
I/O equivalence circuits  
Name  
Pin No.  
I/O equivalence circuits  
Function  
VTSIN  
VCC2  
Internal pow er supply  
1
Thermal detection pin  
SCPIN  
SCPIN  
VTSIN  
GND2  
4
5
6
Short current detection pin  
VEE2  
VCC2  
OUT2  
MOS FET control pin for Miller Clamp  
VREG  
Internal pow er supply  
VREG  
OUT2  
Power supply pin for driving MOS FET  
for Miller Clamp  
VEE2  
VCC2  
OUT  
8
OUT1  
VEE2  
Output pin  
VCC2  
VREG  
PROOUT  
10  
PROOUT  
VEE2  
Soft turn-off pin  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
27/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Name  
Pin No.  
I/O equivalence circuits  
Function  
VCC1  
FLTRLS  
FLTRLS  
14  
Fault output holding time setting pin  
GND1  
VCC1  
FLT  
FLT  
16  
Fault output pin  
GND1  
VCC1  
INB  
Invert / non-invert selection pin  
INA  
13  
17  
INA, INB  
Control input pin  
GND1  
VCC1  
ENA  
18  
ENA  
Input enabling signal input pin  
GND1  
VCC1  
TEST  
19  
TEST  
GND1  
Test mode setting pin  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
28/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Operational Notes  
(1) Absolute maximum ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc.,  
can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open  
circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection  
devices, such as fuses.  
(2) Connecting the power supply connector backward  
Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power  
supply lines. An external direction diode can be added.  
(3) Power supply Lines  
Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply  
line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply  
terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic  
capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.  
(4) GND1 Potential  
The potential of GND1 pin must be minimum potential in all operating conditions. (Input side ; 11pin to 20pin)  
(5) VEE2 Potential  
The potential of VEE2 pin must be minimum potential in all operating conditions. (Output side ; 1pin to 10pin)  
(6) Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
(7) Inter-pin shorts and mounting errors  
When attaching to a printed circuit board, pay close attention to the direction of the IC and displacement. Improper  
attachment may lead to destruction of the IC. There is also possibility of destruction from short circuits which can be  
caused by foreign matter entering between outputs or an output and the power supply or GND.  
(8) Operation in a strong electric field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to  
malfunction.  
(9) Inspection of the application board  
During inspection of the application board, if a capacitor is connected to a pin with low impedance there is a possibility  
that it could cause stress to the IC, therefore an electrical discharge should be performed after each process. Also, as a  
measure again electrostatic discharge, it should be earthed during the assembly process and special care should be  
taken during transport or storage. Furthermore, when connecting to the jig during the inspection process, the power  
supply should first be turned off and then removed before the inspection.  
(10) Input terminal of IC  
Between each element there is a P+ isolation for element partition and a P substrate. This P layer and each element’s  
N layer make up the P-N junction, and various parasitic elements are made up.  
For example, when the resistance and transistor are connected to the terminal as shown in figure 65,  
When GND(Terminal A) at the resistance and GND(Terminal B) at the transistor (NPN), the P-N  
junction operates as a parasitic diode.  
Also, when GND(Terminal B) at the transistor (NPN), The parasitic NPN transistor operates with the  
N layers of other elements close to the aforementioned parasitic diode.  
Because of the IC’s structure, the creation of parasitic elements is inevitable from the electrical potential relationship.  
The operation of parasitic elements causes interference in circuit operation, and can lead to malfunction and  
destruction. Therefore, be careful not to use it in a way which causes the parasitic elements to operate, such as by  
applying voltage that is lower than the GND (P substrate) to the input terminal.  
Resistor  
Transistor (NPN)  
Terminal A  
Terminal B  
Terminal B  
B
C
E
Terminal A  
C
B
N
N
N
P+  
P+  
N
P+  
P+  
N
P
P
N
Parasitic  
element  
E
Parasitic  
element  
P substrate  
P substrate  
GND  
GND  
GND  
GND  
Parasitic element  
Parasitic  
element  
Other adjacent elements  
Figure 65. Pattern Diagram of Parasitic Element  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
29/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
(11) Ground Wiring Patterns  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns,  
placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage  
variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change  
the GND wiring pattern potential of any external components, either.  
Ordering Information  
F
V
B M 6  
1
0
1
-
CE 2  
Package  
FV:SSOP-B20W  
Packaging and forming specification  
E2: Embossed tape and reel  
Part Number  
Physical Dimension Tape and Reel Information  
SSOP-B20W  
<Tape and Reel information>  
6.5 0.2  
Tape  
Embossed carrier tape  
2000pcs  
20  
11  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
10  
0.15 0.1  
0.1  
0.65  
Direction of feed  
1pin  
0.22 0.1  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
Marking Diagram  
SSOP-B20W(TOP VIEW)  
B M 6 1 0 1  
Part Number Marking  
LOT Number  
1PIN MARK  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
30/31  
TSZ2211115001  
Daattaasshheeeett  
BM6101FV-C  
Revision History  
Date  
Revision  
Changes  
24.Jun.2013  
001  
New Release  
www.rohm.com  
TSZ02201-0717ABH00090-1-2  
24.Jun.2013 Rev.001  
© 2013 ROHM Co., Ltd. All rights reserved.  
31/31  
TSZ2211115001  
Daattaasshheeeett  
Notice  
General Precaution  
1) Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2) All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
Precaution on using ROHM Products  
1) Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment, transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
2) ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3) Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4) The Products are not subject to radiation-proof design.  
5) Please verify and confirm characteristics of the final or mounted products in using the Products.  
6) In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse) is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7) De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8) Confirm that operation temperature is within the specified range described in the product specification.  
9) ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precaution for Mounting / Circuit board design  
1) When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2) In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Precautions Regarding Application Examples and External Circuits  
1) If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2) You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1) Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2) Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3) Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4) Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1) All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Other Precaution  
1) The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
2) This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
3) The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
4) In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
5) The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM6101FV-CE2

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6101FV-E2

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6102FV-C

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6102FV-CE2

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6102FV-C_15

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6103FV-C

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6103FV-CE2

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6104FV-C

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6104FV-CE2

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6104FV-C_15

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6108FV-LB

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6108FV-LBE2

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM