BM6247FS [ROHM]

本产品是将250V耐压MOSFET用作输出晶体管,与180°正弦波控制器芯片、栅极驱动器芯片同时收纳到小型表面贴装型全模件封装中的三相无刷风扇电机驱动器。内置过电流、过热、低电压等保护功能及阴极负载二极管,可实现电机电路板的小型化。;
BM6247FS
型号: BM6247FS
厂家: ROHM    ROHM
描述:

本产品是将250V耐压MOSFET用作输出晶体管,与180°正弦波控制器芯片、栅极驱动器芯片同时收纳到小型表面贴装型全模件封装中的三相无刷风扇电机驱动器。内置过电流、过热、低电压等保护功能及阴极负载二极管,可实现电机电路板的小型化。

电机 栅极驱动 控制器 晶体管 风扇 二极管 驱动器
文件: 总33页 (文件大小:2786K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
For Air-Conditioner Fan Motor  
3-Phase Brushless Fan Motor  
Driver  
BM6247FS  
General Description  
Key Specifications  
This 3-phase Brushless Fan motor driver IC adopts  
MOSFET as the output transistor, and put in a small full  
molding package with the 180° sinusoidal commutation  
controller chip and the high voltage gate driver chip. The  
protection circuits for overcurrent, overheating, under  
voltage lock out and the high voltage bootstrap diode  
with current regulation are built-in. It provides downsizing  
the built-in PCB of the motor.  
Output MOSFET Voltage:  
Driver Output Current (DC):  
Driver Output Current (Pulse):  
Output MOSFET DC On Resistance: 0.93(Typ)  
Duty Control Voltage Range:  
Phase Control Range:  
250V  
±2.0A (Max)  
±4.0A (Max)  
2.1V to 5.4V  
0° to +40°  
+150°C  
Maximum Junction Temperature:  
Package  
SSOP-A54_36A  
W(Typ) x D(Typ) x H(Max)  
2.0mm x 14.1mm x 2.4mm  
Features  
250V MOSFET Built-in  
Output Current 2.0A  
Bootstrap operation by floating high side driver  
(including diode)  
180° Sinusoidal Commutation Logic  
PWM Control (Upper and lower arm switching)  
Phase control supported from 0° to +40° at 1° intervals  
Rotational Direction Switch  
FG signal output with pulse number switch (4 or 12)  
VREG Output (5V/30mA)  
Protection circuits provided: CL, OCP, TSD, UVLO,  
MLP and the external fault input  
Fault Output (open drain)  
SSOP-A54_36A  
Applications  
Air conditioners; air purifiers; water pumps;  
dishwashers; washing machines  
Typical Application Circuit  
VDC  
GND  
D1  
C5  
C6  
VCC  
R1  
VSP  
C7  
C8  
C13  
C1  
C2~C4  
M
R2  
C9  
HW HV HU  
C11  
R4  
R3  
R8  
FG  
Q1  
C12  
R7  
DTR  
Figure 1. Application Circuit Example  
Product structure : Semiconductor IC This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
1/30  
TSZ22111 14 001  
 
 
 
 
 
 
 
BM6247FS  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package  
..................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Block Diagram and Pin Configuration.............................................................................................................................................3  
Pin Description................................................................................................................................................................................3  
Description of Blocks ......................................................................................................................................................................4  
Controller Outputs and Operation Mode Summary.........................................................................................................................9  
Absolute Maximum Ratings ........................................................................................................................................................10  
Thermal Resistance .....................................................................................................................................................................10  
Recommended Operating Conditions .........................................................................................................................................11  
Electrical Characteristics (Driver part) ..........................................................................................................................................11  
Electrical Characteristics (Controller part) ....................................................................................................................................12  
Typical Performance Curves (Reference Data) ............................................................................................................................13  
Timing Chart .................................................................................................................................................................................21  
Application Example .....................................................................................................................................................................23  
Parts List.......................................................................................................................................................................................23  
Dummy Pin Descriptions...............................................................................................................................................................24  
I/O Equivalent Circuits ..................................................................................................................................................................25  
Operational Notes.........................................................................................................................................................................26  
Ordering Information.....................................................................................................................................................................28  
Marking Diagrams.........................................................................................................................................................................28  
Physical Dimension and Packing Information...............................................................................................................................29  
Revision History............................................................................................................................................................................30  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/30  
TSZ22111 15 001  
 
BM6247FS  
Block Diagram and Pin Configuration  
VCC  
1
VDC  
BU  
36  
35  
VCC  
VCC  
GND  
GND  
GND  
VCC  
VSP  
VREG  
NC  
VDC  
5
6
VREG  
VSP  
VSP  
TEST  
VREG  
LEVEL  
SHIFT  
&
GATE  
DRIVER  
U
VREG  
34  
33  
7
BU  
U
UH  
UL  
HWN  
HWP  
HVN  
HVP  
HUN  
HUP  
BV  
9
HW  
HV  
HU  
HWN  
HWP  
HVN  
HVP  
HUN  
HUP  
PCT  
PC  
10  
11  
12  
13  
14  
BV  
V
LEVEL  
SHIFT  
&
GATE  
DRIVER  
V
VH  
VL  
32  
31  
30  
M
VDC  
BW  
PCT  
PC  
WH  
WL  
V/I  
15  
16  
VREG  
LEVEL  
SHIFT  
&
GATE  
DRIVER  
LOGIC  
CCW  
FGS  
FG  
VDC  
6
A/D  
W
29  
28  
TEST  
VREG  
PGND  
FOB  
SNS  
NC  
CCW  
FGS  
FG  
17  
18  
19  
20  
BW  
W
26  
24  
23  
GND  
GND  
VREG  
RT  
FIB  
FOB  
GND  
GND  
GND  
VCC  
OSC  
RT  
FAULT  
SINE  
WAVE  
GENE.  
VREG  
FAULT  
SNS  
VSP  
21  
PGND  
Figure 2. Block Diagram  
Figure 3. Pin Configuration  
(Top View)  
Pin Description  
Pin  
1
Name  
Function  
Pin  
36  
-
Name  
VDC  
VDC  
Function  
VCC  
GND  
GND  
GND  
VCC  
VSP  
VREG  
NC  
Low voltage power supply  
Ground  
High voltage power supply  
2
3
Ground  
4
Ground  
5
Low voltage power supply  
Duty control voltage input pin  
Regulator output  
35  
-
BU  
U
Phase U floating power supply  
Phase U output  
6
7
34  
U
8
No connection  
9
HWN  
HWP  
HVN  
HVP  
HUN  
HUP  
PCT  
PC  
Hall input pin phase W-  
Hall input pin phase W+  
Hall input pin phase V-  
Hall input pin phase V+  
Hall input pin phase U-  
Hall input pin phase U+  
VSP offset voltage output pin  
Phase control input pin  
Direction switch (H:CCW)  
FG pulse # switch (H:12, L:4)  
FG signal output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
33  
-
BV  
V
Phase V floating power supply  
Phase V output  
32  
V
-
VDC  
VDC  
CCW  
FGS  
FG  
31  
High voltage power supply  
FOB  
SNS  
NC  
Fault signal output (open drain)  
Over current sense pin  
No connection  
30  
-
BW  
W
Phase W floating power supply  
Phase W output  
RT  
Carrier frequency setting pin  
Ground  
29  
W
GND  
GND  
GND  
VCC  
Ground  
Ground  
-
PGND  
PGND  
Low voltage power supply  
28  
Ground (current sense pin)  
Note) All pin cut surfaces visible from the side of package are no connected, except the pin number is expressed as a -.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
3/30  
BM6247FS  
Description of Blocks  
1. Commutation Logic  
When the hall frequency is about 1.4Hz or less (e.g. when the motor starts up), the commutation mode is 120° square  
wave drive with upper and lower switching (no lead angle). The controller monitors the hall frequency, and switches to  
180° sinusoidal commutation drive when the hall frequency reaches or exceeds about 1.4Hz over four consecutive cycles.  
Refer to the timing charts in Figures 46 and 47.  
2. Duty Control  
The switching duty can be controlled by forcing DC voltage with value from VSPMIN to VSPMAX to the VSP pin. When the  
VSP voltage is VSPTST or more, the controller forces PC pin voltage to ground (Testing mode, maximum duty and no lead  
angle). The VSP pin is pulled down internally by a 200 kresistor. Therefore, note the impedance when setting the VSP  
voltage with a resistance voltage divider.  
3. Carrier Frequency Setting  
The carrier frequency setting can be freely adjusted by connecting an external resistor  
400  
between the RT pin and ground. The RT pin is biased to a constant voltage, which  
determines the charge current to the internal capacitor. Carrier frequencies can be set  
within a range from about 16 kHz to 50 kHz. Refer to the formula to the right.  
fOSC [kHz]  
]
RT [k  
4. FG Signal Output  
The number of FG output pulses can be switched in accordance with the  
number of poles and the rotational speed of the motor. The FG signal is output  
from the FG pin. The 12-pulse signal is generated from the three hall signals  
(exclusive NOR), and the 4-pulse signal is the same as hall U signal. It is  
recommended to pull up FGS pin to VREG voltage when malfunctioning  
because of the noise.  
FGS  
No. of pulse  
H
L
12  
4
5. Direction of Motor Rotation Setting  
The direction of rotation can be switched by the CCW pin. When CCW pin is H”  
or open, the motor rotates at CCW direction. When the real direction is different  
from the setting, the commutation mode is 120° square wave drive (no lead  
angle). It is recommended to pull up CCW pin to VREG voltage when  
malfunctioning because of the noise.  
CCW  
Direction  
CCW  
H
L
CW  
6. Hall Signal Comparator  
The hall comparator provides voltage hysteresis to prevent noise malfunctions. The bias current to the hall elements  
should be set to the input voltage amplitude from the element, at a value is the minimum input voltage (VHALLMIN) or more.  
We recommend connecting a ceramic capacitor with value from 100 pF to 0.01 µF, between the differential input pins of  
the hall comparator. Note that the bias to hall elements must be set within the common mode input voltage range VHALLCM  
.
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/30  
TSZ22111 15 001  
BM6247FS  
Description of Blocks - continued  
7. Output Duty Pulse Width Limiter  
Pulse width duty is controlled during PWM switching in order to ensure the operation of internal power transistor. The  
controller doesnt output pulse of less than tMIN (0.8µs minimum). Dead time is forcibly provided to prevent external power  
transistors from turning on simultaneously in upper and lower side in driver output (for example, UH and UL) of each arm.  
This will not overlap the minimum time tDT (1.6µs minimum). Because of this, the maximum duty of 120° square wave  
drive at start up is 84% (typical).  
8. Phase Control Setting  
The driving signal phase can be advanced to the hall signal for phase control. The lead angle is set by forcing DC voltage  
to the PC pin. The input voltage is converted digitally by a 6-bit A/D converter, in which internal VREG voltage is assumed  
to be full-scale, and the converted data is processed by a logic circuit. The lead angle can be set from 0° to +40° at 1°  
intervals, and updated fourth hall cycle of phase W falling edge. Phase control function only operates at sinusoidal  
commutation mode. However, the controller forces PC pin voltage to ground (no lead angle) during testing mode. The  
VSP offset voltage (Figure 32) is buffered to PCT pin, to connect an external resistor between PCT pin and ground. The  
internal bias current is determined by PCT voltage and the resistor value (VPCT / RPCT), and mixed to PC pin. PC pin  
voltage is VPC = VPCT / RPCT x RPCL. As a result, the lead angle setting is followed with the duty control voltage, and the  
performance of the motor can be improved. Select the RPCT value from 50 kto 200 kin the range on the basis of 100  
k, because the PCT pin current capability is a 100 µA or less.  
PCT  
VPCT = VSP-VSPMIN  
VSP  
VSPMIN  
L.A.  
VPCT  
RPCT  
PC  
L.A.  
ADC  
RPCL  
RPCT  
VSP  
Figure 4. Phase Control Setting Example 1  
VREG  
PCT  
VPCT = VSP-VSPMIN  
VSP  
VSPMIN  
L.A.  
VPCT  
RPCT  
RPCH  
RPCL  
PC  
L.A.  
ADC  
RPCT  
VSP  
Figure 5. Phase Control Setting Example 2  
9. Current Limiter (CL) Circuit and Overcurrent Protection (OCP) Circuit  
The current limiter circuit can be activated by connecting a low value resistor for current detection between the output  
stage ground (PGND) and the controller ground (GND). When the SNS pin voltage reaches or surpasses the threshold  
value (VSNS, 0.5V typical), the controller forces all the upper switching arm inputs low (UH, VH, WH = L, L, L), thus  
initiating the current limiter operation. When the SNS pin voltage swings below the ground, it is recommended to insert a  
resistor (1.5 kor more) between SNS pin and PGND pin to prevent malfunction. Since this limiter circuit is not a latch  
type, it returns to normal operation - synchronizing with the carrier frequency - once the SNS pin voltage falls below the  
threshold voltage. A filter is built into the overcurrent detection circuit to prevent malfunctions, and does not activate when  
a short pulse of less than tMASK is present at the input.  
When the SNS pin voltage reaches or surpasses the threshold value (VOVER, 0.9V typical) because of the power fault or  
the short circuit except the ground fault, the gate driver outputs low to the gate of all output MOSFETs, thus initiating the  
overcurrent protection operation. Since this protection circuit is also not a latch type, it returns to normal operation  
synchronizing with the carrier frequency.  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/30  
TSZ22111 15 001  
BM6247FS  
Description of Blocks - continued  
10. Under Voltage Lock Out (UVLO) Circuit  
To secure the lowest power supply voltage necessary to operate the controller and the driver, and to prevent under  
voltage malfunctions, the UVLO circuits are independently built into the upper side floating driver, the lower side driver and  
the controller. When the supply voltage falls to VUVL and below, the controller forces driver outputs low. When the voltage  
rises to VUVH and above, the UVLO circuit ends the lockout operation and returns the chip only after 32 carrier frequency  
periods (1.6ms for the default 20kHz frequency) to normal operation. Even if the controller returns to normal operation, the  
output begins from the following control input signal.  
The voltage monitor circuit (4.0V nominal) is built-in for the VREG voltage. Therefore, the UVLO circuit does not release  
operation when the VREG voltage rising is delayed behind the VCC voltage rising even if VCC voltage becomes VUVH or  
more.  
11. Thermal Shutdown (TSD) Circuit  
The TSD circuit operates when the junction temperature of the controller exceeds the preset temperature (125°C nominal).  
At this time, the controller forces all driver outputs low. Since thermal hysteresis is provided in the TSD circuit, the chip  
returns to normal operation when the junction temperature falls below the preset temperature (100°C nominal). The TSD  
circuit is designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its  
operation in the presence of extreme heat. Do not continue to use the IC after the TSD circuit is activated, and do not use  
the IC in an environment where activation of the circuit is assumed.  
Moreover, it is not possible to follow the output MOSFET junction temperature rising rapidly because it is a gate driver chip  
that monitors the temperature and it is likely not to function effectively.  
12. Motor Lock Protection (MLP) Circuit  
When the controller detects the motor locking during fixed time of 4 seconds nominal when each edge of the hall signal  
doesn't input either, the controller forces all driver outputs low under a fixed time 20 seconds nominal, and self-returns to  
normal operation. This circuit is enabled if the voltage force to VSP is over the duty minimum voltage VSPMIN, and note that  
the motor cannot start up when the controller doesnt detect the motor rotation by the minimum duty control. Even if the  
edge of the hall signal is inputted within range of the OFF state by this protection circuit, it is ignored. But if the VSP is  
forced to ground level once, the protection can be canceled immediately.  
13. Hall Signal Wrong Input Detection  
Hall element abnormalities may cause incorrect inputs that vary from the normal logic. When all hall input signals go high  
or low, the hall signal wrong input detection circuit forces all driver outputs low. And when the controller detects the  
abnormal hall signals continuously for four times or more motor rotation, the controller forces all driver outputs low and  
latches the state. It is released if the duty control voltage VSP is forced to ground level once.  
14. VREG Output  
The internal voltage regulator VREG is output for the bias of the hall  
element and the phase control setting. However, when using the VREG  
VCC  
function, be aware of the IOMAX value. If a capacitor is connected to the  
ground in order to stabilize output, a value of 1 µF or more should be  
used. In this case, be sure to confirm that there is no oscillation in the  
output.  
VREG  
R1  
HUP  
HUN  
HU  
HVP  
HVN  
HV  
HWP  
HWN  
HW  
Controller IC  
Figure 6. VREG Output Pin Application Example  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
6/30  
BM6247FS  
Description of Blocks - continued  
15. Fault Signal Output  
When the controller detects either state that should be protected the overcurrent (OCP) and the over temperature (TSD),  
the FOB pin outputs low (open drain) and it returns to normal operation synchronizing with the carrier frequency. Even  
when this function is not used, be pull-up the FOB pin to the voltage of 3V or more and at least a resistor with a value 10k  
or more. A filter is built into the fault signal input circuit to prevent malfunctions by the switching noise, and does not  
activate when a short pulse of less than tMASK is present at the input. The time to the fault operation is the sum total of the  
propagation delay time of the detection circuit and the filter time, 1.6µs (typical).  
VSP  
TRIOSC  
XH  
YL  
XHO  
YLO  
1.6µs (Typ)  
1.6µs (Typ)  
1.6µs (Typ)  
1.6µs (Typ)  
SNS  
FOB  
0.9V(Typ)  
0.5V(Typ)  
OCP threshold  
CL threshold  
Figure 7. Fault Operation ~ OCP ~ Timing Chart  
10  
9
8
7
6
5
4
3
2
1
0
The release time from the protection operation can be  
changed by inserting an external capacitor. Refer to the  
formula below. Release time of 5ms or more is  
recommended.  
2.3  
VREG  
t  ln(1  
)RC  
[s]  
VREG  
R
FOB  
C
0.01  
0.10  
1.00  
Figure 8. Release Time Setting Application Circuit  
Capacitance : C[µF]  
Figure 9. Release Time (Reference Data @R=100k)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/30  
TSZ22111 15 001  
BM6247FS  
Description of Blocks - continued  
16. Bootstrap Operation  
VB  
VB  
HO  
VS  
VDC  
OFF  
VDC  
DX  
DX  
CB  
CB  
HO  
VS  
L
H
L
ON  
VCC  
VCC  
LO  
LO  
H
ON  
OFF  
Figure 10. Charging Period  
Figure 11. Discharging Period  
The bootstrap is operated by the charge period and the discharge period being alternately repeated for bootstrap  
capacitor (CB) as shown in the figure above. In a word, this operation is repeated while the output of an external transistor  
is switching with synchronous rectification. Because the supply voltage of the floating driver is charged from the VCC  
power supply to CB through prevention of backflow diode DX, it is approximately (VCC-1V). The resistance series  
connection with DX has the impedance of approximately 200 . Because the total gate charge is needed only by the  
carrier frequency in the upper switching section of 120° commutation driving, set it after confirming actual application  
operation.  
17. Switching Time  
XH, XL  
VDS  
trr  
ton  
td(on)  
tr  
90%  
90%  
ID  
10%  
10%  
td(off)  
toff  
tf  
Figure 12. Switching Time Definition  
Parameter  
Symbol  
tdH(on)  
trH  
Reference  
800  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Conditions  
140  
High Side Switching  
Time  
trrH  
300  
VDC=150V, VCC=15V, ID=1.0A  
Inductive load  
tdH(off)  
tfH  
tdL(on)  
trL  
480  
30  
The propagation delay time: Internal  
gate driver input stage to the driver  
IC output.  
750  
130  
Low Side Switching  
Time  
trrL  
280  
tdL(off)  
tfL  
400  
30  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/30  
TSZ22111 15 001  
BM6247FS  
Controller Outputs and Operation Mode Summary  
Detected direction  
Forward (CW:U~V~W, CCW:U~W~V)  
Reverse (CW:U~W~V, CCW:U~V~W)  
Conditions  
Hall sensor frequency  
< 1.4Hz  
1.4Hz ≤  
< 1.4Hz  
1.4Hz ≤  
VSP < VSPMIN  
(Duty off)  
Upper and lower arm off  
180° sinusoidal  
Upper and lower  
switching  
VSPMIN < VSP < VSPMAX  
(Control range)  
Normal  
operation  
120°  
Upper and lower  
switching  
120°  
Upper and lower  
switching  
120°  
Upper switching  
180° sinusoidal  
Upper and lower  
switching  
VSPTST < VSP  
(Testing mode)  
(No lead angle)  
Current limiter (Note 1)  
Overcurrent (Note 2)  
TSD (Note 2)  
Upper arm off  
Upper and lower arm off  
Protect  
operation  
External input (Note 2)  
UVLO (Note 3)  
Upper and lower arm off  
Motor lock  
Hall sensor abnormally  
Upper and lower arm off and latch  
(Note) The controller monitors both edges of three hall sensors for detecting period.  
(Note) Phase control function only operates at sinusoidal commutation mode. However, the controller forces no lead angle during the testing mode.  
(Note 1) It returns to normal operation by the carrier frequency synchronization.  
(Note 2) It works together with the fault operation, and returns after the release time synchronizing with the carrier frequency.  
(Note 3) It returns to normal operation after 32 cycles of the carrier oscillation period.  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/30  
TSZ22111 15 001  
BM6247FS  
Absolute Maximum Ratings (Tj=25°C)  
Parameter  
Symbol  
Ratings  
Unit  
Output MOSFET  
VDSS  
250  
V
V
Supply Voltage  
VDC  
VU, VV, VW  
VBU, VBV, VBW  
VBU-VU, VBV-VV, VBW-VW  
VCC  
-0.3 to +250  
-0.3 to +250  
-0.3 to +250  
-0.3 to +20  
-0.3 to +20  
-0.3 to +20  
-0.3 to +5.5  
±2.0  
Output Voltage  
V
High Side Supply Pin Voltage  
High Side Floating Supply Voltage  
Low Side Supply Voltage  
Duty Control Voltage  
All Others  
V
V
V
VSP  
V
VI/O  
V
Driver Outputs (DC)  
Driver Outputs (Pulse)  
Fault Signal Output  
IOMAX(DC)  
A
IOMAX(PLS)  
IOMAX(FOB)  
Tstg  
±4.0 (Note 1)  
A
15  
mA  
°C  
°C  
Storage Temperature  
Maximum Junction Temperature  
-55 to +150  
150  
Tjmax  
(Note)  
All voltages are with respect to ground unless otherwise specified.  
(Note 1)  
Pw ≤ 10µs, Duty cycle ≤ 1%  
Caution1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC  
is operated over the absolute maximum ratings.  
Caution2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s (Note 3)  
SSOP-A54_36A  
Junction to Ambient  
Junction to Top Characterization Parameter (Note 2)  
θJA  
41.7  
10  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air)  
(Note 2) Refer to Figure 13. for temperature measurement point on the component package top surface.  
(Note 3) Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
2.7mm  
5.6mm  
Measurement point  
Figure 13. Temperature Measurement Point  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
10/30  
TSZ22111 15 001  
BM6247FS  
Recommended Operating Conditions (Tj=25°C)  
Parameter  
Supply Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
VDC  
-
140  
200  
16.5  
16.5  
-
V
V
High Side Floating Supply Voltage  
Low Side Supply Voltage  
Bootstrap Capacitor  
VBU-VU, VBV-VV, VBW-VW  
13.5  
13.5  
1.0  
1.0  
0.5  
-40  
15  
15  
-
VCC  
CB  
V
µF  
µF  
VCC Bypass Capacitor  
Shunt Resistor (PGND)  
Junction Temperature  
CVCC  
RS  
-
-
-
-
Tj  
-
+125  
°C  
(Note) All voltages are with respect to ground unless otherwise specified.  
Electrical Characteristics (Driver part, Unless otherwise specified VCC=15V and Tj=25°C)  
Parameter  
Power Supply  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
HS Quiescence Current  
LS Quiescence Current  
Output MOSFET  
IBBQ  
ICCQ  
30  
70  
150  
1.3  
µA  
VSP=0V, each phase  
VSP=0V  
0.2  
0.7  
mA  
D-S Breakdown Voltage  
Leak Current  
V(BR)DSS  
IDSS  
RDS(ON)  
VSD  
250  
-
-
-
V
µA  
ID=1mA, VSP=0V  
VDS=250V, VSP=0V  
ID=1.0A  
-
-
-
100  
1.30  
1.5  
DC On Resistance  
Diode Forward Voltage  
Bootstrap Diode  
0.93  
0.9  
V
ID=1.0A  
Leak Current  
ILBD  
VFBD  
RBD  
-
1.5  
-
-
10  
2.1  
-
µA  
V
VBX=250V  
Forward Voltage  
1.8  
200  
IBD=-5mA with series-res.  
Series Resistance  
Under Voltage Lock Out  
High Side Release Voltage  
High Side Lockout Voltage  
VBUVH  
VBUVL  
9.5  
8.5  
10.0  
9.0  
10.5  
9.5  
V
V
VBX - VX  
VBX - VX  
(Note) All voltages are with respect to ground unless otherwise specified.  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/30  
TSZ22111 15 001  
BM6247FS  
Electrical Characteristics - continued (Controller part, Unless otherwise specified VCC=15V and Tj=25°C)  
Parameter  
Power Supply  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Supply Current  
ICC  
0.8  
4.5  
2.0  
5.0  
3.5  
5.5  
mA  
V
VSP=0V  
VREG Voltage  
VREG  
IO=-30mA  
Hall Comparators  
Input Bias Current  
IHALL  
-2.0  
0.3  
50  
-0.1  
-
+2.0  
µA  
V
VIN=0V  
Common Mode Input  
Minimum Input Level  
Hysteresis Voltage P  
Hysteresis Voltage N  
Duty Control  
VHALLCM  
VHALLMIN  
VHALLHY+  
VHALLHY-  
VREG-1.5  
-
-
mVp-p  
mV  
mV  
5
13  
-13  
23  
-5  
-23  
Input Bias Current  
ISP  
15  
1.8  
5.1  
8.2  
-
25  
2.1  
5.4  
-
35  
2.4  
5.7  
18  
-
µA  
V
VIN=5V  
Duty Minimum Voltage  
Duty Maximum Voltage  
Testing Operation Range  
Minimum Output Duty  
Maximum Output Duty  
Mode Switch - FGS, CCW  
Input Bias Current  
VSPMIN  
VSPMAX  
VSPTST  
DMIN  
V
V
2
%
%
fOSC=20kHz  
fOSC=20kHz  
DMAX  
-
100  
-
IIN  
-70  
3
-50  
-30  
VREG  
1
µA  
V
VIN=0V  
Input High Voltage  
VINH  
VINL  
-
-
Input Low Voltage  
0
V
Fault Input/Output - FOB  
Input High Voltage  
VFOBIH  
VFOBIL  
VFOBOL  
3
0
0
-
-
VREG  
1
V
V
V
Input Low Voltage  
Output Low Voltage  
Monitor Output - FG  
Output High Voltage  
Output Low Voltage  
Current Detection - SNS  
Input Bias Current  
0.07  
0.60  
IO=5mA  
VMONH  
VMONL  
VREG-0.40  
0
VREG-0.10  
0.02  
VREG  
0.40  
V
V
IO=-2mA  
IO=2mA  
ISNS  
VSNS  
VOVER  
tMASK  
-30  
0.48  
0.84  
0.8  
-20  
0.50  
0.90  
1.0  
-10  
0.52  
0.96  
1.2  
µA  
V
VIN=0V  
Current Limiter Voltage  
Overcurrent Voltage  
Noise Masking Time  
Phase Control  
V
µs  
Minimum Lead Angle  
Maximum Lead Angle  
Carrier Frequency Oscillator  
Carrier Frequency  
PMIN  
-
0
1
-
deg  
deg  
VPC=0V  
PMAX  
39  
40  
VPC=2/3·VREG  
fOSC  
18  
20  
22  
kHz  
RT=20kΩ  
Under Voltage Lock Out  
LS Release Voltage  
LS Lockout Voltage  
VCCUVH  
VCCUVL  
11.5  
10.5  
12.0  
11.0  
12.5  
11.5  
V
V
(Note) All voltages are with respect to ground unless otherwise specified.  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/30  
TSZ22111 15 001  
BM6247FS  
Typical Performance Curves (Reference Data)  
5
10  
9
+125°C  
+25°C  
-40°C  
4.5  
4
8
3.5  
3
7
6
2.5  
2
+125°C  
+25°C  
-40°C  
5
1.5  
4
12  
14  
16  
18  
20  
12  
14  
16  
18  
20  
Supply Voltage : VCC [V]  
Supply Voltage : VCC [V]  
Figure 14. Quiescence Current  
(Low Side Drivers)  
Figure 15. Low Side Drivers Operating Current  
(fPWM: 20kHz)  
120  
100  
80  
400  
350  
300  
250  
200  
150  
+125°C  
+25°C  
-40°C  
60  
40  
+125°C  
+25°C  
-40°C  
20  
12  
14  
16  
18  
20  
12  
14  
16  
18  
20  
Supply Voltage : VCC [V]  
Supply Voltage : VCC [V]  
Figure 16. Quiescence Current  
(High Side Driver, Each Phase)  
Figure 17. High Side Driver Operating Current  
(fPWM: 20kHz, Each Phase)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
13/30  
TSZ22111 15 001  
BM6247FS  
Typical Performance Curves (Reference Data) - continued  
4
2
1.5  
1
+125°C  
+25°C  
-40°C  
-40°C  
+25°C  
+125°C  
3
2
1
0
0.5  
0
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Drain Current : IDS [A]  
Drain Current : ISD [A]  
Figure 18. Output MOSFET ON Resistance  
Figure 19. Output MOSFET Body Diode  
1.2  
4
3
2
1
0
+125°C  
+25°C  
-40°C  
1
0.8  
0.6  
0.4  
0.2  
0
-40°C  
+25°C  
+125°C  
0
2
4
6
8
10  
0
2
4
6
8
10  
Bootstrap Diode Current : IBD [mA]  
Series Resistor Current : IBR [mA]  
Figure 20. Bootstrap Diode Forward Voltage  
Figure 21. Bootstrap Series Resistor  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
14/30  
BM6247FS  
Typical Performance Curves (Reference Data) - continued  
200  
15  
10  
5
+125°C  
+25°C  
-40°C  
+125°C  
+25°C  
-40°C  
EON  
150  
100  
50  
EOFF  
0
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Drain Current : ID [A]  
Drain Current : ID [A]  
Figure 22. High Side Switching Loss  
(VDC=150V)  
Figure 23. High Side Recovery Loss  
(VDC=150V)  
200  
150  
100  
50  
15  
10  
5
+125°C  
+25°C  
-40°C  
+125°C  
+25°C  
-40°C  
EON  
EOFF  
0
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Drain Current : ID [A]  
Drain Current : ID [A]  
Figure 24. Low Side Switching Loss  
(VDC=150V)  
Figure 25. Low Side Recovery Loss  
(VDC=150V)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/30  
TSZ22111 15 001  
BM6247FS  
Typical Performance Curves (Reference Data) - continued  
5.4  
5.4  
5.2  
5
-40°C  
+25°C  
+110°C  
5.2  
-40°C  
+25°C  
+110°C  
5
4.8  
4.6  
4.8  
4.6  
12  
14  
16  
18  
20  
0
10  
20  
30  
40  
Supply Voltage : VCC [V]  
Output Current : IOUT [mA]  
Figure 26. VREG vs VCC  
Figure 27. VREG Drive Capability  
6
5
200  
150  
100  
50  
+110°C  
+25°C  
-40°C  
4
3
2
1
+110°C  
+25°C  
-40°C  
0
+110°C  
+25°C  
-40°C  
-1  
0
-30  
-15  
0
15  
30  
0
5
10  
15  
20  
Differential Voltage : VHUP-VHUN [mV]  
VSP Voltage : VSP [V]  
Figure 28. Hall Comparator Hysteresis Voltage  
Figure 29. VSP Input Bias Current  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
16/30  
BM6247FS  
Typical Performance Curves (Reference Data) - continued  
100  
80  
1.5  
1
60  
+110°C  
+25°C  
-40°C  
0.5  
0
40  
20  
0
+110°C  
+25°C  
-40°C  
-0.5  
0
2
4
6
8
0
5
10  
15  
20  
VSP Voltage : VSP [V]  
VSP Voltage : VSP [V]  
Figure 30. Output Duty vs VSP Voltage  
Figure 31. Testing Mode Threshold Voltage  
5
4
3
2
1
0
4
3
2
1
+110°C  
+25°C  
-40°C  
-40°C  
+25°C  
+110°C  
0
0
0
1
2
3
4
5
6
7
1
2
3
4
VSP Voltage : VSP [V]  
PCT Voltage : VPCT [V]  
Figure 32. VSP vs PCT Offset Voltage  
Figure 33. PCT vs PC Linearity  
(RPCT=RPC=100k)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
17/30  
TSZ22111 15 001  
BM6247FS  
Typical Performance Curves (Reference Data) - continued  
60  
30  
25  
20  
15  
10  
+25°C  
+110°C  
-40°C  
+110°C  
+25°C  
-40°C  
50  
40  
30  
20  
10  
0
0
0.2  
0.4  
0.6  
0.8  
1
14  
18  
22  
26  
30  
VPC/VREG (Normalized) : [V/V]  
External Resistor : RT [kΩ]  
Figure 34. PC Voltage Normalized vs Lead Angle  
Figure 35. Carrier Frequency vs RT  
0
0.8  
0.6  
0.4  
0.2  
0
+110°C  
+25°C  
-40°C  
-0.2  
-0.4  
-0.6  
-0.8  
-40°C  
+25°C  
+110°C  
0
2
4
6
0
2
4
6
Output Current : IOUT [mA]  
Output Current : IOUT [mA]  
Figure 36. High Side Output Voltage  
(FG)  
Figure 37. Low Side Output Voltage  
(FG)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/30  
TSZ22111 15 001  
BM6247FS  
Typical Performance Curves (Reference Data) - continued  
60  
1.5  
1
+110°C  
+25°C  
-40°C  
+110°C  
+25°C  
-40°C  
+110°C  
+25°C  
-40°C  
50  
40  
30  
20  
10  
0
0.5  
0
-0.5  
0
1
2
3
4
5
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
2.7  
Input Voltage : VIN [V]  
Input Voltage : VIN [V]  
Figure 38. Input Bias Current  
(CCW, FGS)  
Figure 39. Input Threshold Voltage  
(CCW, FGS, FOB)  
30  
20  
10  
0
1.5  
1
+110°C  
+25°C  
-40°C  
0.5  
0
+110°C  
+25°C  
-40°C  
-0.5  
0
1
2
3
4
5
0.48  
0.49  
0.5  
0.51  
0.52  
SNS Input Voltage : VSNS [V]  
Input Voltage : VSNS [V]  
Figure 40. Input Bias Current  
(SNS)  
Figure 41. Current Limiter Input Threshold Voltage  
(SNS)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
19/30  
TSZ22111 15 001  
BM6247FS  
Typical Performance Curves (Reference Data) - continued  
1.5  
1.5  
1
-40°C  
+25°C  
110°C  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
75  
100  
125  
150  
Input Voltage : VSNS [V]  
Junction Temperature : Tj [˚C]  
Figure 42. OCP Input Threshold Voltage  
(SNS)  
Figure 43 Thermal Shutdown  
1.5  
1
1.5  
1
+110°C  
+25°C  
-40°C  
+110°C  
+25°C  
-40°C  
0.5  
0
0.5  
0
-40°C  
+25°C  
+125°C  
-0.5  
-0.5  
8
9
10  
11  
12  
13  
8
9
10  
11  
12  
13  
Supply Voltage : VBX-VX [V]  
Supply Voltage : VCC [V]  
Figure 44. Under Voltage Lock Out  
(High Side Driver, Each Phase)  
Figure 45. Under Voltage Lock Out  
(Low Side Drivers)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/30  
TSZ22111 15 001  
BM6247FS  
Timing Chart (CW)  
Hall Signals  
HALL U  
HALL V  
HALL W  
Spin Up (Hall Period < 1.4Hz)  
UH  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
VH  
WM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PW
PW
WH  
UL  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
VL  
WM  
WL  
CW Direction (Lead=0deg)  
UH  
VH  
WH  
UL  
VL  
WL  
CW Direction (Lead=30deg)  
UH  
VH  
WH  
UL  
VL  
WL  
FG Output (FGS=H)  
FG  
Figure 46. Timing Chart (Clockwise)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
21/30  
TSZ22111 15 001  
BM6247FS  
Timing Chart (CCW)  
Hall Signals  
HALL U  
HALL V  
HALL W  
Spin Up (Hall Period < 1.4Hz)  
UH  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
VH  
WM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PW
PW
WH  
UL  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
VL  
WM  
WL  
CCW Direction (Lead=0deg)  
UH  
VH  
WH  
UL  
VL  
WL  
CCW Direction (Lead=30deg)  
UH  
VH  
WH  
UL  
VL  
WL  
FG Output (FGS=H)  
FG  
Figure 47. Timing Chart (Counter Clockwise)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/30  
TSZ22111 15 001  
BM6247FS  
Application Example  
VDC  
GND  
D1  
C5  
C6  
VCC  
R1  
VSP  
C7  
C8  
C13  
C1  
C2~C4  
M
R2  
C9  
HW HV HU  
C11  
R4  
R3  
R8  
FG  
Q1  
C12  
R7  
DTR  
Figure 48. Application Example (180° Sinusoidal Commutation Driver, CCW="H", FGS="H")  
Parts List  
Parts  
IC1  
R1  
Value  
-
Manufacturer  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
Type  
BM6247FS  
Parts  
C1  
Value  
0.1µF  
2200pF  
2200pF  
2200pF  
10µF  
10µF  
2.2µF  
2.2µF  
2.2µF  
0.1µF  
2.2uF  
100pF  
0.1µF  
0.1µF  
-
Ratings  
50V  
50V  
50V  
50V  
50V  
50V  
50V  
50V  
50V  
50V  
50V  
50V  
250V  
50V  
-
Type  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
1kΩ  
150Ω  
150Ω  
20kΩ  
100kΩ  
100kΩ  
0.5Ω  
10kΩ  
0Ω  
MCR18EZPF1001  
MCR18EZPJ151  
MCR18EZPJ151  
MCR18EZPF2002  
MCR18EZPF1003  
MCR18EZPF1003  
MCR50JZHFL1R50 // 3  
MCR18EZPF1002  
MCR18EZPJ000  
-
C2  
R2  
C3  
R3  
C4  
R4  
C5  
R5  
C6  
R6  
C7  
R7  
C8  
R8  
C9  
R9  
C10  
C11  
C12  
C13  
C14  
HX  
R10  
R11  
R12  
R13  
Q1  
-
0Ω  
ROHM  
-
MCR18EZPJ000  
-
-
100kΩ  
-
ROHM  
ROHM  
ROHM  
MCR18EZPF1003  
DTC124EUA  
Hall elements  
D1  
-
KDZ20B  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
23/30  
TSZ22111 15 001  
BM6247FS  
Dummy Pin Descriptions  
VCC  
PGND  
VCC  
GND  
GND  
GND  
VCC  
VSP  
VREG  
NC  
VDC  
(VDC)  
Dummy pins handling inside the package  
· All VCC pins are electrically connected in the inner lead  
frame except 5pin.  
· GND pins, 2pin, 3pin, 4pin, 24pin, 25pin and 26pin are  
electrically connected in the inner lead frame.  
· VDC pins, 31pin and 36pin are electrically connected in the  
inner lead frame.  
BU  
U
(U)  
(V)  
HWN  
HWP  
HVN  
HVP  
HUN  
HUP  
PCT  
PC  
BV  
V
Plural same name pins  
· 5pin is an independent VCC pin. 5pin and the other VCC  
pins are electrically not connected in the inner lead frame.  
Therefore, 5pin and 1pin needs to connect the pins each  
other.  
· 24pin, 25pin and 26pin are electrically connected in the  
inner lead frame, but 24pin is better to use the carrier  
frequency setting ground pin, and 26pin is also better to  
use the small signal ground, separately. Refer to the  
functional block diagram or an application circuit example.  
(VDC)  
VDC  
CCW  
FGS  
FG  
FOB  
SNS  
NC  
BW  
W
(W)  
RT  
GND  
GND  
GND  
VCC  
(PGND)  
PGND  
VCC  
PGND  
Figure 49. Dummy Pins  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
24/30  
TSZ22111 15 001  
22.Feb.2019 Rev.002  
BM6247FS  
I/O Equivalent Circuits  
VCC  
VREG  
VREG  
250k  
100k  
VSP  
VREG  
RT  
SNS  
2k  
Figure 50. RT  
Figure 51. SNS  
Figure 52. VSP  
Figure 53. VREG, VCC  
VREG  
VREG  
HUP  
HUN  
HVP  
HVN  
HWP  
HWN  
FG  
2k  
Figure 54. FG  
Figure 55. HXP, HXN  
VREG  
100k  
VREG  
VREG  
2k  
2k  
FGS  
CCW  
PC  
PCT  
2k  
Figure 56. FGS, CCW  
Figure 57. PC, PCT  
BX  
VREG  
VDC  
FOB  
X
VCC  
Figure 58. FOB  
PGND  
Figure 59. VCC, PGND, VDC, BX(BU/BV/BW), X(U/V/W)  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
25/30  
TSZ22111 15 001  
BM6247FS  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital  
and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block.  
Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the  
capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However, pins  
that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground due to back  
EMF or electromotive force. In such cases, the user should make sure that such voltages going below ground will not cause  
the IC and the system to malfunction by examining carefully all relevant factors and conditions such as motor characteristics,  
supply voltage, operating frequency and PCB wiring to name a few.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground  
caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground  
voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions.  
The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of  
connections.  
7. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
8. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the  
IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be  
turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage  
from static discharge, ground the IC during assembly and use similar precautions during transport and storage.  
9. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin  
shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional  
solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply  
or ground line.  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
26/30  
TSZ22111 15 001  
BM6247FS  
11. Regarding the Input Pin of the IC  
Do not force voltage to the input pins when the power does not supply to the IC. Also, do not force voltage to the input pins  
that exceed the supply voltage or in the guaranteed the absolute maximum rating value even if the power is supplied to the  
IC.  
When using this IC, the high voltage pins VDC, BU/U, BV/V and BW/W need a resin coating between these pins. It is judged  
that the inter-pins distance is not enough. If any special mode in excess of absolute maximum ratings is to be implemented  
with this product or its application circuits, it is important to take physical safety measures, such as providing  
voltage-clamping diodes or fuses. And, set the output transistor so that it does not exceed absolute maximum ratings or  
ASO. In the event a large capacitor is connected between the output and ground, and if VCC and VDC are short-circuited  
with 0V or ground for any reason, the current charged in the capacitor flows into the output and may destroy the IC.  
This IC contains the controller chip, P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic  
diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference  
among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as  
applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.  
Resistor  
Transistor(NPN)  
Pin B  
Pin A  
Pin B  
B
C
E
Pin A  
C
E
P
N
P+  
N
N
P+  
N
P
B
N
P+  
N
N
P+  
P Substrate  
N
Parasitic  
Elements  
N
P Substrate  
Parasitic  
Elements  
N Region  
close-by  
GND  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
Figure 60. Example of IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature  
and the decrease in nominal capacitance due to DC bias and others.  
13. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation  
(ASO).  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
27/30  
TSZ22111 15 001  
BM6247FS  
Ordering Information  
B M 6 2 4 7  
F S -  
Z E 2  
ROHM Part Number  
BM6247 : 250V/2.0A, 180° sinusoidal  
Package  
FS : SSOP-A54_36A  
Packaging specification  
E2 : Embossed carrier tape  
Marking Diagrams  
SSOP-A54_36A  
(TOP VIEW)  
Part Number Marking  
BM6247FS  
1PIN MARK  
LOT Number  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
28/30  
TSZ22111 15 001  
BM6247FS  
Physical Dimension and Packing Information  
Package Name  
SSOP-A54_36A  
(UNIT : mm)  
PKG : SSOP-A54_36A  
<Tape and Reel Information>  
Tape  
Embossed carrier tape  
1000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
*
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
29/30  
TSZ22111 15 001  
BM6247FS  
Revision History  
Date  
Revision  
Changes  
06.Apr.2018  
22.Feb.2019  
001  
002  
New Release  
Correct some misdescriptions  
www.rohm.com  
TSZ02201-0P1P0C402190-1-2  
22.Feb.2019 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
30/30  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM6248FS

将PrestoMOS™用作输出晶体管,与180°正弦波控制器芯片、栅极驱动器芯片同时收纳到小型表面贴装型全模件封装中的三相无刷风扇电机驱动器。内置过电流、过热、低电压等保护功能及阴极负载二极管,可实现电机电路板的小型化。
ROHM

BM6249FS

将PrestoMOS™用作输出晶体管,与180°正弦波控制器芯片、栅极驱动器芯片同时收纳到小型表面贴装型全模件封装中的三相无刷风扇电机驱动器。内置过电流、过热、低电压等保护功能及阴极负载二极管,可实现电机电路板的小型化。
ROHM

BM6258FS

这是使用PrestoMOS™作为输出晶体管、并将其与180°正弦波控制器芯片、栅极驱动器芯片共同集成于1枚小型表面贴装型全模塑封装(full mold package)中的三相无刷风扇电机驱动器。产品还内置了过电流、过热和欠压等保护功能以及自举二极管,可实现电机控制电路板的小型化。
ROHM

BM62SPKA1MC2

Bluetooth® 4.2 Stereo Audio Module
MICROCHIP

BM62SPKS1MC2

Bluetooth® 4.2 Stereo Audio Module
MICROCHIP

BM63363S-VA

AC Motor Controller,
ROHM

BM63363S-VC

AC Motor Controller,
ROHM

BM63364S-VA

AC Motor Controller,
ROHM

BM63364S-VC

AC Motor Controller,
ROHM

BM63373S-VA

是集栅极驱动器、自举二极管、IGBT、再生用快速恢复二极管于一体的智能功率模块(IPM)。
ROHM

BM63373S-VC

是将栅极驱动器、自举二极管、IGBT、再生用快速反向恢复二极管一体化封装的智能电源模块(IPM)。
ROHM

BM63374S-VA

是将栅极驱动器、自举二极管、IGBT、再生用快速反向恢复二极管一体化封装的智能电源模块(IPM)。
ROHM