BR24L08FV-WE1 [ROHM]

EEPROM, 1KX8, Serial, CMOS, PDSO8,;
BR24L08FV-WE1
型号: BR24L08FV-WE1
厂家: ROHM    ROHM
描述:

EEPROM, 1KX8, Serial, CMOS, PDSO8,

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管 内存集成电路
文件: 总25页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
1024×8 bit electrically erasable PROM  
BR24L08-W / BR24L08F-W / BR24L08FJ-W /  
BR24L08FV-W / BR24L08FVM-W  
The BR24L08-W series is 2-wire (I2C BUS type) serial EEPROMs which are electrically programmable.  
I2C BUS is a registered trademark of Philips.  
zApplications  
General purpose  
zFeatures  
1) 1024 registers × 8 bits serial architecture.  
2) Single power supply (1.8V to 5.5V).  
3) Two wire serial interface.  
4) Self-timed write cycle with automatic erase.  
5) 16byte Page Write mode.  
6) Low power consumption.  
Write (5V) : 1.5mA (Typ.)  
Read (5V) : 0.2mA(Typ.)  
Standby (5V) : 0.1µA (Typ.)  
7) DATA security  
Write protect feature (WP pin).  
Inhibit to WRITE at low VCC.  
8) Small package - - - DIP8 / SOP8 / SOP-J8 / SSOP-B8 / MSOP-8  
9) High reliability EEPROM with Double-Cell structure.  
10) High reliability fine pattern CMOS technology.  
11) Endurance : 1,000,000 erase / write cycles  
12) Data retention : 40 years  
13) Filtered inputs in SCLSDA for noise suppression.  
14) Initial data FFh in all address.  
zAbsolute maximum ratings (Ta=25°C)  
Parameter  
Supply voltage  
Symbol  
Limits  
Unit  
V
V
CC  
0.3 to +6.5  
800(DIP8)  
1
2
2
3
4
450(SOP8)  
450(SOP-J8)  
300(SSOP-B8)  
310(MSOP8)  
65 to +125  
40 to +85  
Power dissipation  
Pd  
mW  
Storage temperature  
Operating temperature  
Terminal voltage  
Tstg  
Topr  
°C  
°C  
V
0.3 to VCC+0.3  
1 Reduced by 8.0mW for each increase in Ta of 1°C over 25°C.  
2 Reduced by 4.5mW for each increase in Ta of 1°C over 25°C.  
3 Reduced by 3.0mW for each increase in Ta of 1°C over 25°C.  
4 Reduced by 3.1mW for each increase in Ta of 1°C over 25°C.  
1/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zRecommended operating conditions (Ta=25°C)  
Parameter  
Supply voltage  
Input voltage  
Symbol  
Limits  
1.8 to 5.5  
0 to VCC  
Unit  
V
VCC  
V
IN  
V
zDC operating characteristics (Unless otherwise specified Ta=−40 to 85°C, VCC=1.8 to 5.5V)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
V
Conditions  
2.5VVCC5.5V  
"HIGH" input volatge 1  
"LOW" input volatge 1  
"HIGH" input volatge 2  
"LOW" input volatge 2  
"LOW" output volatge 1  
"LOW" output volatge 2  
Input leakage current  
Output leakage current  
V
IH1  
IL1  
IH2  
IL2  
0.7VCC  
0.3VCC  
V
V
2.5VVCC5.5V  
1.8VVCC<2.5V  
1.8VVCC<2.5V  
V
0.8VCC  
V
V
0.2VCC  
0.4  
0.2  
1
V
V
V
OL1  
OL2  
V
I
I
OL=3.0mA, 2.5VVCC5.5V, (SDA)  
OL=0.7mA, 1.8VVCC5.5V, (SDA)  
V
I
LI  
1  
1  
µA  
µA  
V
IN=0V to VCC  
I
LO  
1
VOUT=0V to VCC  
V
CC=5.5V, fSCL=400kHz, tWR=5ms,  
I
I
CC1  
CC2  
2.0  
mA  
Byte Write, Page Write  
Operating current  
V
CC=5.5V, fSCL=400kHz  
0.5  
2.0  
mA  
Random Read, Current Read,  
Sequential Read  
V
CC=5.5V, SDASCL=VCC  
,
µA  
Standby current  
I
SB  
A0, A1, A2=GND, WP=GND  
This product is not designed for protection against radioactive rays.  
2/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zDimension  
9.3±0.3  
8
5
4
5.0±0.2  
8
5
1
7.62  
1
4
0.15±0.1  
0.1  
1.27  
0.4±0.1  
2.54  
0.5±0.1  
0° ~ 15°  
Fig.1(a) PHYSICAL DIMENSION (Units : mm)  
DIP8 (BR24L08-W)  
Fig.1(b) PHYSICAL DIMENSION (Units : mm)  
SOP8 (BR24L08F-W)  
3.0±0.2  
4.9±0.2  
8
5
8 7 6 5  
1
4
0.15±0.1  
1 2 3 4  
0.2±0.1  
0.1  
0.22±0.1  
(0.52) 0.65  
0.1  
1.27  
0.42±0.1  
Fig.1(c) PHYSICAL DIMENSION (Units : mm)  
SOP-J8 (BR24L08FJ-W)  
Fig.1(d) PHYSICAL DIMENSION (Units : mm)  
SSOP-B8 (BR24L08FV-W)  
2.9±0.1  
8
5
1
4
+0.05  
0.145  
0.03  
0.475  
+0.05  
0.04  
M
0.22  
0.08  
0.08 S  
0.65  
Fig.1(e) PHYSICAL DIMENSION (Units : mm)  
MSOP8 (BR24L08FVM-W)  
3/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zBlock diagram  
A0  
1
2
3
4
8
7
6
5
VCC  
32kbit EEPROM array  
8bit  
10bit  
A1  
A2  
Address  
decoder  
Slave word  
address register  
Data  
register  
WP  
10bit  
START  
STOP  
SCL  
SDA  
Control logic  
ACK  
High voltage generator  
Vcc level detect  
GND  
Fig.2 BLOCK DIAGRAM  
zPin configuration  
V
CC  
WP  
7
SCL  
6
SDA  
5
8
BR24L08-W  
BR24L08F-W  
BR24L08FJ-W  
BR24L08FV-W  
BR24L08FVM-W  
1
2
3
4
A0  
A1  
A2  
GND  
Fig.3 PIN LAYOUT  
zPin name  
Pin name  
I / O  
Function  
V
CC  
Power supply  
Ground (0V)  
Out of use  
GND  
A0, A1  
IN  
IN  
Slave address set  
Serial clock input  
A2  
SCL  
Slave and word address,  
serial data input, serial data output  
1
SDA  
WP  
IN / OUT  
IN  
Write protect input  
1 An open drain output requires a pull-up resistor.  
4/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zAC operating characteristics (Unless otherwise specified Ta=−40 to 85°C, VCC=1.8 to 5.5V)  
Fast-mode  
Standard-mode  
2.5V Vcc 5.5V  
1.8V Vcc 5.5V  
Parameter  
Symbol  
Unit  
Min. Typ. Max. Min. Typ. Max.  
fSCL  
tHIGH  
tLOW  
tR  
0.6  
1.2  
400  
4.0  
4.7  
100  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
ms  
µs  
ns  
µs  
µs  
Clock frequency  
Data clock "HIGH" period  
Data clock "LOW" period  
SDA and SCL rise time  
SDA and SCL fall time  
Start condition hold time  
Start condition setup time  
Input data hold time  
1
1
0.3  
0.3  
1.0  
0.3  
tF  
tHD:STA  
tSU:STA  
tHD:DAT  
tSU:DAT  
tPD  
0.6  
0.6  
0
4.0  
4.7  
0
Input data setup time  
Output data delay time  
Output data hold time  
Stop condition setup time  
Bus free time  
100  
0.1  
0.1  
0.6  
1.2  
250  
0.2  
0.2  
4.7  
4.7  
0.9  
3.5  
tDH  
tSU:STO  
tBUF  
tWR  
5
5
Write cycle time  
Noise spike width (SDA and SCL)  
WP hold time  
0.1  
0.1  
tl  
tHD:WP  
tSU:WP  
tHIGH:WP  
0
0
0.1  
1.0  
0.1  
1.0  
WP setup time  
WP high period  
1 Not 100% tested.  
5/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zSynchronous data timing  
t
R
t
F
tHIGH  
SCL  
t
HD : STA  
t
SU : DAT  
t
LOW  
PD  
tHD : DAT  
SDA  
(IN)  
t
BUF  
t
tDH  
SDA  
(OUT)  
SCL  
t
SU : STA  
t
HD : STA  
tSU : STO  
SDA  
START BIT  
STOP BIT  
Fig.4 SYNCHRONOUS DATA TIMING  
SDA data is latched into the chip at the rising edge of SCL clock.  
Output data toggles at the falling edge of SCL clock.  
zWrite cycle timing  
SCL  
SDA  
D0  
ACK  
WRITE DATA (n)  
tWR  
STOP CONDITION  
START CONDITION  
Fig.5 WRITE CYCLE TIMING  
6/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zWP timing  
SCL  
DATA (1)  
DATA (n)  
D1  
D0  
SDA  
ACK  
ACK  
t
WR  
STOP BIT  
WP  
t
SU : WP  
t
HD : WP  
Fig.6(a) WP TIMING OF THE WRITE OPERATION  
SCL  
SDA  
WP  
DATA (1)  
DATA (n)  
D1  
D0  
ACK  
ACK  
t
HIGH : WP  
Fig.6(b) WP TIMING OF THE WRITE CANCEL OPERATION  
For the WRITE operation, WP must be “LOW” during the period of time from the rising edge of the clock which takes in  
D0 of first byte until the end of tWR. ( See Fig.6 (a) )  
During this period, WRITE operation is canceled by setting WP “HIGH”. ( See Fig.6 (b) )  
In the case of setting WP “HIGH” during tWR, WRITE operation is stopped in the middle and the data of accessing  
address is not guaranteed. Please write correct data again in the case.  
7/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zDevice operation  
1) Start condition (Recognition of start bit)  
All commands are proceeded by the start condition, which is a HIGH to LOW transition of SDA when SCL is HIGH.  
The device continuously monitors the SDA and SCL lines for the start condition and will not respond to any command  
until this condition has been met. (See Fig.4 SYNCHRONOUS DATATIMING)  
2) Stop condition (Recognition of stop bit)  
All communications must be terminated by a stop condition, which is a LOW to HIGH transition of SDA when SCL is  
HIGH. (See Fig.4 SYNCHRONOUS DATATIMING)  
3) Notice about write command  
In the case that stop condition is not executed in WRITE mode, transferred data will not be written in a memory.  
4) Device addressing  
Following a START condition, the master output the slave address to be accessed.  
The most significant four bits of the slave address are the “device type identifier”, for this device it is fixed as “1010”.  
The next bit (device address) identify the specified device on the bus.  
The device address is defined by the state of A2 input pin. This IC works only when the device address  
inputted from SDA pin correspond to the state of A2 input pin. Using this address scheme, up to two devices may be  
connected to the bus.  
The next two bits (P1, P0) are used by the master to select t four 256 word page of memory.  
P1, P0 set to “0” “0” - - - - - - 1page (000 to 0FF)  
P1, P0 set to “0” “1” - - - - - - 2page (100 to 1FF)  
P1, P0 set to “1” “0” - - - - - - 3page (200 to 2FF)  
P1, P0 set to “1” “1” - - - - - - 4page (300 to 3FF)  
The last bit of the stream (R/W - - - READ / WRITE) determines the operation to be performed. When set to “1”, a read  
operation is selected ; when set to “0”, a write operation is selected.  
R / W set to “0” - - - - - - WRITE (including word address input of Random Read)  
R / W set to “1” - - - - - - READ  
1010  
A2  
P1  
P0  
R / W  
5) Write protect (WP)  
When WP pin set to VCC (H level), write protect is set for 1024 words (all address).  
When WP pin set to GND (L level), enable to write 1024 words (all address).  
Either control this pin or connect to GND (or VCC). It is inhibited from being left unconnected.  
8/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
6) Acknowledge  
Acknowledge is a software convention used to indicate successful data transfers.  
The transmitter device will release the bus after transmitting eight bits.  
(When inputting the slave address in the write or read operation, transmitter is µ-COM. When outputting the data in  
the read operation, it is this device.)  
During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge that the eight bits of data has  
been received.  
(When inputting the slave address in the write or read operation, receiver is this device. When outputting the data in  
the read operation, it is µ-COM.)  
The device will respond with an Acknowledge after recognition of a START condition and its slave address (8bit).  
In the WRITE mode, the device will respond with an Acknowledge, after the receipt of each subsequent 8-bit word  
(word address and write data).  
In the READ mode, the device will transmit eight bit of data, release the SDA line, and monitor the line for an  
Acknowledge.  
If an Acknowledge is detected, and no STOP condition is generated by the master, the device will continue to transmit  
the data. If an Acknowledge is not detected, the device will terminate further data transmissions and await a STOP  
condition before returning to the standby mode. (See Fig.7 ACKNOWLEDGE RESPONSE FROM RECEIVER)  
START CONDITION  
(START BIT)  
SCL  
(From µ−COM)  
1
8
9
SDA  
(µ−COM  
OUTPUT DATA)  
SDA  
(IC OUTPUT DATA)  
Acknowledge Signal  
(ACK Signal)  
Fig.7 ACKNOWLEDGE RESPONSE FROM RECEIVER  
9/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zByte write  
S
T
A
R
T
W
R
I
S
T
O
P
SLAVE  
ADDRESS  
WORD  
ADDRESS  
T
E
DATA  
SDA  
LINE  
WA  
7
WA  
0
1
0
1
0
D7  
D0  
A2 P1P0  
R A  
A
C
K
A
C
K
/
C
W K  
WP  
Fig.8 BYTE WRITE CYCLE TIMING  
By using this command, the data is programmed into the indicated word address.  
When the master generates a STOP condition, the device begins the internal write cycle to the nonvolatile memory  
array.  
zPage write  
S
T
A
R
T
W
R
I
T
E
S
T
O
P
SLAVE  
ADDRESS  
WORD  
ADDRESS (n)  
DATA (n)  
DATA (n+15)  
SDA  
LINE  
WA  
7
WA  
0
1
0
1
0
D7  
D0  
D0  
A2 P1P0  
R A  
A
C
K
A
C
K
A
C
K
/
C
W K  
WP  
Fig.9 PAGE WRITE CYCLE TIMING  
This device is capable of sixteen byte Page Write operation.  
When two or more byte data are inputted, the four low order address bits are internally incremented by one after the  
receipt of each word. The six higher order bits of the address (P1, P0, WA7 to WA4) remain constant.  
If the master transmits more than sixteen words, prior to generating the STOP condition, the address counter will  
“roll over”, and the previous transmitted data will be overwritten.  
10/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zCurrent read  
S
T
A
R
T
R
E
A
D
S
T
O
P
SLAVE  
ADDRESS  
DATA  
SDA  
LINE  
1
0
1
0
A2 P1 P0  
D7  
D0  
R
/
W
A
C
K
A
C
K
Fig.10 CURRENT READ CYCLE TIMING  
In case that the previous operation is Random or Current Read (which includes Sequential Read respectively), the  
internal address counter is increased by one from the last accessed address (n).  
Thus Current Read outputs the data of the next word address (n+1).  
If the last command is Byte or Page Write, the internal address counter stays at the last address (n).  
Thus Current Read outputs the data of the word address (n).  
If an Acknowledge is detected, and no STOP condition is generated by the master (µ-COM), the device will continue  
to transmit the data. [ It can transmit all data (8kbit 1024word) ]  
If an Acknowledge is not detected, the device will terminate further data transmissions and await a STOP condition  
before returning to the standby mode.  
Note) If an Acknowledge is detected with “Low” level, not “High” level, command will become Sequential Read.  
So the device transmits the next data, Read is not terminated. In the case of terminating Read, input  
Acknowledge with “High” always, then input stop condition.  
zRandom read  
S
T
A
R
T
W
R
I
T
E
S
T
A
R
T
R
E
A
D
S
T
O
P
SLAVE  
ADDRESS  
SLAVE  
ADDRESS  
WORD  
ADDRESS(n)  
DATA(n)  
SDA  
LINE  
WA  
7
WA  
0
1
0
1
0
A2P1P0  
1
0
1
0
A2A1PS  
D7  
D0  
R
/
W
A
C
K
A
C
K
R
/
A
C
A
C
K
W K  
Fig.11 RANDOM READ CYCLE TIMING  
Random read operation allows the master to access any memory location indicated word address.  
If an Acknowledge is detected, and no STOP condition is generated by the master (µ-COM), the device will continue to  
transmit the data. [ It can transmit all data (8kbit 1024word) ]  
If an Acknowledge is not detected, the device will terminate further data transmissions and await a STOP condition  
before returning to the standby mode.  
Note) If an Acknowledge is detected with “Low” level, not “High” level, command will become Sequential Read.  
So the device transmits the next data, Read is not terminated. In the case of terminating Read, input  
Acknowledge with “High” always, then input stop condition.  
11/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zSequential read  
S
T
A
R
T
R
E
A
D
S
T
SLAVE  
ADDRESS  
O
DATA(n)  
DATA(n+x)  
P
SDA  
LINE  
1
0
1
0 A2 P1 P0  
D7  
D0  
D7  
D0  
R A  
A
C
K
A
C
K
A
C
K
/
C
W K  
Fig.12 SEQUENTIAL READ CYCLE TIMING  
(Current Read)  
If an Acknowledge is detected, and no STOP condition is generated by the master (µ-COM), the device will continue to  
transmit the data. [ It can transmit all data (8kbit 1024word) ]  
If an Acknowledge is not detected, the device will terminate further data transmissions and await a STOP condition  
before returning to the standby mode.  
The Sequential Read operation can be performed with both Current Read and Random Read.  
Note) If an Acknowledge is detected with “Low” level, not “High” level, command will become Sequential Read.  
So the device transmits the next data, Read is not terminated. In the case of terminating Read, input  
Acknowledge with “High” always, then input stop condition.  
12/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
zApplication  
1) WP effective timing  
WP is fixed to “H” or “L” usually. But in case of controlling WP to cancel the write command, please pay attention to  
[ WP effective timing ] as follows.  
During write command input, write command is canceled by controlling WP “H” within the WP cancellation effective  
period.  
The period from the start condition to the rising edge of the clock which take in D0 of the data (the first byte of the data  
for Page Write) is the cancellation invalid period. WP input is don’t care during the period. Setup time for rising edge of  
the SCL which takes in D0 must be more than 100ns.  
The period from the rising edge of SCL which takes in D0 to the end of internal write cycle (tWR) is the cancellation  
effective period. In case of setting WP to “H” during tWR, WRITE operation is stopped in the middle and the data of  
accessing address is not guaranteed, so that write correct data again please.  
It is not necessary waiting tWR (5msmax.) after stopping command by WP, because the device is stand by state.  
· The rising edge of the clock  
which take in D0  
SCL  
SDA  
SCL  
SDA  
· The rising edge  
of SDA  
D1  
D0  
ACK  
D0  
ACK  
AN ENLARGEMENT  
AN ENLARGEMENT  
S
T
A
R
T
A
C
K
L
A
A
C
K
L
A
C
K
L
A
C
K
L
S
T
O
P
tWR  
SLAVE  
ADDRESS  
WORD  
ADDRESS  
C
K
L
SDA  
WP  
D7 D6 D5 D4 D3 D2 D1 D0  
DATA  
Stop of the write  
operation  
WP cancellation invalid period  
WP cancellation effective period  
No data will be written  
Data is not  
guaranteed  
Fig.13 WP EFFECTIVE TIMING  
13/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
2) Software reset  
Please execute software reset in case that the device is an unexpected state after power up and / or the command  
input need to be reset.  
There are some kinds of software reset. Here we show three types of example as follows.  
During dummy clock, please release SDA bus (tied to VCC by pull up resistor).  
During that time, the device may pull the SDA line LOW for Acknowledge or outputting or read data.  
If the master controls the SDA line HIGH, it will conflict with the device output LOW then it makes a current overload.  
It may cause instantaneous power down and may damage the device.  
DUMMY CLOCK × 14  
START × 2  
COMMAND  
COMMAND  
SCL  
SDA  
1
2
13  
14  
Fig.14-(a) DUMMY CLOCK × 14 + START + START  
DUMMY CLOCK × 9  
START  
START  
COMMAND  
COMMAND  
SCL  
SDA  
1
2
8
9
Fig.14-(b) START+ DUMMY CLOCK × 9 + START  
START × 9  
COMMAND  
COMMAND  
SCL  
SDA  
1
2
3
7
8
9
Fig.14-(c) START × 9  
COMMAND starts with start condition.  
14/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
3) Acknowledge polling  
Since the device ignore all input commands during the internal write cycle, no ACK will be returned.  
When the master send the next command after the write command, if the device returns the ACK, it means that the  
program is completed. If no ACK id returned, it means that the device is still busy.  
By using Acknowledge polling, the waiting time is minimized less than tWR=5ms.  
In case of operating Write or Current Read right after Write, first, send the slave address (R / W is “HIGH” or “LOW”  
respectively). After the device returns the ACK, continue word address input or data output respectively.  
During the internal write cycle,  
no ACK will be returned.  
(ACK=HIGH)  
THE FIRST WRITE COMMAND  
S
T
A
R
T
S
T
A
R
T
S
T
A
R
T
S
T
O
P
A
C
K
H
A
C
K
H
SLAVE  
ADDRESS  
SLAVE  
ADDRESS  
WRITE COMMAND  
• • •  
t
WR  
THE SECOND WRITE COMMAND  
S
T
A
R
T
S
T
A
R
T
A
A
C
K
L
A
C
K
L
S
T
O
P
A
C
K
L
SLAVE  
ADDRESS  
C
K
H
WORD  
ADDRESS  
SLAVE  
ADDRESS  
• • •  
DATA  
t
WR  
After the internal write cycle  
is completed ACK will be returned  
(ACK=LOW). Then input next  
Word Address and data.  
Fig.15 SUCCESSIVE WRITE OPERATION BY ACKNOWLEDGE POLLING  
15/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
4) Command cancellation by start and stop condition  
During a command input, it is canceled by the successive inputs of start condition and stop condition. (Fig.4)  
But during ACK or data output, the device may output the SDA line LOW. In such cases, operation of start and stop  
condition is impossible, so that the reset can’t work. Execute the software reset in the cases. (See Page14)  
Operating the command cancel by start and stop condition during the command of Random Read or Sequential Read  
or Current Read, internal address counter is not confirmed.  
Therefore operation of Current Read after this in not valid. Operate a Random Read in this case.  
SCL  
1
0
1
0
SDA  
START  
STOP  
CONDITION  
CONDITION  
Fig.16 COMMAND CANCELLATION BY START AND STOP CONDITION  
DURING THE INPUT OF SLAVE ADDRESS  
16/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
5) Notes for power supply  
VCC rises through the low voltage region in which internal circuit of IC and the controller are unstable, so that device  
may not work properly due to an incomplete reset of internal circuit.  
To prevent this, the device has the feature of P.O.R. and LVCC.  
In the case of power up, keep the following conditions to ensure functions of P.O.R and LVCC.  
(1) It is necessary to be “SDA=‘H’ ” and “SCL=’L’ or ‘H’ ”.  
(2) Follow the recommended conditions of tR, tOFF, Vbot for the function of P.O.R. durning power up.  
t
R
VCC  
Recommended conditions of t  
R, tOFF, Vbot  
t
R
tOFF  
Vbot  
Below 10ms Above 10ms  
Below 100ms Above 10ms  
Below 0.3V  
t
OFF  
Below 0.2V  
Vbot  
0
VCC rising wave from  
(3) Prevent SDA and SCL from being “Hi-Z”.  
In case that condition 1. and / or 2. cannot be met, take following actions.  
A) Unable to keep condition 1. (SDA is “LOW” during power up.)  
Control SDA, SCL to be “HIGH” as figure below.  
V
CC  
t
LOW  
SCL  
SDA  
After VCC becomes stable  
After VCC becomes stable  
t
DH  
t
SU:DAT  
t
SU:DAT  
a) SCL="H" and SDA="L"  
b) SCL="L" and SDA="L"  
B) Unable to keep condition 2.  
After power becomes stable, execute software reset. (See Page14 )  
C) Unable to keep condition 1 and 2.  
Follow the instruction A first, then the instruction B.  
LVCC circuit  
LVCC circuit inhibit write operation at low voltage, and prevent an inadvertent write. Below the LVCC voltage  
(Typ.=1.2V), write operation is inhibited.  
17/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
6) I / O circuit  
Pull up resister of SDA pin  
The pull up resister is needed because SDA is NMOS open drain. Decide the value of this resister (RPU) properly,  
by considering VIL, IL characteristics of a controller which control the device and VOH, IOL characteristics of the device.  
If large RPU is chosen, clock frequency need to be slow. In case of small RPU, the operating current increases.  
Maximum of RPU  
Maximum of RPU is determined by following factor.  
c SDA rise time determined by RPU and the capacitance of bus line (CBUS) must be less than TR.  
And the other timing must keep the conditions of AC spec.  
d When SDA bus is HIGH, the voltage A of SDA bus determined by a total input leak (IL) of the all devices  
connected to the bus and RPU must be enough higher than input HIGH level of a controller and the device,  
including noise margin 0.2VCC.  
V
CC ILRPU 0.2VCC VIH  
MICRO  
COMPUTER  
BR24LXX  
SDA PIN  
0.8VCC VIH  
RPU  
RPU ≤  
A
IL  
IL  
IL  
Examples : When VCC=3V IL=10µA VIH=0.7VCC  
THE CAPACITANCE OF  
BUS LINE (CBUS)  
2
According to  
0.8×30.7×3  
10×106  
RPU ≤  
300 [k]  
18/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
The minimum value RPU  
The minimum value of RPU is determined by following factors.  
c Meet the condition that VOLMAX=0.4V, IOLMAX=3mA when the device output low on SDA line.  
V
CC VOL  
IOL  
RPU  
V
CC VOL  
RPU  
I
OL  
d VOLMAX (=0.4V) must be lower than the input LOW level of the controller and the EEPROM including  
recommended noise margin (0.1VCC).  
V
OLMAX VIL 0.1VCC  
Examples : VCC=3V, VOL=0.4V, IOL=3mA, the VIL of the controller and the EEPROM is VIL=0.3VCC  
30.4  
1
According to  
RPU ≥  
3×103  
867 []  
and  
V
V
OL  
IL  
=0.4[V]  
=0.3×3  
=0.9[V]  
so that condition 2 is met  
Pull up resister of SCL pin  
In the case that SCL is controlled by CMOS output, the pull up resister of SCL is not needed.  
But in the case that there is a timing at which SCL is Hi-Z, connect SCL to VCC with pull up resister.  
Several several dozen kis recommended as a pull up resister, which is considered with the driving ability of the  
output port of the controller.  
7) Connections of A0, A1, A2, WP pin  
Connections of device address pin (A0, A1, A2)  
The state of device address PIN are compared with the device address send by the master, then one of the devices  
which are connected to the identical bus is selected. Pull up or down these pins, or connect them to VCC or GND.  
Pins which is not used as device address (N.C. PIN) may be either HIGH, LOW, and Hi-Z.  
The type of the device which have N.C. PIN  
BR24L16 / F / FJ / FV / FVM-W A0, A1, A2  
BR24L08 / F / FJ / FV / FVM-W A0, A1  
BR24L04 / F / FJ / FV / FVM-W A0  
Connections of WP pin  
The WP input allows or inhibits write operations. When WP is HIGH, only READ is available and WRITE to any  
address is inhibited. Both Read and Write are available when WP is LOW.  
In the case that the device is used as a ROM, it is recommended that WP is pulled up or connected to VCC.  
In the case that both READ and WRITE are operated, WP pin must be pulled down or connected to GND or  
controlled.  
19/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
8) Notes for noise on VCC  
About bypass capacitor  
Noise and surges on power line may cause the abnormal function. It is recommended that the bypass capacitors  
(0.1µF) are attached on the VCC and GND line beside the device.  
The attachment of bypass capacitors on the board near by connector is also recommended.  
IC  
capacitor 0.01 to 0.1µF  
PRINT BASE  
GND  
VCC  
capacitor 10 to 100µF  
9) The notice about the connection of controller  
About RS  
The open drain interface is recommended for SDA port in I2C BUS. But, in the case that Tri-state CMOS interface is  
applied to SDA, insert a series resister RS between SDA pin of the device and a pull up resister RPU. It limits the  
current from PMOS of controller to NMOS of EEPROM.  
RS also protects SDA pin from surges. Therefore, RS is able to be used though SDA port is open drain.  
RPU  
SDA PIN  
RS  
CONTROLLER  
EEPROM  
ACK  
SCL  
SDA  
"H" OUTPUT OF  
CONTROLLER  
"L" OUTPUT OF  
EEPROM  
The "H" output of controller  
and the "L" output of EEPROM may cause  
current overload to SDA line.  
20/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
The maximum value of RS  
The maximum value of RS is determined by following factors.  
c SDA rise time determined by RPU and the capacitance of bus line (CBUS ) of SDA must be less than tR.  
And the other timing must also keep the conditions of the AC timing.  
d When the device outputs LOW on SDA line, the voltage of the bus A determined by RPU and RS must be  
lower than the inputs LOW level of the controller, including recommended noise margin (0.1VCC).  
(VCCVOL) × R  
S
+ VOL+0.1VCC VIL  
RPU+R  
S
V
ILVOL0.1VCC  
1.1VCCVIL  
RS  
× RPU  
Examples : When VCC=3V, VIL=0.3VCC, VOL=0.4V, RPU=20kΩ  
2
According to  
0.3×30.40.1×3  
1.1×30.3×3  
RS  
× 20×103  
1.67 [k]  
VCC  
A
RPU  
RS  
VOL  
CAPACITANCE OF  
BUS LINE (CBUS)  
V
IL  
CONTROLLER  
EEPROM  
The minimum value of RS  
The minimum value of RS is determined by the current overload due to the conflict on the bus.  
The current overload may cause noise on the power line and instantaneous power down.  
The following conditions must be met, where Ι is the maximum permissible current.  
The maximum permissible current depends on VCC line impedance and so on. It need to be less than 10mA for  
EEPROM.  
V
R
CC  
≤ Ι  
S
V
CC  
RS ≥  
Ι
Examples : When VCC=3V, Ι=10mA  
RPU  
RS  
"L" OUTPUT  
3
RS ≥  
10×103  
MAXIMUM  
CURRENT  
300 []  
Ι
"H" OUTPUT  
CONTROLLER  
EEPROM  
21/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
10) The special character DATA  
The following characteristic data are typ. value.  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
1
0.8  
0.6  
0.4  
0.2  
0
Ta=85°C  
Ta=−40°C  
Ta=25°C  
SPEC  
Ta=25°C  
Ta=85°C  
Ta=85°C  
Ta=−40°C  
Ta=25°C  
SPEC  
SPEC  
5
Ta=−40°C  
0
1
2
3
4
5
6
0
1
2
3
4
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
L OUTPUT CURRENT : IOL (mA)  
Fig.17 High input voltage VIH  
(A0,A1,A2,SCL,SDA,WP)  
Fig.18 Low input voltage VIL  
(A2,SCL,SDA,WP)  
Fig.19 Low output voltage VOLIOL  
(VCC=1.8V)  
1
0.8  
0.6  
0.4  
0.2  
0
1.2  
1
1.2  
1
SPEC  
SPEC  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
SPEC  
Ta=25°C  
Ta=85°C  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
Ta=−40°C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
L
OUTPUT CURRENT : IOL (mA)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.20 Low output voltage VOLIOL  
(VCC=2.5V)  
Fig.21 Input leakage current ILI  
(A2,SCL,WP)  
Fig.22 Output leakage current  
I
LO(SDA)  
2.5  
2
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.5  
2
SPEC  
SPEC  
SPEC  
f
SCL=400kHz  
f
SCL=100kHz  
DATA=AAh  
DATA=AAh  
f
SCL=400kHz  
DATA=AAh  
1.5  
1
1.5  
1
Ta=25°C  
Ta=85°C  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
0.5  
0.5  
Ta=−40°C  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.23 Write operating current  
Fig.24 Read operating current  
Fig.25 Write operating current  
I
CC1 (fSCL=400kHz)  
I
CC2 (fSCL=400kHz)  
ICC1 (fSCL=100kHz)  
22/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
0.6  
0.5  
2.5  
2
10000  
1000  
100  
10  
SPEC  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
SPEC  
f
SCL=100kHz  
0.4  
0.3  
0.2  
0.1  
0
DATA=AAh  
SPEC1  
1.5  
1
SPEC2  
Ta=25°C  
Ta=85°C  
0.5  
Ta=25°C  
Ta=−40°C  
Ta=−40°C  
Ta=85°C  
0
1
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.26 Read operating current  
Fig.27 Standby current ISB  
Fig.28 Clock frequency fSCL  
I
CC2 (fSCL=100kHz)  
5
5
4
3
2
1
0
5
4
3
2
1
0
SPEC2  
SPEC2  
SPEC2  
4
3
2
1
0
SPEC1 : FAST-MODE  
SPEC1 : FAST-MODE  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
SPEC2 : STANDARD-MODE  
SPEC2 : STANDARD-MODE  
SPEC1  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
SPEC1  
4
SPEC1  
4
0
1
2
3
5
6
0
1
2
3
4
5
6
0
1
2
3
5
6
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.29 Data clock "H" period tHIGH  
Fig.30 Data clock "L" period tLOW  
Fig.31 Start condition hold time  
t
HD:STA  
6
5
4
3
2
1
0
50  
0
50  
0
SPEC1,2  
SPEC1,2  
SPEC2  
SPEC1 : FAST-MODE  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
SPEC2 : STANDARD-MODE  
50  
50  
Ta=85°C  
100  
150  
200  
100  
150  
200  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
SPEC1  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.32 Start condition setup time  
Fig.33 Input data hold time  
Fig.34 Input data hold time  
t
SU:STA  
t
HD:DAT(HIGH)  
tHD:DAT(LOW)  
23/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
300  
300  
200  
100  
0
4
3
2
1
0
SPEC2  
SPEC2  
SPEC2  
SPEC1 : FAST-MODE  
SPEC1 : FAST-MODE  
200  
SPEC2 : STANDARD-MODE  
SPEC2 : STANDARD-MODE  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
SPEC1  
SPEC1  
100  
Ta=85°C  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
0
Ta=85°C  
Ta=25°C  
Ta=−40°C  
SPEC1  
Ta=25°C  
Ta=−40°C  
100  
100  
SPEC2  
SPEC1  
200  
200  
0
1
2
3
4
5
6
6
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
6
6
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.35 Input data setup time  
Fig.36 Input data setup time  
Fig.37 Output data delay time  
t
SU:DAT(HIGH)  
t
SU:DAT(LOW)  
tPD0  
4
4
3
2
1
0
4
3
2
1
0
SPEC2  
SPEC2  
SPEC2  
3
2
1
0
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
SPEC1  
SPEC1  
SPEC1  
SPEC2  
SPEC1  
SPEC2  
SPEC1  
SPEC2  
SPEC1  
0
1
2
3
4
5
0
1
2
3
4
5
6
0
1
2
3
4
5
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.38 Output data delay time  
Fig.39 Output data hold time  
Fig.40 Output data hold time  
t
PD1  
t
DH0  
tDH1  
5
4
3
2
1
0
6
5
4
3
2
1
0
5
4
3
2
1
0
SPEC1,2  
SPEC2  
SPEC2  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
SPEC1  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
SPEC1  
4
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
0
1
2
3
4
5
6
0
1
2
3
4
5
0
1
2
3
5
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.42 BUS free time tBUF  
Fig.43 Write cycle time tWR  
Fig.41 Stop condition setup time  
t
SU:STO  
24/25  
BR24L08-W / BR24L08F-W / BR24L08FJ-W  
BR24L08FV-W / BR24L08FVM-W  
Memory ICs  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SPEC1 : FAST-MODE  
SPEC1 : FAST-MODE  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
SPEC2 : STANDARD-MODE  
SPEC2 : STANDARD-MODE  
0.5  
Ta=−40°C  
Ta=85°C  
0.4  
Ta=25°C  
Ta=−40°C  
Ta=85°C  
Ta=25°C  
0.3  
0.2  
0.1  
0
Ta=−40°C  
Ta=25°C  
Ta=85°C  
SPEC1,2  
SPEC1,2  
SPEC1,2  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.44 Noise spike width  
Fig.45 Noise spike width  
Fig.46 Noise spike width  
t
I
(SCL H)  
t
I
(SCL L)  
t
I
(SDA H)  
0.6  
0.2  
1.2  
1
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SPEC1,2  
SPEC1,2  
0
0.2  
0.4  
0.6  
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
0.8  
0.6  
0.4  
0.2  
0
SPEC1 : FAST-MODE  
SPEC2 : STANDARD-MODE  
Ta=−40°C  
Ta=85°C  
Ta=25°C  
Ta=85°C  
Ta=−40°C  
Ta=−40°C  
Ta=25°C  
Ta=85°C  
Ta=25°C  
SPEC1,2  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
SUPPLY VOLTAGE : VCC (V)  
Fig.47 Noise spike width  
Fig.48 WP setup time tSU:WP  
Fig.49 WP high period tHIGH:WP  
tI (SDA L)  
25/25  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY