BU2050F-TL [ROHM]

SIPO Based Peripheral Driver, 0.025A, PDSO14, ROHS COMPLIANT, SOP-14;
BU2050F-TL
型号: BU2050F-TL
厂家: ROHM    ROHM
描述:

SIPO Based Peripheral Driver, 0.025A, PDSO14, ROHS COMPLIANT, SOP-14

光电二极管
文件: 总25页 (文件大小:1047K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
Serial-in / Parallel-out Driver Series  
Serial / Parallel  
4-input Drivers  
BU2050F, BU2092F/FV, BU2099FV, BD7851FP, BU2152FS  
Description  
Serial-in-parallel-out driver incorporates a built-in shift register and a latch circuit to control a maximum of 24 LED by a 4-line  
interface, linked to a microcontroller.  
A single external resistor can set the output current value of the constant current up to a maximum of 50mA.  
(BD7851FP only)  
CMOS open drain output type products can drive the maximum current of 25mA.  
Features  
1) LED can be driven directly.  
2) Parallel output of a maximum of 24 bit  
3) Operational on low voltage (2.7V5.5V)  
4) Cascade connection is possible (BU2050F and BU2092F/FV are not acceptable)  
Application  
For AV equipment such as, audio stereo sets, videos and TV sets, PCs, control microcontroller mounted equipment.  
Product line-up  
Parameter  
Output current  
Output line  
BU2050F  
BU2092F  
BU2092FV BU2099FV BD7851FP BU2152FS  
Unit  
mA  
line  
25  
8
25  
12  
25  
12  
25  
12  
50  
25  
24  
16  
Constant  
current  
HSOP25  
CMOS  
SOP14  
Open drain  
CMOS  
-
-
Output type  
Package  
SOP18  
SSOP-B20 SSOP-B20  
SSOP-A32  
Mar. 2008  
Thermal derating curve  
700  
700  
600  
500  
600  
500  
BU2050F  
BU2092F  
400  
300  
200  
400  
300  
200  
BU2092FV  
BU2099FV  
100  
100  
0
85℃  
0
75 100  
175  
75 100  
Ambient temperature Ta [℃]  
175  
25  
50  
125 150  
25  
50  
125 150  
Ambient temperature Ta [℃]  
1600  
1400  
1200  
BD7851FP  
BU2152FS  
1000  
800  
600  
400  
200  
85℃  
0
75 100  
Ambient temperature Ta [℃]  
175  
25  
50  
125 150  
Absolute maximum ratings (Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
BU2050F  
-0.3+7.0  
450 *1  
BU2092F  
BU2092FV  
Power Supply Voltage  
Power dissipation 1  
Power dissipation 2  
Input Voltage  
VDD  
Pd1  
Pd2  
VIN  
-0.3+7.0  
V
mW  
mW  
V
450 (SOP) *2  
550 (SOP) *4  
400 (SSOPB) *3  
650 (SSOPB) *5  
-
VSS-0.3VDD+0.5  
VSS-0.3VDD+0.5  
-40+85  
VSS-0.3VDD+0.3  
Output Voltage  
Vo  
VSS+25.0  
-25+75  
V
Operating Temperature  
Storage Temperature  
Topr  
Tstg  
-55+125  
-55+125  
*1 Reduced by 4.5mW/over 25℃  
*2 Reduced by 4.5mW/over 25℃  
*3 Reduced by 4.0mW/over 25℃  
*4 Reduced by 5.5mW/for each increase in Ta of 1over 25(When mounted on a board 50mm×50mm×1.6mm Glass-epoxy PCB).  
*5 Reduced by 6.5mW/for each increase in Ta of 1over 25(When mounted on a board 70mm×70mm×1.6mm Glass-epoxy PCB).  
Limits  
Parameter  
Symbol  
Unit  
BU2099FV  
-0.3+7.0  
400 (SSOPB) *6  
650 (SSOPB) *9  
VSS-0.3VDD+0.3  
VSS+25.0  
BD7851FP  
0+7.0  
1450 *7  
BU2152FS  
-0.3+7.0  
800 *8  
Power Supply Voltage  
Power dissipation 1  
Power dissipation 2  
Input Voltage  
VDD  
Pd1  
Pd2  
VIN  
V
mW  
mW  
V
-
-
-0.3VCC+0.3  
0+10  
VSS-0.3VDD+0.3  
VSS-0.3VDD+0.3  
-25+85  
Output Voltage  
Vo  
V
Operating Temperature  
Storage Temperature  
Topr  
Tstg  
-40+85  
-30+85  
-55+150  
-55+125  
-55+125  
*6 Reduced by 4.5mW/over 25℃  
*7 Reduced by 11.6mW/over 25℃  
*8 Reduced by 8.0mW/over 25℃  
*9 Reduced by 6.5mW/for each increase in Ta of 1over 25(When mounted on a board 70mm×70mm×1.6mm Glass-epoxy PCB).  
2/24  
Electrical characteristics  
BU2050F (Unless otherwise noted, Ta=25, VDD=4.55.5V)  
Parameter  
Power Supply Voltage  
Input high-level Voltage  
Input low-level Voltage  
Input Hysteresis  
Symbol  
VDD  
Min.  
4.5  
Typ.  
Max.  
5.5  
Unit  
V
Condition  
-
VIH  
0.7VDD  
VSS  
-
VDD  
0.3VDD  
-
V
VIL  
-
V
VHYS  
-
0.5  
V
VDD-1.5  
VDD-1.0  
VDD-0.5  
VSS  
-
-
-
-
-
-
-
VDD  
VDD  
VDD  
1.5  
IOH=-25mA  
Output high-level Voltage  
VOHD  
V
IOH=-15mA  
IOH=-10mA  
IOL=25mA  
Output low-level Voltage  
Quiescent Current  
VOLD  
IDD  
VSS  
0.8  
V
IOL=15mA  
VSS  
0.4  
IOL=10mA  
-
0.1  
mA  
VIH=VDD, VIL=VSS  
BU2092F/FV (Unless otherwise noted, Ta=25, VSS=0V, VDD=5.0V/3.0V)  
Parameter  
Power Supply Voltage  
Input high-level Voltage  
Input low-level Voltage  
Symbol  
VDD  
Min.  
2.7  
Typ.  
Max.  
5.5  
Unit  
V
Condition  
-
-
-
VIH  
3.5 / 2.5  
-
-
V
VDD=5V/3V  
VDD=5V/3V  
VIL  
1.5 / 0.4  
V
V
DD=5V/3V,  
Output low-level Voltage  
VOL  
-
-
2.0 / 1.0  
V
IOL=20mA/5mA  
VO=25.0V  
Output high-level disable Current  
Output low-level disable Current  
IOZH  
IOZL  
-
-
-
-
10.0  
-5.0  
μA  
μA  
VO=0V  
VIN=VSS or VDD  
(VDD=5V/3V)  
OUTPUT:OPEN  
Quiescent Current  
IDD  
-
-
5.0 / 3.0  
μA  
BU2099FV (Unless otherwise noted, Ta=25, VSS=0V, VDD=5.0V/3.0V)  
Parameter  
Power Supply Voltage  
Input high-level Voltage  
Input low-level Voltage  
Symbol  
VDD  
Min.  
2.7  
Typ.  
Max.  
5.5  
Unit  
V
Condition  
-
-
-
VIH  
3.5 / 2.1  
-
-
V
VDD=5V/3V  
VDD=5V/3V  
VDD=5V/3V,  
VIL  
1.5 / 0.9  
V
VDD-0.5  
/ VDD-0.3  
Output high-level Voltage (SO)  
Output low-level Voltage 1 (Qx)  
Output low-level Voltage 2 (SO)  
VOH  
-
-
-
V
V
I
OH=-400μA/-100μA  
VDD=5V/3V,  
-
1.0  
IOL1=10mA/5mA  
VDD=5V, IOL1=15mA  
VDD=5V, IOL1=20mA  
VOL1  
-
-
-
-
1.5  
2.0  
V
DD=5V/3V,  
VOL2  
IOZH  
IOZL  
-
-
-
-
-
-
0.4 / 0.3  
10  
V
IOL2=1.5mA/0.5mA  
Output high-level disable Current  
(Qx)  
μA  
μA  
VO=25.0V  
Output low-level disable Current  
(Qx)  
-5.0  
VO=0V  
IPULLDOWN (OE)  
IPD  
-
-
-
150 / 60  
2.4  
μA  
OE= VDD, VDD=5V/3V  
Low Voltage Reset  
VCLR  
1.1  
V
VIN=VSS or VDD  
,
Quiescent Current  
IDD  
-
-
200  
μA  
VDD=5V  
OUTPUT:OPEN  
3/24  
Electrical characteristics  
BD7851FP (Unless otherwise noted, Ta=25, VCC=5.0V)  
Parameter  
Power Supply Voltage  
Input high-level Voltage  
Input low-level Voltage  
Output high-level Voltage  
Output low-level Voltage  
Symbol  
VDD  
VIH  
Min.  
Typ.  
Max.  
Unit  
V
Condition  
4.5  
-
-
-
-
-
5.5  
0.8×VCC  
-
V
VIL  
-
0.2×VCC  
V
VOH  
VOL  
VCC-0.5  
-
-
V
IOH=-1mA  
0.5  
V
IOL=1mA  
R=13kΩ  
-
-
-
0.7  
1.8  
4.0  
1.0  
3.0  
6.5  
mA  
mA  
mA  
OUT1OUT16:OFF  
R=1.3kΩ  
OUT1OUT16:OFF  
R=13kΩ  
Quiescent Current  
ICC  
OUT1OUT16:ON  
R=1.3kΩ  
-
30  
55  
40  
62  
mA  
mA  
mA  
OUT1OUT16:ON  
VOUT=2.0V, R=1.3kΩ  
Reference Current Output Current  
(including the equation between  
each bit)  
Iolc1  
Iolc2  
48  
5.0  
5.9  
6.8  
VOUT=2.0V, R=13kΩ  
Equation between each bit of  
Reference Current Output Current  
Change rate of reference current  
output current for output voltage  
Output Leak Current  
VOUTn=2.0V, R=1.3kΩ  
(1bit : ON)  
Δiolc  
-
±1  
±6  
%
VOUT=2.03.0V,  
R=1.3kΩ  
IΔVCC  
-
-
±1  
±6  
%/V  
IOH  
0.01  
0.8  
μA  
VOUT=10V  
BU2152FS (Unless otherwise noted, Ta=25, VDD=2.75.5V)  
Parameter  
Power Supply Voltage  
Input high-level Voltage  
Input low-level Voltage  
Symbol  
VDD  
Min.  
Typ.  
Max.  
5.5  
-
Unit  
V
Condition  
2.7  
-
-
-
-
-
-
-
-
-
-
-
-
VIH  
2.0  
V
VDD=5V  
VIL  
-
0.6  
-
V
VDD=5V  
VDD-1.5  
IOH=-25mA  
IOH=-15mA  
IOH=-10mA  
IOL=25mA  
IOL=15mA  
IOL=10mA  
VIL=VSS, VIH=VDD  
Output high-level Voltage  
Output low-level Voltage  
VOH  
VDD-1.0  
-
V
V
VDD-0.5  
-
-
-
-
-
-
-
1.5  
1.0  
0.8  
5
VOL  
Quiescent Current  
IDDST  
IIH  
μA  
μA  
μA  
Input high-level Current  
Input low-level Current  
1
IIL  
1
4/24  
Block diagram  
BU2050F  
STB  
CLR  
Controller  
L
a
t
8bit  
Write  
Shift  
c
h
Buffer  
P1P8  
CLOCK  
DATA  
Register  
BU2092F/FV  
LCK  
L
a
t
c
h
12bit  
Write  
Controller  
CLOCK  
DATA  
Shift  
Buffer  
Q0Q11  
Register  
OE  
BU2099FV  
LCK  
LPF  
L
a
t
c
h
12bit  
Write  
Controller  
CLOCK  
DATA  
Shift  
Buffer  
Q0Q11  
Register  
OE  
BD7851FP  
S_IN  
L
a
t
c
h
16bit  
Write  
Shift  
Register  
Buffer  
OUT1OUT16  
CLOCK  
SOUT  
LATCH  
ENABLE  
R_Iref  
Current Adjustment  
BU2152FS  
STB  
CLB  
Controller  
L
a
t
24bit  
Write  
Shift  
c
h
Buffer  
P1P24  
CLOCK  
DATA  
Register  
SO  
5/24  
Operating description  
(1) Data clear  
When the reset terminal (CLR, CLB) is set to “L”, the content of all latch circuits are set to “H”, and all parallel outputs are  
initialised.  
(For model with reset terminal only)  
(2) Data transfer  
Serial data is sequentially input to the shift register during the rise of the clock time (strobe signal is not active). When  
the strobe signal is active, the content of the shift register are transferred to the latch circuit.  
(3) Cascade connection  
Serial input data is output from the serial output through the shift register, regardless of the strobe signal.  
(except for BU2050F, BU2092F/FV)  
Application circuit  
P1 P2  
Pn-2 Pn-1 Pn  
C1  
(*)  
VDD  
VDD  
Serial data input  
Clock input  
VSS  
MPU  
Strobe input  
Latch input  
Serial data output  
VSS  
P1 P2  
Pn-2 Pn-1 Pn  
VSS  
VDD  
Serial data input  
Clock input  
Strobe input  
Latch input  
Serial data output  
Fig. 1  
(*C1 must be placed as close to the terminal as possible.)  
Interfaces  
BU2050F  
BU2050F  
BU2092F/FV  
BU2092F/FV  
DATA, CLOCK, STB, CLR  
P1P8  
DATA, CLOCK, LCK, OE  
Q0Q11  
VDD  
VDD  
VDD  
VDD  
OUT  
INPUT  
IN  
OUTPUT  
GND(VSS)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
BU2099FV  
DATA, CLOCK, LCK, OE  
BU2099FV  
Q0Q11  
BU2099FV  
BU2152FS  
SO  
CLOCK, DATA, STB, CLB  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
OUT  
IN  
OUT  
GND(VSS)  
(only OE pin)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
GND(VSS)  
BU2152FS  
BU2152FS  
P1P28  
SO  
VDD  
VDD  
VDD  
VDD  
VDD  
GND(VSS)  
GND(VSS) GND(VSS)  
VSS  
VSS  
VSS  
6/24  
BU2050F】  
Pin descriptions  
Pin No.  
Pin Name  
P3  
Function  
1
2
3
4
5
6
7
8
9
P4  
Parallel Data Output  
GND  
P5  
VSS  
P6  
P7  
Parallel Data Output  
P8  
DATA  
CLK  
Serial Data Input  
Clock Signal Input  
Strobe Signal Input  
10  
11  
STB  
CLR  
In case of “L”, the data of shift register outputs.  
In case of “H”, all parallel outputs and data of latch circuit do not change.  
Reset Signal Input  
In case of “L”, the data of latch circuit reset, and all parallel output (P1P8) can be L.  
Normally CLR=H  
12  
13  
14  
P1  
P2  
Parallel Data output  
Power Supply  
VDD  
Timing chart  
CLK  
DATA8  
DATA7  
DATA6  
DATA2  
DATA1  
DATA  
CLR  
STB  
Pn  
Previous DATA  
DATA  
“L”  
Fig. 2  
1. After the power is turned on and the voltage is stabilized, STB should be activated, after clocking 8 data bits into  
the DATA pin.  
2. Pn parallel output data of the shift register is set after the 8th clock by the STB.  
3. Since the STB is level latch, data is retained in the “L” section and renewed in the “H” section of the STB.  
Function explanation]  
A latch circuit has the reset function, which is common in all bits. In case of CLR terminal is “L”, the latch  
circuit is reset non-synchronously without the other input condition, and all parallel output can be “L”.  
A serial data inputted from DATA terminal is read in shift register with synchronized rising of clock.  
In case of STB is “L” (CLR is ”H”), transmit the data which read in the shift register to latch circuit, and  
outputs from the parallel data output terminal (P1P8).  
In case of STB is “H”, all parallel outputs and the data of latch do not change.  
7/24  
Switching characteristics (Unless otherwise specified, VDD=4.55.5V, Ta=25)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min.  
20  
Typ.  
-
Max.  
-
Set up time (DATA-CLK)  
Hold time (DATA-CLK)  
tSD  
tHD  
ns  
ns  
-
20  
30  
30  
-
-
-
-
-
-
-
-
-
-
-
tSSTB  
tHSTB  
tPDPCK  
tPDPSTB  
tPDPCLR  
fMAX  
ns  
-
Set up time (STB CLK)  
Hold time (STB CLK)  
-
ns  
-
100  
80  
80  
-
ns  
P1P8 terminal load 20pF or less  
P1P8 terminal load 20pF or less  
P1P8 terminal load 20pF or less  
-
Propagation (CLR P1P8)  
Propagation (STB P1P8)  
Propagation (CLR P1P8)  
Maximum clock frequency  
-
ns  
-
ns  
5
MHz  
Switching Time Test Waveform  
fMAX  
1
2
8
9
10  
11  
12  
CLK  
tSD  
DATA  
STB  
tHD  
tHSTB  
tSSTB  
CLR  
P8  
P1  
tPDPSTB  
tPDPCLR  
tPDPCK  
Fig. 3  
8/24  
BU2092F/FV】  
Pin descriptions  
Pin No.  
Pin Name  
I/O  
Function  
1
2
3
4
VSS  
DATA  
CLOCK  
LCK  
-
I
I
I
GND  
Serial Data Input  
Shift clock of DATA (Rising Edge Trigger)  
Latch clock of DATA (Rising Edge Trigger)  
Parallel Data Output (Nch Open Drain FET)  
511,  
Latch Data  
Output FET  
L
H
Q0Q11  
O
1418  
ON  
OFF  
12, 13  
17  
N.C.  
OE  
-
I
Non connected  
Output Enable (“H” level : output FET is OFF)  
Power Supply  
18  
VDD  
-
Timing chart  
CLOCK  
DATA11  
DATA10  
DATA9  
DATA1  
DATA0  
DATA  
LCK  
OE  
Qx  
“H”  
Previous DATA  
DATA110  
Note) Diagram shows a status where a pull-up resistor is connected to output.  
Fig. 4  
1. After the power is turned on and the voltage is stabilized, LCK should be activated, after clocking 12 data bits into  
the DATA terminal.  
2. Qx parallel output data of the shift register is set after the 12th clock by the LCK.  
3. Since the LCK is a label latch, data is retained in the “L” section and renewed in the “H” section of the LCK.  
4. Data retained in the internal latch circuit is output when the OE is in the “L” section.  
Truth Table]  
Input  
Function  
CLOCK  
×
DATA  
×
LCK  
×
OE  
H
Output (Q0Q11) Disable  
×
×
×
L
Output (Q0Q11) Enable  
Store “L” in the first stage data of shift register, the previous stage data in the  
others. (The conditions of storage register and output have no change.)  
Store “H” in the first stage data of shift register, the previous stage data in the  
others. (The conditions of storage register and output have no change.)  
The data of shift register has no change.  
L
×
×
×
H
×
×
×
×
×
×
×
×
×
×
The data of shift register is transferred to the storage register.  
The data of storage register has no change.  
9/24  
Switching characteristics (Unless otherwise specified, VDD=5V, VSS=0V, Ta=25)  
Limit  
Parameter  
Symbol  
tw  
Unit  
Condition  
Min.  
1000  
500  
1000  
500  
400  
200  
400  
200  
400  
200  
-
Typ.  
-
Max.  
VDD(V)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
Minimum Clock Pulse Width  
-
-
-
-
-
-
-
Minimum Latch Pulse Width  
(LCK)  
tw  
(LCK)  
-
-
Setup Time  
ts  
tsu  
tH  
(LCKCLOCK)  
Setup Time  
-
-
(DATACLOCK)  
Hold Time  
-
-
(CLOCKDATA)  
-
90  
55  
115  
50  
70  
45  
80  
35  
tPLZ  
(LCK)  
tPZL  
RL=5kΩ  
CL=10pF  
RL=5kΩ  
CL=10pF  
RL=5kΩ  
CL=10pF  
RL=5kΩ  
CL=10pF  
-
Propagation  
(LCKOUTPUT QX)  
-
(LCK)  
-
-
tPLZ  
-
Propagation  
-
( OE OUTPUT QX)  
tPZL  
-
Switching Time Test Circuit  
±25V  
VDD  
Pulse  
Gen.  
RL  
Q0  
CL  
CLOCK  
Pulse  
Gen.  
LCK  
GND (Vss)  
±25V  
Pulse  
Gen.  
DATA  
OE  
RL  
Q11  
CL  
Pulse  
Gen.  
GND (Vss)  
GND (Vss)  
Fig. 5  
10/24  
BU2092F/FV】  
Switching Time Test Waveforms  
tW  
tW  
VDD  
90%  
90%  
90%  
90%  
CLOCK  
10%  
10%  
10%  
GND (VSS)  
tSU  
tH  
VDD  
90%  
90%  
tS  
DATA  
GND (VSS)  
tW(CLK)  
90%  
VDD  
90%  
50%  
50%  
LCK  
10%  
GND (VSS)  
tPLZ(LCK)  
tPZL(LCK)  
VDD  
50%  
50%  
OE  
Qx  
GND (VSS)  
tPZL  
tPLZ  
VDD  
50%  
50%  
10%  
10%  
GND (VSS)  
Fig. 6  
11/24  
BU2099FV】  
Pin descriptions  
Pin No.  
Pin Name  
I/O  
Function  
1
2
3
4
5
VSS  
N.C.  
-
-
I
I
I
GND  
Non connected  
DATA  
CLOCK  
LCK  
Serial Data Input  
Shift clock of Shift register (Rising Edge Trigger)  
Latch clock of Storage register (Rising Edge Trigger)  
Parallel Data Output (Nch Open Drain FET)  
Q0Q11  
Latch Data  
Output FET  
L
H
617  
O
(Qx)  
ON  
OFF  
18  
19  
20  
SO  
OE  
VDD  
O
I
Serial Data Output  
Output Enable Control Input OE pin is pulled down to Vss.  
-
Power Supply  
Timing chart  
CLOCK  
DATA12  
DATA11  
DATA10  
DATA2  
DATA1  
DATA  
LCK  
OE  
Qx  
Previous DATA  
DATA  
“H”  
DATA11  
Previous  
DATA 11  
Previous  
DATA 11  
DATA12  
SO  
Fig. 7  
1. After the power is turned on and the voltage is stabilized, LCK should be activates, after clocking 12 data bits into  
the DATA terminal.  
2. Qx parallel output data of the shift register is set after the 12th clock by the LCK.  
3. Since the LCK is a label latch, data is retained in the “L” section and renewed in the “H” section of the LCK.  
4. Data retained in the internal latch circuit is output when the OE is in the “L” section.  
5. The final stage data of the shift register is output to the SO by synchronizing with the rise time of the CLOCK.  
Truth Table]  
Input  
Function  
CLOCK  
×
DATA  
×
LCK  
×
OE  
H
All the output data output “H” with pull-up.  
×
×
×
L
The Q0Q11 output can be enable and output the data of storage register.  
Store “L” in the first stage data of shift register, the previous stage data in the  
others. (The conditions of storage register and output have no change.)  
Store “H” in the first stage data of shift register, the previous stage data in the  
others. (The conditions of storage register and output have no change.)  
The data of shift register has no change.  
L
×
×
×
×
H
×
×
×
SO outputs the final stage data of shift register with synchronized falling edge  
of CLOCK, not controlled by OE.  
×
×
×
×
×
×
The data of shift register is transferred to the storage register.  
The data of storage register has no change.  
The Q0Q11 output have a Nch open drain Tr. The Tr is ON when data from shift register is “L”, and Tr is OFF when data is “H”.  
12/24  
BU2099FV】  
Switching characteristics (Unless otherwise specified, VDD=5V, VSS=0V, Ta=25)  
Limit  
Parameter  
Symbol  
tW  
Unit  
Condition  
Min.  
Typ.  
Max.  
VDD(V)  
1000  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
-
Minimum Clock Pulse Width  
(CLOCK)  
-
-
-
-
-
500  
-
-
-
1000  
-
Minimum Latch Pulse Width  
(LCK)  
tW  
(LCK)  
500  
-
-
400  
-
-
Setup Time  
tS  
tsu  
tH  
(LCKCLOCK)  
Setup Time  
200  
-
-
400  
-
-
(DATACLOCK)  
Hole Time  
200  
-
-
400  
-
-
(CLOCKDATA)  
Propagation  
200  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
500  
-
-
tPLH  
tPHL  
(SO)  
-
250  
360  
170  
260  
175  
115  
85  
175  
65  
30  
20  
-
-
-
-
-
-
-
-
tPLZ  
RL=5kΩ  
(LCK)  
tPZL  
CL=10pF  
RL=5kΩ  
CL=10pF  
RL=5kΩ  
CL=10pF  
RL=5kΩ  
CL=10pF  
Propagation  
(LCKQX) *  
(LCK)  
tPLZ  
tPZL  
tI  
Propagation  
( QE QX) *  
Noise Pulse Suppression  
Time (LCK) *  
-
-
*Reference value  
Input Voltage Test Circuit  
RL =10kΩ  
GND  
(Vss)  
P.G.  
VIH  
VIL  
GND  
Fig. 8  
Switching Time Test Circuit  
+25V  
VDD  
RL =5kΩ  
CL =10pF  
GND  
(Vss)  
GND  
(Vss)  
+25V  
P.G.  
RL =5kΩ  
CL =10pF  
GND  
(Vss)  
Fig. 9  
13/24  
BU2099FV】  
Output Voltage Test Circuit  
VDD  
±25V  
12  
SW4  
2
1
SW3  
1
SW2  
3
1
2
SW1  
GND  
(Vss)  
IOL1  
IOH  
IOL2  
P.G.  
GND  
(Vss)  
GND  
(Vss)  
GND  
(Vss)  
GND  
(Vss)  
GND  
(Vss)  
GND  
(Vss)  
Test condition  
VOL1  
VOL2  
VOH  
Set all data “L”. SW1=”ON”, SW2=”3”, SW3=”1””12”.  
Set output data “L” to SO and SW4 is positioned to “2”, then voltage is measured at IOL2.  
Set output data “H” to SO and SW4 is positioned to “1”, then voltage is measured at IOH.  
Fig. 10  
Switching Time Test Waveforms  
tW  
tW  
VDD  
90%  
90%  
50%  
90%  
90%  
50%  
50%  
CLOCK  
10%  
10%  
10%  
GND (VSS  
)
)
tH  
tSU  
VDD  
90%  
90%  
tS  
DATA  
GND (VSS  
tW (CLK)  
90%  
VDD  
90%  
50%  
50%  
LCK  
OE  
10%  
GND (VSS  
VDD  
)
tS  
2
tPLZ  
tPLZ(LCK)  
50%  
50%  
GND (VSS  
)
tPZL  
tPZL(LCK)  
VEXT  
50%  
50%  
Qx  
10%  
10%  
GND (VSS  
)
tPLH  
tPHL  
VDD  
50%  
50%  
SO  
GND (VSS  
)
Fig. 11  
14/24  
BD7851FP】  
Pin descriptions  
Pin No.  
Pin Name Function  
1
2
3
4
GND  
R_Iref  
Ground  
Reference Current Output Current setting  
Latch Signal Input  
LATCH  
S_IN  
Serial Data Input  
OUT16  
OUT6  
P_GND  
OUT5  
515  
16  
Reference Current Output  
Ground for Driver  
1721  
Reference Current Output  
OUT1  
SOUT  
22  
23  
24  
25  
Serial Data Output  
Clock Input  
ENABLE  
CLOCK  
ENABLE  
VCC  
VCC  
Timing chart  
CLOCK  
DATA16  
DATA15  
DATA14  
DATA2  
DATA1  
S_IN  
LATCH  
ENABLE  
Previous DATA  
DATA  
OUTn  
SOUT  
Previous  
DATA15  
Previous  
DATA2  
Previous  
DATA14  
Previous  
DATA1  
DATA16  
DATA15  
DATA14  
Fig. 12  
1. After the power is turned on and the voltage is stabilized, LATCH should be activated, after clocking 16 data bits  
into the S_IN terminal.  
2. OUTn parallel output data of the shift register is set after the 16th clock by the LATCH.  
3. The final stage data of the shift register is outputted to the SOUT by synchronizing with the rise time of the  
CLOCK.  
4. Since the LATCH is a label latch, data is retained in the “L” section and renewed in the “H” section of the LATCH.  
5. Data retained in the internal latch circuit is outputted when the ENABLE is in the “L” section. When the ENABLE  
is in the “H” section, data is fixed in the “H” section.  
15/24  
BD7851FP】  
Timing characteristics (Unless otherwise specified, VCC=5V, Ta=25)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min.  
-
Typ.  
-
Max.  
Frequency CLOCK  
Pulse Width CLOCK  
Pulse Width LATCH  
Pulse Width ENABLE  
Rise Time / Fall Time  
fclk  
twh  
10  
MHz  
ns  
20  
40  
30  
-
50  
50  
-
-
CLOCK  
LATCH  
twh  
-
ns  
tw  
-
ns  
ENABLE  
tr / tf  
30  
50  
50  
50  
50  
300  
-
100  
ns  
CLOCK  
30  
30  
30  
30  
-
-
-
S_IN-CLOCK  
LATCH-CLOCK  
S_IN-CLOCK  
LATCH-CLOCK  
OUTn  
Setup Time  
Hold Time  
Rise Time  
Fall Time  
tSU  
th  
ns  
ns  
ns  
ns  
-
-
-
tr  
-
50  
-
SOUT  
-
300  
-
OUTn  
tf  
-
50  
SOUT  
CLK-SOUT, LATCH  
ENABLE-OUTn  
CLK-SOUT, LATCH  
ENABLE-OUTn  
tpLH  
tpHL  
-
-
400  
300  
650  
400  
Propagation  
ns  
Reference Current of Output Current  
250  
[Condition]  
Vcc=5.0V, Vo=5.0V, Ta=25℃  
200  
150  
100  
50  
The reference current of output current is determined by the  
external resistor.  
(between 2pin and GND )  
0
0.1  
1
10  
100  
R_Iref [k ]  
Ω
This is a data for the standard sample, not guaranteed the characteristic.  
Fig. 13  
R_Iref-VOUT  
1.6  
[Condition]  
Vcc=5.0V, Ta=27, all bit : ON  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1
10  
100  
R_Iref [k ]  
Ω
Notes the increase of consumption current Icc, in case sets the voltage of VOUT lower. See the graph above.  
Fig. 14  
16/24  
BD7851FP】  
Test Circuit 1  
Vcc  
1
2
3
4
5
6
GND  
Vcc 25  
ENABLE 24  
CLOCK 23  
R
ENABLE  
CLOCK  
SOUT  
R_Iref  
LATCH  
S_IN  
LATCH  
S_IN  
SOUT  
OUT1  
22  
21  
OUT16  
OUT15  
VE  
OUT2 20  
7
8
9
OUT14  
OUT13  
OUT12  
OUT3  
OUT4  
19  
18  
17  
16  
10 OUT11  
11 OUT10  
12 OUT9  
13 OUT8  
OUT5  
P_GND  
P_GND  
OUT6 15  
OUT7 14  
Fig. 15  
Test Circuit 2  
Vcc  
GND  
25  
Vcc  
1
2
3
4
5
6
R
ENABLE  
CLOCK  
SOUT  
R_Iref  
LATCH  
S_IN  
ENABLE 24  
CLOCK 23  
LATCH  
S_IN  
SOUT  
OUT1  
22  
21  
OUT16  
OUT15  
VE  
OUT2 20  
7
8
9
OUT14  
OUT13  
OUT12  
OUT3  
19  
OUT4 18  
17  
16  
10 OUT11  
11 OUT10  
12 OUT9  
OUT5  
P_GND  
P_GND  
OUT6 15  
OUT7 14  
13  
OUT8  
R=51Ω (note : R_Iref=1.3kΩ) , C=15pF  
Fig. 16  
17/24  
BD7851FP】  
Switching Time Test Waveforms  
tWh  
tf  
tr  
0.8×VCC 0.8×VCC  
0.8×VCC  
CLOCK  
0.2×VCC  
0.2×VCC  
tSU  
th  
0.8×VCC  
0.8×VCC  
S_IN  
twh  
0.8×VCC  
LATCH  
0.2×VCC  
tSU  
tpHL  
tpHL  
th  
90%  
90%  
10%  
90%  
10%  
OUTn  
10%  
tf  
tr  
t
pHLtpLH  
0.8×VCC  
0.2×VCC  
ENABLE  
tw  
0.8×VCC  
0.2×VCC  
SOUT  
t
pHLtpLH  
tftr  
Fig. 17  
18/24  
BU2152FS】  
Pin descriptions  
Pin  
Pin Name  
I/O  
Function  
No.  
1
VSS  
CLK  
-
I
Ground  
2
Clock Input  
3
VSS  
-
Ground  
4
DATA  
P1P24  
SO  
I
Serial Data Input  
Parallel Data Output  
Cascade Output  
Strobe Signal Input active “L”  
Clear Signal Input active “L”  
Power Supply  
528  
29  
30  
31  
32  
O
O
I
STB  
CLB  
I
VDD  
-
Timing chart  
CLK  
DATA24  
DATA23  
DATA22  
DATA2  
DATA1  
DATA  
STB  
Previous DATA  
DATA  
Pn  
Previous  
DATA24  
Previous  
DATA23  
Previous  
DATA2  
Previous  
DATA1  
DATA24  
DATA23  
DATA22  
SO  
Fig. 18  
1. After the power is turned on and the voltage is stabilized, STB should be activated, after clocking 24 data bits into  
the DATA terminal.  
2. Pn parallel output data of the shift register is set after the 24th clock by the LCK.  
3. Since the STB is a label latch, data is retained in the “H” section and renewed in the “L” section of the STB.  
4. The final stage data of the shift register is outputted to the SO by synchronizing with the rise time of the CLOCK.  
Truth Table]  
Input  
Function  
CLK  
STB  
CLB  
L
All the data of the latch circuit are set to “H” (data of shift register does not  
change), all the parallel outputs are “H”.  
×
×
Serial data of DATA pin are latched to the shift register.  
At this time, the data of the latch circuit does not change.  
The data of the shift register are transferred to the latch circuit, and the data of  
the latch circuit are outputted from the parallel output pin.  
The data of the shift register shifts 1bit, and the data of the latch circuit and  
parallel output also change.  
H
L
H
H
L
H
19/24  
BU2152FS】  
Switching characteristics (Unless otherwise specified, VDD=2.75.5V, VSS=0V, Ta=25)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min.  
5
Typ.  
Max.  
Maximum Clock Frequency  
Setup Time 1  
fMAX  
tSU1  
tHD1  
tSU2  
tHD2  
tSU3  
tHD3  
tSU4  
tHD4  
tPD1  
tPD2  
tPD3.  
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
30  
30  
30  
30  
30  
30  
-
-
DATA-CLK  
Hold Time 1  
-
CLK-DATA  
STB-CLK  
Setup Time 2  
-
Hold Time 2  
-
-
CLK-STB  
Setup Time 3  
CLB-CLK  
Hold Time 3  
-
CLK-CLB  
Setup Time 4  
-
STB-CLB  
Hold Time 4  
-
CLB-STB  
Output Delay Time 1*  
Output Delay Time 2*  
Output Delay Time 3*  
*50pF of load is attached.  
100  
80  
80  
CLK-P1P24  
STB-P1P24  
CLB-P1P24  
-
-
20/24  
Switching characteristic conditions  
Setup/Hold Time (DATA-CLOCK, STB-CLOCK, CLB-CLOCK)  
tr  
tr  
90%  
90%  
50%  
50%  
CLOCK  
DATA  
10%  
tSU1  
10%  
tHD1  
50%  
50%  
STB  
CLB  
tSU2  
tHD2  
50%  
50%  
tSU3  
tHD3  
Setup/Hold Time (STB-CLB)  
50%  
CLB  
STB  
tSU4  
tHD4  
Fig. 19 Switching characteristic conditions 1  
Output Delay Time (CLOCK-P1P24)  
CLOCK  
50%  
tPD1  
P1P24  
Output Delay Time (STB-P1P24)  
STB  
50%  
tPD2  
P1P24  
Output Delay Time (CLB-P1P24)  
CLB  
50%  
tPD3  
50%  
Fig. 20 Switching characteristic conditions 2  
21/24  
Operation Notes  
1. Absolute maximum ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any  
over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as  
fuses.  
2. Connecting the power supply connector backward  
Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply  
lines. An external direction diode can be added.  
3. Power supply lines  
Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line,  
separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals to  
ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit,  
not that capacitance characteristic values are reduced at low temperatures.  
4. GND voltage  
The potential of GND pin must be minimum potential in all operating conditions.  
5. Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
6. Inter-pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if pins are shorted together.  
7. Actions in strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.  
8. Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress.  
Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or  
removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure.  
Use similar precaution when transporting or storing the IC.  
9. Ground Wiring Pattern  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing  
a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused  
by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern  
of any external components, either.  
10. Unused input terminals  
Connect all unused input terminals to VDD or VSS in order to prevent excessive current or oscillation.  
Insertion of a resistor (100kΩ approx.) is also recommended.  
22/24  
Order Type Selections  
B
U
2
0
5
0
F
E
2
Package type  
E1 : Emboss tape reel  
Pin 1 on draw-out side  
Product number  
ROHM model name  
F : SOP14, SOP18  
FV : SSOP-B20  
FP : HSOP25  
BU  
BD  
2050  
2092  
2099  
7851  
2152  
E2 :  
Emboss tape reel  
Pin 1 opposite draw-out side  
TL :  
FS : SSOP-A32  
Emboss tape reel  
Pin 1 on draw-out side  
TR : Emboss tape reel  
Pin 1 opposite draw-out side  
External Dimensions  
SOP14  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
E2  
8.7 0.2  
Direction  
of feed  
8
14  
1
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
7
0.15 0.1  
0.1  
1.27  
0.4 0.1  
1Pin  
When you order , please order in times the amount of package quantity.  
Direction of feed  
Reel  
(Unit:mm)  
SOP18  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2000pcs  
Quantity  
11.2 0.2  
E2  
Direction  
of feed  
18  
10  
9
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
0.15 0.1  
0.1  
1.27  
0.4 0.1  
1Pin  
When you order , please order in times the amount of package quantity.  
Direction of feed  
Reel  
(Unit:mm)  
SSOP-B20  
<Dimension>  
<Tape and Reel information>  
Embossed carrier tape  
Tape  
Quantity  
2500pcs  
Direction  
of feed  
E2  
6.5 0.2  
20  
11  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
10  
0.15 0.1  
0.1  
0.65  
0.22 0.1  
Direction of feed  
When you order , please order in times the amount of package quantity.  
1pin  
Reel  
Unit:mm)  
23/24  
HSOP25  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2000pcs  
13.6 0.2  
2.75 0.1  
E2  
Direction  
of feed  
25  
1
14  
13  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
0.25 0.1  
1.95 0.1  
0.8  
0.1  
0.36 0.1  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
SSOP-A32  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2000pcs  
13.6 0.2  
Direction  
of feed  
E2  
32  
17  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
16  
0.15 0.1  
0.1  
0.8  
0.36 0.1  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
Catalog No.08T004A '08.3 ROHM © 1000 NZ  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

BU2050F-TR

暂无描述
ROHM

BU2050FP-E2

Serial / Parallel 4-input Drivers
ROHM

BU2050FS-E2

Serial / Parallel 4-input Drivers
ROHM

BU2050FV-E2

Serial / Parallel 4-input Drivers
ROHM

BU2050F_09

Serial / Parallel 4-input Drivers
ROHM

BU2050F_1

Serial / Parallel 4-input Drivers
ROHM
ETC

BU207

POWER TRANSISTORS(5.0A,1300-1500V,55W)
MOSPEC

BU207

Bipolar NPN Device in a Hermetically sealed TO3
SEME-LAB

BU207

isc Silicon NPN Power Transistor
ISC

BU208

Power Transistors
CENTRAL

BU208

NPN SILICON POWER TRANSISTORS
INFINEON