BU22210MUV [ROHM]

BU22210MUV搭载了10ch的10bit R-2R型D/A 转换器。小型且通道数多,适合电压调整部位较多的应用。输入采用基于DI、CLK、CSB端子的串行数据传输方式,还配备了可进行级联连接的DO端子。通过零起点偏压功能,还可将接通电源时的D/A转换器输出固定为Low,减少误动作对策零部件。工作电源电压范围为2.7V~5.5V,可灵活适应规格变更。;
BU22210MUV
型号: BU22210MUV
厂家: ROHM    ROHM
描述:

BU22210MUV搭载了10ch的10bit R-2R型D/A 转换器。小型且通道数多,适合电压调整部位较多的应用。输入采用基于DI、CLK、CSB端子的串行数据传输方式,还配备了可进行级联连接的DO端子。通过零起点偏压功能,还可将接通电源时的D/A转换器输出固定为Low,减少误动作对策零部件。工作电源电压范围为2.7V~5.5V,可灵活适应规格变更。

数据传输 转换器
文件: 总22页 (文件大小:1946K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
10 channel in QFN Small Package  
10 bit D/A Converters  
BU22210MUV  
General Description  
Key Specifications  
BU22210MUV includes 10 channels D/A converters  
which is high performance 10bit R-2R-type. It is most  
suitable for applications which have many adjustment  
items, because it is small size and has many D/A  
converter channels.  
Input is serial data transfer system with the DI, CLK and  
CSB terminal, and output is DO terminal enabling a  
cascade connection.  
Operating Supply Voltage Range:  
Current Consumption:  
2.7V to 5.5V  
1.2mA(Typ)  
±0.5LSB  
Differential Non Linearity Error:  
Integral Non Linearity Error:  
Output Current Capability:  
Data Transfer Frequency:  
±2.0LSB  
±1.0mA  
10MHz(Max)  
-20°C to +85°C  
Operating Temperature Range:  
A built-in Initial-Zero-Hold function ensures that the  
output voltage of all channels are Low during power up,  
so that it is able to reduce parts for measure against  
malfunction. And wide supply voltage range from 2.7V -  
5.5V has flexibility to specification change.  
Package  
W(Typ) x D(Typ) x H(Max)  
3.00mm x 3.00mm x 1.00mm  
VQFN016V3030  
Features  
Built-in 10-channel 10bit D/A converters.  
Built-in Rail-to-rail output buffer.  
3-wire serial interface (16 bit data).  
Cascade Connection is available.  
Built-in Initial-Zero-Hold function.  
QFN Small package (0.5mm pitch).  
Applications  
The various types of consumer (ex. Printer, DSC and  
more).  
Typical Application Circuit  
Examples of the application circuit diagram  
AO1  
AO2  
AO3  
AO4  
AO5  
AO6  
AO7  
AO8  
AO9  
AO10  
DAC  
DAC  
DAC  
DAC  
CLK  
3-wire serial  
interface  
DI  
I/F  
CSB  
DO  
.
DAC  
DAC  
Logic  
POR  
DAC  
DAC  
DAC  
DAC  
VCC  
GND  
.
0.1μF  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
1/19  
TSZ22111 14 001  
 
 
 
 
 
 
BU22210MUV  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications...........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................3  
Absolute Maximum Ratings ............................................................................................................................................................4  
Thermal Resistance........................................................................................................................................................................4  
Recommended Operating Conditions.............................................................................................................................................5  
Electrical Characteristics.................................................................................................................................................................5  
Typical Performance Curves...........................................................................................................................................................6  
Figure 1. Supply Current vs Supply Voltage................................................................................................................................6  
Figure 2. Supply Current vs Temperature....................................................................................................................................6  
Figure 3. Supply Current vs Supply Voltage................................................................................................................................6  
Figure 4. Supply Current vs Temperature....................................................................................................................................6  
Figure 5. DNL vs Digital Input Code............................................................................................................................................7  
Figure 6. INL vs Digital Input Code..............................................................................................................................................7  
Figure 7. Max absolute value of DNL vs Supply Voltage.............................................................................................................7  
Figure 8. Max absolute value of INL vs Supply Voltage ..............................................................................................................7  
Figure 9. Max absolute value of DNL vs Temperature.................................................................................................................8  
Figure 10. Max absolute value of INL vs Temperature ................................................................................................................8  
Timing Chart ...................................................................................................................................................................................9  
Communication Format.................................................................................................................................................................10  
Register Map ................................................................................................................................................................................10  
Cascade Connection ....................................................................................................................................................................12  
Power supply power-up sequence................................................................................................................................................13  
I/O Equivalent Circuits ..................................................................................................................................................................14  
Operational Notes.........................................................................................................................................................................15  
Ordering Information.....................................................................................................................................................................17  
Marking Diagrams.........................................................................................................................................................................17  
Physical Dimension, Tape and Reel Information...........................................................................................................................18  
Revision History............................................................................................................................................................................19  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
2/19  
TSZ22111 15 001  
BU22210MUV  
Pin Configuration  
TOP VIEW  
(Pads not visible)  
13  
14  
15  
16  
8
7
6
5
Pin Descriptions  
Pin No.  
Pin Name  
AO10  
GND  
VCC  
AO1  
AO2  
AO3  
AO4  
AO5  
DO  
Function  
1
2
Analog output ch10  
Ground  
3
Power Supply(Note 1)  
Analog output ch1  
Analog output ch2  
Analog output ch3  
Analog output ch4  
Analog output ch5  
4
5
6
7
8
9
Serial output (DO outputs DI signal with 16 clock cycle delay)  
Serial clock input  
10  
11  
12  
13  
14  
15  
16  
CLK  
DI  
Serial data input  
CSB  
AO6  
AO7  
AO8  
AO9  
Chip select input  
Analog output ch6  
Analog output ch7  
Analog output ch8  
Analog output ch9  
(Note 1) Please implement the bypass condenser near ICs.  
Block Diagram  
DAC  
DAC  
DAC  
DAC  
AO1  
AO2  
AO3  
AO4  
AO5  
AO6  
AO7  
AO8  
AO9  
AO10  
CLK  
DI  
I/F  
CSB  
DO  
.
DAC  
DAC  
Logic  
POR  
DAC  
DAC  
DAC  
DAC  
VCC  
GND  
.
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
3/19  
TSZ22111 15 001  
BU22210MUV  
Absolute Maximum Ratings (Ta = 25°C)  
Parameter  
Symbol  
VCC  
Rating  
+7  
Unit  
V
Power Supply Voltage  
-0.3 to +(VCC +0.3) or +7  
Whichever is less  
Terminal Voltage  
VIN  
V
Storage Temperature Range  
Tstg  
-40 to +125  
°C  
°C  
Maximum Junction Temperature  
Tjmax  
125  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the  
maximum junction temperature rating.  
Thermal Resistance(Note 2)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 4)  
2s2p(Note 5)  
VQFN016V3030  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 3)  
θJA  
189.0  
23  
57.5  
10  
°C/W  
°C/W  
ΨJT  
(Note 2)Based on JESD51-2A(Still-Air).  
(Note 3)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 4)Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
(Note 5)Using a PCB board based on JESD51-5, 7.  
Thermal Via(Note 6)  
Layer Number of  
Material  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
Pitch  
Diameter  
4 Layers  
FR-4  
1.20mm  
Φ0.30mm  
Top  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
74.2mm x 74.2mm  
(Note 6) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
4/19  
TSZ22111 15 001  
BU22210MUV  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Source Voltage  
VCC  
VIN  
2.7  
0
-
5.5  
VCC  
V
V
Terminal Input Voltage Range(Note 7)  
Analog Output Current(Note 8)  
Serial Clock Frequency(Note 9)  
Load Capacitance Limit(Note 8)  
-
-
IOUT  
fCLK  
CL  
-1.0  
-
+1.0  
10.0  
1500  
+85  
mA  
MHz  
pF  
1.0  
-
-
Operating Temperature  
Topr  
-20  
+25  
°C  
(Note 7) CLK, DI, CSB.  
(Note 8) AO1, AO2, AO3, AO4, AO5, AO6, AO7, AO8, AO9, AO10.  
(Note 9) CLK.  
Electrical Characteristics (Unless otherwise specified VCC=3.0V Ta=25°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
<Current Consumption>  
Current Consumption  
Power Down Current  
<Logic Interface>  
ICC  
IPD  
-
-
1.2  
2
2.5  
10  
mA  
µA  
Logic input : GND or VCC  
Power Down mode  
GND  
GND  
2.1  
-
-
-
-
-
-
-
-
0.6  
0.8  
V
V
VCC=2.7V to 3.6V  
VCC=4.5V to 5.5V  
VCC=2.7V to 3.6V  
VCC=4.5V to 5.5V  
L input Voltage  
H input Voltage  
VIL  
VIH  
VCC  
V
2.4  
VCC  
V
Input Current  
IIN  
VOL  
VOH  
IOL  
-10  
+10  
µA  
V
Low output Voltage  
High output Voltage  
Output Load Current  
<Buffer Amplifier>  
GND  
0.8*VCC  
-1.0  
0.2*VCC  
VCC  
ISINK=1mA  
V
ISOURCE=1mA  
+1.0  
mA  
VZS1  
VZS2  
VFS1  
VFS2  
GND  
GND  
-
-
-
-
0.1  
0.3  
V
V
V
V
000h setting, no load  
Output Zero Scale Voltage  
Output Full Scale Voltage  
000h setting, ISINK=1.0mA  
3FFh setting, no load  
VCC-0.1  
VCC-0.3  
VCC  
VCC  
3FFh setting, ISOURCE =1.0mA  
<D/A Converter Precision>  
Differential Non Linearity Error  
Integral Non Linearity Error  
DNL  
INL  
-0.5  
-2.0  
-
-
+0.5  
+2.0  
LSB  
LSB  
Input code 008h to 3F7h  
Input code 008h to 3F7h  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
5/19  
TSZ22111 15 001  
BU22210MUV  
Typical Performance Curves  
3
2
1
0
3
2
1
0
2
3
4
5
6
-40  
-20  
0
20  
40  
60  
80  
100  
SupplyVoltage : VCC [V]  
Temperature : Ta []  
Figure 1. Supply Current vs Supply Voltage  
Figure 2. Supply Current vs Temperature  
(Active Current Consumption, VCC=3.0V, Code=200h)  
(Active Current Consumption, Ta=25,Code=200h)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
2
3
4
5
6
-40  
-20  
0
20  
40  
60  
80  
100  
SupplyCurrent : ISD [μA]  
Temperature : Ta []  
Figure 3. Supply Current vs Supply Voltage  
Figure 4. Supply Current vs Temperature  
(Power-down Current, VCC=3.0V)  
(Power-down Current, Ta=25)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
6/19  
BU22210MUV  
Typical Performance Curves - continued  
0.5  
0.4  
2.0  
1.5  
0.3  
1.0  
0.2  
0.5  
0.1  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.5  
-1.0  
-1.5  
-2.0  
0
128 256 384 512 640 768 896 1024  
Digital Input Code [Dec]  
0
128 256 384 512 640 768 896 1024  
Digital Input Code [Dec]  
Figure 5. DNL vs Digital Input Code  
Figure 6. INL vs Digital Input Code  
(Differential Nonlinearity Error, VCC=3.0V,Ta=25)  
(Integral Nonlinearity Error , VCC=3.0V,Ta=25)  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2
3
4
5
6
2
3
4
5
6
SupplyVoltage : VCC [V]  
SupplyVoltage : VCC [V]  
Figure 7. Max absolute value of DNL vs Supply Voltage  
Figure 8. Max absolute value of INL vs Supply Voltage  
(Differential Nonlinearity Error, Ta=25)  
(Integral Nonlinearity Error, Ta=25)  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
7/19  
BU22210MUV  
Typical Performance Curves - continued  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
Temperature : Ta []  
Temperature : Ta []  
Figure 9. Max absolute value of DNL vs Temperature  
Figure 10. Max absolute value of INL vs Temperature  
(Differential Nonlinearity Error, VCC=3.0V)  
(Integral Nonlinearity Error, VCC=3.0V)  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
8/19  
TSZ22111 15 001  
BU22210MUV  
Timing Chart  
(Unless otherwise specified VCC=3.0V, RL=OPEN, CL=0pF, Ta=25°C)  
Limit  
Typ  
Parameter  
Symbol  
Unit  
Conditions  
Min  
50  
50  
20  
40  
50  
50  
50  
Max  
tCLK_L  
tCLK_H  
tS_DI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK L Level Period  
CLK H Level Period  
DI Setup Time  
tH_DI  
DI Hold Time  
CSB Setup Time  
CSB Hold Time  
CSB H Level Period  
tS_CSB  
tH_CSB  
tCSB_H  
VIH  
VIL  
VIH  
VIL  
VIH  
CSB  
tH_CSB  
tCSB_H  
tH_CSB  
tCLK_H  
tCLK_L  
tS_CSB  
tH_CSB  
tS_CSB  
tH_CSB  
VIH  
VIH  
VIH  
CLK  
DI  
VIL  
VIL  
VIL  
VIL  
VIL  
VIL  
VIL  
VIL  
tS_DI  
tH_DI  
VIH  
VIL  
VIH  
VIL  
Figure 11. Timing chart  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
9/19  
TSZ22111 15 001  
BU22210MUV  
Communication Format  
The Serial Control Interface is 3-wire serial interface 1) CSB, 2) CLK and 3) DI.  
Every command is composed of 16 bits data sent through DI line (MSB first).  
DI data is read every rising edge of the CLK while CSB is LOW.  
Last 16 bits of data are latched when CSB goes HIGH.  
The DO outputs the data of the most significant bit at a falling edge of CLK after 16 clocks delay.  
CSB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CLK  
DI  
MSB  
LSB  
A3 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DO  
A3  
Figure 12. Communication Format  
Register Map (Note 10)  
Register  
Address  
Register Name  
R/W D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x1  
CH1 D/A  
CH2 D/A  
CH3 D/A  
CH4 D/A  
CH5 D/A  
CH6 D/A  
CH7 D/A  
CH8 D/A  
CH9 D/A  
CH10 D/A  
PD ENABLE  
W
W
W
W
W
W
W
W
W
W
CH1 D/A DATA[9:0]  
CH2 D/A DATA[9:0]  
CH3 D/A DATA[9:0]  
CH4 D/A DATA[9:0]  
CH5 D/A DATA[9:0]  
CH6 D/A DATA[9:0]  
CH7 D/A DATA[9:0]  
CH8 D/A DATA[9:0]  
CH9 D/A DATA[9:0]  
CH10 D/A DATA[9:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
W
0
0
POWER DOWN ENABLE[9:0]  
(Note 10) Do not write any commands to other addresses except above. Do not write ‘1to the fields in which value is 0in above table.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
10/19  
BU22210MUV  
( 0x1 to 0xA ) CHx D/A  
Fields  
Function  
CH1 D/A DATA [9:0]  
CH2 D/A DATA [9:0]  
CH3 D/A DATA [9:0]  
CH4 D/A DATA [9:0]  
CH5 D/A DATA [9:0]  
CH6 D/A DATA [9:0]  
CH7 D/A DATA [9:0]  
CH8 D/A DATA [9:0]  
CH9 D/A DATA [9:0]  
CH10 D/A DATA [9:0]  
D/A Code Setting of AO1  
D/A Code Setting of AO2  
D/A Code Setting of AO3  
D/A Code Setting of AO4  
D/A Code Setting of AO5  
D/A Code Setting of AO6  
D/A Code Setting of AO7  
D/A Code Setting of AO8  
D/A Code Setting of AO9  
D/A Code Setting of AO10  
0x000 : Vcc / 1024 x 0  
0x001 : Vcc / 1024 x 1  
:
D/A Code Setting of each channel  
0x3FE : Vcc / 1024 x 1022  
0x3FF : Vcc / 1024 x 1023  
default value 0x000  
( 0xB ) PD ENABLE  
Fields  
Function  
Turn a selected channel off.  
[0]:CH1, [1]:CH2, [2]:CH3, [3]:CH4, [4]:CH5,  
[5]:CH6, [6]:CH7, [7]:CH8, [8]:CH9, [9]:CH10  
0 : Active  
POWER DOWN ENABLE [9:0]  
1 : Power Down  
default value 0x000  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
11/19  
BU22210MUV  
Cascade Connection  
This IC can control multiple BU22210MUVs with one serial interface line by connecting a DO pin to the data input pin (DI) of  
the next IC. The example of three BU22210MUVs cascade connection is shown in Figure 13, and the communication  
format in Figure 14.  
CLK and CSB are commonly connected to all ICs. And about data line, connect the DO of #1 to the DI of #2, and connect  
the DO of #2 to the DI of #3.  
Regarding command, make CSB Low, and send 16bit x 3 data from the data for #3, then make CSB High.  
CLK  
DI  
CLK  
DI  
CLK  
DI  
MCU  
DO  
DO  
DO  
CSB  
CSB  
CSB  
BU22210MUV(#1)  
BU22210MUV(#2)  
BU22210MUV(#3)  
Figure 13. Example configuration of three BU22210MUVs cascade connection  
BU22210MUV(#1)  
The data retrieved by #1  
CSB  
1
16 17  
32 33  
48  
CLK  
DI  
Dn[47]~Dn[32]  
Dn[31]~Dn[16]  
Dn[47]~Dn[32]  
Dn[15]~Dn[0]  
Dn[31]~Dn[16]  
Dn[15]  
Dn[31]  
Dn[47]  
Dn-1[15]~Dn-1[0]  
DO  
BU22210MUV(#2)  
The data retrieved by #2  
CSB  
1
16 17  
32 33  
48  
CLK  
DI  
Dn-1[15]~Dn-1[0]  
Dn-1[31]~Dn-1[16]  
Dn[47]~Dn[32]  
Dn[31]~Dn[16]  
Dn[47]~Dn[32]  
Dn-1[15]~Dn-1[0]  
DO  
BU22210MUV(#3)  
The data retrieved by #3  
CSB  
1
16 17  
32 33  
48  
CLK  
DI  
Dn-1[31]~Dn-1[16]  
Dn-1[47]~Dn-1[32]  
Dn-1[15]~Dn-1[0]  
Dn-1[31]~Dn-1[16]  
Dn[47]~Dn[32]  
Dn-1[15]~Dn-1[0]  
DO  
Figure 14. Communication Format of three BU22210MUVs cascade connection  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
12/19  
BU22210MUV  
Power supply power-up sequence (Unless otherwise specified VCC=3.0V, Ta=25°C)  
tPSL  
VCC(Min)  
tPSC  
VCC(Min)  
tPSC  
VCC(Min)  
VCC  
0.4V  
0.4V  
0.4V  
Command Acceptable  
Conditions  
Undefined Behavior  
Command Acceptable  
Undefined Behavior  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Command input wait time after power-up  
Power-off time  
tPSC  
tPSL  
100  
1
-
-
-
-
µs  
ms  
Command input is available tPSCafter VCC is supplied.  
When VCC is below a recommended operating voltage range, the IC becomes undefined behavior state. In such case,  
power off, and power up again.  
VCC voltage should keep being less than 0.4V for more than tPSL, before supplying power to VCC.  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
13/19  
TSZ22111 15 001  
BU22210MUV  
I/O Equivalent Circuits  
Pin Name  
Equivalent Circuit Diagram  
VCC  
Pin Name  
Equivalent Circuit Diagram  
VCC  
CLK  
DI  
CSB  
DO  
VCC  
VCC  
AO1  
AO2  
AO3  
AO4  
AO5  
AO6  
AO7  
AO8  
AO9  
AO10  
VCC  
VCC  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
14/19  
BU22210MUV  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
15/19  
BU22210MUV  
Operational Notes continued  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
11. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The  
operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical  
damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an  
input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins  
when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the  
input pins have voltages within the values specified in the electrical characteristics of this IC.  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
16/19  
TSZ22111 15 001  
BU22210MUV  
Ordering Information  
B U 2 2 2 1 0 M U V -  
E 2  
Part Number  
Package  
MUV: VQFN016V3030  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagrams  
VQFN016V3030(TOP VIEW)  
U
2
2
1
2
0
Part Number Marking  
LOT Number  
1PIN MARK  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
17/19  
TSZ22111 15 001  
BU22210MUV  
Physical Dimension, Tape and Reel Information  
Package Name  
VQFN016V3030  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
18/19  
BU22210MUV  
Revision History  
Date  
Revision  
001  
Changes  
31.Mar.2017  
New Release  
www.rohm.com  
TSZ02201-0M2M0GZ16110-1-2  
31.Mar.2017 Rev.001  
© 2017 ROHM Co., Ltd. All rights reserved.  
19/19  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BU2279F

Clock generator for PC
ROHM

BU2279F-E1

Clock Generator, CMOS, PDSO16
ROHM

BU2279F-E2

Clock Generator, CMOS, PDSO16
ROHM

BU2280-E2FV

DVD-video Reference Clock Generators for Audio/Video Equipments
ROHM

BU2280FV

DVD-video Reference Clock Generators for Audio/Video Equipments
ROHM

BU2280FV-E2

Clock Generator, 36.864MHz, CMOS, PDSO24, ROHS COMPLIANT, SSOP-24
ROHM

BU2280FV_08

DVD-video Reference Clock Generators for Audio/Video Equipments
ROHM

BU2285FV

Clock generator IC
ROHM

BU2285FVFV-E2

DVD-Audio Reference Clock Generator for Audio/Video Appliance
ROHM

BU2285FV_08

DVD-Audio Reference Clock Generator for Audio/Video Appliance
ROHM

BU2286FV

Clock generator IC
ETC

BU2286FV-E2

Clock Generator, CMOS, PDSO16,
ROHM