BU64562GWZ [ROHM]

Piezoelectric Actuator Driver;
BU64562GWZ
型号: BU64562GWZ
厂家: ROHM    ROHM
描述:

Piezoelectric Actuator Driver

文件: 总24页 (文件大小:721K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Piezoelectric Actuator Driver  
BU64562GWZ  
General Description  
Key Specifications  
The BU64562GWZ is designed to drive Piezo motors for  
camera auto focus.  
It has an integrated D/A converter for setting the output  
voltage.  
This lens driver includes the slope sequence to reduce  
the driving noise of Piezo actuator.  
„ PMOS ON Resistance:  
„ NMOS ON Resistance:  
„ Standby current consumption:  
„ High precision 15MHz Oscillator:  
„ Operating temperature range:  
0.70 (Typ.)  
0.70 (Typ.)  
0 µA (Typ.)  
± 3 %  
- 25 to + 85 °C  
The functional lens system can be controlled through  
Package  
UCSP30L1  
W(Typ.) x D(Typ.) x H(Max.)  
1.90 mm x 0.77 mm x 0.33 mm  
2-wire serial interface (I2C BUS compatible).  
Features  
„ Ultra-small chip size package  
„ Low ON-Resistance Power CMOS output  
„ Built-in 15 MHz Oscillator (OSC)  
„ 2-wire serial interface (I2C BUS compatible)  
„ 1.8 V can be put into each control input terminal  
„ Slew rate control function of output voltage  
„ Standby current consumption 0 µA (Typ.)  
Applications  
„ Auto focus of cell phone  
„ Auto focus of Digital still camera  
„ Camera Modules  
„ Lens Auto focus  
„ Web, Tablet and PC Cameras  
Typical Application Circuit  
0.1 to 10 µF  
VCC  
2.0 to 10 µF  
VM  
Slope  
Control  
2-wire  
DAC  
SDA  
SCL  
serial  
Interface  
OUTA  
OUTB  
Pre  
Driver  
PS  
Controller  
15 MHz  
OSC  
GND  
Figure 1. Typical Application Circuit  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
1/20  
TSZ2211114001  
Daattaasshheeeett  
BD64562GWZ  
Pin Configuration  
1
2
3
4
A
B
SCL  
PS  
SDA  
OUTA  
GND  
VCC  
VM  
OUTB  
Figure 2. Pin configuration (TOP VIEW)  
Pin Description  
Ball No. Ball Name  
Function  
2-wire serial interface clock input  
2-wire serial interface data input  
Actuator terminal  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
SCL  
SDA  
OUTA  
GND  
PS  
Ground  
Power save input  
VCC  
VM  
Power supply voltage  
VM output voltage  
OUTB  
Actuator terminal  
Block Diagram  
VCC  
Slope  
Control  
VM  
DAC  
SDA  
SCL  
2-wire  
serial  
Interface  
OUTA  
OUTB  
Pre  
Driver  
PS  
Controller  
15 MHz  
OSC  
GND  
Figure 3. Block Diagram  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
2/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
VPS  
Limit  
- 0.3 to + 5.5  
- 0.3 to VCC + 0.3  
- 0.3 to VCC + 0.3  
440*1  
Unit  
V
Power supply voltage  
V
Power save input voltage  
Control input voltage (SCL, SDA)  
Power dissipation  
VIN  
V
Pd  
mW  
°C  
°C  
°C  
mA  
mA  
Topr  
- 25 to + 85  
125  
Operating temperature range  
Junction temperature  
Tjmax  
Tstg  
- 55 to + 125  
- 500 to + 500*2  
- 850 to + 850*3  
Storage temperature range  
Iout  
H-bridge output current  
Iout(peak)  
*1  
*2  
*3  
Conditions: mounted on a glass epoxy board (50 mm × 58 mm × 1.75 mm; 8 layers). In case of Ta > 25 °C, reduced by 4.4 mW / °C.  
Must not exceed Pd, ASO, or Tjmax of 125 °C.  
Must not exceed pulse width = 5 ms and Duty = 50 %.  
Recommended Operating Ratings  
Parameter  
Symbol  
VCC  
Min.  
Typ.  
Max.  
4.8  
Unit  
V
Power supply voltage  
2.3  
0
0
-
3.0  
Power save input voltage  
VPS  
-
-
-
-
-
4.8  
V
Control input voltage (SCL, SDA)  
2-wire serial interface transmission rate  
VIN  
4.8  
V
SCL  
400  
kHz  
mA  
mA  
IOUT  
Iout(peak)  
-
± 400*4  
± 750*5  
H-bridge output current  
-
*4  
*5  
Must not exceed Pd, ASO.  
Must not exceed pulse width = 5 ms and Duty = 50 %.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
3/20  
Daattaasshheeeett  
BD64562GWZ  
Electrical Characteristics ( Unless otherwise specified Ta = 25 °C, VCC = 3.0 V )  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Overall  
Circuit current  
during standby operation  
ICCST  
ICC  
-
-
0
1
µA  
PS = L  
Circuit current  
1.8  
3.0  
mA PS = H, SCL = 400 kHz, 15 MHz OSC active  
UVLO  
UVLO voltage  
VUVLO  
1.8  
-
2.2  
V
Power save input  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Control input(SDA,SCL)  
High level input voltage  
Low level input voltage  
Low level output voltage1  
Low level output voltage2  
High level input current  
Low level input current  
H Bridge Drive  
VPSH  
VPSL  
IPSH  
IPSL  
1.5  
0
-
-
VCC  
0.5  
60  
V
V
15  
-
30  
0
µA VINH = 3.0 V, pull down resister 100 kΩ  
1
µA VINL = 0 V  
VINH  
VINL  
VOL1  
VOL2  
IINH  
1.5  
0
-
-
-
-
-
-
VCC  
0.5  
0.4  
0.2  
10  
V
V
-
V
V
IIN = 3.0 mA (SDA)  
IIN = 0.7 mA (SDA)  
-
- 10  
- 10  
µA Input voltage = VCC  
µA Input voltage = GND  
IINL  
10  
RONP  
RONN  
TMIN  
Tr  
-
-
0.7  
0.7  
0.85  
0.85  
Output ON-Resistance  
Cycle length of  
Sequence drive  
10.35 10.67 11.00  
µs  
µs  
µs  
*6 Built in CLK 160 count, no load  
*7 No load  
Output rise time  
-
-
0.1  
0.8  
0.4  
Output fall time  
Tf  
0.02  
*7 No load  
VM voltage  
VM voltage (VM2=0x00)  
VM voltage (VM2=0x8F)  
VM voltage INL  
VM00  
VM8F  
VMINL  
VMDNL  
VMR  
- 10  
2.6  
- 4  
- 1  
-
0
2.7  
0
100  
2.8  
4
mV  
V
DAC_code = 0x20 to 0xFF, VCC = 4.8 V  
DAC_code = 0x20 to 0xFF, VCC = 4.8 V  
VM voltage DNL  
VM ON-Resistance  
0
1
0.7  
0.85  
*6  
The time that 1 cycle of sequence drive at the below setting of 2-wire serial data  
ta[7:0] = 0x13, brake1[7:0] = 0x03, tb[7:0] = 0x1E, brake2[7:0] = 0x6B, osc[2:0] = 0x0  
Output switching wave  
*7  
100 %  
0 %  
90 %  
90 %  
Output voltage  
10 %  
10 %  
Tf  
Tr  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
4/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Typical Performance Curves  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
Output current = 100 mA  
VM2 = 0xFF  
Output current = 100 mA  
VM2 = 0xFF  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta = + 25 ℃  
Ta = + 85 ℃  
Ta = + 25 ℃  
Ta = + 85 ℃  
Ta = - 25 ℃  
Ta = - 25 ℃  
2.5  
2
3
3.5  
4
4.5  
5
2
2.5  
3
3.5  
4
4.5  
5
VCC (V)  
VCC (V)  
Figure 5. VM ON-Resistance  
Figure 4. Output ON-Resistance (RONP + RONN)  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
2.68  
2.66  
2.64  
2.62  
2.60  
11.0  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
Ta = + 25 ℃  
Ta = - 25 ℃  
VCC = 4.8 V  
VCC = 3.0 V  
Ta = + 85 ℃  
VCC = 2.7 V  
ta[7:0] = 0x13, brake1[7:0] = 0x03,  
tb[7:0] = 0x1E, brake2[7:0] = 0x6B,  
osc[2:0] = 0x0, no load  
-30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Ta (  
2
2.5  
3
3.5  
4
4.5  
5
)
VCC (V)  
Figure 6. VM voltage (VM2 = 0x8F)  
Figure 7. Cycle length of sequence drive  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
5/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
2-wire Serial Interface Register detail  
Write mode :  
Read mode :  
S
S
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
A
A
PS T2 T1 T0 W3 W2 W1 W0  
A
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
Master is output  
Slave is output  
Write  
Up date  
0
PS T2 T1 T0 W3 W2 W1 W0  
S
0
0
0
1
1
0
0
1
A
D7 D6 D5 D4 D3 D2 D1 D0 nA  
P
Write  
Read  
S=Start condition  
P=Stop condition  
A=Acknowledge  
PS=Power save  
W3~W0=Resister address  
D7~D0=Data  
nA=not Acknowledge T2~T0=Test bit  
Register name  
PS  
Setting item  
Description  
Serial power save  
0 = Driver in standby mode, 1 = Driver in operating mode  
Test register = 000b  
Test register  
address  
T[2:0]  
W[3:0]  
D[9:0]  
Register address  
Data bits  
Setting Register address  
Setting Register data  
Register Map  
Address  
W3 W2 W1 W0  
D7  
HiZE  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
START  
ta[2]  
D1  
MODE  
ta[1]  
D0  
dir  
0x0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0x1  
ta[7]  
ta[6]  
ta[5]  
ta[4]  
ta[3]  
ta[0]  
0x2  
brake1[7]  
tb[7]  
brake1[6]  
tb[6]  
brake1[5]  
tb[5]  
brake1[4]  
tb[4]  
brake1[3]  
tb[3]  
brake1[2]  
tb[2]  
brake1[1]  
tb[1]  
brake1[0]  
tb[0]  
0x3  
0x4  
brake2[7]  
cnt[7]  
cnt[15]  
pa  
brake2[6]  
cnt[6]  
cnt[14]  
pb  
brake2[5]  
cnt[5]  
cnt[13]  
osc[2]  
V1[5]  
brake2[4]  
cnt[4]  
cnt[12]  
osc[1]  
V1[4]  
brake2[3]  
cnt[3]  
cnt[11]  
osc[0]  
V1[3]  
brake2[2]  
cnt[2]  
brake2[1]  
cnt[1]  
brake2[0]  
cnt[0]  
cnt[8]  
cntck[0]  
V1[0]  
0x5  
0x6  
cnt[10]  
cntck[2]  
V1[2]  
cnt[9]  
0x7  
cntck[1]  
V1[1]  
0x8  
V1[7]  
V1[6]  
V2[6]  
step2[3]  
TEST  
TEST  
TEST  
0x9  
V2[7]  
V2[5]  
V2[4]  
V2[3]  
V2[2]  
V2[1]  
V2[0]  
0xA  
0xB  
0xC  
0xD  
step2[4]  
TEST  
TEST  
TEST  
step2[2]  
TEST  
TEST  
TEST  
step2[1]  
TEST  
TEST  
TEST  
step2[0]  
TEST  
TEST  
TEST  
step1[2]  
TEST  
step1[1]  
EXT  
step1[0]  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
6/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Register catalogue  
Bit  
Bit Name  
Description  
Reset  
Address : 0x0  
Dead time setting (Reference 13 page)  
(Lo: 1 cycle of osc[2:0] setting, Hi: Internal CLK 1 cycle (Typ. 66.67 ns))  
D[7]  
HiZE  
0x0  
D[6:3]  
D[2]  
0x0  
0x0  
0x0  
0x0  
TEST  
START  
MODE  
dir  
Set ‘0x0’  
Start setting for sequence (Reference 14 page)  
Mode of brake1 / brake2 setting for sequence (Reference 13 page)  
Output direction setting while sequence (Reference 14 page)  
D[1]  
D[0]  
Address : 0x1  
D[7:0]  
ta[7:0]  
Drive waveform setting[7:0] (Reference 10 page)  
Drive waveform setting[7:0] (Reference 10 page)  
Drive waveform setting[7:0] (Reference 10 page)  
Drive waveform setting[7:0] (Reference 10 page)  
Drive time count setting[7:0] (Reference 12 page)  
Drive time count setting[15:8] (Reference 12 page)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Address : 0x2  
D[7:0]  
brake1[7:0]  
Address : 0x3  
D[7:0]  
tb[7:0]  
Address : 0x4  
D[7:0]  
brake2[7:0]  
Address : 0x5  
D[7:0]  
cnt[7:0]  
Address : 0x6  
D[7:0]  
cnt[15:8]  
Address : 0x7  
D[7]  
pa  
pb  
Output logic setting a (Reference 13 page)  
0x0  
0x0  
0x0  
D[6]  
Output logic setting b (Reference 13 page)  
D[5:3]  
osc[2:0]  
Internal CLK basic cycle setting [2:0] (Reference 11 page)  
Drive time basic cycle setting[2:0] (It is possible to use Normal function only)  
(Reference 12 page)  
D[2:0]  
cntck[2:0]  
0x0  
Address : 0x8  
D[7:0]  
V1[7:0]  
For setting VM voltageBit [7:0] (Reference 16, 17 page)  
For setting VM voltageBit [7:0] (Reference 16, 17 page)  
0x00  
0x00  
Address : 0x9  
D[7:0]  
V2[7:0]  
Address : 0xA  
D[7:3]  
D[2:0]  
step2[4:0]  
step1[2:0]  
For setting slope of VM voltageBit [4:0] (Reference 16, 17 page)  
For setting slope of VM voltageBit [2:0] (Reference 16, 17 page)  
0x00  
0x0  
Address : 0xB  
D[7:2]  
TEST  
Set ‘0x0’  
0x00  
0x0  
Hi output while sequence, Low output at the stop mode  
(Reference 14 page)  
D[1]  
EXT  
D[0]  
TEST  
Set ‘0x0’  
0x0  
Address : 0xC  
D[7:0]  
TEST  
Set ‘0x00’  
0x00  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
7/20  
Daattaasshheeeett  
BD64562GWZ  
2-wire Serial Interface Data timing  
tHIGH  
SCL  
SCL  
SDA  
tSU : STA  
tSU : STO  
tHD : STA  
tHD : DAT  
tSU : DAT  
tLOW  
tHD : STA  
tBUF  
SDA  
STOP BIT  
START BIT  
Figure 8. Serial data timing  
Figure 9. Start, Stop bit timing  
Timing Characteristics (Unless otherwise specified, Ta = 25 °C, VCC = 2.3 to 4.8 V)  
FAST-MODE*8  
STANDARD-MODE*8  
Parameter  
Symbol  
Unit  
Min.  
-
Typ.  
Max.  
Min.  
-
Typ.  
Max.  
SCL clock frequency  
fSCL  
-
-
-
-
-
-
-
-
400  
-
-
-
-
-
-
-
-
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
High period of the SCL clock  
Low period of the SCL clock  
Hold time (repeated) START condition  
Set-up time (repeated) START condition  
Data hold time  
tHIGH  
0.6  
1.3  
0.6  
0.6  
0
-
4.0  
4.7  
4.0  
4.7  
0
-
tLOW  
-
-
tHD:STA  
tSU:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
-
-
-
-
0.9  
-
3.45  
Data set-up time  
100  
0.6  
250  
4.0  
-
-
Set-up time for STOP condition  
-
Bus free time between a STOP and START  
condition  
tBUF  
tI  
1.3  
0
-
-
-
4.7  
0
-
-
-
µs  
ns  
Pulse width of spikes which must be  
suppressed by the input filter  
50  
50  
*8  
Standard-mode and Fast-mode 2-wire serial interface devices must be able to transmit or receive at that speed  
The maximum bit transfer rates of 100 kHz for Standard-mode devices and 400 kHz for Fast-mode devices.  
This transfer rates is provided the maximum transfer rates, for example it is able to drive 100 kHz of clocks with Fast-mode.  
Recommend to power supply turning on operation timing  
50 %  
50 %  
VCC  
50 %  
50 %  
PS  
50 %  
50 %  
2-wire serial input  
tPS  
tI2C  
tPS  
Serial data  
tI2C  
Figure 10. Sequence of data input timing to power supply  
Recommendation limit  
Parameter  
Symbol  
Unit  
Min.  
50  
50  
0
Typ.  
Max.  
PS input High voltage set-up time  
tPS1  
tI2C1  
tPS2  
tI2C2  
-
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
2-wire serial interface input data set-up time  
PS input Low voltage set-up time  
2-wire serial interface input data set-up time  
0
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
8/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Power Dissipation  
0.44 W  
Ambient Temperature: Ta (°C)  
(This value is not guaranteed value.)  
Figure 11. Power dissipation Pd (W)  
I/O equivalence circuits  
VCC  
SCL  
SDA  
VCC  
VCC  
VCC  
GND  
SDA  
SCL  
PS  
VM, OUTA, OUTB  
VCC  
VCC  
VM  
PS  
OUTA  
OUTB  
GND  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
9/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Description of Functions  
1) The structure of the driving wave for Piezo actuator  
1cycle = (ta + 1) + brake1 + tb + brake2 + (4 x osc)  
Ⅲ Ⅳ  
1osc  
1osc  
1osc  
1osc  
1osc  
1osc  
Output①  
Output②  
brake1  
ta+1  
tb  
ta  
brake2  
Forward  
(Reverse)  
Short brake* 10  
Forward  
(Reverse)  
Reverse  
(Forward)  
*9  
* 9  
* 9  
* 9  
* 9  
* 9  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
*10  
Short brake  
*9 The state at osc = 0x0 or osc 0x0 and HiZE = 0x0 is HiZ.  
*10 At mode = 0, the output logic is a setting of a short brake.  
dir (Address: 0x0, Data: D[0])  
Output①  
OUTA  
Output②  
OUTB  
Note  
0
1
Move to the direction of Macro  
Move to the direction of infinity  
OUTB  
OUTA  
Driving wave is set by the 4 parameters of ta / brake1 / tb / brake2.  
OSC period is set by the OSC (Internal clock basic cycle setting).  
ta  
: On section is ( ta + 1 - 1) = ta counts for Forward (Reverse) state.  
brake1  
tb  
brake2  
: On section is (brake1 - 1) count for short brake state.  
: On section is (tb1 - 1) count for Reverse (Forward) state.  
: On section is (brake2 - 1) count for short brake state.  
(Ex.) In case of setting 1 cycle = 10.67 µs, ta = 1.27 µs, brake1 = 0.13 µs, tb = 1.93 µs, brake2 = 7.07 µs.  
osc[2:0]( = Basic cycle setting ) = 0x0 = Basic cycle = 66.67 ns, and ta / brake1 / tb / brake2 setting below;  
ta[7:0]  
brake1[7:0]  
tb[7:0]  
= 0x13  
= 0x03  
= 0x1E  
= 0x6B  
= 19 count  
= 3 count  
= 30 count  
= 107 count  
ON section = 19 + 1 – 1 = 19 count  
ON section = 2 count  
ON section = 29 count  
brake2[7:0]  
ON section = 106 count  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
10/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Table 1. Basic cycle setting [osc] Internal clock 1cycle = 66.67 ns (Typ.)  
Internal  
clock cycle  
number  
Internal  
clock cycle  
number  
Internal  
clock cycle  
number  
Internal  
clock cycle  
number  
osc[2:0]  
osc[2:0]  
osc[2:0]  
osc[2:0]  
0x0  
0x1  
1
2
0x2  
0x3  
3
4
0x4  
0x5  
5
6
0x6  
0x7  
7
8
Table 2. Driving waveform setting [ta]  
OSC  
OSC  
Cycle  
OSC  
Cycle  
OSC  
Cycle  
ta[7:0]  
Cycle  
ta[7:0]  
ta[7:0]  
ta[7:0]  
number  
number  
number  
number  
0x00  
0x01  
0x02  
0x03  
1
1
0x40  
0x41  
0x42  
0x43  
64  
65  
0x80  
0x81  
0x82  
0x83  
128  
129  
130  
131  
0xC0  
0xC1  
0xC2  
0xC3  
192  
193  
194  
195  
2
66  
3
67  
61  
62  
63  
0x3D  
0x3E  
0x3F  
0x7D  
0x7E  
0x7F  
125  
126  
127  
0xBD  
0xBE  
0xBF  
189  
190  
191  
0xFD  
0xFE  
0xFF  
253  
254  
255  
Table 3. Driving waveform setting [brake1]  
OSC  
OSC  
Cycle  
OSC  
Cycle  
OSC  
Cycle  
brake1[7:0]  
Cycle  
brake1[7:0]  
brake1[7:0]  
brake1[7:0]  
number  
number  
number  
number  
0x00  
0x01  
0x02  
0x03  
1
1
0x40  
0x41  
0x42  
0x43  
64  
65  
0x80  
0x81  
0x82  
0x83  
128  
129  
130  
131  
0xC0  
0xC1  
0xC2  
0xC3  
192  
193  
194  
195  
2
66  
3
67  
61  
62  
63  
0x3D  
0x3E  
0x3F  
0x7D  
0x7E  
0x7F  
125  
126  
127  
0xBD  
0xBE  
0xBF  
189  
190  
191  
0xFD  
0xFE  
0xFF  
253  
254  
255  
Table 4. Driving waveform setting [tb]  
OSC  
OSC  
Cycle  
OSC  
Cycle  
OSC  
Cycle  
tb[7:0]  
Cycle  
tb[7:0]  
tb[7:0]  
tb[7:0]  
number  
number  
number  
number  
0x00  
0x01  
0x02  
0x03  
1
1
0x40  
0x41  
0x42  
0x43  
64  
65  
0x80  
0x81  
0x82  
0x83  
128  
129  
130  
131  
0xC0  
0xC1  
0xC2  
0xC3  
192  
193  
194  
195  
2
66  
3
67  
61  
62  
63  
0x3D  
0x3E  
0x3F  
0x7D  
0x7E  
0x7F  
125  
126  
127  
0xBD  
0xBE  
0xBF  
189  
190  
191  
0xFD  
0xFE  
0xFF  
253  
254  
255  
Table 5. Driving waveform setting [brake2]  
OSC  
OSC  
Cycle  
OSC  
Cycle  
OSC  
Cycle  
brake2[7:0]  
Cycle  
brake2[7:0]  
brake2[7:0]  
brake2[7:0]  
number  
number  
number  
number  
0x00  
0x01  
0x02  
0x03  
1
1
0x40  
0x41  
0x42  
0x43  
64  
65  
0x80  
0x81  
0x82  
0x83  
128  
129  
130  
131  
0xC0  
0xC1  
0xC2  
0xC3  
192  
193  
194  
195  
2
66  
3
67  
61  
62  
63  
0x3D  
0x3E  
0x3F  
0x7D  
0x7E  
0x7F  
125  
126  
127  
0xBD  
0xBE  
0xBF  
189  
190  
191  
0xFD  
0xFE  
0xFF  
253  
254  
255  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
11/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Table 6. Driving waveform basic cycle setting [cntck] (Normal sequence only)  
Cycle  
number  
Cycle  
number  
Cycle  
number  
Cycle  
number  
cntck[2:0]  
cntck[2:0]  
cntck[2:0]  
cntck[2:0]  
0x0  
0x1  
1
2
0x2  
0x3  
4
8
0x4  
0x5  
15  
32  
0x6  
0x7  
64  
127  
Table 7. Driving waveform count setting [cnt]  
count  
count  
cycle  
count  
cycle  
count  
cycle  
cnt[15:0]  
cycle  
cnt[15:0]  
cnt[15:0]  
cnt[15:0]  
number  
number  
number  
number  
0x0000  
0x0001  
0x0002  
0x0003  
-
0x4000  
0x4001  
0x4002  
0x4003  
16384  
16385  
16386  
16387  
0x8000  
0x8001  
0x8002  
0x8003  
32768  
32769  
32770  
32771  
0xC000  
0xC001  
0xC002  
0xC003  
49152  
49153  
49154  
49155  
-
2
3
0x3FFD  
0x3FFE  
0x3FFF  
16381  
16382  
16383  
0x7FFD  
0x7FFE  
0x7FFF  
32765  
32766  
32767  
0xBFFD  
0xBFFE  
0xBFFF  
49149  
49150  
49151  
0xFFFD  
0xFFFE  
0xFFFF  
65533  
65534  
65535  
Total Drive count number = (cntck[2:0]) x (cnt[15:0]) (cntck[2:0] is valid for Normal sequence.)  
(Ex.) In case, setting cntck[2:0] = 0x1, cnt[15:0] = 0x8000  
cntck[2:0] x cnt[15:0] = 2 x 32768  
=65536 count  
=851.968 ms (In case of Driving waveform setting a cycle = 13 µs)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
12/20  
Daattaasshheeeett  
BD64562GWZ  
2) Driver function table  
Sequence setting  
mode = 0, osc = 0x0 or osc 0x0 and HiZE = 0  
HiZ  
H
HiZ  
L
L
L
L
L
L
Output①  
Output②  
State  
L
L
L
L
HiZ  
HiZ  
H
HiZ  
HiZ  
Short  
brake  
Short  
brake  
HiZ  
Forward  
HiZ  
Reverse  
mode = 0, osc 0x0 and HiZE = 1  
HiZ(66.67ns)  
HiZ(66.67ns)  
H
L
L
L
L
L
Output①  
Output②  
State  
H  
L  
HiZ(66.67ns)  
L
L
L
L
H
HiZ*11  
HiZ*11  
L
H  
HiZ(66.67ns)  
Short  
brake  
Short  
brake  
Short  
brake  
HiZ(66.67ns)  
Forward  
HiZ(66.67ns)  
Reverse  
Forward  
Reverse  
*11  
The output status of doesn’t become from HiZ (66.67 ns) to Low. It is outputted HiZ.  
mode = 1, osc = 0x0 or osc 0x0 and HiZE = 0  
HiZ  
H
HiZ  
HiZ  
L
L
L
HiZ  
Output①  
Output②  
State  
L
L
L
HiZ  
HiZ  
HiZ  
HiZ  
H
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
Forward  
HiZ  
Reverse  
mode = 1, osc 0x0 and HiZE = 1  
HiZ(66.67ns)  
L
H
HiZ  
HiZ  
L
L*12  
HiZ  
Output①  
Output②  
State  
H  
L(66.67ns)  
HiZ  
HiZ(66.67ns)  
L
L
HiZ  
HiZ  
H
HiZ  
HiZ  
HiZ  
HiZ  
H  
HiZ(66.67ns)  
Forward  
HiZ(66.67ns)  
Reverse  
Forward  
HiZ  
Reverse  
*12  
The output status of doesn’t become from Low (66.67 ns) to HiZ. It is outputted Low.  
Truth table of pa and pb  
sequence  
OFF  
pa  
0
pb  
0
OUTA  
OUTB  
Function mode  
STOP  
HiZ  
L
HiZ  
H
L
OFF  
0
1
Reverse  
OFF  
1
0
H
L
Forward  
OFF  
1
1
L
Short brake  
ON  
x
x
-
-
Follow with the sequence  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
13/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
3) Normal sequence  
Setting ta[7:0], brake1[7:0], tb[7:0], brake2[7:0], osc[2:0], HiZE, pa, pb, cntck[2:0], cnt[15:0], V2[7:0]  
(When START bit is High, it is impossible to update. When Start bit is Low, it is possible to update.)  
START  
Hi Lo while normal sequence, stop the sequence  
input data  
START  
Macro direction select  
infinity direction select  
input data  
dir  
1cycle  
OUTA  
OUT B  
output data  
EXT  
Internal Counter  
Coun t  
stop  
Count  
stop  
set  
Reset  
Reset  
Count up  
Count up  
value  
*13  
*1 3 STOP sequence  
Reference 15 page  
Set output logic by  
pa, pb  
Set output logic by  
pa, pb  
Normal sequence  
Normal sequence  
Move to Macro direction (movement at set cycle)  
Move to infinity direction  
In the caseof dir = Lo Hi or Hi Lo input while  
START = Hi,reset setting cycle,and startnormal sequence  
input data  
START  
Macro direction select  
Infinity direction select  
input data  
dir  
1cycle  
OUTA  
OUTB  
output data  
EXT  
Internal Counter  
Co un t  
Stop  
Count  
Stop  
S
et  
Set value  
Count up  
v alu e  
Count up  
*13  
*13  
Normal sequence  
Normal sequence  
Set output logic by  
pa, pb  
Move to macro direction  
Move to macro direction  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
14/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
4) STOP sequence  
It changes to the next state after short brake 16.7 µs (Typ.) when the state transition.  
Shown in the following while the sequence is operating is done.  
When normal sequence ends  
When normal sequence cancels  
* Special condition  
There is a possibility that is not the pulse when {0x6, 0x5} address is small when Dir and START Bits are input at the  
same time after reset is released.  
5) Output rise, fall waveform  
VM  
A
A x 0.9  
(VM-B) x 0.9 + B  
Output  
Voltage  
(VM-B) x 0.1 + B  
B
Tfall  
Trise  
A x 0.1  
0V  
Output  
Current  
0mA  
A voltage = (VM voltage) - (Simulation DC output current at the only Resistance load) x (Upper side output ON-Resistance)  
B voltage = (Simulation DC output current at the only Resistance load) x (Lower side output ON-Resistance)  
(Ex.) In case, the load is Resistance element = 2 , capacity element = 0.033 µF  
25 °C, VM = 3 V, Upper side output ON-Resistance = 1 , Lower side output ON-Resistance = 1 Ω  
A voltage = (VM voltage) - ((VM voltage) / (Load(R) + Total ON-Resistance)) x (Upper side ON-Resistance)  
= 3 V - (3 V / (2 + (1 + 1 ))) x 1 Ω  
= 2.25 V  
B voltage = ((VM voltage) / (Load(R) + Total ON-Resistance)) x (Lower side ON-R)  
= (3 V / (2 + (1 + 1 ))) x 1Ω  
= 0.75 V  
Rise time = Trise (A x 0.1 to A x 0.9)  
Fall time = Tfall ((VM - B) x 0.9 + B to (VM - B) x 0.1 + B)  
= 100 ns (Typ.)  
= 100 ns (Typ.)  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
15/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
6) Setting method of VM voltage slope  
The slope can be applied to the VM voltage by setting V1[7:0], V2[7:0], step1[2:0] and step2[4:0].  
V1 and V2 are bits for setting VM voltage. The step1 and step2 are bits for setting VM slope.  
VM voltage increase that it set it every 50 µs.  
It is necessary to enlarge the setting of V2 more than V1.  
LSB of each setting bits does not depend on the VCC voltage (LSB = 4.8 / 255 = 18.8 mV (Typ.)).  
Normal function  
Setting V2[7:0] (V1[7:0] = 0x00, step1[2:0] = 0x0, step2[4:0] = 0x00)  
VM  
V2  
cntck[2:0]×cnt[15:0]  
time  
One time slope  
Setting V2[7:0] and step2[4:0] (V1[7:0] = 0x00, step1[2:0] = 0x0 and cntck[2:0] = 0x0)  
VM  
V2  
time  
cnt[15:0]  
= 5µs × V2[7:0] / step2[4:0]  
= 5µs (The first step output the eping voltage.)  
= 50 µs × ( V2[7:0] / step2[4:0] - 1)  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
16/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Two times slope  
1. Setting V1[7:0], V2[7:0], step1[2:0] and step2[4:0] (cntck[2:0] = 0x0)  
50 µ× V1[7e1[2:0]  
50 µ× ( V20] V[7:0] ) step2:0]  
50 µThe first step output e keeing voltage.)  
= 50 µs × (( V2[7:0] - V1[7:0] ) / step2[4:0] – 1)  
= 50 µs × V1[7:0] / step1[2:0]  
2. Setting V1[7:0], V2[7:0] and step2[4:0] (step1[2:0] = 0x0 and cntck[2:0] = 0x0)  
VM  
V2  
V1  
time  
cnt[15:0]  
= 50 µ× ( V2[7:0] - V1[7:0] ) / ep2[4:0]  
= 50 µ(The first step output thkeeping voltage.)  
= 50 µ× ( V2[7:0] - V1[7:0] ) / ep2[4:0]  
3. Setting V1[7:0], V2[7:0] and step1[2:0] (step2[4:0] = 0x00 and cntck[2:0] = 0x0)  
VM  
V2  
V1  
time  
cnt[15:0]  
= 50 s × V1[7:0] / step1[2:0]  
= 50 s (The first step output e keeping voltage.)  
= 50 s × V1[7:0] / step1[2:0]  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
17/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Operational Notes  
1) Absolute maximum ratings  
Use of the IC in excess of absolute maximum ratings, such as the applied voltage (VCC) or operating temperature  
range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or  
open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when  
using the IC at times where the absolute maximum ratings may be exceeded.  
2) Storage temperature range (Tstq)  
As long as the IC is kept within this range, there should be no problems in the IC’s performance. Conversely, extreme  
temperature changes may result in poor IC performance, even if the changes are within the above range.  
3) Power supply and wiring  
Be sure to connect the power terminals outside the IC. Do not leave them open. Because a return current is generated  
by a counter electromotive force of the motor, take necessary measures such as putting a Capacitor between the  
power source and the ground as a passageway for the regenerative current. Be sure to connect a Capacitor of proper  
capacitance (0.1 to 10 µF) between the power source and the ground at the foot of the IC, and ensure that there is no  
problem in properties of electrolytic Capacitors such as decrease in capacitance at low temperatures. When the  
connected power source does not have enough current absorbing capability, there is a possibility that the voltage of the  
power source line increases by the regenerative current exceeds the absolute maximum rating of this product and the  
peripheral circuits.  
Therefore, be sure to take physical safety measures such as putting a zener diode for a voltage clamp between the  
power source the ground.  
4) Ground terminal and wiring  
The potential at GND terminal should be made the lowest under any operating conditions. Ensure that there are no  
terminals where the potentials are below the potential at GND terminal, including the transient phenomena.  
Also prevent the voltage variation of the ground wiring patterns of external components. Use short and thick power  
source and ground wirings to ensure low impedance.  
5) Thermal design  
Use a proper thermal design that allows for a sufficient margin of the power dissipation at actual operating conditions.  
6) Pin short and wrong direction assembly of the device  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins  
are shorted together or are shorted to other circuit’s power lines.  
7) Avoiding strong magnetic field  
Malfunction may occur if the IC is used around a strong magnetic field.  
8) ASO  
Ensure that the output transistors of the motor driver are not driven under excess conditions of the absolute maximum  
ratings and ASO.  
9) TSD circuit  
This IC incorporates a TSD circuit. If the temperature of the chip reaches the below temperature, the motor coil output  
will be opened. The TSD circuit is designed only to shut off the IC to prevent runaway thermal operation. It is not  
designed to protect the IC or to guarantee its operation. Do not continue to use the IC after use of the TSD feature or  
use the IC in an environment where the its assumed that the TSD feature will be used.  
TSD ON temperature [°C]  
Hysteresis temperature [°C]  
(Typ.)  
(Typ.)  
150  
20  
10) PS terminal  
Release PS after rising VCC. PS works resetting logic as well. If keep connecting PS with VCC, resetting cannot be  
done cause malfunction or destroy.  
Status of this document  
The Japanese version of this document is formal specification. A customer may use this translation version only  
for a reference to help reading the formal version.  
If there are any differences in translation version of this document formal version takes priority.  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
18/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Ordering Information  
B U 6 4 5 6 2 G W Z  
E 2  
Part Number  
Package  
GWZ: UCSP30L1  
Packaging and forming specification  
E2: Embossed tape and reel  
Physical Dimension Tape and Reel Information  
UCSP30L1 (BU64562GWZ)  
1PIN MARK  
Lot No.  
<Packing specification>  
ABX  
Embossed carriertape  
Tape  
1.9±0.03  
Quantity  
3,000pcs/Reel  
Direction of feed  
E2 (See neighboring image)  
S
0.06  
S
8-φ0.20±0.05  
A
0.05 A B  
1234  
1234  
1234  
1234  
1234  
1234  
B
B
A
Direction of feed  
1
2
3
4
1pin  
Reel  
0.35±0.05  
P=0.4×3  
*Order quantity needs to be multiple of the minimum quantity.  
Marking Diagram(TOP VIEW)  
UCSP30L1 (BU64562GWZ)  
Product Name  
Lot No.  
1PIN MARK  
ABX  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
19/20  
TSZ2211115001  
Daattaasshheeeett  
BD64562GWZ  
Revision History  
Date  
Revision  
001  
Changes  
9.Oct.2012  
New Release  
www.rohm.com  
TSZ02201-0H2H0B600450-1-2  
9.Oct.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
20/20  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
Datasheet  
BU64562GWZ - Web Page  
Part Number  
Package  
Unit Quantity  
BU64562GWZ  
UCSP30L1  
3000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
3000  
Taping  
inquiry  
Yes  

相关型号:

BU64562GWZ-E2

Piezoelectric Actuator Driver
ROHM

BU64985GWZ

Bi-directional VCM driver for Auto focus
ROHM

BU64985GWZ-TR

Bi-directional VCM driver for Auto focus
ROHM

BU64987GWZ

Bi-directional VCM driver for Auto focus
ROHM

BU64987GWZ-TR

Bi-directional VCM driver for Auto focus
ROHM

BU65170G0-100

Interface IC
ETC

BU65170G0-110

Interface IC
ETC

BU65170G0-120

Interface IC
ETC

BU65170G0-200

Interface IC
ETC

BU65170G0-300

Interface IC
ETC

BU65170G5-100

Interface IC
ETC

BU65170G5-110

Interface IC
ETC