BU7262NUX-TR [ROHM]

Operational Amplifier, 2 Func, 10000uV Offset-Max, CMOS, PDSO8, VSON-8;
BU7262NUX-TR
型号: BU7262NUX-TR
厂家: ROHM    ROHM
描述:

Operational Amplifier, 2 Func, 10000uV Offset-Max, CMOS, PDSO8, VSON-8

放大器 光电二极管
文件: 总47页 (文件大小:1748K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Input/Output Full Swing  
Low Voltage Operating  
CMOS Operational Amplifiers  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
General Description  
Key Specifications  
BU7261G,BU7262xxx,BU7264xx are CMOS operational  
amplifier of the input/output full swing low voltage  
operation. Also, BU7261SG,BU7262Sxxx,BU7264Sxx  
which expanded the operating temperature range perform  
a lineup. It is most suitable for a sensor amplifier and a  
battery-powered equipment to have a high slew rate, the  
characteristic of the low input bias current.  
Operating Supply Voltage Range(Single Supply):  
+1.8V to +5.5V  
Operating Temperature Range:  
BU7261G, BU7262xxx, BU7264xx:  
-40°C to +85°C  
BU7261SG, BU7262Sxxx, BU7264Sxx:  
-40°C to +105°C  
Slew Rate:  
Input Offset Current:  
Input Bias Current:  
1.1 V/µs(Typ)  
1pA (Typ)  
Features  
1pA (Typ)  
Operable with Low Voltage  
Input-Output Full Swing  
High Slew Rate  
Wide Temperature Range  
Low Input Bias Current  
Packages  
W(Typ) x D(Typ) x H(Max)  
2.90mm x 2.80mm x 1.25mm  
5.00mm x 6.20mm x 1.71mm  
2.90mm x 4.00mm x 0.90mm  
2.00mm x 3.00mm x 0.60mm  
8.70mm x 6.20mm x 1.71mm  
5.00mm x 6.40mm x 1.35mm  
SSOP5  
SOP8  
MSOP8  
VSON008X2030  
SOP14  
Applications  
Sensor Amplifier  
SSOP-B14  
Battery-powered Equipment  
Portable Equipment  
Consumer Equipment  
Simplified Schematic  
VDD  
Vbias  
IN+  
IN-  
Class  
OUT  
AB control  
Vbias  
VSS  
Figure 1. Simplified Schematic (1 channel only)  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
1/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Pin Configuration  
BU7261G, BU7261SG  
: SSOP5  
Pin No.  
Pin Name  
IN+  
VSS  
IN-  
1
2
3
5
4
VDD  
OUT  
1
2
3
4
5
IN+  
VSS  
IN-  
OUT  
VDD  
BU7262F, BU7262SF  
: SOP8  
BU7262FVM, BU7262SFVM : MSOP8  
BU7262NUX, BU7262SNUX : VSON008X2030  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
8
OUT1  
IN1-  
1
2
3
4
8
7
6
5
OUT1  
IN1-  
VDD  
OUT2  
IN2-  
IN1+  
VSS  
IN2+  
IN2-  
CH1  
IN1+  
VSS  
CH2  
OUT2  
VDD  
IN2+  
BU7264F, BU7264SF  
BU7264FV, BU7264SFV  
: SOP14  
: SSOP-B14  
Pin No.  
Pin Name  
1
2
OUT1  
IN1-  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT1  
IN1-  
OUT4  
IN4-  
3
IN1+  
VDD  
IN2+  
IN2-  
CH1  
CH4  
+
-
-
+
4
IN4+  
VSS  
IN3+  
IN1+  
VDD  
5
6
7
OUT2  
OUT3  
IN3-  
IN2+  
8
-
-
+  
CH2  
+
CH3  
9
IN3-  
IN2-  
10  
11  
12  
13  
14  
IN3+  
VSS  
OUT2  
OUT3  
8
IN4+  
IN4-  
OUT4  
Package  
SSOP5  
SOP8  
VSON008X2030  
MSOP8  
SOP14  
SSOP-B14  
BU7264FV  
BU7261G  
BU7261SG  
BU7262F  
BU7262SF  
BU7262NUX  
BU7262FVM BU7264F  
BU7262SNUX BU7262SFVM BU7264SF BU7264SFV  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
2/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Ordering Information  
B U 7  
2
6 x  
x
x
x
x
-
x x  
Part Number  
BU7261G  
BU7261SG  
BU7262xxx  
BU7262Sxxx  
BU7264xx  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/SSOP-B14)  
TR: Embossed tape and reel  
(SSOP5/MSOP8/VSON008X2030)  
G
F
: SSOP5  
: SOP8, SOP14  
FV : SSOP-B14  
FVM : MSOP8  
NUX : VSON008X2030  
BU7264Sxx  
Line-up  
Topr  
Channels  
1ch  
Package  
Orderable Part Number  
SSOP5  
Reel of 3000  
Reel of 2500  
Reel of 3000  
Reel of 4000  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 3000  
Reel of 4000  
Reel of 2500  
Reel of 2500  
BU7261G-TR  
SOP8  
BU7262F-E2  
2ch  
MSOP8  
BU7262FVM-TR  
BU7262NUX-TR  
BU7264F-E2  
-40°C to +85°C  
VSON008X2030  
SOP14  
4ch  
1ch  
SSOP-B14  
SSOP5  
BU7264FV-E2  
BU7261SG-TR  
BU7262SF-E2  
BU7262SFVM-TR  
BU7262SNUX-TR  
BU7264SF-E2  
BU7264SFV-E2  
SOP8  
2ch  
4ch  
MSOP8  
-40°C to +105°C  
VSON008X2030  
SOP14  
SSOP-B14  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
3/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Absolute Maximum Ratings (TA=25)  
BU7261G, BU7262xxx, BU7264xx  
Rating  
Parameter  
Symbol  
Unit  
V
BU7261G  
BU7262xxx  
BU7264xx  
Supply Voltage  
VDD-VSS  
+7  
SSOP5  
0.54(Note 1,7)  
-
-
SOP8  
MSOP8  
-
-
-
-
0.55(Note 2,7)  
0.47(Note 3,7)  
0.41(Note 4,7)  
-
-
-
Power Dissipation  
PD  
W
VSON008X2030  
SOP14  
-
0.45(Note 5,7)  
0.70(Note 6,7)  
SSOP-B14  
Differential Input  
Voltage (Note 8)  
VID  
VDD - VSS  
V
Input Common-mode  
Voltage Range  
VICM  
II  
(VSS - 0.3) to (VDD + 0.3)  
V
mA  
V
Input Current (Note 9)  
±10  
Operating Supply  
Voltage  
Vopr  
+1.8 to +5.5  
Operating Temperature  
Storage Temperature  
Topr  
Tstg  
-40 to +85  
°C  
°C  
-55 to +125  
Maximum Junction  
Temperature  
TJmax  
+125  
°C  
(Note 1) To use at temperature above TA=25C reduce 5.4mW/°C.  
(Note 2) To use at temperature above TA=25C reduce 5.5mW/°C.  
(Note 3) To use at temperature above TA=25C reduce 4.7mW/°C.  
(Note 4) To use at temperature above TA=25C reduce 4.1mW/°C.  
(Note 5) To use at temperature above TA=25C reduce 4.5mW/°C.  
(Note 6) To use at temperature above TA=25C reduce 7.0mW/°C.  
(Note 7) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 8) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input pin voltage is set to more than VSS.  
(Note 9) An excessive input current will flow when input voltages of more than VDD+0.6V or less than VSS-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open  
circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case  
the IC is operated over the absolute maximum ratings.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
4/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Absolute Maximum Ratings (TA=25)- continued  
BU7261SG, BU7262Sxxx, BU7264Sxx  
Rating  
Parameter  
Symbol  
Unit  
V
BU7261SG  
BU7262Sxxx  
BU7264Sxx  
Supply Voltage  
VDD-VSS  
+7  
SSOP5  
0.54(Note 10,16)  
-
-
SOP8  
MSOP8  
-
-
-
-
0.55(Note 11,16)  
0.47(Note 12,16)  
0.41(Note 13,16)  
-
-
-
Power Dissipation  
PD  
W
VSON008X2030  
SOP14  
-
0.45(Note 14,16)  
0.70(Note 15,16)  
SSOP-B14  
Differential Input  
Voltage (Note 17)  
VID  
VDD - VSS  
V
Input Common-mode  
Voltage Range  
VICM  
II  
(VSS - 0.3) to (VDD + 0.3)  
V
mA  
V
Input Current (Note 18)  
±10  
Operating Supply  
Voltage  
Vopr  
+1.8 to +5.5  
Operating Temperature  
Storage Temperature  
Topr  
Tstg  
-40 to +105  
-55 to +125  
°C  
°C  
Maximum Junction  
Temperature  
TJmax  
+125  
°C  
(Note 10) To use at temperature above TA=25C reduce 5.4mW/°C.  
(Note 11) To use at temperature above TA=25C reduce 5.5mW/°C.  
(Note 12) To use at temperature above TA=25C reduce 4.7mW/°C.  
(Note 13) To use at temperature above TA=25C reduce 4.1mW/°C.  
(Note 14) To use at temperature above TA=25C reduce 4.5mW/°C.  
(Note 15) To use at temperature above TA=25C reduce 7.0mW/°C.  
(Note 16) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 17) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input pin voltage is set to more than VSS.  
(Note 18) An excessive input current will flow when input voltages of more than VDD+0.6V or less than VSS-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution:  
Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open  
circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case  
the IC is operated over the absolute maximum ratings.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
5/44  
03.Dec.2014 Rev.004  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Electrical Characteristics  
BU7261G, BU7261SG (Unless otherwise specified VDD=+3V, VSS=0V, TA=25)  
Limit  
Typ  
1
Temperature  
Range  
Symbol  
VIO  
Unit  
Parameter  
Conditions  
Min  
Max  
9
25℃  
-
-
Input Offset Voltage (Note 19, 20)  
mV VDD=1.8 to 5.5V  
Full range  
-
10  
Input Offset Current (Note 19)  
Input Bias Current (Note 19)  
IIO  
IB  
25℃  
25℃  
-
-
1
1
-
-
pA  
pA  
-
-
25℃  
-
-
250  
-
550  
600  
RL=∞  
AV=0dB, IN+=1.5V  
Supply Current (Note 20)  
IDD  
μA  
Full range  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOH  
VOL  
AV  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
VDD-0.1  
-
-
-
V
V
RL=10kΩ  
-
70  
0
VSS+0.1  
RL=10kΩ  
95  
-
-
3
-
dB RL=10kΩ  
Input Common-mode Voltage Range VICM  
V
VSS - VDD  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 21)  
Output Sink Current (Note 21)  
Slew Rate  
CMRR  
PSRR  
ISOURCE  
ISINK  
45  
60  
4
60  
80  
10  
12  
1.1  
2
dB  
dB  
-
-
-
-
mA OUT=VDD-0.4V  
mA OUT=VSS+0.4V  
V/μs CL=25pF  
5
-
SR  
-
-
Gain Bandwidth  
GBW  
θ
-
-
MHz CL=25pF, AV=40dB  
deg CL=25pF, AV=40dB  
Phase Margin  
-
50  
0.05  
-
OUT=0.8VP-P  
f=1kHz  
,
Total Harmonic Distortion + Noise  
THD+N  
-
-
%
(Note 19) Absolute value  
(Note 20) Full range: BU7261: TA=-40to +85BU7261S: TA=-40to +105℃  
(Note 21) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
6/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Electrical Characteristics - continued  
BU7262xxx, BU7262Sxxx (Unless otherwise specified VDD=+3V, VSS=0V, TA=25)  
Limit  
Typ  
1
Temperature  
Range  
Symbol  
VIO  
Unit  
Parameter  
Conditions  
Min  
Max  
9
25℃  
-
-
Input Offset Voltage (Note 22, 23)  
mV VDD=1.8 to 5.5V  
Full range  
-
10  
Input Offset Current (Note 22)  
Input Bias Current (Note 22)  
IIO  
IB  
25℃  
25℃  
-
-
1
1
-
-
pA  
pA  
-
-
25℃  
-
-
550  
-
1100  
1200  
RL=, All Op-Amps  
AV=0dB, IN+=1.5V  
Supply Current (Note 23)  
IDD  
μA  
Full range  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOH  
VOL  
AV  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
VDD-0.1  
-
-
-
V
V
RL=10kΩ  
RL=10kΩ  
-
70  
0
VSS+0.1  
95  
-
-
3
-
-
-
-
-
-
-
-
-
dB RL=10kΩ  
Input Common-mode Voltage Range VICM  
V
VSS - VDD  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 24)  
Output Sink Current (Note 24)  
Slew Rate  
CMRR  
PSRR  
ISOURCE  
ISINK  
45  
60  
4
60  
80  
10  
12  
1.1  
2
dB  
dB  
-
-
mA OUT=VDD-0.4V  
mA OUT=VSS+0.4V  
V/μs CL=25pF  
5
SR  
-
Gain Bandwidth  
GBW  
θ
-
MHz CL=25pF, AV=40dB  
deg CL=25pF, AV=40dB  
Phase Margin  
-
50  
0.05  
100  
OUT=0.8VP-P  
f=1kHz  
,
Total Harmonic Distortion + Noise  
THD+N  
CS  
-
%
Channel Separation  
-
dB AV=40dB, OUT=1Vrms  
(Note 22) Absolute value  
(Note 23) Full range: BU7262: TA=-40to +85BU7262S: TA=-40to +105℃  
(Note 24) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
7/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Electrical Characteristics - continued  
BU7264xx, BU7264Sxx (Unless otherwise specified VDD=+3V, VSS=0V, TA=25)  
Limit  
Typ  
1
Temperature  
Range  
Symbol  
VIO  
Unit  
Parameter  
Conditions  
Min  
Max  
9
25℃  
-
-
Input Offset Voltage (Note 25, 26)  
mV VDD=1.8 to 5.5V  
Full range  
-
10  
Input Offset Current (Note 25)  
Input Bias Current (Note 25)  
IIO  
IB  
25℃  
25℃  
-
-
1
1
-
-
pA  
pA  
-
-
25℃  
-
-
1100  
-
2300  
2800  
RL=, All Op-Amps  
AV=0dB, IN+=1.5V  
Supply Current (Note 26)  
IDD  
μA  
Full range  
VOH  
VOL  
AV  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
VDD-0.1  
-
-
-
V
V
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
RL=10kΩ  
RL=10kΩ  
-
70  
0
VSS+0.1  
95  
-
-
3
-
-
-
-
-
-
-
-
-
dB RL=10kΩ  
Input Common-mode Voltage Range VICM  
V
VSS - VDD  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 27)  
Output Sink Current (Note 27)  
Slew Rate  
CMRR  
PSRR  
ISOURCE  
ISINK  
45  
60  
4
60  
80  
10  
12  
1.1  
2
dB  
dB  
mA  
mA  
-
-
OUT=VDD-0.4V  
OUT=VSS+0.4V  
5
SR  
-
V/μs CL=25pF  
Gain Bandwidth  
GBW  
θ
-
MHz CL=25pF, AV=40dB  
deg CL=25pF, AV=40dB  
Phase Margin  
-
50  
0.05  
100  
OUT=0.8VP-P  
f=1kHz  
,
THD+N  
CS  
-
%
Total Harmonic Distortion + Noise  
Channel Separation  
-
dB AV=40dB, OUT=1Vrms  
(Note 25) Absolute value  
(Note 26) Full range: BU7264: TA=-40to +85BU7264S: TA=-40to +105℃  
(Note 27) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
8/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Description of electrical characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (VDD/VSS)  
Indicates the maximum voltage that can be applied between the VDD terminal and VSS terminal without  
deterioration or destruction of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25℃  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
(2) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
(3) Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
(4) Supply Current (IDD  
Indicates the current that flows within the IC under specified no-load conditions.  
(5) Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL  
)
)
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage high and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
(6) Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage) / (Differential Input voltage)  
(7) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(8) Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
(9) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR = (Change of power supply voltage)/(Input offset fluctuation)  
(10) Output Source Current / Output Sink Current (ISOURCE/ISINK  
)
The maximum current that can be output under specific output conditions, it is divided into output source current and  
output sink current. The output source current indicates the current flowing out of the IC, and the output sink current  
the current flowing into the IC.  
(11) Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
(12) Gain Bandwidth (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
9/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
(13) Phase Margin (θ)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
(14) Total Harmonic Distortion + Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
(15) Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
10/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves  
BU7261G, BU7261SG  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BU7261G  
BU7261SG  
105  
100  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 2.  
Figure 3.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
105°C  
85°C  
5.5V  
3.0V  
1.8V  
25°C  
-40°C  
1
2
3
4
5
6
-50 -25  
0
25  
50  
75 100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 4.  
Figure 5.  
Supply Current vs Supply Voltage  
Supply Current vs Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7261G: -40to +85BU7261SG: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
11/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves - Continued  
BU7261G, BU7261SG  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5.5V  
105°C  
85°C  
3.0V  
1.8V  
25°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 6.  
Figure 7.  
Maximum Output Voltage (High) vs Supply Voltage  
Maximum Output Voltage (High) vs Ambient Temperature  
(RL=10kΩ)  
(RL=10kΩ)  
20  
15  
10  
5
20  
105°C  
15  
10  
5
5.5V  
85°C  
3.0V  
1.8V  
25°C  
-40°C  
0
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 8.  
Figure 9.  
Maximum Output Voltage (Low) vs Supply Voltage  
Maximum Output Voltage (Low) vs Ambient Temperature  
(RL=10kΩ)  
(RL=10kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7261G: -40to +85BU7261SG: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
12/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves - Continued  
BU7261G, BU7261SG  
50  
40  
30  
20  
10  
0
20  
15  
10  
5
5.5V  
3.0V  
-40°C  
25°C  
85°C  
105°C  
1.8V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 10.  
Figure 11.  
Output Source Current vs Output Voltage  
(VDD=3V)  
Output Source Current vs Ambient Temperature  
(OUT=VDD-0.4V)  
80  
40  
30  
20  
10  
0
-40°C  
60  
40  
20  
0
25°C  
5.5V  
3.0V  
85°C  
1.8V  
105°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Output Voltage [V]  
Ambient Temperature [°C]  
Figure 12.  
Figure 13.  
Output Sink Current vs Output Voltage  
(VDD=3V)  
Output Sink Current vs Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7261G: -40to +85BU7261SG: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
13/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves - Continued  
BU7261G, BU7261SG  
10.0  
7.5  
10.0  
7.5  
5.0  
5.0  
25°C  
2.5  
2.5  
-40°C  
5.5V  
1.8V  
0.0  
0.0  
3.0V  
105°C  
85°C  
-2.5  
-5.0  
-7.5  
-10.0  
-2.5  
-5.0  
-7.5  
-10.0  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 14.  
Figure 15.  
Input Offset Voltage vs Supply Voltage  
(VICM=VDD, EK=-VDD/2)  
Input Offset Voltage vs Ambient Temperature  
(VICM=VDD, EK=-VDD/2)  
10.0  
7.5  
160  
140  
120  
100  
80  
5.0  
25°C  
40°C  
2.5  
0.0  
105°C  
105°C  
85°C  
85°C  
-2.5  
-5.0  
-7.5  
-10.0  
25°C  
-40°C  
60  
-1  
0
1
2
3
4
1
2
3
4
5
6
Input Voltage [V]  
Supply Voltage [V]  
Figure 17.  
Figure16.  
Input Offset Voltage vs Input Voltage  
(VDD=3V)  
Large Signal Voltage Gain vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7261G: -40to +85BU7261SG: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
14/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves - Continued  
BU7261G, BU7261SG  
160  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
1.8V  
85°C  
105°C  
3.0V  
5.5V  
25°C  
-40°C  
60  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 18.  
Figure 19.  
Large Signal Voltage Gain vs Ambient Temperature  
Common Mode Rejection Ratio vs Supply Voltage  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
5.5V  
3.0V  
1.8V  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 20.  
Figure 21.  
Power Supply Rejection Ratio vs Ambient Temperature  
Common Mode Rejection Ratio vs Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7261G: -40to +85BU7261SG: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
15/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves - Continued  
BU7261G, BU7261SG  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
5
4
3
2
1
0
5.5V  
5.5V  
3.0V  
3.0V  
1.8V  
1.8V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 23.  
Figure 22.  
Slew Rate H-L vs Ambient Temperature  
Slew Rate L-H vs Ambient Temperature  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
Phase  
Gain  
40  
0
102  
103  
104  
105  
106  
107  
108  
Frequency[Hz]  
Figure 24.  
Voltage GainPhase vs Frequency  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7261G: -40to +85BU7261SG: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
16/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7262xxx, BU7262Sxxx  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BU7262SF  
BU7262F  
BU7262SFVM  
BU7262FVM  
BU7262NUX  
BU7262SNUX  
85  
105  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 25.  
Figure 26.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
2000  
1600  
1200  
800  
400  
0
1500  
1200  
900  
600  
300  
0
5.5V  
105°C  
85°C  
3.0V  
25°C  
1.8V  
-40°C  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 27.  
Figure 28.  
Supply Current vs Supply Voltage  
Supply Current vs Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7262xxx: -40to +85BU7262Sxxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
17/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7262xxx, BU7262Sxxx  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5.5V  
105°C  
3.0V  
1.8V  
85°C  
25°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 29.  
Figure 30.  
Maximum Output Voltage (High) vs Supply Voltage  
Maximum Output Voltage (High) vs Ambient Temperature  
(RL=10kΩ)  
(RL=10kΩ)  
20  
20  
105°C  
15  
10  
5
15  
85°C  
5.5V  
10  
3.0V  
25°C  
5
-40°C  
1.8V  
0
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 31.  
Figure 32.  
Maximum Output Voltage (Low) vs Supply Voltage  
Maximum Output Voltage (Low) vs Ambient Temperature  
(RL=10kΩ)  
(RL=10kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7262xxx: -40to +85BU7262Sxxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
18/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7262xxx, BU7262Sxxx  
50  
40  
30  
20  
10  
0
20  
15  
10  
5
5.5V  
-40°C  
25°C  
3.0V  
1.8V  
85°C  
105°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 33.  
Figure 34.  
Output Source Current vs Output Voltage  
(VDD=3V)  
Output Source Current vs Ambient Temperature  
(OUT=VDD-0.4V)  
80  
40  
60  
40  
20  
0
30  
20  
10  
0
5.5V  
-40°C  
25°C  
3.0V  
85°C  
105°C  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 35.  
Figure 36.  
Output Sink Current vs Output Voltage  
(VDD=3V)  
Output Sink Current vs Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7262xxx: -40to +85BU7262Sxxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
19/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7262xxx, BU7262Sxxx  
10.0  
7.5  
10.0  
7.5  
5.0  
5.0  
-40°C  
25°C  
5.5V  
2.5  
2.5  
3.0V  
1.8V  
0.0  
0.0  
85°C  
105°C  
-2.5  
-5.0  
-7.5  
-10.0  
-2.5  
-5.0  
-7.5  
-10.0  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 37.  
Figure 38.  
Input Offset Voltage vs Supply Voltage  
(VICM=VDD, EK=-VDD/2)  
Input Offset Voltage vs Ambient Temperature  
(VICM=VDD, EK=-VDD/2)  
10.0  
7.5  
160  
140  
120  
100  
80  
5.0  
105°C  
-40°C  
25°C  
85°C  
2.5  
25°C  
0.0  
40°C  
85°C  
105°C  
-2.5  
-5.0  
-7.5  
-10.0  
60  
-1  
0
1
2
3
4
1
2
3
4
5
6
Supply Voltage [V]  
Input Voltage [V]  
Figure 39.  
Figure 40.  
Large Signal Voltage Gain vs Supply Voltage  
Input Offset Voltage vs Input Voltage  
(VDD=3V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7262xxx: -40to +85BU7262Sxxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
20/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7262xxx, BU7262Sxxx  
160  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
-40°C  
25°C  
5.5V  
85°C  
105°C  
3.0V  
1.8V  
60  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 41.  
Figure 42.  
Large Signal Voltage Gain vs Ambient Temperature  
Common Mode Rejection Ratio vs Supply Voltage  
(VDD=3V)  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
5.5V  
3.0V  
1.8V  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 44.  
Figure 43.  
Power Supply Rejection Ratio vs Ambient Temperature  
Common Mode Rejection Ratio vs Ambient Temperature  
(VDD=3V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7262xxx: -40to +85BU7262Sxxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
21/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7262xxx, BU7262Sxxx  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
5
4
3
2
1
0
5.5V  
5.5V  
3.0V  
3.0V  
1.8V  
1.8V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 45.  
Figure 46.  
Slew Rate L-H vs Ambient Temperature  
Slew Rate H-L vs Ambient Temperature  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
Phase  
Gain  
40  
0
102  
103  
104  
105  
106  
107  
108  
Frequency[Hz]  
Figure 47.  
Voltage GainPhase vs Frequency  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7262xxx: -40to +85BU7262Sxxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
22/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7264xx, BU7264Sxx  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BU7264SFV  
BU7264FV  
BU7264SF  
BU7264F  
105  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 48.  
Figure 49.  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
3000  
2500  
2000  
1500  
1000  
500  
3000  
2500  
2000  
1500  
1000  
500  
105°C  
85°C  
5.5V  
3.0V  
25°C  
1.8V  
-40°C  
0
0
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 50.  
Figure 51.  
Supply Current vs Supply Voltage  
Supply Current vs Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7264xx: -40to +85BU7264Sxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
23/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7264xx, BU7264Sxx  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5.5V  
105°C  
3.0V  
1.8V  
85°C  
25°C  
-40°C  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 52.  
Figure 53.  
Maximum Output Voltage (High) vs Supply Voltage  
Maximum Output Voltage (High) vs Ambient Temperature  
(RL=10kΩ)  
(RL=10kΩ)  
20  
15  
10  
5
20  
15  
10  
105°C  
85°C  
5.5V  
3.0V  
5
1.8V  
25°C  
-40°C  
0
0
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 54.  
Figure 55.  
Maximum Output Voltage (Low) vs Supply Voltage  
Maximum Output Voltage (Low) vs Ambient Temperature  
(RL=10kΩ)  
(RL=10kΩ)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7264xx: -40to +85BU7264Sxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
24/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7264xx, BU7264Sxx  
50  
40  
30  
20  
10  
0
20  
15  
10  
5
5.5V  
-40°C  
25°C  
3.0V  
85°C  
105°C  
1.8V  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100 125  
Output Voltage [V]  
Ambient Temperature [°C]  
Figure 56.  
Figure 57.  
Output Source Current vs Output Voltage  
(VDD=3V)  
Output Source Current vs Ambient Temperature  
(OUT=VDD-0.4V)  
80  
60  
40  
20  
0
40  
30  
20  
10  
0
-40°C  
5.5V  
3.0V  
25°C  
85°C  
105°C  
1.8V  
-50  
-25  
0
25  
50  
75  
100 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 58.  
Figure 59.  
Output Sink Current vs Output Voltage  
(VDD=3V)  
Output Sink Current vs Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7264xx: -40to +85BU7264Sxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
25/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7264xx, BU7264Sxx  
10.0  
7.5  
10.0  
7.5  
5.0  
5.0  
2.5  
2.5  
105°C  
85°C  
5.5V  
0.0  
0.0  
-2.5  
-5.0  
-7.5  
-10.0  
-2.5  
-5.0  
-7.5  
-10.0  
3.0V  
25°C  
-40°C  
1.8V  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 60.  
Figure 61.  
Input Offset Voltage vs Supply Voltage  
(VICM=VDD, EK=-VDD/2)  
Input Offset Voltage vs Ambient Temperature  
(VICM=VDD, EK=-VDD/2)  
160  
140  
120  
100  
80  
10.0  
7.5  
5.0  
40°C  
25°C  
2.5  
85°C  
105°C  
0.0  
85°C  
105°C  
25°C  
-2.5  
-5.0  
-7.5  
-10.0  
-40°C  
60  
1
2
3
4
5
6
-1  
0
1
2
3
4
Supply Voltage [V]  
Input Voltage [V]  
Figure 63.  
Figure 62.  
Input Offset Voltage vs Input Voltage  
(VDD=3V)  
Large Signal Voltage Gain vs Supply Voltage  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7264xx: -40to +85BU7264Sxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
26/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7264xx, BU7264Sxx  
160  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
-40°C  
25°C  
5.5V  
85°C  
105°C  
3.0V  
1.8V  
60  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 64.  
Figure 65.  
Large Signal Voltage Gain vs Ambient Temperature  
Common Mode Rejection Ratio vs Supply Voltage  
(VDD=3V)  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
5.5V  
3.0V  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 67.  
Figure 66.  
Power Supply Rejection Ratio vs Ambient Temperature  
Common Mode Rejection Ratio vs Ambient Temperature  
(VDD=3V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7264xx: -40to +85BU7264Sxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
27/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Typical Performance Curves Continued  
BU7264xx, BU7264Sxx  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
5
4
3
2
1
0
5.5V  
5.5V  
3.0V  
1.8V  
3.0V  
1.8V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 68.  
Figure 69.  
Slew Rate L-H vs Ambient Temperature  
Slew Rate H-L vs Ambient Temperature  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
Phase  
Gain  
40  
0
102  
103  
104  
105  
106  
107  
108  
Frequency[Hz]  
Figure 70.  
Voltage GainPhase vs Frequency  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7264xx: -40to +85BU7264Sxx: -40to +105℃  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
28/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Application Information  
NULL method condition for Test Circuit 1  
VDD, VSS, EK, VICM Unit: V  
Parameter  
VF  
S1  
ON  
ON  
ON  
ON  
S2  
ON  
ON  
ON  
ON  
S3  
VDD VSS  
EK  
VICM Calculation  
Input Offset Voltage  
VF1  
OFF  
ON  
3
3
3
0
0
0
0
-1.5  
3
1
LOT Number  
VF2  
VF3  
VF4  
VF5  
VF6  
VF7  
-0.5  
-2.5  
Large Signal Voltage Gain  
1.5  
2
0
3
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
OFF  
OFF  
-1.5  
-0.9  
3
1PIN MARK  
1.8  
5.5  
Power Supply Rejection Ratio  
0
4
- Calculation -  
|VF1|  
1+RF/RS  
VIO  
=
[V]  
1. Input Offset Voltage (VIO)  
ΔEK × (1+RF/RS)  
Av  
[dB]  
=20Log  
2. Large Signal Voltage Gain (AV)  
|VF2-VF3|  
ΔVICM × (1+RF/RS)  
CMRR  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
=20Log  
[dB]  
|VF4 - VF5|  
ΔVDD × (1+ RF/RS)  
PSRR  
=20Log  
[dB]  
|VF6 - VF7|  
0.1μF  
RF=50kΩ  
500kΩ  
SW1  
VDD  
0.01μF  
15V  
EK  
RS=50Ω  
RI=1MΩ  
Vo  
500kΩ  
0.015μF  
DUT  
0.015μF  
SW3  
NULL  
-15V  
1000pF  
RI=1MΩ  
RS=50Ω  
RL  
VRL  
VICM  
V VF  
50kΩ  
SW2  
VSS  
Figure 71. Test Circuit 1 (One Channel Only)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
29/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Application Information - continued  
Switch Condition for Test Circuit 2  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12  
SW No.  
Supply Current  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON  
ON OFF OFF ON ON OFF OFF OFF ON OFF OFF ON  
Maximum Output Voltage RL=10kΩ  
Output Current  
Slew Rate  
Gain Bandwidth  
SW3  
R2=100kΩ  
SW4  
VDD  
SW1  
SW2  
SW8 SW9  
SW10 SW11 SW12  
SW5  
SW6  
SW7  
R1=1kΩ  
VSS  
RL  
CL  
IN-  
IN+  
Vo  
Figure 72. Test Circuit 2 (each channel)  
Output Voltage  
Input Voltage  
3 V  
V
/ Δ t  
SR =  
Δ
3 V  
90%  
ΔV  
3 V P-P  
10%  
0 V  
0 V  
t
t
Δ t  
Output Wave  
Input Wave  
Figure 73. Slew Rate Input and Output Wave  
R2=100kΩ  
R2=100kΩ  
VDD  
VSS  
VDD  
VSS  
R1=1kΩ  
R1=1kΩ  
OUT1  
OUT2  
R1//R2  
R1//R2  
IN  
100×OUT1  
OUT2  
CS=20Log  
Figure 74. Test Circuit 3 (Channel Separation)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
30/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Examples of Circuit  
Voltage Follower  
VDD  
Voltage gain is 0dB.  
Using this circuit, the output voltage (OUT) is configured  
to be equal to the input voltage (IN). This circuit also  
stabilizes the output voltage (OUT) due to high input  
impedance and low output impedance. Computation for  
output voltage (OUT) is shown below.  
OUT  
IN  
OUT=IN  
VSS  
Figure 75. Voltage Follower Circuit  
Inverting Amplifier  
R2  
For inverting amplifier, input voltage (IN) is amplified by  
a voltage gain and depends on the ratio of R1 and R2.  
The out-of-phase output voltage is shown in the next  
expression  
VDD  
R1  
IN  
OUT  
OUT=-(R2/R1)IN  
This circuit has input impedance equal to R1.  
VSS  
Figure 76. Inverting Amplifier Circuit  
Non-inverting Amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (IN) is amplified  
by a voltage gain, which depends on the ratio of R1 and  
R2. The output voltage (OUT) is in-phase with the input  
voltage (IN) and is shown in the next expression.  
VDD  
OUT=(1 + R2/R1)IN  
OUT  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational  
amplifier.  
IN  
VSS  
Figure 77. Non-inverting Amplifier Circuit  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
31/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 78(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation  
(PD).  
θJA  
=
(TJmaxTA) / PD  
°C/W  
The Derating curve in Figure 78 (b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 78(c) to 78(h) shows an example of the derating curve for  
BU7261G, BU7261SG, BU7262xxx, BU7262Sxxx, BU7264xx, BU7264Sxx.  
Power dissipation of LSI [W]  
PDmax  
θJA=(TJmax-TA)/ PD °C/W  
P2  
Ambient temperature TA [ °C ]  
θJA2 < θJA1  
P1  
θJA2  
TJmax  
θJA1  
Chip surface temperature TJ [ °C ]  
0
50  
75  
100  
25  
125  
Ambient temperature TA[C]  
(b) Derating Curve  
(a) Thermal resistance  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BU7261G(Note 28)  
BU7261SG(Note 28)  
85  
105  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(c)BU7261G  
(d)BU7261SG  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
32/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BU7262SF(Note 29)  
BU7262F(Note 29)  
BU7262SFVM(Note 30)  
BU7262FVM(Note 30)  
BU7262NUX(Note 31)  
BU7262SNUX(Note 31)  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
101005  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(e)BU7262F/FVM/NUX  
(f)BU7262SF/SFVM/SNUX  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BU7262FV(Note 33)  
BU7262F(Note 32)  
BU7262SFV(Note 33)  
BU7262SF(Note 32)  
105  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(g)BU7264F/FV  
(h)BU7264SF/SFV  
(Note 28)  
5.4  
(Note 29)  
5.5  
(Note 30)  
4.7  
(Note 31)  
4.1  
(Note 32)  
4.5  
(Note 33)  
7.0  
Unit  
mW/℃  
When using the unit above TA=25, subtract the value above per Celsius degree. Power dissipation is the value  
when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area less than 3) is mounted.  
Figure 78. Thermal Resistance and Derating Curve  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
33/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the PD rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
34/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Operational Notes continued  
12. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The  
operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical  
damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an  
input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when  
no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins  
have voltages within the values specified in the electrical characteristics of this IC.  
VDD  
13. Unused Circuits  
When there are unused op-amps, it is recommended that they are  
connected as in Figure 79, setting the non-inverting input terminal to a  
potential within the input common mode voltage range (VICM).  
Keep this potential  
in VICM  
VICM  
14. Input Voltage  
Applying VDD+0.3V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction. However,  
this does not ensure normal circuit operation. Please note that the  
circuit operates normally only when the input voltage is within the  
common mode input voltage range of the electric characteristics.  
VSS  
Figure 79. Example of Application Circuit  
for Unused Op-amp  
15. Power Supply(single/dual)  
The operational amplifier operates when the voltage supplied is between VDD and VSS. Therefore, the single supply  
operational amplifiers can be used as dual supply operational amplifiers as well.  
16. Output Capacitor  
If a large capacitor is connected between the output pin and VSS pin, current from the charged capacitor will flow into  
the output pin and may destroy the IC when the VDD pin is shorted to ground or pulled down to 0V. Use a capacitor  
smaller than 0.1uF between output pin and VSS pin.  
17. Oscillation by Output Capacitor  
Please pay attention to the oscillation by output capacitor and in designing an application of negative feedback loop  
circuit with these ICs.  
18. Latch up  
Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up and  
protect the IC from abnormaly noise.  
19. Decupling Capacitor  
Insert the decupling capacitance between VDD and VSS, for stable operation of operational amplifier.  
20. Radiation Land  
The VSON008X2030 package has a radiation land in the center of the back. Please connect to VSS potenital or don't  
connect to other terminal.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
35/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Marking Diagrams  
SSOP5(TOP VIEW)  
SOP8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
1PIN MARK  
LOT Number  
MSOP8(TOP VIEW)  
VSON008X2030 (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP14(TOP VIEW)  
SSOP-B14(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
Product Name  
Package Type  
Marking  
BU7261  
G
AL  
AX  
SSOP5  
BU7261S  
G
F
SOP8  
BU7262  
FVM  
NUX  
F
MSOP8  
7262  
VSON008X2030  
SOP8  
BU7262S  
FVM  
NUX  
F
MSOP8  
7262S  
VSON008X2030  
SOP14  
BU7264F  
7264  
BU7264  
FV  
F
SSOP-B14  
SOP14  
BU7264SF  
7264S  
BU7264S  
FV  
SSOP-B14  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
36/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP5  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
37/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
38/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
39/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SSOP-B14  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
40/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Physical Dimension, Tape and Reel Information - continued  
Package Name  
MSOP8  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
41/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
VSON008X2030  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
42/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Land Pattern Data  
All dimensions in mm  
Land length  
Land pitch  
e
Land space  
MIE  
Land width  
b2  
PKG  
SSOP5  
≧ℓ 2  
0.95  
1.27  
2.4  
1.0  
0.6  
SOP8  
SOP14  
4.60  
1.10  
0.76  
SSOP-B14  
MSOP8  
0.65  
0.65  
0.50  
4.60  
2.62  
2.20  
1.20  
0.99  
0.70  
0.35  
0.35  
0.27  
VSON008X2030  
SSOP5  
SOP8, MSOP8, SOP14, SSOP-B14  
e
e
MIE  
b2  
2  
VSON008X2030  
Radiation  
Land Length  
D3  
Radiation  
Land Width  
E3  
Thermal Via  
PKG  
VSON008X2030  
Pitch  
-
Diameter  
1.2  
1.6  
Φ0.3  
E3  
Thermal Via  
e
b2  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
43/44  
Datasheet  
BU7261G BU7261SG BU7262xxx BU7262Sxxx BU7264xx BU7264Sxx  
Revision History  
Date  
25.Sep.2012  
06.Mar.2014  
18.Apr.2014  
Revision  
001  
Changes  
New Release  
002  
Revision is updated only  
003  
Addition of BU7264FV,BU7264SFV in the Pin Configuration(Page 2.)  
Correction of Figure 7, 9, 30, 32, 34, 53, 55.  
Correction of Note 2933.  
03.Dec.2014  
004  
Correction of Note31 Power Dissipation(Page 33)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200230-1-2  
03.Dec.2014 Rev.004  
44/44  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-GE  
Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-GE  
Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BU7262SF

Low Voltage Operation CMOS Operational Amplifiers
ROHM

BU7262SF-E2

Operational Amplifier, 2 Func, 10000uV Offset-Max, CMOS, PDSO8, SOP-8
ROHM

BU7262SFVM

Low Voltage Operation CMOS Operational Amplifiers
ROHM

BU7262SFVM-TR

Operational Amplifier, 2 Func, 10000uV Offset-Max, CMOS, PDSO8, MSOP-8
ROHM

BU7262SG

Operational Amplifier, 2 Func, 10000uV Offset-Max, CMOS, PDSO5, LEAD FREE, SSOP-5
ROHM

BU7262SG-TR

Operational Amplifier, 2 Func, 10000uV Offset-Max, CMOS, PDSO5, LEAD FREE, SSOP-5
ROHM

BU7262SNUX

Operational Amplifier, 2 Func, 10000uV Offset-Max, CMOS, PDSO8, 2 X 3 MM, ROHS COMPLIANT, VSON-8
ROHM

BU7262SNUX-TR

Operational Amplifier, 2 Func, 10000uV Offset-Max, CMOS, PDSO8, VSON-8
ROHM

BU7264F

Full Swing Low Voltage Operation CMOS Operational Amplifiers
ROHM

BU7264F-E2

Operational Amplifier, 4 Func, 10000uV Offset-Max, CMOS, PDSO14, SOP-14
ROHM

BU7264FV

Input/Output Full Swing Input/Output Full Swing
ROHM

BU7264FV-E2

Operational Amplifier, 4 Func, 10000uV Offset-Max, CMOS, PDSO14, SSOP-14
ROHM