BU91R64CH-M [ROHM]

本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。而且,具备显示数据及指令寄存器读取功能,可检测出因噪声导致的误动作。除此之外,还支持MCU通信校验和、玻璃破碎、逻辑电路状态、SEG/COM端子拨动动作的异常检测。使用ITO电阻测量端子,更方便进行COG贴装不良的管理。还支持+105℃动作,符合车载应用要求的AEC-Q 100标准。;
BU91R64CH-M
型号: BU91R64CH-M
厂家: ROHM    ROHM
描述:

本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。而且,具备显示数据及指令寄存器读取功能,可检测出因噪声导致的误动作。除此之外,还支持MCU通信校验和、玻璃破碎、逻辑电路状态、SEG/COM端子拨动动作的异常检测。使用ITO电阻测量端子,更方便进行COG贴装不良的管理。还支持+105℃动作,符合车载应用要求的AEC-Q 100标准。

通信 驱动
文件: 总72页 (文件大小:2015K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Low Duty LCD Segment Driver  
For Automotive COG Application  
BU91R64CH-M Max 320 Segments (80SEG x 4COM)  
General Description  
Key Specifications  
BU91R64CH-M is a 1/4, 1/3, 1/2 Duty or Static COG type  
LCD driver that can be used for automotive applications  
and can drive up to 320 LCD Segments.  
Supply Voltage Range:  
+2.7 V to +6.0 V  
LCD Drive Power Supply Range: +2.7 V to +6.0 V  
Operating Temperature Range: -40 °C to +105 °C  
This driver can be cascaded up-to maximum of 4 drivers  
for larger LCD panel application.  
It supports VA LCD displays, which has better optical  
performance with higher LCD voltage driving and higher  
frame frequency driving.  
Max Segments:  
Display Duty:  
Bias:  
320 Segments  
1/4, 1/3, 1/2, Static Selectable  
1/2, 1/3 Selectable  
Interface: 2-wire / 3-wire Serial Interface Selectable  
This driver includes read function for display data and  
command registers, wherein it is possible to detect  
malfunction due to noise.  
Special Characteristics  
ESD(HBM) (Note 2)  
:
±2,000 V(Typ)  
±100 mA(Typ)  
Latch-up Current (Note 2)  
:
It can also support other error detections such as  
interface checksum detection, glass breaking detection,  
logic error detection and SEG / COM toggle detection.  
A defective mounting of COG can easily be controlled by  
using terminals to measure ITO resistance.  
It can support operating temperature of up to +105 °C  
and compliant for AEC-Q100, as required for Automotive  
Application.  
(Note 2) There is data when LSI was put on a temporary package.  
Applications  
Instrument Clusters  
Climate Controls  
Car Audios / Radios  
Meters  
White Goods  
Healthcare Products  
Battery Operated Applications  
etc.  
Features  
AEC-Q100 Compliant (Note 1)  
1/4, 1/3, 1/2 Duty or Static Drive Selectable  
1/4 Duty Drive:  
1/3 Duty Drive:  
1/2 Duty Drive:  
Static Drive:  
Max 320 Segments  
Max 240 Segments  
Max 160 Segments  
Max 80 Segments  
Package  
Au Bump Chip  
Integrated Buffer AMP for LCD Driving  
Integrated Oscillator Circuit and  
Software  
Programmable Frame Frequency from 66 Hz to  
488 Hz  
Support External Clock Input  
Integrated EVR Function to Adjust LCD Contrast  
Integrated Power On Reset Circuit  
No External Components  
Low Power Consumption Design  
Support Display Inhibit Control  
Configurable COM Driving Order  
Support Max 4 Drivers Cascade Connection  
(BU91R64 / R65 / R66CH-M Available)  
Support Register and Display Data Read-back  
Function  
Support LCD Contact Resistance Measurement  
Support Error Detection and Status Read Function  
Glass Breaking Detection  
Interface Checksum  
Logic Error Detection  
SEG / COM Toggle Detection  
(Note 1) Quality Information:  
There is data when LSI was put on a temporary package.  
Please use it as reference data.  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
1/69  
TSZ22111 14 001  
 
 
 
 
 
 
BU91R64CH-M  
Contents  
General Description ................................................................................................................................................................1  
Features.................................................................................................................................................................................1  
Key Specifications...................................................................................................................................................................1  
Special Characteristics............................................................................................................................................................1  
Applications............................................................................................................................................................................1  
Package.................................................................................................................................................................................1  
Contents.................................................................................................................................................................................2  
Typical Application Circuit........................................................................................................................................................6  
Block Diagram ........................................................................................................................................................................6  
Terminal Description................................................................................................................................................................7  
Recommended ITO Layout......................................................................................................................................................8  
Terminal Resistance ..........................................................................................................................................................10  
PAD Arrangement ................................................................................................................................................................. 11  
Dimension ............................................................................................................................................................................12  
PAD Coordinates ..................................................................................................................................................................13  
Absolute Maximum Ratings (VSS = 0V).................................................................................................................................15  
Recommended Operating Conditions ....................................................................................................................................15  
Electrical Characteristics .......................................................................................................................................................16  
DC Characteristics.............................................................................................................................................................16  
Oscillation Characteristics..................................................................................................................................................17  
2-wire Serial Interface Characteristics ................................................................................................................................18  
3-wire Serial Interface Characteristics ................................................................................................................................19  
I/O Equivalence Circuit..........................................................................................................................................................20  
MCU Interface ......................................................................................................................................................................21  
START and STOP Condition (2-wire)..................................................................................................................................21  
Acknowledge (ACK) (2-wire)..............................................................................................................................................21  
Command / Display Data Transfer Method (2-wire).............................................................................................................22  
Display Data Transfer Method (2-wire) ...............................................................................................................................23  
Display Data Read-back Method (2-wire) ...........................................................................................................................24  
Command Registers Read-back Method (2-wire)................................................................................................................25  
Command / Display Data Transfer Method (3-SPI)..............................................................................................................26  
Command Transfer Method (3-SPI)....................................................................................................................................26  
Display Data Transfer Method (3-SPI) ................................................................................................................................27  
Display Data Read-back Method (3-SPI) ............................................................................................................................28  
Command Registers Read-back Method (3-SPI) ................................................................................................................28  
OSC (Oscillator)....................................................................................................................................................................29  
SYNC CTRL (Multi-chip Structure).........................................................................................................................................30  
LCD Driver Voltage Generator / LCD Bias Selector ................................................................................................................33  
POR and Reset Initialize Condition........................................................................................................................................33  
Blink Control (Blink Timing Generator) ...................................................................................................................................33  
Error Detection......................................................................................................................................................................34  
Glass Breaking Detection...................................................................................................................................................35  
Checksum Detection..........................................................................................................................................................37  
Logic Error Detection.........................................................................................................................................................38  
SEG / COM Toggle Detection.............................................................................................................................................39  
Contact Resistance Check.................................................................................................................................................39  
Command / Function List.......................................................................................................................................................40  
Detailed Command Description .............................................................................................................................................40  
1. Mode Set 1 (MODESET1)..............................................................................................................................................40  
2. Address Set (ADSET) ....................................................................................................................................................41  
3. Sub Address Set (SADSET)...........................................................................................................................................41  
4. Frame Rate Set (FRSET)...............................................................................................................................................42  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
2/69  
TSZ22111 15 001  
08.Jan.2020 Rev.003  
 
BU91R64CH-M  
5. Blink Control1 (BLKCTL1)..............................................................................................................................................43  
6. Blink Control2 (BLKCTL2)..............................................................................................................................................43  
7. Command Extension (CMDXTN)....................................................................................................................................44  
8. Software Reset (SWRST) ..............................................................................................................................................44  
9. Mode Set 2 (MODESET2)..............................................................................................................................................45  
10. Mode Set 3 (MODESET3)............................................................................................................................................45  
11. Contrast Setting (CNTSET) ..........................................................................................................................................46  
12. Read Control (RDCTL).................................................................................................................................................47  
13. Checksum (CHKSUM) .................................................................................................................................................47  
14. COM Set (COMSET)....................................................................................................................................................48  
LCD Driving Waveform..........................................................................................................................................................49  
1/3 Bias, 1/4 Duty Drive.....................................................................................................................................................49  
1/2 Bias, 1/4 Duty Drive.....................................................................................................................................................50  
1/3 Bias, 1/3 Duty Drive.....................................................................................................................................................51  
1/2 Bias, 1/3 Duty Drive.....................................................................................................................................................52  
1/3 Bias, 1/2 Duty Drive.....................................................................................................................................................53  
1/2 Bias, 1/2 Duty Drive.....................................................................................................................................................54  
Static Drive........................................................................................................................................................................55  
Example of Display Data.......................................................................................................................................................56  
Initialize Sequence................................................................................................................................................................57  
Start Sequence.....................................................................................................................................................................58  
Start Sequence Example1 .................................................................................................................................................58  
Start Sequence Example2 .................................................................................................................................................59  
Cautions in Power On / Off....................................................................................................................................................60  
Display Off Operation in External Clock Mode........................................................................................................................61  
In Multi-chip Structure in Internal Clock Mode.....................................................................................................................61  
Note on The Multiple Device Connection to 2-wire Serial Interface..........................................................................................62  
Note in Case that the SDA is stuck at LOW............................................................................................................................62  
Operational Notes.................................................................................................................................................................63  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply ......................................................................................................................63  
Power Supply Lines.................................................................................................................................................63  
Ground Voltage.......................................................................................................................................................63  
Ground Wiring Pattern.............................................................................................................................................63  
Recommended Operating Conditions.......................................................................................................................63  
Inrush Current.........................................................................................................................................................63  
Testing on Application Boards..................................................................................................................................63  
Inter-pin Short and Mounting Errors .........................................................................................................................63  
Unused Input Pins...................................................................................................................................................63  
Regarding the Input Pin of the IC.............................................................................................................................63  
Ceramic Capacitor...................................................................................................................................................63  
Disturbance Light ....................................................................................................................................................64  
9.  
10.  
11.  
12.  
Ordering Information.............................................................................................................................................................65  
Minimum Order Quantity (MOQ)............................................................................................................................................65  
Marking Diagram...................................................................................................................................................................65  
Packing Quantity...................................................................................................................................................................66  
Pellet Drawing ......................................................................................................................................................................66  
Package Condition................................................................................................................................................................67  
Physical Dimension Tray Information.....................................................................................................................................68  
Revision History....................................................................................................................................................................69  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
3/69  
TSZ22111 15 001  
08.Jan.2020 Rev.003  
BU91R64CH-M  
Figure 1. PAD / Bump Information...................................................................................................................................12  
Figure 2. Operating Current vs Power Supply Voltage .....................................................................................................16  
Figure 3. Frame Frequency vs Temperature....................................................................................................................17  
Figure 4. Interface Timing of 2-wire Serial Interface.........................................................................................................18  
Figure 5. Interface Timing of 3-wire Serial Interface.........................................................................................................19  
Figure 6. 2-wire Command / Data Transfer Format..........................................................................................................21  
Figure 7. Acknowledge Timing........................................................................................................................................21  
Figure 8. Wrong Slave Address Case..............................................................................................................................21  
Figure 9. 2-wire Interface Protocol ..................................................................................................................................22  
Figure 10. Case of Exiting Data Transfer State in 2-wire..................................................................................................22  
Figure 11. Display Data Transfer in 2-wire.......................................................................................................................23  
Figure 12. DDRAM Address Map in Write Mode..............................................................................................................23  
Figure 13. Display Data Read-back in 2-wire...................................................................................................................24  
Figure 14. Bit-Assignment in Display Data Read-back in 2-wire .......................................................................................24  
Figure 15. DDRAM Address Map in Read Mode..............................................................................................................24  
Figure 16. Command Registers Read-back Method in 2-wire...........................................................................................25  
Figure 17. Command / Data Transfer in 3-SPI Command / Data Transfer in 3-SPI............................................................26  
Figure 18. Escape from Data Transfer Condition in 3-SPI ................................................................................................26  
Figure 19. Case of Less Than 8-bit Data Transfer in 3-SPI...............................................................................................26  
Figure 20. Display Data Transfer and Bit Assignment in 3-SPI .........................................................................................27  
Figure 21. Case of Less Than 4-bit Write Data Transfer in 3-SPI......................................................................................27  
Figure 22. Display Data Read-back in 3-SPI....................................................................................................................28  
Figure 23. Bit Assignment in Display Data Read-back in 3-SPI ........................................................................................28  
Figure 24. Command Registers Read-back in 3-SPI........................................................................................................28  
Figure 25. Internal Clock Mode.......................................................................................................................................29  
Figure 26. External Clock Mode......................................................................................................................................29  
Figure 27. Synchronization of Multi-chip Cascaded Connection .......................................................................................31  
Figure 28. Example of Cascaded Connection..................................................................................................................32  
Figure 29. Example Different Duty Drive Panel Configuration...........................................................................................32  
Figure 30. Bank Blink Mode Function (Blink Frequency as 32 Frame Case) .....................................................................33  
Figure 31. DDRAM Address Map of Blink Area (Bank Blink Mode) ...................................................................................33  
Figure 32. Detection Block and Data Path.......................................................................................................................34  
Figure 33. Glass Breaking Detection...............................................................................................................................35  
Figure 34. Sequence of Glass Breaking Detection...........................................................................................................36  
Figure 35. Sequence of Checksum Detection..................................................................................................................37  
Figure 36. Example of Checksum Calculation .................................................................................................................37  
Figure 37. Sequence of Logic Error Detection .................................................................................................................38  
Figure 38. Sequence of SEG / COM Toggle Detection.....................................................................................................39  
Figure 39. DUMMY PADs for the Contact Resistance Measurement ................................................................................39  
Figure 40. COM Scan Direction Image............................................................................................................................48  
Figure 41. Example COM Line Pattern............................................................................................................................56  
Figure 42. Example SEG Line Pattern.............................................................................................................................56  
Figure 43. Example Display Pattern................................................................................................................................56  
Figure 44. Recommended Power On / Off Sequence.......................................................................................................60  
Figure 45. Power On / Off Waveform...............................................................................................................................60  
Figure 46. Dummy Clock / STOP / START Condition .......................................................................................................60  
Figure 47. CSB Timing ...................................................................................................................................................60  
Figure 48. External Clock Stop Timing ............................................................................................................................61  
Figure 49. DISPOFF Sequence in Multi-chip Structure ....................................................................................................61  
Figure 50. Example of BUS Connection ..........................................................................................................................62  
Figure 51. SDA Output Cell Structure..............................................................................................................................62  
Figure 52. Recovery Sequence from SDA Stuck..............................................................................................................62  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
4/69  
TSZ22111 15 001  
08.Jan.2020 Rev.003  
BU91R64CH-M  
Table 1. Dimension (Completion Size).............................................................................................................................12  
Table 2. Bump Specs and Dimensions............................................................................................................................12  
Table 3. Command Registers Map for Read-back............................................................................................................25  
Table 4. Detection Functions...........................................................................................................................................34  
Table 5. Frame Frequency (Internal Clock Mode) ............................................................................................................42  
Table 6. Frame Frequency (External Clock Mode) ...........................................................................................................42  
Table 7. V0 Voltage Setting.............................................................................................................................................46  
Table 8. DDRAM Data Example......................................................................................................................................56  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
5/69  
TSZ22111 15 001  
08.Jan.2020 Rev.003  
BU91R64CH-M  
Typical Application Circuit  
2-wire Serial Interface  
VLCD  
3-wire Serial Interface  
VLCD  
BU91R64CH-M  
GLSCHKI  
BU91R64CH-M  
VDD  
VLCD  
VLCD  
GLSCHKI  
VDD  
COMA0  
:
COMA3  
COMA0  
:
COMA3  
:
:
:
:
:
:
:
:
:
:
VDD  
VDD  
SEG0  
:
SEG39  
SEG0  
:
SEG39  
MCU  
MCU  
COMB0  
:
COMB3  
CSB  
SCK  
SDO  
SDI  
CSB  
SCK  
SDI  
COMB0  
:
COMB3  
Segment LCD  
Display Area  
80 x 4 dots  
Segment LCD  
Display Area  
80 x 4 dots  
SCL  
SDA  
SCL  
SDAI  
SDAO  
SDO  
SEG40  
:
SEG79  
SEG40  
:
SEG79  
CLOCK  
INHB  
OSCIO  
INHB  
INHB  
ERR  
INHB  
ERROUT COMC0  
COMC0  
:
ERR  
ERROUT  
:
COMC3  
COMC3  
VSS  
VSS  
GLSCHKO  
GLSCHKO  
Insert capacitance (C ≥ 0.1μF) between VDD / VLCD and VSS  
Block Diagram  
...  
...  
VLCD  
LCD Voltage  
Generator  
Detect comparator  
COM Driver  
Detect comparator  
SEG Driver  
V0  
LCD  
Bias  
COM CTRL  
SEG CTRL  
Selector  
Toggle Error Detector  
Toggle Error Detector  
DDRAM(Latch)  
BIAS  
DUTY0  
Timing Controller  
DUTY1  
INHB  
BLINK  
CTRL  
DDRAMCTL  
SYNCB  
OSCIO  
SYNC  
CTRL  
EXTCLK  
DFF  
Interface  
Error  
OSC  
Serial Interface  
MS1  
MS2  
detector  
detector  
Register  
Block  
GLSCHKI  
GLSCHKO  
VDD  
GLSCHK  
detector  
Error CTRL  
If_top  
POR  
TR  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
6/69  
TSZ22111 15 001  
BU91R64CH-M  
Terminal Description  
Terminal Name  
Handling  
when unused  
I/O  
Function  
VDD  
VLCD  
VSS  
I
I
I
Power supply for logic  
-
-
-
Power supply for LCD driving circuit  
Ground  
Single- / Multi-chip setting  
2-wire Interface  
Slave Address[7:1]  
3-wire Interface  
Function  
Master  
MS1  
MS2  
I
I
VDD / VSS  
VDD / VSS  
MS2  
MS1  
Function  
Master  
Slave1  
Slave2  
Slave3  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
0111110 / 0111000  
0111111 / 0111001  
0111110 / 0111000  
0111111 / 0111001  
Slave1  
Slave2  
Slave3  
Clock mode setting  
VDD: External Clock Mode, VSS: Internal Clock Mode  
Clock input / output setting  
External Clock Mode: input of external clock  
Internal Clock Mode: output of internal clock  
Synchronous signal input / output for multi-chip mode  
Master: Synchronous signal output  
Slave: master SYNCB signal input  
EXTCLK  
OSCIO  
I
VDD / VSS  
OPEN  
I/O  
SYNCB  
IFSEL  
I/O  
I
OPEN  
MCU Interface select  
VDD: 3-wire Serial Interface  
VDD / VSS  
VSS: 2-wire Serial Interface  
SDAI  
SDAO  
SCL  
I
O
I
Serial data input for 2-wire Serial Interface  
Serial data output for 2-wire Serial Interface  
VSS  
OPEN  
VSS  
Serial clock for 2-wire Serial Interface  
Chip select for 3-wire Serial Interface  
Serial clock for 3-wire Serial Interface  
Serial data input for 3-wire Serial Interface  
Serial data output for 3-wire Serial Interface  
CSB  
SCK  
SDI  
I
I
VSS  
VSS  
I
VSS  
SDO  
O
OPEN  
Inhibit display status in spite of Display On by command setting  
VDD: Keep display status by command setting  
VSS: Inhibit display status. All SEG and COM terminals output VSS level.  
INHB  
I
I
VDD  
Duty Drive select  
DUTY0  
VDD / VSS  
DUTY1  
DUTY0  
VSS  
Duty Drive  
1/4 Duty Drive  
VSS  
VSS  
VDD  
VSS  
1/3 Duty Drive  
DUTY1  
I
VDD / VSS  
VDD  
VDD  
1/2 Duty Drive  
VDD  
Static Drive (also set to 1/1 Bias)  
LCD Bias select  
VDD: 1/2 Bias, VSS: 1/3 Bias (Static Drive: don’t care)  
Output for glass breaking detection  
Connect to GLSCHKI for glass breaking detection.  
Input for glass breaking detection  
Connect to GLSCHKO for glass breaking detection.  
Output data of error detection  
VDD: Abnormal status, VSS: Normal status  
BIAS  
I
VDD / VSS  
OPEN  
GLSCHKO  
GLSCHKI  
ERROUT  
O
I
VSS  
O
OPEN  
DUMMY0 to  
DUMMY3  
DUMMY  
-
-
I
Can be used for the contact resistance measurement.  
OPEN  
OPEN  
VSS  
Open  
POR enable setting (Note 1)  
TR  
VDD: POR disable, VSS: POR enable  
Test input (ROHM use only)  
Must be connected to VSS.  
T0,T1,T2  
I
VSS  
SEG0 to SEG79  
O
O
O
O
Segment output for LCD driving  
Common output for LCD driving  
Common output for LCD driving  
Common output for LCD driving  
OPEN  
OPEN  
OPEN  
OPEN  
COMA0 to COMA3  
COMB0 to COMB3  
COMC0 to COMC3  
(Note 1) This function is guaranteed by design, not tested in production process. Software Reset is necessary to initialize IC in case of TR = VDD.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
7/69  
TSZ22111 15 001  
BU91R64CH-M  
Recommended ITO Layout  
Function  
POR  
Setting  
USE  
TR = VSS  
YES  
Error Detection  
(Glass Breaking Detection,  
Contact Resistance Check)  
NO  
1/4 Duty Drive  
(DUTY0, DUTY1) = (VSS, VSS)  
Multi-chip Mode  
Duty Drive  
1/3 Bias  
BIAS = VSS  
2-wire Serial Interface  
IFSEL = VSS  
Bias Setting  
I/F  
Internal Clock Mode  
EXTCLK = VSS  
Master  
(MS1, MS2) = (VSS, VSS)  
NO  
Clock Mode  
Master/Slave  
Inhibit Function  
INHB = VDD  
LCD module terminals  
Test pads on the glass (If necessary)  
ITO layout image  
From GLSCHKO→  
UMMY  
SEG1  
DUMMY3  
DUMMY3  
1
158  
150  
SEG2  
SG
SEG3  
OM3  
SEG4  
COA2  
SEG5  
CMA1  
SEG6  
COM0  
SEG7  
GLSCHKI  
G
SEG9  
VSS  
SEG10  
SEG11  
SEG12  
SEG14  
G
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
G
SEG34  
SEG36  
SEG37  
SEG38  
SEG39  
COMB0  
COMB1  
COMB2  
COMB3  
SEG40  
SEG41  
SEG42  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG52  
SEG53  
SEG54  
SEG55  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG76  
SEG77  
DUMMY0  
DUMMY0  
10  
DAO  
SDA  
SCL  
140  
30  
I  
SDO  
SDO  
130  
120  
ERROUT  
OSCIO  
CIO  
CB  
B  
ERROUT  
VDD  
110  
100  
VSS  
V
DD  
S  
L
90  
80  
DUMMY1  
DUMMY1  
DUMMY  
GLSCHKO  
70  
76  
COMC3  
CMC2  
COC1  
OM0  
SG9  
SEG78  
UMMY  
VLCD  
DUMMY2  
DUMMY2  
To GLSCHKI→  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
8/69  
TSZ22111 15 001  
BU91R64CH-M  
Recommended ITO Layout continued  
Function  
Setting  
Not USE  
TR = VDD  
POR  
Error Detection  
Multi-chip Mode  
NO  
YES  
Static Drive  
(DUTY0, DUTY1) = (VDD, VDD)  
Static Drive  
BIAS = VSS  
3-wire Serial Interface  
IFSEL = VDD  
Duty Drive  
Bias Setting  
I/F  
Internal Clock Mode  
EXTCLK = VSS  
Slave1  
(MS1, MS2) = (VDD, VSS)  
YES  
Clock Mode  
Master/Slave  
Inhibit Function  
INHB = MCU control  
LCD module terminals  
ITO layout image  
DUMMY3  
DUMMY3  
DY  
S
1
SEG2  
SE
158  
150  
CO
COM
COM
COMA0  
SEG4  
SEG5  
SEG6  
SEG7  
GLSCHKI  
SEG8  
E
VSS  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
E6  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
E2  
SEG23  
SEG24  
SEG27  
SEG28  
SEG29  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG38  
SEG39  
COMB0  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
DUMMY0  
DUMMY0  
10  
SDAO  
SDAO  
CSB  
S
S
140  
SB  
SCK  
K  
2
3
SCK  
SDI  
I  
SDI  
D
D
ET  
ERROUT  
OSCIO  
SYNCB  
130  
120  
SDO  
OSCIO  
SYNCB  
LK  
K  
INHB  
5
VDD  
110  
100  
VSS  
V
VD
D
VSS  
VLCD  
90  
80  
DUMMY1  
DUMMY1  
DUMMY  
GLSCHKO  
COMC3  
COM
CO
CO
S
S
Y  
VLCD  
70  
76  
DUMMY2  
DUMMY2  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
9/69  
TSZ22111 15 001  
BU91R64CH-M  
Recommended ITO Layout continued  
Terminal Resistance  
PAD No.  
Terminal Name  
Maximum Resistance  
12, 13  
14, 15  
16, 17  
18, 19  
20, 21  
22, 23  
24, 25  
26, 27  
28, 29  
30, 31  
32, 33  
56 to 58  
59 to 62  
63 to 65  
SDAO  
SDAI  
SCL  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
400 Ω  
CSB  
SCK  
SDI  
SDO  
ERROUT  
OSCIO  
SYNCB  
INHB  
VDD  
VSS  
400 Ω  
VLCD  
400 Ω  
Refer to Glass Breaking Detection for GLSCHKI and GLSCHKO terminal resistance  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
10/69  
TSZ22111 15 001  
BU91R64CH-M  
PAD Arrangement  
Alignment Mark2  
PAD No.160  
Alignment Mark 1  
81 μm  
PAD No.1  
81 μm  
Mark Center Coordinates  
(X,Y) = (226.00, -2135.00)  
Y
X
(0, 0)  
Alignment Mark 2  
27 μm  
27 μm  
27 μm  
27 μm  
27 μm  
27 μm  
PAD No.76  
PAD No.77  
Alignment Mark1  
(Bump side up)  
Mark Center Coordinates  
(X,Y) = (226.00, 2135.00)  
The origin of X/Y coordinates is the center  
of the chip with bump side up.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
11/69  
TSZ22111 15 001  
 
BU91R64CH-M  
Dimension  
Table 1. Dimension (Completion Size)  
Topic  
Mark  
Specification Limit  
785 ± 40 μm  
Chip Size X  
Chip Size Y  
Chip Size : X Direction  
Chip Size : Y Direction  
Chip Thickness  
4,435 ± 40 μm  
300 ± 20 μm  
Chip Thickness  
A (PAD1 to PAD160)  
B (PAD1 to PAD160)  
C (PAD1 to PAD160)  
Bump Size : X Direction  
Bump Size : Y Direction  
Average of Bump Height  
75.0 ± 3.0 μm  
36.0 ± 3.0 μm  
15.0 ± 3.0 μm  
PAD  
Table 2. Bump Specs and Dimensions  
Topic  
Specification Limit  
Straight Bump  
Bump Structure  
Bump Co-planarity on Chip  
3.0 μm or less  
Bump Hardness (Microvicker’s Meter)  
50 HV ± 20 HV  
Bump Strength  
7.35 mg/μm2 or more  
Passivation Opening  
Y
Y’  
Aluminum  
Au Bump  
A
Y-Y’ Cross Section  
B
Bump Height  
Au Bump  
Aluminum  
Passivation  
UBM (TiW/Au)  
C
Figure 1. PAD / Bump Information  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
12/69  
TSZ22111 15 001  
BU91R64CH-M  
PAD Coordinates  
Unit: μm  
PAD  
No  
1
2
3
4
5
6
7
Terminal  
Name  
DUMMY  
SEG1  
SEG0  
COMA3  
COMA2  
COMA1  
COMA0  
GLSCHKI  
VSS  
DUMMY0  
DUMMY0  
SDAO  
SDAO  
SDAI  
SDAI  
SCL  
SCL  
CSB  
CSB  
SCK  
SCK  
SDI  
SDI  
SDO  
Bump Center  
Bump Size  
PAD  
No  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
Terminal  
Name  
Bump Center  
Bump Size  
X
Y
X
Y
X
Y
X
Y
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
2116.50  
2065.50  
2014.50  
1963.50  
1912.50  
1861.50  
1810.50  
1759.50  
1659.50  
1608.50  
1557.50  
1298.80  
1247.80  
1196.80  
1145.80  
1094.80  
1043.80  
992.80  
941.80  
890.80  
839.80  
788.80  
737.80  
685.05  
630.05  
575.05  
520.05  
465.05  
410.05  
355.05  
300.05  
228.85  
177.85  
126.85  
75.85  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
VSS  
VSS  
VLCD  
VLCD  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
-320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
-1290.55  
-1341.55  
-1392.55  
-1443.55  
-1494.55  
-1557.50  
-1608.50  
-1659.50  
-1710.50  
-1810.50  
-1861.50  
-1912.50  
-1963.50  
-2014.50  
-2065.50  
-2116.50  
-2128.60  
-2077.60  
-2014.50  
-1963.50  
-1912.50  
-1861.50  
-1810.50  
-1759.50  
-1708.50  
-1657.50  
-1606.50  
-1555.50  
-1504.50  
-1453.50  
-1402.50  
-1351.50  
-1300.50  
-1249.50  
-1198.50  
-1147.50  
-1096.50  
-1045.50  
-994.50  
-943.50  
-892.50  
-841.50  
-790.50  
-739.50  
-688.50  
-637.50  
-586.50  
-535.50  
-484.50  
-433.50  
-382.50  
-331.50  
-280.50  
-229.50  
-178.50  
-127.50  
-76.50  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
VLCD  
DUMMY1  
DUMMY1  
DUMMY  
GLSCHKO  
COMC3  
COMC2  
COMC1  
COMC0  
SEG79  
SEG78  
DUMMY  
DUMMY2  
DUMMY2  
SEG77  
SEG76  
SEG75  
SEG74  
SEG73  
SEG72  
SEG71  
SEG70  
SEG69  
SEG68  
SEG67  
SEG66  
SEG65  
SEG64  
SEG63  
SEG62  
SEG61  
SEG60  
SEG59  
SEG58  
SEG57  
SEG56  
SEG55  
SEG54  
SEG53  
SEG52  
SEG51  
SEG50  
SEG49  
SEG48  
SEG47  
SEG46  
SEG45  
SEG44  
SEG43  
SEG42  
SEG41  
SEG40  
COMB3  
COMB2  
COMB1  
COMB0  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
SDO  
ERROUT  
ERROUT  
OSCIO  
OSCIO  
SYNCB  
SYNCB  
INHB  
92  
93  
94  
95  
96  
97  
98  
99  
INHB  
EXTCLK  
EXTCLK  
T0  
T0  
T1  
T1  
T2  
T2  
TR  
24.85  
-26.15  
-77.15  
-128.15  
-179.15  
-230.15  
-281.15  
-332.15  
-383.15  
-434.15  
-485.15  
-536.15  
-587.15  
-638.15  
-689.15  
-740.15  
-791.15  
-842.15  
-893.15  
-944.15  
-1035.55  
-1086.55  
-1137.55  
-1188.55  
-1239.55  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
TR  
DUTY0  
DUTY0  
DUTY1  
DUTY1  
BIAS  
BIAS  
MS1  
MS1  
MS2  
MS2  
IFSEL  
IFSEL  
VDD  
VDD  
VDD  
-25.50  
25.50  
76.50  
VSS  
VSS  
Refer to PAD Arrangement for the definition of X/Y coordinates.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
13/69  
TSZ22111 15 001  
BU91R64CH-M  
PAD Coordinates continued  
Unit μm  
Bump Size  
Bump Center  
PAD  
No  
Terminal  
Name  
X
Y
X
Y
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
SEG39  
SEG38  
SEG37  
SEG36  
SEG35  
SEG34  
SEG33  
SEG32  
SEG31  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
SEG24  
SEG23  
SEG22  
SEG21  
SEG20  
SEG19  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
320.50  
127.50  
178.50  
229.50  
280.50  
331.50  
382.50  
433.50  
484.50  
535.50  
586.50  
637.50  
688.50  
739.50  
790.50  
841.50  
892.50  
943.50  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
994.50  
1045.50  
1096.50  
1147.50  
1198.50  
1249.50  
1300.50  
1351.50  
1402.50  
1453.50  
1504.50  
1555.50  
1606.50  
1657.50  
1708.50  
1759.50  
1810.50  
1861.50  
1912.50  
1963.50  
2014.50  
2077.60  
2128.60  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
DUMMY3  
DUMMY3  
Refer to PAD Arrangement for the definition of X/Y coordinates.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
14/69  
TSZ22111 15 001  
BU91R64CH-M  
Absolute Maximum Ratings (VSS = 0V)  
Ratings  
Parameter  
Symbol  
Unit  
Remarks  
Power Supply  
Min  
-0.5  
-5  
Typ  
-
Max  
+7.0  
+5  
Maximum Voltage1  
Supply Current1  
VDD  
IVDD  
V
mA  
V
For VDD  
-
-
-
-
Maximum Voltage2  
Supply Current2  
LCD Drive Voltage  
VLCD  
IVLCD  
VIN  
-0.5  
-5  
+7.0  
+5  
For VLCD  
mA  
V
Input Voltage Range  
Output Voltage Range  
-0.5  
+7.0  
-
-
VOUT  
VESD  
ILU  
-0.5  
-
-
+7.0  
-
V
V
Human Body Model (HBM)  
±2,000  
-
-
-
-
(Note 1), (Note 2)  
Latch-up Current(Note 1), (Note 3)  
Maximum Junction Temperature  
Storage Temperature Range  
-
±100  
-
mA  
°C  
°C  
Tjmax  
-55  
-
+125  
Tstg  
-55  
-
+125  
(Note 1) Not 100 % tested. There is data when LSI was put on a temporary package. Use as a reference data.  
(Note 2) Testing standards: JESD22-A114E  
(Note 3) Testing standards: JESD78  
Caution : Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Recommended Operating Conditions  
Ratings  
Parameter  
Symbol  
Unit  
Remarks  
Min  
-40  
Typ  
-
Max  
Operational Temperature  
Power Supply Voltage 1  
Power Supply Voltage 2  
Topr  
VDD  
+105  
°C  
V
-
2.7  
2.7  
-
-
6.0  
6.0  
Power Supply  
VLCD  
V
LCD Drive Voltage  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
15/69  
TSZ22111 15 001  
BU91R64CH-M  
Electrical Characteristics  
DC Characteristics  
(Unless otherwise specified, Ta = -40 °C to +105 °C, VDD / VLCD = 2.7 V to 6.0 V, VSS = 0 V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
“H” Level Input Voltage1  
“L” Level Input Voltage1  
“H” Level Input Voltage2  
“L” Level Input Voltage2  
“H” Level Input Current  
“L” Level Input Current  
“H” Level Output Voltage1  
“L” Level Output Voltage1  
“L” Level Output Voltage2  
VIH1  
VIL1  
0.7VDD  
-
VDD  
V
V
SCL, SDAI  
VSS  
-
-
0.3VDD  
VIH2  
VIL2  
0.8VDD  
VDD  
V
CSB, SCK, SDI, INHB, OSCIO(Note)  
0
-
0.2VDD  
V
SCL, SDAI, CSB, SCK, SDI, INHB,  
OSCIO, TR, MS1, MS2, EXTCLK,  
IFSEL, DUTY0, DUTY1, BIAS,  
GLSCHKI  
IIH  
-
-
1
-
µA  
µA  
V
IIL  
-1  
-
VOH1  
VOL1  
VOL2  
RON1  
RON2  
IVDD1  
IVLCD1  
VDD-0.9  
-
VDD  
0.9  
0.4  
-
SDO, ERROUT (ILOAD = -1 mA)  
SDO, ERROUT (ILOAD = +1 mA)  
SDAO (ILOAD = +3 mA)  
VSS  
-
V
VSS  
-
V
SEG  
COM  
-
-
-
-
3
3
-
kΩ  
kΩ  
µA  
µA  
LCD Driver  
On Resistance  
ILOAD = ±10 µA  
-
5.0  
5.0  
Display Off (DISPOFF),  
Oscillation stop  
Standby Current  
Operating Current  
-
VDD = 5.0 V, VLCD = 5.0 V,  
Ta = +25 °C,  
1/4 Duty Drive, 1/3 Bias  
Frame Inversion  
FR = 155.3 Hz setting  
(External Clock = 3.42 kHz)  
All outputs are open  
IVDD2  
-
-
0.5  
6.5  
20.0  
30.0  
µA  
µA  
IVLCD2  
(Note) For External Clock Mode and slave mode.  
[Reference Data]  
10.0  
9.0  
8.0  
Ta = +25 ˚C,  
1/4 Duty Drive, 1/3 Bias  
Frame Inversion  
FR = 155.3 Hz setting  
(External Clock = 3.42 kHz)  
All outputs are open  
IVLCD2  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
IVDD2  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Power Supply Voltage 1 / Power Supply Voltage 2 [V]  
Figure 2. Operating Current vs Power Supply Voltage  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
16/69  
TSZ22111 15 001  
BU91R64CH-M  
Electrical Characteristics continued  
Oscillation Characteristics  
(Unless otherwise specified, Ta = -40 °C to +105 °C, VDD / VLCD = 2.7 V to 6.0 V, VSS = 0 V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
MODESET3 P0 = “0”, FRSET(P2 to  
P0) = 110” (155.3 Hz setting)  
VDD = 2.7 V to 6.0 V,  
108.7  
155.3  
201.9  
Frame Frequency 1  
fCLK1  
Hz  
Ta = -40 °C to +105 °C  
MODESET3 P0 = “0”, FRSET(P2 to  
139.8  
155.3  
170.8  
Frame Frequency 2  
fCLK2  
Hz P0) = 110” (155.3 Hz setting)  
VDD = 5.0 V, Ta = -40 °C to +105 °C  
µs  
µs  
-
-
-
-
0.3  
0.3  
External Clock Rise Time  
External Clock Fall Time  
External Clock Frequency  
External Clock Duty  
trCLK  
tfCLK  
fCLK3  
tDTY  
800  
30  
33  
-
12,000  
70  
Hz  
%
External Clock Mode  
50  
-
Frame Frequency Range  
in External Clock Mode  
500  
fFRAME  
Hz  
Keep Frame Frequency range from 33 Hz to 500 Hz in case of External Clock Mode, also keep external clock frequency  
range from 800 Hz to 12,000 Hz.  
The calculation formula is shown in 4. Frame Rate Set (FRSET).  
[Reference Data]  
210  
200  
190  
VDD = 6.0 V  
180  
VDD = 5.0 V  
MODESET3 P0 = “0”,  
FRSET(P2 to P0) = “110”  
(155.3 Hz setting)  
170  
160  
150  
140  
130  
120  
110  
100  
90  
VDD = 3.3 V  
VDD = 2.7 V  
80  
-40 -20  
0
20 40 60 80 100  
Temperature [˚C]  
Figure 3. Frame Frequency vs Temperature  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
17/69  
TSZ22111 15 001  
BU91R64CH-M  
Electrical Characteristics continued  
2-wire Serial Interface Characteristics  
(Unless otherwise specified, Ta = -40 °C to +105 °C, VDD = 2.7 V to 6.0 V, VSS = 0 V)  
Limits  
Typ  
Parameter  
Input Rise Time  
Symbol  
Unit  
Condition  
Min  
-
Max  
0.3  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
-
tr  
tf  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.3  
Input Fall Time  
2.5  
-
-
-
-
-
-
-
-
-
SCL Cycle Time  
tCYC  
0.6  
1.3  
0.1  
0.1  
1.3  
0.6  
0.6  
0.6  
“H” Level SCL Pulse Width  
“L” Level SCL Pulse Width  
SDA Setup Time  
tSHW  
tSLW  
tSDS  
SDA Hold Time  
tSDH  
tBUF  
Bus Free Time  
START Condition Hold Time  
START Condition Setup Time  
STOP Condition Setup Time  
tHD;STA  
tSU;STA  
tSU;STO  
STOP START  
SDAI  
SCL  
tBUF  
tSLW  
tf  
tCYC  
tHD;STA  
tr  
tSDH  
tSHW  
tSDS  
SDAI  
tSU;STA  
tSU;STO  
Figure 4. Interface Timing of 2-wire Serial Interface  
Since SDAO is an open-drain output, Read access time depends on ITO resistance RITO, Pull-up resistance RPU and load  
capacitance CL.  
RITO  
:
ITO resistance on the LCD glass. (Any component is not necessary to be attached.)  
Pull-up resistance on PCB. 1 kΩ ≤ RPU ≤ 10 kΩ is recommended.  
RPU  
:
CL:  
A parasitic capacitance to VSS in an application circuit. (Any component is not necessary to be attached.)  
RPU should be determined with consideration of VIL in MCU side.  
Power Supply for I/O Level  
RPU  
BU91R64CH-M  
SDAO  
MCU  
CL  
RITO  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
18/69  
TSZ22111 15 001  
 
BU91R64CH-M  
Electrical Characteristics continued  
3-wire Serial Interface Characteristics  
(Unless otherwise specified, Ta = -40 °C to +105 °C, VDD = 2.7 V to 6.0 V, VSS = 0 V)  
Limits  
Typ  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Max  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
80  
Input Rise Time  
tr  
-
-
-
-
80  
Input Fall Time  
tf  
400  
120  
200  
120  
1.6  
120  
120  
120  
120  
120  
-
-
SCK Cycle Time  
tSCYC  
tSHWW  
tSHWR  
tSLWW  
tSLWR  
tSDS  
tSDH  
tCSS  
tCSH  
tCHW  
tDC  
-
Write Access  
Read Access  
Write Access  
Read Access  
“H” Level SCK Pulse Width (Write)  
“H” Level SCK Pulse Width (Read)  
“L” Level SCK Pulse Width (Write)  
“L” Level SCK Pulse Width (Read)  
SDI Setup Time  
-
-
-
-
-
-
-
-
-
-
-
SDI Hold Time  
CSB Setup Time  
-
CSB Hold Time  
-
“H” CSB Pulse Width  
SDO Output Delay Time  
SDO Rise Time  
µs RITO = 1.0 kΩ, CL = 10 pF  
1.5  
1.5  
µs  
-
tDR  
RITO = 1.0 kΩ, CL = 10 pF  
<Write Case>  
CSB  
tCHW  
tr  
tSCYC  
tCSH  
tCSS  
tSLWW  
SCK  
tSHWW  
tSDH  
tSDS  
tf  
SDI  
<Read Case>  
CSB  
tSLWR  
SCK  
SDO  
tSHWR  
tDC  
tDR  
Figure 5. Interface Timing of 3-wire Serial Interface  
“tDC” and “tDR” depend on ITO resistance RITO and load capacitance CL.  
RITO  
:
ITO resistance on the LCD glass. (Any component is not necessary to be attached.)  
CL:  
A parasitic capacitance to VSS in an application circuit. (Any component is not necessary to be attached.)  
BU91R64CH-M  
SDO  
MCU  
CL  
RITO  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
19/69  
BU91R64CH-M  
I/O Equivalence Circuit  
VLCD  
VDD  
VSS  
VSS  
TR, T0, T1, T2  
DUMMY0  
DUMMY0  
BIAS, MS1, MS2  
EXTCLK  
SDAI, SCL  
DUMMY1  
DUMMY1  
SDI, SCK, CSB  
IFSEL, INHB  
DUTY0, DUTY1  
DUMMY2  
DUMMY2  
VSS  
DUMMY3  
DUMMY3  
VDD  
OSCIO  
SYNCB  
SDAO  
VSS  
VSS  
VDD  
VLCD  
SDO  
ERROUT  
GLSCHKO  
VSS  
VSS  
VLCD  
VLCD  
SEG0 to SEG79  
COMA0 to COMA3  
COMB0 to COMB3  
COMC0 to COMC3  
GLSCHKI  
VSS  
VSS  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
20/69  
TSZ22111 15 001  
BU91R64CH-M  
MCU Interface  
BU91R64CH-M supports two MCU Interfaces. In IFSEL = VSS, 2-wire Serial Interface (hereinafter referred to as “2-wire”) is  
available. And in IFSEL = VDD, 3-wire Serial Interface (hereinafter referred to as “3-SPI”) is available.  
START and STOP Condition (2-wire)  
In IFSEL = VSS, BU91R64CH-M is controlled by 2-wire signals (SDAI, SCL).  
It is necessary to generate START Condition” and “STOP Condition” when sending command or Display Data.  
SDAI  
SCL  
S
P
START Condition  
STOP Condition  
Figure 6. 2-wire Command / Data Transfer Format  
Acknowledge (ACK) (2-wire)  
Data format is comprised of 8-bit data to SDAI. And an acknowledge bit is returned from SDAO terminal after the 8-bit data is  
sent. SDAO is also used in Display Data read-back and Command Registers read-back. The serial data input line (SDAI)  
and the serial data output line (SDAO) are separated in PAD assignment, but both terminals can be connected together to  
facilitate a single line SDA.  
After the transfer of 8-bit data (Slave Address, Control Byte, Command, Display Data), release the SDA line at the falling  
edge of the eighth clock. The SDA line is then pulled low until the falling edge of the ninth clock SCL. (Output cannot be  
pulled high because of open-drain NMOS output structure). If the acknowledge function is not required, keep SDA line at low  
level from the eighth falling edge to the ninth falling edge of SCL.  
Not acknowledged bit (NACK) will be returned in following cases.  
(1) Incorrect Slave Address  
(2) Different Sub Address (in receiving Display Data, CNTSET and COMSET commands)  
SDAI  
HiZ  
HiZ  
HiZ  
HiZ or L  
HiZ or L  
HiZ or L  
HiZ or L  
HiZ or L  
HiZ or L  
SDAO  
SDA  
(Connected signal of SDAI and SDAO)  
SCL  
S
1to7  
8
9
1to7  
8
9
1to7  
8
9
P
Slave Address  
ACK /  
Control Byte  
ACK /  
Command / Display Data ACK /  
START Condition  
STOP Condition  
Figure 7. Acknowledge Timing  
When Slave Address cannot be recognized correctly in the first data transfer, NACK will be generated and next transfer will  
be invalid. Even in the invalid status, BU91R64CH-M will return to valid status by receiving “START Condition” again.  
Consider MCU Interface Characteristics such as Input rise time and Setup / Hold time when transferring command and data.  
Refer to 2-wire Serial Interface Characteristics.  
Slave Address  
Data  
Data  
Slave Address  
Data  
Data  
0 1 1 1 1 1  
0 1 1 1 0 0  
MS1 RW  
S
0 1 0 0 0 0 0 0 NA  
NA  
NA P S  
A
A
A ... P  
01  
0
Invalid Transfer  
Valid Transfer  
S: START Condition, P: STOP Condition, A: ACK, NA: NACK  
Figure 8. Wrong Slave Address Case  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
21/69  
BU91R64CH-M  
MCU Interface - continued  
Command / Display Data Transfer Method (2-wire)  
Issue Slave Address after generating “START Condition”. The first byte after Slave Address must be Control Byte. The  
Control Byte consists of 8bits: CO, RS, and 6 undefined bits. The first bit is CO: continuous data bytes / single data byte  
selector and the second bit is RS: Command / Display Data selector and the others are undefined bits.  
CO  
0
Function  
Continuous data bytes available after the Control Byte.  
Only single data byte available after the Control Byte.  
After the data byte, Control Byte can be accepted again.  
1
RS  
0
Function  
Command is received after the Control Byte.  
1
Display Data is received after the Control Byte.  
Continuous Display Data is available regardless of CO value.  
The following procedure shows how to transfer Command and Display Data.  
(1) Generate “START Condition”.  
(2) Issue Slave Address. (Note 1)  
(3) Transfer Control Byte.  
(4) Transfer Command and Display Data.  
(5) Generate “STOP Condition”.  
(Note 1) Slave Address is specified by MS1 setting. (2-wire mode only)  
MS1  
0
1
Slave Address [7:1]  
0111110 / 0111000  
0111111 / 0111001  
Slave Address  
Control Byte  
Command / Display Data  
0
0
1
1
1
1
1
1
1
0
1
0
MS1  
CO RS  
S
RW  
A
*
*
*
*
*
*
A
A P  
START Condition  
Read / Write ACK  
STOPCondition  
<Write: Two DisplayData bytes>  
Slave Address  
Control Byte (CO:0, RS:1)  
0
0
1
1
1
1
1
1
1
0
1
0
MS1  
S
0
A
0
1
*
*
*
*
*
*
*
*
A DisplayData  
A Command  
A Command  
A DisplayData  
A P  
START Condition  
Write Mode ACK  
STOPCondition  
<Write: Two command bytes>  
Slave Address  
Control Byte (CO:1, RS:0)  
Control Byte (CO:0, RS:0)  
0
0
1
1
1
1
1
1
1
0
1
0
MS1  
S
0
A
1
0
*
*
*
*
*
A
0
0
*
*
*
*
*
*
A Command  
A P  
START Condition  
Write Mode ACK  
STOPCondition  
<Write: One command byte and two DisplayData bytes>  
Slave Address Control Byte (CO:1, RS:0)  
Control Byte (CO:0, RS:1)  
0
0
1
1
1
1
1
1
1
0
1
0
MS1  
S
0
A
1
0
*
*
*
*
*
A
0
1
*
*
*
*
*
*
A DisplayData  
A DisplayData  
A P  
START Condition  
Write Mode ACK  
STOPCondition  
Figure 9. 2-wire Interface Protocol  
BU91R64CH-M cannot accept Control Byte / Command once it enters into continuous data transfer state. “STOP Condition”  
and “START Condition” are necessary in order to accept Command again. If “START Condition” or “STOP Condition” is  
received during Command / Display Data transfer, the byte in transferring will be cancelled.  
Then if Slave Address is received after the “START Condition”, BU91R64CH-M enters into Control Byte transfer state.  
Slave Address  
Control Byte  
Command  
Slave Address  
Control Byte  
DisplayData  
0 1 1 1 1 1  
0 1 1 1 0 0  
0 1 1 1 1 1  
0 1 1 1 0 0  
MS1 RW  
0/1  
CO  
0
RS  
1
MS1 RW  
CO RS  
S
A
*
*
*
*
* *  
A
P S  
A
*
*
*
*
*
*
A
A ... P  
0
0/1  
0
0
1
Canceled  
Valid Transfer  
S: START Condition, P: STOP Condition, A: ACK, NA: NACK  
Figure 10. Case of Exiting Data Transfer State in 2-wire  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
22/69  
BU91R64CH-M  
MCU Interface - continued  
Display Data Transfer Method (2-wire)  
For Display Data write, set R/W bit in Slave Address byte to 0(Write Mode) and Bit6 in Control Byte to 1. BU91R64CH-M  
has a Display Data RAM (DDRAM) of 80 x 4 = 320-bit. SADSET and ADSET commands specify the address where the first  
Display Data Byte is written. The address is automatically incremented in every 4-bit data and the Display Data is written to  
DDRAM at the same timing. Smaller Display Data than 4-bit will be cancelled in the transfer.  
Burst write into DDRAM is available by transferring data continuously. The address is returned to 00h by the auto-increment  
function after writing Display Data to the last address. BU91R64CH-M escapes from the burst mode by STOP Condition.  
Ex. in 1/4 Duty Drive, the address is returned to 00h (for SEG0) after writing data into address = 4Fh (for SEG79). In case of  
Static Drive Mode, maximum address is 13h (for SEG76 to SEG79).  
The relationships between input Display Data, DDRAM address map and SEG output are as follows.  
Slave Address  
Command  
SADSET  
Cotrol Byte  
0000 0000  
Command  
ADSET  
0111 11 MS1 R/W  
S
A
A
A
A
A
P
0/1  
0
0111 00  
Write Mode  
CO:0, RS:0  
Slave Address  
Cotrol Byte  
DisplayData  
DisplayData  
0111 11 MS1 R/W  
S
A
0100 0000  
a
b
c
d
e
f
g
h
A
i
j
k
l m n o p A ... P  
0/1  
0
0111 00  
Write Mode  
S: START Condition, P: STOP Condition, A: ACK, NA: NACK  
CO:0, RS:1  
DisplayData  
Figure 11. Display Data Transfer in 2-wire  
1/4 Duty  
ADSET  
D7,D3  
D6,D2  
D5,D1  
D4,D0  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh  
40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
COM0  
COM1  
COM2  
COM3  
p
1/3 Duty  
ADSET  
D7,D3  
D6,D2  
D5,D1  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh  
40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh  
a
b
c
-
e
f
g
-
i
j
k
-
m
n
o
-
COM0  
COM1  
COM2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1/2 Duty  
ADSET  
D7,D3  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh  
40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh  
a
b
-
e
f
-
i
j
-
-
m
n
-
COM0  
COM1  
Area for  
bank blink  
D6,D2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Static drive  
ADSET  
D7 to D0  
00h  
01h  
02h  
03h  
10h  
11h  
12h  
13h  
a
-
-
b
-
c
-
d
-
-
e
-
-
f
g
-
h
-
-
i
j
k
-
l
m
-
-
n
-
o
-
p
-
-
COM0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Area for  
bank blink  
-
-
-
-
-
-
-
-
-
-
-
-
Figure 12. DDRAM Address Map in Write Mode  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
23/69  
TSZ22111 15 001  
 
BU91R64CH-M  
MCU Interface - continued  
Display Data Read-back Method (2-wire)  
For Read Mode, set R/W bit in Slave Address byte to 1. In advance, Read_data bit in RDCTL must be set to 1for reading  
Display Data. The Display Data values can be read during Read Mode. The sequence of the Display Data read-back is  
shown below.  
Slave Address  
Command  
CMDXTN  
Contol Byte  
0000 0000  
Command  
SADSET  
Command  
ADSET  
Command  
RDCTL  
0111 11  
0111 00  
MS1 R/W  
0/1  
S
A
A
A
A
A
A P  
0
Read_en = “1”  
Write Mode  
CO:0, RS:0  
Read_data = “1”  
Slave Address  
DisplayData  
0111 11 MS1 R/W  
0111 00  
a b c d e f g h  
S
A
A
...  
Display Data NA  
From MCU  
P
0/1  
1
S: START Condition, P: STOP Condition, A: ACK, NA: NACK  
Read Mode  
From MCU  
Figure 13. Display Data Read-back in 2-wire  
During Read Mode, the Display Data can be read from the DDRAM through the SDAO line. The data will output  
synchronized with falling edge of SCL input.  
SADSET and ADSET must be set first during Write Mode in advance. If DDRAM address is not specified before Display Data  
read, the current DDRAM address is used as the first read address. Address will be incremented automatically by +2  
addresses after 8-bit data output. The Address will be set to 00h automatically after maximum address.  
MCU must reply ACK to BU91R64CH-M after each 8-bit data output to keep Read Mode. If MCU replies no ACK response  
(NACK), BU91R64CH-M will escape Read Mode and SDAO output status will be released.  
S
P
A
HiZ  
A
HiZ  
NA  
SDAI  
SDAO  
SCL  
Slave Address (Read)  
HiZ  
Display Data  
Display Data  
a
b
c
d
e
f
g
h
HiZ  
i
j
k
l
m
n
o
p
HiZ  
S: START Condition, P: STOP Condition, A: ACK, NA: NACK  
Figure 14. Bit-Assignment in Display Data Read-back in 2-wire  
1/4 Duty  
ADSET  
D7,D3  
D6,D2  
D5,D1  
D4,D0  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh  
40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
COM0  
COM1  
COM2  
COM3  
p
1/3 Duty  
ADSET  
D7,D3  
D6,D2  
D5,D1  
D4,D0  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh  
40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh  
a
b
c
*
e
f
g
*
i
j
k
*
m
n
o
*
COM0  
COM1  
COM2  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1/2 Duty  
ADSET  
D7,D3  
D6,D2  
D5,D1  
D4,D0  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh  
40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
COM0  
COM1  
Area for  
p
bank blink  
Static drive  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh  
40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh  
ADSET  
D7,D3  
D6,D2  
D5,D1  
D4,D0  
a
*
e
*
i
m
*
COM0  
*
k
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
c
*
g
*
o
*
Area for  
bank blink  
Figure 15. DDRAM Address Map in Read Mode  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
24/69  
TSZ22111 15 001  
 
BU91R64CH-M  
MCU Interface - continued  
Command Registers Read-back Method (2-wire)  
For Read Mode, set R/W bit in Slave Address byte to 1. In advance, Read_data bit in RDCTL must be set to “0” for reading  
Command Registers. The Command Registers can be read during Read Mode. The sequence of the Command Registers  
read-back is shown below and is similar to the Display Data read sequence.  
Control Byte  
Command  
Slave Address  
Command  
Command  
0111 11  
0111 00  
MS1 R/W  
0000 0000  
CMDXTN  
S
A
S
A
SADSET  
A
A
RDCTL  
A P  
0/1  
0
Read_en = “1”  
Read_data = “0”  
CO:0, RS:0  
Write Mode  
Slave Address  
0111 11  
0111 00  
Read Data  
1st Byte  
Read Data  
2nd Byte  
Read Data  
A
Read Data  
1st Byte  
MS1 R/W  
0/1  
NA  
P
A
A
A
...  
1
S: START Condition,  
P: STOP Condition,  
A: ACK, NA: NACK  
6th Byte  
Read Mode  
From MCU  
From MCU From MCU  
From MCU  
Figure 16. Command Registers Read-back Method in 2-wire  
After the sixth byte data, the first byte data will be outputted again. Command Registers read-back mode can be released at  
NACK condition (Same as Read Display Data).  
Table 3. Command Registers Map for Read-back  
Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Read Data  
Enable for Glass Breaking Detection  
Enable for Interface Checksum Detection  
Enable for Logic Error Detection  
Enable for SEG / COM Toggle Detection  
Status of Glass Breaking Detection  
Status of Interface Checksum Detection  
Status of Logic Error Detection  
Status of SEG / COM Toggle Detection  
Display On  
Remark  
MODESET2 P3  
MODESET2 P2  
MODESET2 P1  
MODESET2 P0  
1: Abnormal, 0: Normal  
1: Abnormal, 0: Normal  
1: Abnormal, 0: Normal  
1: Abnormal, 0: Normal  
MODESET1 P3  
BLKCTL1 P2  
MODESET3 P1  
MODESET3 P2  
MODESET3 P0  
FRSET P2  
FRSET P1  
FRSET P0  
BLKCTL1 P1  
BLKCTL1 P0  
BLKCTL2 P1  
COMSET P3  
CNTSET P3  
CNTSET P2  
CNTSET P1  
CNTSET P0  
CHKSUM P3  
CHKSUM P2  
CHKSUM P1  
CHKSUM P0  
-
1st Byte  
Blink Mode  
2x frequency in frame Inversion  
Inversion Mode  
2nd Byte  
3rd Byte  
4th Byte  
5th Byte  
6th Byte  
Higher Frequency Mode  
Frame Rate Bit2  
Frame Rate Bit1  
Frame Rate Bit0  
Blink Freq. Bit1  
Blink Freq. Bit0  
Blink Area Select  
EVR Bit4  
EVR Bit3  
EVR Bit2  
EVR Bit1  
EVR Bit0  
IFCHKSUM Bit3  
IFCHKSUM Bit2  
IFCHKSUM Bit1  
IFCHKSUM Bit0  
0
COMSET Bit2  
COMSET P2  
COMSET P1  
COMSET P0  
-
COMSET Bit1  
COMSET Bit0  
0
0
-
Sub Address Set Bit1  
Sub Address Set Bit0  
0
SADSET P1  
SADSET P0  
-
0
-
0
-
0
-
0
-
Address Set Bit6  
Address Set Bit5  
Address Set Bit4  
Address Set Bit3  
Address Set Bit2  
Address Set Bit1  
Address Set Bit0  
ADSET P6  
ADSET P5  
ADSET P4  
ADSET P3  
ADSET P2  
ADSET P1  
ADSET P0  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
25/69  
TSZ22111 15 001  
 
BU91R64CH-M  
MCU Interface - continued  
Command / Display Data Transfer Method (3-SPI)  
In IFSEL = VDD, BU91R64CH-M is controlled by 3-wire signals (CSB, SCK, and SDI). First, Interface counter is initialized  
with CSB = high, then CSB = low enables SDI and SCK input.  
D7 to D0 follows continuously after CSB =low. Internal data is latched at the rising edge of SCK. Command is converted to  
8-bit parallel data at the rising edge of the eighth SCK. Display Data is stored at the fourth and the eighth falling edge of SCK.  
The protocol of 3-SPI transfer is as follows.  
Command  
Command / DisplayData  
Command / DisplayData  
CSB  
SCK  
SDI  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5  
Figure 17. Command / Data Transfer in 3-SPI Command / Data Transfer in 3-SPI  
Command Transfer Method (3-SPI)  
After CSB changes from high to low, the first byte is always a command input. To escape Display Data transfer condition or  
to send command again, CSB should be set from low to high then set to low.  
CSB  
SDI  
Command SADSET  
ADSET  
DisplayData DisplayData  
Write canceled  
Command  
1st byte: Command input  
1st byte:  
Command input  
Figure 18. Escape from Data Transfer Condition in 3-SPI  
Command transfer is done by 8-bit unit, so if CSB is set from low to high with less than 8-bit data transfer, command will be  
cancelled. It will be able to transfer command when CSB = low again.  
Command  
Command  
CSB  
SCK  
SDI  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
MODESET1 command transfer  
Vaild command  
Command cancelled (less than 8-bit)  
Invaild command  
MODESET1 command transfer  
Vaild command  
Status  
Figure 19. Case of Less Than 8-bit Data Transfer in 3-SPI  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
26/69  
TSZ22111 15 001  
BU91R64CH-M  
MCU Interface - continued  
Display Data Transfer Method (3-SPI)  
In 3-SPI, BU91R64CH-M enters to Display Data write state after receiving ADSET command. BU91R64CH-M has a Display  
Data RAM (DDRAM) of 80 x 4 = 320-bit. SADSET and ADSET commands specify the address where the first Display Data  
Byte is written. The address is automatically incremented in every 4-bit data and the Display Data is written to DDRAM at the  
same timing. Smaller Display Data than 4-bit will be cancelled in the transfer.  
Burst write into DDRAM is available by transferring data continuously. The address is returned to 00h by the auto-increment  
function after writing Display Data to the last address. BU91R64CH-M escapes from the burst mode by setting CSB to high.  
Ex. in 1/4 Duty Drive mode, the address is returned to 00h (for SEG0) after writing Display Data into address = 4Fh (for  
SEG79). In case of Static Drive Mode, maximum address is 13h (for SEG76 to SEG79).  
The DDRAM address map is same as the one in 2-wire Serial Interface (Refer to Figure 12. DDRAM Address Map in Write  
Mode).  
Command  
SADSET  
Command  
ADSET  
P1 P0  
P6 P5 P4 P3 P2 P1 P0  
...  
1
1
1
0
0
0
0
a
b
c
d
e
f
g
h
i
j
k
l m n o p  
DisplayData  
Figure 20. Display Data Transfer and Bit Assignment in 3-SPI  
Escape from RAM Write Mode by CSB="H"  
CSB  
SCK  
SDI  
D3  
ADSET (00h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
Display Data to  
Address 00h  
Display Data to  
Address 01h  
Display Data to  
Address 02h  
This data is ignored  
Figure 21. Case of Less Than 4-bit Write Data Transfer in 3-SPI  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
27/69  
TSZ22111 15 001  
BU91R64CH-M  
MCU Interface - continued  
Display Data Read-back Method (3-SPI)  
Set Read_en = 1and Read_data = 1in RDCTL register to enter to Display Data Read Mode. The Display Data values  
can be read during this mode. The sequence of the Display Data Read-back is shown below.  
CSB  
Display Data Display Data  
Display Data  
SDI  
SADSET  
ADSET  
CMDXTN  
RDCTL  
...  
Read_en = "1"  
Read_data = "1" Displayread data from SDO  
Figure 22. Display Data Read-back in 3-SPI  
During Display Data Read Mode, the Display Data can be read from the DDRAM through the SDO line. The data will output  
synchronized with falling edge of SCK input.  
SADSET and ADSET must be set first during Write Mode in advance. If DDRAM address is not specified before Display Data  
read, the current DDRAM address is used as the first read address. Address will be incremented automatically by +2  
addresses after 8-bit data output. The Address will be set to 00h automatically after maximum address. Display Data Read  
Mode will be released by setting CSB to high (SDO output also be stopped).  
The DDRAM address map is same as the one in 2-wire Serial Interface (Refer to Figure 15. DDRAM Address Map in Read  
Mode).  
CSB  
SCK  
SDI  
RDCTL (Read_en = "1")  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
Figure 23. Bit Assignment in Display Data Read-back in 3-SPI  
Command Registers Read-back Method (3-SPI)  
Set Read_en = 1and Read_data = 0in RDCTL register to enter Command Registers Read Mode. The Command  
Registers values can be read during this mode. The sequence of the Command Registers read-back is shown below.  
CSB  
Read Data  
1st Byte  
Read Data  
2nd Byte  
Read Data  
6th Byte  
Read Data  
1st Byte  
SADSET  
CMDXTN  
RDCTL  
...  
SDI  
Read_en = "1"  
Read_data = "0"  
Register read data fromSDO  
Figure 24. Command Registers Read-back in 3-SPI  
After reading the 6th byte data, the first byte data will be output again. Command Registers Read Mode will be released after  
CSB change from low to high. (SDO stops).  
The Command Registers Map is same as the one in 2-wire. Refer to Table 3. Command Registers Map for Read-back.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
28/69  
TSZ22111 15 001  
BU91R64CH-M  
OSC (Oscillator)  
In master chip (MS1 = VSS and MS2 = VSS), the clock mode can be selected by EXTCLK. The clock signals for logic and  
analog circuit can be generated in internal oscillator if EXTCLK = VSS or can be provided from external clock input if  
EXTCLK = VDD.  
Clock Mode  
Internal Clock Mode  
External Clock Mode  
EXTCLK  
VSS  
OSCIO  
To Output Internal Generated Clock Signal  
To Input External Clock  
VDD  
In cascaded connection, slave chip (MS1 = VDD or MS2 = VDD) is always in External Clock Mode regardless of EXTCLK.  
In case of External Clock Mode, a clock signal should be always supplied to BU91R64CH-M. Removing the clock may freeze  
the LCD in a DC state which is not suitable for the LCD.  
EXTCLK  
BU91R64CH-M  
Master chip  
OSCIO Open  
(MS1 = VSS, MS2 = VSS)  
Figure 25. Internal Clock Mode  
VDD  
EXTCLK  
OSCIO  
VSS  
BU91R64CH-M  
Master chip  
(MS1 = VSS, MS2 = VSS)  
< Clock  
Figure 26. External Clock Mode  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
29/69  
BU91R64CH-M  
SYNC CTRL (Multi-chip Structure)  
BU91R64CH-M supports large display application by connecting up to four IC in cascade. BU91R64CH-M can be combined  
with BU91R65CH-M and BU91R66CH-M.  
The relationship of MS1 / MS2 setting, OSCIO, SYNCB and SADSET are shown below. To synchronize each IC, connect the  
synchronizing signal (SYNCB) and the synchronous clock (OSCIO) from the Master to Slave ICs.  
In case of 2-wire Serial Interface  
OSCIO  
Slave  
Address  
[7:1]  
SYNCB  
SADSET  
(P1,P0)  
EXTCLK = VDD (Note 1) EXTCLK = VSS (Note 2)  
MS2 MS1 Mode  
I/O  
Connected to  
I/O  
Connected to  
I/O  
Connected to  
Slave1 to  
Slave3  
(OSCIO)  
Slave1 to  
Slave3  
(SYNCB)  
0111 110 /  
0111 000  
VSS  
VSS Master  
IN  
MCU  
OUT  
OUT  
(0,*)  
0111 111 /  
0111 001  
Master  
(OSCIO)  
Master  
(SYNCB)  
VSS  
VDD  
VDD Slave1  
VSS Slave2  
IN  
IN  
IN  
MCU  
MCU  
MCU  
IN  
IN  
IN  
IN  
IN  
IN  
(0,*)  
(1,*)  
(1,*)  
0111 110 /  
0111 000  
Master  
(OSCIO)  
Master  
(SYNCB)  
0111 111 /  
0111 001  
Master  
(OSCIO)  
Master  
(SYNCB)  
VDD VDD Slave3  
(*: don’t care)  
(Note 1) Frame rate is fixed (24 clock / frame) regardless of FRSET and MODESET3.  
(Note 2) Frame rate depends on FRSET and MODESET3. All of Master and Slave1 to Slave3 must be same setting in the registers.  
In case of 3-wire Serial Interface  
OSCIO  
SYNCB  
SADSET  
(P1,P0)  
EXTCLK = VDD (Note 1) EXTCLK = VSS (Note 2)  
MS2 MS1  
Mode  
Master  
I/O  
Connected to  
I/O  
Connected to  
I/O  
Connected to  
Slave1 to  
Slave3  
Slave1 to  
Slave3  
VSS  
VSS  
IN  
MCU  
OUT  
OUT  
(0, 0)  
(OSCIO)  
(SYNCB)  
Master  
(OSCIO)  
Master  
(SYNCB)  
VSS  
VDD  
VDD  
VSS  
Slave1  
Slave2  
Slave3  
IN  
IN  
IN  
MCU  
MCU  
MCU  
IN  
IN  
IN  
IN  
IN  
IN  
(0, 1)  
(1, 0)  
(1, 1)  
Master  
(OSCIO)  
Master  
(SYNCB)  
Master  
(OSCIO)  
Master  
(SYNCB)  
VDD VDD  
(Note 1) Frame rate is fixed (24 clock / frame) regardless of FRSET and MODESET3.  
(Note 2) Frame rate depends on FRSET and MODESET3. All of Master and Slave1 to Slave3 must be same setting in the registers.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
30/69  
BU91R64CH-M  
SYNC CTRL (Multi-chip Structure) - continued  
The relationship between COM and SYNCB timing is as follows.  
1Frame  
1Frame  
1Frame  
1Frame  
COM  
COM  
SYNCB  
SYNCB  
(a-1) 1/4 Duty Drive and Frame Inversion  
(a-2) 1/4 Duty Drive and Line Inversion  
1Frame  
1Frame  
1Frame  
1Frame  
COM  
COM  
SYNCB  
SYNCB  
(b-1) 1/3 Duty Drive and Frame Inversion  
(b-2) 1/3 Duty Drive and Line Inversion  
1Frame  
1Frame  
1Frame  
1Frame  
COM  
COM  
SYNCB  
SYNCB  
(c-1) 1/2 Duty Drive and Frame Inversion (1/2bias)  
(c-2) 1/2 Duty Drive and Line Inversion (1/2bias)  
1Frame  
1Frame  
1Frame  
1Frame  
COM  
COM  
SYNCB  
SYNCB  
(d-1) Static Drive and Frame Inversion  
(d-2) Static Drive and Line Inversion  
OSCIO  
SYNCB  
COM  
Typ 10µs  
In Blink Mode,  
SYNCB "L" pulse width will be twice longer  
to synchronize normal and blink display .  
(e) Driver timing waveform  
Figure 27. Synchronization of Multi-chip Cascaded Connection  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
31/69  
TSZ22111 15 001  
BU91R64CH-M  
SYNC CTRL (Multi-chip Structure) - continued  
The example of cascaded connection  
<2-wire serial, Internal Clock Mode, Detection enable>  
Display Area  
COM  
SEG  
COM  
SEG  
COM  
SEG  
BU91R64CH-M  
BU91R64CH-M  
BU91R64CH-M  
Master(MS2 = VSS, MS1 = VSS)  
EXTCLK = VSS  
Slave1(MS2 = VSS, MS1= VDD)  
EXTCLK = VSS  
Slave2(MS2 = VDD, MS1 = VSS)  
EXTCLK = VSS  
VDD  
MCU  
<3-wire serial, External Clock Mode, Detection disable>  
Display Area  
COM  
SEG  
COM  
SEG  
COM  
SEG  
BU91R64CH-M  
BU91R64CH-M  
BU91R64CH-M  
Master(MS2 = VSS, MS1 = VSS)  
EXTCLK = VDD  
Slave1(MS2 = VSS, MS1 = VDD)  
EXTCLK = VDD  
Slave2(MS2 = VDD, MS1 = VSS)  
EXTCLK = VDD  
MCU  
Figure 28. Example of Cascaded Connection  
<Different Duty Panel Combination>  
1/4 Duty LCD Panel  
Static LCD Panel  
1/4 Duty LCD Panel  
Static LCD Panel  
80SEG x 4COM  
(320dots), 5 V  
160SEG x 1COM  
(160dots), 5 V  
80SEG x 4COM  
(320dots), 5 V  
160SEG x 1COM  
(160dots), 5 V  
BU91R64CH-M  
BU91R64CH-M  
BU91R65CH-M  
BU91R65CH-M  
Master, 1/4 Duty Drive  
Master, 1/4 Duty Drive  
Master, Static Drive  
Slave1, Static Drive  
(MS2, MS1) = (VSS,VSS)  
(MS2, MS1) = (VSS,VSS)  
(MS2, MS1) = (VSS,VSS)  
(MS2, MS1) = (VSS,VDD)  
(DUTY1,DUTY0) = (VSS, VSS)  
(DUTY1,DUTY0) = (VSS, VSS)  
(DUTY1,DUTY0) = (VDD, VDD)  
(DUTY1,DUTY0) = (VDD, VDD)  
MCU  
MCU  
- Same LCD frame frequency  
- One FPC  
- Different LCD frame frequency  
- Few Pin count  
Figure 29. Example Different Duty Drive Panel Configuration  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
32/69  
TSZ22111 15 001  
BU91R64CH-M  
LCD Driver Voltage Generator / LCD Bias Selector  
BU91R64CH-M generates LCD driving voltage with on-chip Buffer AMP. 1/3 or 1/2 Bias Drive can be selected by external  
terminal (BIAS) setting. Line / frame inversion can be set by MODESET3 command. Refer to LCD Driving Waveform.  
POR and Reset Initialize Condition  
BU91R64CH-M has POR (Power On Reset) circuit. Keep Power On / Off specification and sequence described in Cautions  
in Power On / Off. Initial condition after executing Software Reset and POR is as follows.  
- Display is off.  
- DDRAM address is initialized (DDRAM Data is not initialized).  
- Each Command Registers are reset initialize condition. Refer to Detailed Command Description.  
Blink Control (Blink Timing Generator)  
Blink function is asserted by Blink Control1 command (BLKCTL1). In All Segments Blink Mode, all dots blink is available. In  
Bank Blink Mode, individual dot blink is available only in 1/2 Duty and Static Drive mode. Refer to 5. Blink Control1  
(BLKCTL1). The Displayed RAM mapping is switched at blink frequency as following images.  
(1) All Segments Blink Mode  
DisplayData  
1
0
0
1
SEG A SEG B SEG C SEG D  
SEG output  
ON OFF OFF ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
SEG A SEG B SEG C SEG D  
x16 Frame  
SEG A SEG B SEG C SEG D  
x16 Frame  
SEG A SEG B SEG C SEG D  
Blink frequency: 32 Frame  
(2) Bank Blink Mode (Available in 1/2 Duty and Static Drive mode)  
DisplayData  
1
0
0
1
SEG A SEG B SEG C SEG D  
Blink Data  
1
1
0
0
SEG A SEG B SEG C SEG D  
SEG output  
ON OFF OFF ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
SEG A SEG B SEG C SEG D  
x16 Frame  
SEG A SEG B SEG C SEG D  
x16 Frame  
SEG A SEG B SEG C SEG D  
Blink frequency: 32 Frame  
Figure 30. Bank Blink Mode Function (Blink Frequency as 32 Frame Case)  
Blink data can be written in Blink Control 2 command (BLKCTL2) P1 = 1. The command sequence and the relationship  
between data input and DDRAM Address Map are as follows.  
Slave Address  
Command  
BLKCTL2  
1111101*  
Cotrol Byte  
0000 0000  
Command  
SADSET  
Command  
ADSET  
0111 11 MS1 R/W  
S
A
A
S
A
A
A
A
A
P
0/1  
0
0111 00  
P1:1 Blink area in RAMwrite  
Write Mode  
CO:0, RS:0  
Slave Address  
Cotrol Byte  
0100 0000  
DisplayData  
DisplayData  
0111 11 MS1 R/W  
A
a
b
c
d
e
f
g
h
i
j
k
l m n o p A ... P  
0/1  
0
0111 00  
Write Mode  
CO:0, RS:1  
DisplayData  
S: START Condition, P: STOP Condition, A: ACK, NA: NACK  
1/2 Duty  
ADSET  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh  
40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh  
-
-
a
b
-
-
e
f
-
-
i
-
-
m
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COM0  
COM1  
Blink data for COM0  
Blink data for COM1  
D7,D3  
D6,D2  
j
Static drive  
ADSET  
00h  
01h  
02h  
03h  
10h  
11h  
12h  
13h  
-
-
-
-
-
-
-
-
-
i
-
-
-
l
-
-
-
-
COM0  
D7 to D0  
a
b
c
d
e
f
g
h
j
k
m
n
o
p
Blink data for COM0  
Figure 31. DDRAM Address Map of Blink Area (Bank Blink Mode)  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
33/69  
TSZ22111 15 001  
 
 
BU91R64CH-M  
Error Detection  
BU91R64CH-M has the following Error Detection functions. When one of functions in a following table detects abnormal  
status, ERROUT terminal output high level. Then the item with abnormal status can be identified by reading Command  
Registers.  
MCU can detect all events which cause abnormal display by these functions. MCU can take action such as Stopping the  
display or displaying information about abnormal state when LCD module encountered problem.  
Table 4. Detection Functions  
Detection Function  
Item  
Detected Error  
Detection Timing  
Availability  
LCD Glass Breaking  
During DISPON  
By DISPON Command  
By CHKSUM Command  
Always in DISPON  
Glass Breaking Detection  
Checksum Detection  
I/F Communication Error  
Logic DFF Malfunction  
SEG / COM Output Level Error  
COG Bonding Status  
Always  
During DISPON  
During DISPON  
(No Power Applied)  
Logic Error Detection  
SEG / COM Toggle Detection  
Contact Resistance Check  
Always in DISPON  
(In LCD Module Assembly)  
Block diagram and data path of Detection block are shown below.  
...  
...  
VLCD  
LCD Voltage  
Generator  
Detect Comparator  
Detect Comparator  
SEG Driver  
V0  
SEG/COMToggleDetection  
COM Driver  
LCD  
Bias  
Selector  
COM CTRL  
SEG CTRL  
Toggle Error Detector  
Toggle Error Detector  
DDRAM(Latch)  
DDRAMCTL  
BIAS  
Timing Controller  
DUTY0  
DUTY1  
INHB  
BLINK  
CTRL  
Logic error Detection  
Checksum Detection  
SYNCB  
OSCIO  
SYNC  
CTRL  
EXTCLK  
DFF  
Error  
detector  
OSC  
Interface  
detector  
Serial Interface  
If_top  
MS1  
MS2  
Glass Breaking Detection  
Register  
Block  
GLSCHKI  
GLSCHKO  
VDD  
GLSCHK  
detector  
Error CTRL  
Contact Resistance Check  
TR  
Glass Breaking Detection  
Checksum Detection  
Error  
CTRL  
ERROOUT  
Logic Error Detection  
SEG / COMToggle Detection  
if_top  
SDAO (2-wire)  
SDO (3-wire)  
Each detection status can  
be read by read command  
register  
LCD Module  
ERROUT  
MCU  
LCD Driver  
LCD Display  
MCU I/F  
SEG / COM Toggle Detection  
Glass Breaking Detection  
Checksum Detection  
Logic Error Detection  
Figure 32. Detection Block and Data Path  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
34/69  
TSZ22111 15 001  
BU91R64CH-M  
Error Detection - continued  
Glass Breaking Detection  
BU91R64CH-M can detect LCD glass breaking status.  
In Single-chip Use Case,  
Crack  
Wire on the LCD glass  
Wire on the LCD glass  
GLSCHKO  
GLSCHKO  
ERROUT  
(to MCU)  
GLSCHKI  
GLSCHKI  
ERROUT  
(to MCU)  
High level outputs during abnormal status  
such as glass breaking  
Low level outputs during normal status  
[ Case of LCD Panel No Breaking ]  
[ Case of LCD Panel Breaking ]  
In Multi-chip Cascaded Use Case,  
Master  
Slave1  
Slave2  
Slave3  
Master Master  
GLSCHKI GLSCHKO  
Slave1 Slave1  
GLSCHKI GLSCHKO  
Slave2 Slave2  
GLSCHKI GLSCHKO  
Slave3 Slave3  
GLSCHKI GLSCHKO  
Master  
ERROUT  
Slave1  
ERROUT  
Slave2  
ERROUT  
Slave3  
ERROUT  
Figure 33. Glass Breaking Detection  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
35/69  
TSZ22111 15 001  
BU91R64CH-M  
Glass Breaking Detection continued  
Glass breaking detection will be judged after 4 frames from MODESET1 command (DISPON). High level will be judged at  
the end of the second frame after MODESET1 command (DISPON) and low level will be judged at the end of the fourth  
frame after the command. See following sequence.  
Command  
Frame  
DISPON  
DISPON  
4th  
DISPON  
1st  
2nd  
3rd  
1st  
2nd  
H
3rd  
4th  
1st  
2nd  
3rd  
4th  
GLSCHKO  
GLSCHKI  
H
H
L
L
L
L
H
H
L
L
L: If glass broken  
NG  
Detection result  
OK  
OK  
OK  
Judged as NG  
OK  
OK  
Judged as OK  
(Command Register Read-back: D3 bit in 1st Byte)Judged as OK  
ERROUT  
Abnormal status  
Figure 34. Sequence of Glass Breaking Detection  
Thus, the detection period depends on the Frame Frequency setting. It is necessary to consider ITO wiring resistance and  
capacitance to keep the following calculation:  
2 × 휏 < 2 × 퐹푟푎푚푒 퐷푢푡푦  
[s]  
(A)  
where:  
휏 is the CR time constant. 휏 = 퐶 × 푅. 퐶: ITO capacitance, 푅: ITO resistance.  
<Calculation example>  
When Frame rate = 200 Hz, Wire length around LCD glass = 500 counts, ITO sheet count = 60 Ω and ITO capacitance =  
100 pF  
퐼푇푂 푟푒푔푖푠푡푎푛푐푒 = 60[훺] × 500 [푐표푢푛푡] = 30,000  
[Ω]  
[
]
[
]
2 × 휏 = 2 × 퐶 × 푅 = 2 × 100 푝퐹 × 30 푘훺 = 6  
[µs]  
2 × 퐹푟푎푚푒 퐷푢푡푦 = 2 × ꢁꢂꢂ = 10  
[ms]  
In this case, (A) is satisfied. So glass check function will work correctly.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
36/69  
TSZ22111 15 001  
BU91R64CH-M  
Error Detection - continued  
Checksum Detection  
This function detects the error due to command or Display Data alteration by electric noise during transfer from MCU.  
Checksum detection will be judged after every CHKSUM command. See following sequence.  
Slave Address+Control Byte  
Slave Address+Control Byte  
Command (2-wire)  
S
Command  
Command  
CHKSUM  
P
S
Command Command CHKSUM  
P
Calculate checksumfor input data and  
compare internal checksumvalue and CHKSUMcommand value  
Detection result  
H: incorrect  
L: correct  
(Command Register Read-back: D2 bit in 1st Byte)  
ERROUT  
Abnormal status  
Slave Address+Control Byte  
Slave Address+Control Byte  
Command (2-wire)  
S
SADSET ADSET Display Data Display Data Display Data  
P
S
CHKSUM  
P
Calculate checksumfor input data and  
compare internal checksumvalue and CHKSUMcommand value  
Detection result  
H: incorrect  
L: correct  
(Command Register Read-back: D2 bit in 1st Byte)  
ERROUT  
Abnormal status  
S: START Condition, P: STOP Condition, A: ACK, NA: NACK  
: valid data for internal checksum calculation  
Figure 35. Sequence of Checksum Detection  
Checksum calculation example:  
(1) Display Data Write Case  
2-wire Serial I/F  
Slave  
Slave  
Address  
7C  
Slave  
Address  
7C  
SADSET  
ADSET  
DisplayData  
CHKSUM  
XXXX  
S
A
Control Byte  
00  
A
A
A
P
S
A
Control Byte  
01  
A
A
P
S
A
A P  
SCL / SDAI / SDAO  
Address  
7C  
E
0
0
2
A
3
D
Write  
Master  
Write  
Write  
3-wire Serial I/F  
CSB  
SADSET  
ADSET  
DisplayData  
CHKSUM  
D XXXX  
SCK /SDI  
E
0
0
2
A
3
Master  
(2) Command Registers Read Case (Read values are not used for checksum calculation.)  
2-wire Serial I/F  
Slave  
Slave  
Command  
Register  
Command  
Register  
Command  
Register  
Slave  
Address  
CMDXTN  
RDCTL  
CHKSUM  
YYYY  
S
Address /  
Control Byte  
7C 00  
A
A
A
S
A
A
A
NA  
P
S
Address /  
Control Byte  
7C 00  
A
A P  
SCL / SDAI / SDAO  
F
D
C
2
7D  
0
1
2
3
4
5
D
Register Read Read mode  
3-wire Serial I/F  
CSB  
CMDXTN  
RDCTL  
CHKSUM  
YYYY  
SCK / SDI  
SDO  
F
D
C
2
D
Command  
Register  
Command  
Register  
Command  
Register  
0
1
2
3
4
5
S: START Condition, P: STOP Condition, A: ACK, NA: NACK  
: valid data for internal checksum calculation  
Calculation (1) RAMWrite Case  
Calculation (2) Read Case  
Hex Dec  
Hex Dec  
SADSET upper 4-bit  
SADSET lower 4-bit  
ADSET upper 4-bit  
ADSET lower 4-bit  
DisplayData upper 4-bit  
DisplayData lower 4-bit  
CHKSUMupper 4-bit  
Sum  
E
0
0
2
A
3
14  
0
0
2
10  
3
CMDXTN upper 4-bit  
CMDXTN lower 4-bit  
RDCTL upper 4-bit  
RDCTL lower 4-bit  
CHKSUMupper 4-bit  
Sum  
F
D
C
2
D
37  
15  
13  
12  
2
13  
55  
D
2A  
13  
42  
-> “YYYY” = “7h”  
-> “XXXX” = “Ah”  
Figure 36. Example of Checksum Calculation  
In 2-wire, the checksum calculation value will be same in ICs which use same Slave Address and different sub address.  
In 3-wire, all IC’s checksum values will be same.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
37/69  
TSZ22111 15 001  
 
BU91R64CH-M  
Error Detection - continued  
Logic Error Detection  
This function detects occurrence of registers (DFF) errors due to electric noise. DFFs for detection are placed around logic  
area. Judgement is always proceeding in DISPON status. Logic error detection will be judged after every 2 frames from  
DISPON command. See following sequence.  
Command  
Frame  
DISPON  
DISPON  
1st  
1st  
Set  
2nd  
1st  
2nd  
1st  
1st  
2nd  
1st  
2nd  
1st  
2nd  
1st  
2nd  
Re-set  
DFF for  
101010101  
100010101  
Not match!  
101010101  
010101010  
detection  
Match!  
DFF for  
101010101  
010101010  
Expected DFF data inversed  
expectation  
Detection result  
(Command Register Read-back:  
D1 bit in 1st Byte)  
OK  
Judged OK  
NG  
Judged NG  
OK  
OK  
Judged OK  
OK  
Judged OK  
Keeping Error status  
even if judged OK  
Error Status cleared  
ERROUT  
Abnormal Status  
Figure 37. Sequence of Logic Error Detection  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
38/69  
TSZ22111 15 001  
BU91R64CH-M  
Error Detection - continued  
SEG / COM Toggle Detection  
This function is to detect whether SEG / COM output toggle (AC inversion) in DDRAM data bit = 1.  
Detectable status are considered as following conditions,  
(1) SEG / COM waveform stuck at VSS level (SEG can detect in DDRAM data bit = 1case only).  
(a) LCD broken.  
(b) ITO wiring connected to VSS line.  
(c) SEG / COM output broken such as short with VSS level.  
(2) SEG / COM waveform stuck at V0 level (SEG can detect in DDRAM data bit = 1case only).  
(a) LCD broken.  
(b) ITO wiring connected to VLCD line.  
(c) SEG / COM output broken such as short with VLCD / V0 level.  
Command  
Frame  
...  
...  
DISPON  
...  
...  
COM  
...  
(Stuck at  
VSS Case)  
...  
...  
Abnormal Waveform  
Normal Operation  
Normal Operation  
Normal Operation  
...  
Abnormal Waveform  
COM  
(Stuck at  
V0 Case)  
...  
...  
Normal Operation  
...  
Detection Result  
...  
(Command Resister Read-back: D0 bit in 1st Byte)  
Judge as NG  
Result is cleared  
Judge as OK  
ERROUT  
...  
...  
Abnormal Status  
Need Maximum  
84 frames in 1/4 Duty  
MaxFrame  
Need Maximum  
84 frames in 1/4 Duty  
1/4Duty  
1/3Duty  
1/2Duty  
Static  
84  
63  
42  
21  
Figure 38. Sequence of SEG / COM Toggle Detection  
Contact Resistance Check  
COG contact resistance can be inspected by measuring resistance in DUMMY0, DUMMY1, DUMMY2 and DUMMY3  
terminals. Abnormal COG bonding status can be detected if the values are outliers.  
BU91R64CH-M  
(BUMP side down)  
Wired in driver IC  
The resistance ≤ 5 Ω(Note)  
(Note) Not 100 % tested  
Figure 39. DUMMY PADs for the Contact Resistance Measurement  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
39/69  
TSZ22111 15 001  
BU91R64CH-M  
Command / Function List  
Description List of Command / Function  
Identify Sub  
Address by  
SADSET  
Available in  
CMDXTN  
Mode  
No.  
Command  
Function  
Normal Command  
1
2
3
4
5
6
7
Mode Set 1(MODESET1)  
Address Set (ADSET)  
Display On / Off  
-
-
-
-
-
-
-
No  
No  
No  
No  
No  
No  
-
DDRAM Address Setting  
IC Selecting  
Sub Address Set (SADSET)  
Frame Rate Set (FRSET)  
Blink Control1 (BLKCTL1)  
Blink Control2 (BLKCTL2)  
Frame Frequency  
Blink Mode / Blink Frequency Setting  
Blink Area Setting  
Command Extension (CMDXTN) Access enable for extended commands  
Extension Command  
8
Software Reset (SWRST)  
Mode Set 2(MODESET2)  
Mode Set 3(MODESET3)  
Contrast Setting (CNTSET)  
Read Control (RDCTL)  
Checksum(CHKSUM)  
Software Reset  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
9
Error Detection Control  
-
10  
11  
12  
13  
14  
Line / Frame Inversion, Frame Frequency  
Contrast adjustment  
-
Yes  
-
Read Control  
Checksum Trigger and Expected Value  
COM driving order select, Contrast adjustment  
-
COM Set (COMSET)  
Yes  
Detailed Command Description  
1. Mode Set 1 (MODESET1)  
MSB  
LSB  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
P3  
D2  
*
D1  
*
D0  
*
(*: don’t care)  
Set Display On and Off  
P3  
Setup  
Reset Initialize Condition  
0
1
Display Off (DISPOFF)  
Display On (DISPON)  
-
Display Off: Regardless of DDRAM data, all Segment and Common output will be stopped (VSS level).  
Display On: Segment and Common output will be active and will start to read the Display Data from DDRAM.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
40/69  
 
 
BU91R64CH-M  
Detailed Command Description continued  
2. Address Set (ADSET)  
MSB  
D7  
0
LSB  
D0  
P0  
D6  
P6  
D5  
P5  
D4  
P4  
D3  
P3  
D2  
P2  
D1  
P1  
Set address. (P6 to P0 = “0000000” in reset initialize condition)  
Don’t set out of range address, otherwise address will be set to “0000000.  
In 3-SPI case, next transferred data will be recognized as Display Data.  
The range of address (7-bit) is shown as bellow.  
1/4, 1/3 and 1/2 Duty Drive mode: 00h to 4Fh  
Static Drive Mode:  
00h to 13h  
3. Sub Address Set (SADSET)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
P1  
Set sub address to define one of BU91R6xCH sub address.  
The following command can be set independently after SADSET command.  
- Display Data write  
- Display Data read  
- Command Registers read  
- Contrast Setting (CNTSET)  
- COM set (COMSET)  
In 2-wire Serial Interface mode  
P1  
0
P0  
*
Available IC  
Reset Initialize Condition  
Master or Slave1 (Note 1)(MS2 = VSS)  
Slave2 or Slave3 (Note 1)(MS2 = VDD)  
1
*
-
(Note 1): Bit1 of Slave Address selects one of “Master / Slave1” or one of “Slave2 / Slave3”.  
(*: don’t care)  
In 3-wire Serial Interface mode  
P1  
0
P0  
0
Available IC  
Reset Initialize Condition  
Master (MS2 = VSS, MS1 = VSS)  
Slave1 (MS2 = VSS, MS1 = VDD)  
Slave2 (MS2 = VDD, MS1 = VSS)  
Slave3 (MS2 = VDD, MS1 = VDD)  
-
0
1
1
0
-
1
1
-
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
41/69  
TSZ22111 15 001  
BU91R64CH-M  
Detailed Command Description continued  
4. Frame Rate Set (FRSET)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
0
D3  
1
D2  
P2  
D1  
P1  
Set Frame Frequency  
In Internal Clock Mode, Frame Frequency is calculated as shown in the following table.  
Table 5. Frame Frequency (Internal Clock Mode)  
MODESET3  
FRSET  
P1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
Frame Freqency [Hz] (Number of Clock Pulses)  
Line Inversion Frame Inversion  
Reset Initilaze Condition  
P1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
P0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
P2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
P0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
65.7 (624)  
74.3 (552)  
85.4 (480)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
122.0 (336)  
131.4 (312)  
142.4 (288)  
155.3 (264)  
170.8 (240)  
189.8 (216)  
213.5 (192)  
244.0 (168)  
284.7 (144)  
427.1 ( 96)  
569.4 ( 72) (Prohibited)  
854.2 ( 48) (Prohibited)  
1708.3 ( 24) (Prohibited)  
65.7 (624)  
74.3 (552)  
85.4 (480)  
131.4 (312)  
148.6 (276)  
170.8 (240)  
122.0 (336)  
244.0 (168)  
131.4 (312)  
262.8 (156)  
142.4 (288)  
284.7 (144)  
155.3 (264)  
310.6 (132)  
170.8 (240)  
341.7 (120)  
189.8 (216)  
379.6 (108)  
213.5 (192)  
427.1 ( 96)  
244.0 (168)  
488.1 ( 84)  
284.7 (144)  
427.1 ( 96)  
569.4 ( 72) (Prohibited)  
854.2 ( 48) (Prohibited)  
1708.3 ( 24) (Prohibited)  
569.4 ( 72) (Prohibited)  
854.2 ( 48) (Prohibited)  
1138.9 ( 36) (Prohibited)  
1708.3 ( 24) (Prohibited)  
3416.7 ( 12) (Prohibited)  
1
In External Clock Mode, Frame Frequency is calculated as shown in following table,  
Table 6. Frame Frequency (External Clock Mode)  
Frame Freqency [Hz]  
MODESET3  
FRSET  
Reset Initilaze Condition  
P1  
0
P0  
*
P2  
*
P1  
*
P0  
*
Line Inversion  
Frame Inversion  
External Clock / 24  
1
*
*
*
*
External Clock / 24  
External Clock / 12  
-
(*: don’t care)  
(Example 1)  
EXTCLK = VDD  
External Clock: 1,800 Hz  
MODESET3 P1: 0  
Frame Frequency = External Clock / 24 = 1,800 / 24 = 75 Hz @Line / Frame Inversion  
(Example 2)  
EXTCLK = VDD  
External Clock: 3,500 Hz  
MODESET3 P1: 1  
Frame Frequency = External Clock / 24 = 3,500 / 24 = 145.8 Hz @Line Inversion  
Frame Frequency = External Clock / 12 = 3,500 / 12 = 291.7 Hz @Frame Inversion  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
42/69  
TSZ22111 15 001  
 
BU91R64CH-M  
Detailed Command Description continued  
5. Blink Control1 (BLKCTL1)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
1
D3  
0
D2  
P2  
D1  
P1  
Set Blink Mode  
P2  
Blink Mode  
Reset Initialize Condition  
0
1
All Segments Blink Mode  
Bank Blink Mode  
-
Bank Blink Mode is available in 1/2 Duty Drive and Static Drive.  
Set Blink Frequency  
P1  
0
P0  
0
Blink Frequency  
Reset Initialize Condition  
Off  
-
0
1
32 Frames  
64 Frames  
128 Frames  
1
0
-
1
1
-
About Frame Frequency calculation, refer to 4. Frame Rate Set (FRSET).  
About Bank Blink Mode, refer to Blink Control (Blink Timing Generator).  
6. Blink Control2 (BLKCTL2)  
MSB  
D7  
1
LSB  
D0  
*
D6  
1
D5  
1
D4  
1
D3  
1
D2  
0
D1  
P1  
(*: don’t care)  
Set Blink Area in 1/2 Duty Drive and Static Drive in Bank Blink Mode  
P1  
0
DDRAM Write Area  
Normal Display Area  
Blink Area  
Reset Initialize Condition  
1
-
This register is available only in 1/2 Duty Drive and Static Drive.  
About data writing to blink area, refer to Blink Control (Blink Timing Generator).  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
43/69  
TSZ22111 15 001  
BU91R64CH-M  
Detailed Command Description continued  
7. Command Extension (CMDXTN)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
0
Set CMDXTN Mode Effective  
P0  
Mode  
Reset Initialize Condition  
Ineffective CMDXTN Mode  
(Normal Mode)  
0
1
CMDXTN Mode  
(Extension Mode)  
-
The following extension commands are accessible only in CMDXTN mode,  
1. SWRST  
2. MODESET2  
3. MODESET3  
4. CNTSET  
5. RDCTL  
6. CHKSUM  
7. COMSET  
To access normal command such as DISPON etc., set P0 = “0” (ineffective CMDXTN mode).  
Refer to Command / Function List.  
8. Software Reset (SWRST)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
0
D5  
0
D4  
0
D3  
*
D2  
*
D1  
*
(*: don’t care)  
This register can be accessed in CMDXTN mode only.  
Set software reset effective  
P0  
0
Operation  
No Operation  
Software Reset Execute  
Reset Initialize Condition  
1
-
When “Software Reset” is executed, BU91R64CH-M will be reset to initial condition.  
Refer to POR and Reset Initialize Condition.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
44/69  
TSZ22111 15 001  
BU91R64CH-M  
Detailed Command Description continued  
9. Mode Set 2 (MODESET2)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
0
D5  
0
D4  
1
D3  
P3  
D2  
P2  
D1  
P1  
This register can be accessed in CMDXTN mode only.  
Set Glass breaking detection to enable  
P3  
0
Setup  
Reset Initialize Condition  
Disable  
Enable  
1
-
Set Checksum detection to enable  
P2  
0
Setup  
Reset Initialize Condition  
Disable  
Enable  
1
-
Set Logic error detection to enable  
P1  
0
Setup  
Reset Initialize Condition  
Disable  
Enable  
1
-
Set SEG / COM toggle detection to enable  
P0  
0
Setup  
Reset Initialize Condition  
Disable  
Enable  
1
-
ERROUT output function will be effective when any bit of P3 to P0 is set to enable, refer to Detailed Command  
Description.  
10. Mode Set 3 (MODESET3)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
P2  
D1  
P1  
This register can be accessed in CMDXTN mode only.  
Set LCD Driving Mode  
P2  
0
Driving Mode  
Line Inversion Mode  
Frame Inversion Mode  
Reset Initialize Condition  
1
-
Power consumption is reduced in the following order: Line inversion > Frame inversion  
Typically, when driving large capacitance LCD, Line inversion will increase the influence of crosstalk.  
Regarding driving waveform, refer to LCD Driving Waveform.  
Set x2 Frame frequency in Frame inversion mode  
P1  
0
Mode  
Reset Initialize Condition  
Normal Frequency Mode  
x2 Frequency in Frame Inversion  
1
-
This command is only effective in Frame inversion mode.  
In detail, refer to 4. Frame Rate Set (FRSET).  
Set Frame Frequency Mode  
P0  
0
Frame Frequency Mode  
Normal Frequency Mode  
High Frequency Mode  
Reset Initialize Condition  
1
-
In detail, refer to 4. Frame Rate Set (FRSET).  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
45/69  
TSZ22111 15 001  
BU91R64CH-M  
Detailed Command Description continued  
11. Contrast Setting (CNTSET)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
0
D5  
1
D4  
1
D3  
P3  
D2  
P2  
D1  
P1  
This register can be accessed in CMDXTN mode only.  
This command can set sub address individually by SADSET command.  
Set EVR for Contrast adjustment.  
BU91R64CH-M is able to control V0 voltage level (the maximum level voltage of LCD driving) by a 32-step electrical volume  
register (EVR).  
Table 7. V0 Voltage Setting  
Unit: V  
COMSET  
CNTSET  
VLCD [V]  
4.0  
Reset Initialize  
Condition  
Formula  
P3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
P3 P2 P1 P0  
6.0  
5.5  
5.0  
3.5  
3.0  
2.5  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.000 * VLCD  
0.967 * VLCD  
0.937 * VLCD  
0.909 * VLCD  
0.882 * VLCD  
0.857 * VLCD  
0.833 * VLCD  
0.810 * VLCD  
0.789 * VLCD  
0.769 * VLCD  
0.750 * VLCD  
0.731 * VLCD  
0.714 * VLCD  
0.697 * VLCD  
0.681 * VLCD  
0.666 * VLCD  
0.652 * VLCD  
0.638 * VLCD  
0.625 * VLCD  
0.612 * VLCD  
0.600 * VLCD  
0.588 * VLCD  
0.576 * VLCD  
0.566 * VLCD  
0.555 * VLCD  
0.545 * VLCD  
0.535 * VLCD  
0.526 * VLCD  
0.517 * VLCD  
0.508 * VLCD  
0.500 * VLCD  
0.491 * VLCD  
6.000 5.500 5.000 4.000 3.500 3.000 2.500  
5.802 5.323 4.839 3.871 3.387 2.903 2.419  
5.622 5.156 4.688 3.750 3.281 2.813 2.344  
5.454 5.000 4.545 3.636 3.182 2.727 2.273  
5.292 4.853 4.412 3.529 3.088 2.647 2.206  
5.142 4.714 4.286 3.429 3.000 2.571 2.143  
4.998 4.583 4.167 3.333 2.917 2.500 2.083  
4.860 4.459 4.054 3.243 2.838 2.432 2.027  
4.734 4.342 3.947 3.158 2.763 2.368 1.974  
4.614 4.231 3.846 3.077 2.692 2.308 1.923  
4.500 4.125 3.750 3.000 2.625 2.250 1.875  
4.386 4.024 3.659 2.927 2.561 2.195 1.829  
4.284 3.929 3.571 2.857 2.500 2.143 1.786  
4.182 3.837 3.488 2.791 2.442 2.093 1.744  
4.086 3.750 3.409 2.727 2.386 2.045 1.705  
3.996 3.667 3.333 2.667 2.333 2.000 1.667  
3.912 3.587 3.261 2.609 2.283 1.957 1.630  
3.828 3.511 3.191 2.553 2.234 1.915 1.596  
3.750 3.438 3.125 2.500 2.188 1.875 1.563  
3.672 3.367 3.061 2.449 2.143 1.837 1.531  
3.600 3.300 3.000 2.400 2.100 1.800 1.500  
3.528 3.235 2.941 2.353 2.059 1.765 1.471  
3.456 3.173 2.885 2.308 2.019 1.731 1.442  
3.396 3.113 2.830 2.264 1.981 1.698 1.415  
3.330 3.056 2.778 2.222 1.944 1.667 1.389  
3.270 3.000 2.727 2.182 1.909 1.636 1.364  
3.210 2.946 2.679 2.143 1.875 1.607 1.339  
3.156 2.895 2.632 2.105 1.842 1.579 1.316  
3.102 2.845 2.586 2.069 1.810 1.552 1.293  
3.048 2.797 2.542 2.034 1.780 1.525 1.271  
3.000 2.750 2.500 2.000 1.750 1.500 1.250  
2.946 2.705 2.459 1.967 1.721 1.475 1.230  
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Prohibited Setting  
Avoid setting EVR of “V0 < 2.5V” and “V0 > VLCD – 0.6V” condition. BU91R64CH-M output voltage will be unstable in such  
conditions.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
46/69  
TSZ22111 15 001  
BU91R64CH-M  
Detailed Command Description continued  
12. Read Control (RDCTL)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
1
D5  
0
D4  
0
D3  
*
D2  
*
D1  
P1  
(*: don’t care)  
This register can be accessed in CMDXTN mode only.  
Set Read enable (This bit is available in 3SPI mode only. In 2-wire, this bit is undefined.)  
P1  
0
Read_en  
Reset Initialize Condition  
Read disable (Write Mode)  
Read enable (Read Mode)  
1
-
Set Read data  
P0  
Read_mode  
Command Registers Read  
DDRAM Data Read  
Reset Initialize Condition  
0
1
-
13. Checksum (CHKSUM)  
MSB  
LSB  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
P3  
D2  
P2  
D1  
P1  
D0  
P0  
This register can be accessed in CMDXTN mode only.  
P3 to P0: The sum of all Command Registers value for interface checksum function. Set this value after calculating the sum  
of each Command Registers value. In detail, refer to Checksum Detection.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
47/69  
TSZ22111 15 001  
BU91R64CH-M  
Detailed Command Description continued  
14. COM Set (COMSET)  
MSB  
D7  
1
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
0
D3  
P3  
D2  
P2  
D1  
P1  
This register can be accessed in CMDXTN mode only.  
This command can set sub address individually by SADSET command.  
P3: Set MSB of CNTSET  
Refer to Contrast Setting command (CNTSET).  
P2 to P0: Set COM scanning order of COMA, COMB and COMC individually.  
P2: Set COMC Scanning Order  
P1: Set COMB Scanning Order  
P0: Set COMA Scanning Order  
P2  
(COMC)  
P1  
(COMB)  
P0  
(COMA)  
Duty  
Drive  
Reset Initialize  
Condition  
Toggle Order of COM*0 to COM*3  
1/4 Duty  
1/3 Duty  
1/2 Duty  
Static  
COM*0COM*1COM*2COM*3  
COM*0COM*1COM*2 (Note 1)  
COM*0COM*1 (Note 2)  
0
1
0
1
0
1
COM*0 (Note 3)  
1/4 Duty  
1/3 Duty  
1/2 Duty  
Static  
COM*3COM*2COM*1COM*0  
COM*3COM*2COM*1 (Note 1)  
COM*1COM*0 (Note 2)  
-
COM*0 (Note 3)  
(*: A for P0, or B for P1, or C for P3)  
(Note 1) COMA3 = COMA0  
(Note 2) COMA2 = COMA0, COMA3 = COMA1  
(Note 3) COMA1 / 2 / 3 = COMA0  
SmallerITOresistance byshorterwire  
LargerITO resistance due to longerwire routing  
4
1
5
2
6
3
4
1
5
2
6
3
Scan Direction  
Swap Scan Direction  
Figure 40. COM Scan Direction Image  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
48/69  
TSZ22111 15 001  
BU91R64CH-M  
LCD Driving Waveform  
1/3 Bias, 1/4 Duty Drive  
Frame Inversion  
Line Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COMA0  
COMA1  
COMA2  
COMA3  
State A  
State B  
COMA0  
State A  
State B  
COMA1  
COMA2  
COMA3  
1frame  
1frame  
V0  
V0  
COMA0  
COMA1  
COMA2  
COMA3  
COMA0  
COMA1  
COMA2  
COMA3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
+V0  
VSS  
+V0  
State A  
State A  
(COMA0  
(COMA0  
-SEGn)  
-SEGn)  
-V0  
-V0  
+V0  
+V0  
State B  
State B  
(COMA1  
(COMA1  
-SEGn)  
-SEGn)  
-V0  
-V0  
COMSET P2 = 0, Normally white type LCD case  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
49/69  
TSZ22111 15 001  
BU91R64CH-M  
LCD Driving Waveform - continued  
1/2 Bias, 1/4 Duty Drive  
Frame Inversion  
Line Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COMA0  
COMA1  
COMA2  
COMA3  
State A  
State B  
COMA0  
COMA1  
COMA2  
COMA3  
stateA  
stateB  
1frame  
1frame  
V0  
V0  
COMA0  
COMA1  
COMA0  
VSS  
V0  
VSS  
V0  
COMA1  
VSS  
V0  
VSS  
V0  
COMA2  
COMA3  
SEGn  
COMA2  
VSS  
V0  
VSS  
V0  
COMA3  
VSS  
V0  
VSS  
V0  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
VSS  
V0  
VSS  
V0  
SEGn+2  
VSS  
V0  
VSS  
V0  
SEGn+3  
VSS  
+V0  
VSS  
+V0  
State A  
State A  
(COMA0  
-SEGn)  
(COMA0  
-SEGn)  
-V0  
-V0  
+V0  
+V0  
State B  
State B  
(COMA1  
-SEGn)  
(COMA1  
-SEGn)  
-V0  
-V0  
COMSET P2 = 0, Normally white type LCD case  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
50/69  
TSZ22111 15 001  
BU91R64CH-M  
LCD Driving Waveform - continued  
1/3 Bias, 1/3 Duty Drive  
Frame Inversion  
Line Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COMA0  
COMA1  
COMA2  
COMA3  
State A  
State B  
COMA0  
State A  
State B  
COMA1  
COMA2  
COMA3  
Same waveform as COMA0  
Same waveform as COMA0  
1frame  
1frame  
V0  
V0  
COMA0  
COMA1  
COMA2  
COMA3  
COMA0  
COMA1  
COMA2  
COMA3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
+V0  
VSS  
+V0  
State A  
State A  
(COMA0  
(COMA0  
-SEGn)  
-SEGn)  
-V0  
-V0  
+V0  
+V0  
State B  
State B  
(COMA1  
(COMA1  
-SEGn)  
-SEGn)  
-V0  
-V0  
COMSET P2 = 0, Normally white type LCD case  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
51/69  
TSZ22111 15 001  
BU91R64CH-M  
LCD Driving Waveform - continued  
1/2 Bias, 1/3 Duty Drive  
Frame Inversion  
Line Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COMA0  
COMA1  
COMA2  
COMA3  
State A  
State B  
COMA0  
COMA1  
COMA2  
COMA3  
stateA  
stateB  
Same waveform as COMA0  
Same waveform as COMA0  
1frame  
1frame  
V0  
V0  
COMA0  
COMA1  
COMA0  
VSS  
V0  
VSS  
V0  
COMA1  
VSS  
V0  
VSS  
V0  
COMA2  
COMA3  
SEGn  
COMA2  
VSS  
V0  
VSS  
V0  
COMA3  
VSS  
V0  
VSS  
V0  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
VSS  
V0  
VSS  
V0  
SEGn+2  
VSS  
V0  
VSS  
V0  
SEGn+3  
VSS  
+V0  
VSS  
+V0  
State A  
State A  
(COMA0  
-SEGn)  
(COMA0  
-SEGn)  
-V0  
-V0  
+V0  
+V0  
State B  
State B  
(COMA1  
-SEGn)  
(COMA1  
-SEGn)  
-V0  
-V0  
COMSET P2 = 0, Normally white type LCD case  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
52/69  
TSZ22111 15 001  
BU91R64CH-M  
LCD Driving Waveform - continued  
1/3 Bias, 1/2 Duty Drive  
Frame Inversion  
Line Inversion  
SEGn SEGn+1SEGn+2SEGn+3  
SEGn SEGn+1SEGn+2SEGn+3  
COMA0  
COMA1  
COMA2  
COMA3  
State A  
COMA0  
COMA1  
COMA2  
COMA3  
State A  
State B  
State B  
Same waveform as COMA0  
Same waveform as COMA1  
Same waveform as COMA0  
Same waveform as COMA1  
1frame  
1frame  
V0  
V0  
COMA0  
COMA1  
COMA2  
COMA3  
COMA0  
VSS  
V0  
VSS  
V0  
COMA1  
VSS  
V0  
VSS  
V0  
COMA2  
VSS  
V0  
VSS  
V0  
COMA3  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
VSS  
V0  
VSS  
V0  
SEGn+2  
VSS  
V0  
VSS  
V0  
SEGn+3  
VSS  
+V0  
VSS  
+V0  
State A  
(COMA0  
State A  
(COMA0  
-SEGn)  
-SEGn)  
-V0  
+V0  
-V0  
+V0  
State B  
(COMA1  
State B  
(COMA1  
-SEGn)  
-SEGn)  
-V0  
-V0  
COMSET P2 = 0, Normally white type LCD case  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
53/69  
TSZ22111 15 001  
BU91R64CH-M  
LCD Driving Waveform - continued  
1/2 Bias, 1/2 Duty Drive  
Frame Inversion  
Line Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COMA0  
COMA1  
COMA2  
COMA3  
State A  
COMA0  
COMA1  
COMA2  
COMA3  
stateA  
State B  
stateB  
Same waveform as COMA0  
Same waveform as COMA0  
Same waveform as COMA1  
Same waveform as COMA1  
1frame  
1frame  
V0  
V0  
COMA0  
COMA1  
COMA0  
VSS  
V0  
VSS  
V0  
COMA1  
VSS  
V0  
VSS  
V0  
COMA2  
COMA3  
SEGn  
COMA2  
VSS  
V0  
VSS  
V0  
COMA3  
VSS  
V0  
VSS  
V0  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
VSS  
V0  
VSS  
V0  
SEGn+2  
VSS  
V0  
VSS  
V0  
SEGn+3  
VSS  
+V0  
VSS  
+V0  
State A  
State A  
(COMA0  
-SEGn)  
(COMA0  
-SEGn)  
-V0  
-V0  
+V0  
+V0  
State B  
State B  
(COMA1  
-SEGn)  
(COMA1  
-SEGn)  
-V0  
-V0  
COMSET P2 = 0, Normally white type LCD case  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
54/69  
TSZ22111 15 001  
BU91R64CH-M  
LCD Driving Waveform - continued  
Static Drive  
Frame Inversion  
Line Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COMA0  
stateA stateB  
COMA0  
stateA stateB  
COMA1 to COMA3  
Same waveform as COMA0  
COMA1 to COMA3  
Same waveform as COMA0  
1frame  
1frame  
V0  
V0  
COMA0 to  
COMA3  
COMA0 to  
COMA3  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
+V0  
VSS  
+V0  
State A  
State A  
(COMA0  
(COMA0  
-SEGn)  
-SEGn)  
-V0  
-V0  
+V0  
+V0  
State B  
State B  
(COMA0  
(COMA0  
-SEGn+1)  
-SEGn+1)  
-V0  
-V0  
Normally white type LCD case  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
55/69  
TSZ22111 15 001  
BU91R64CH-M  
Example of Display Data  
In case of LCD layout pattern shown in Figure 41. Example COM Line Pattern and Figure 42. Example SEG Line Pattern  
and DDRAM data shown in Table 8. DDRAM Data Example, display pattern will be shown as in Figure 43. Example Display  
Pattern.  
COMA0  
COMA1  
COMA2  
COMA3  
Figure 41. Example COM Line Pattern  
SEG1 SEG3  
SEG2  
SEG5 SEG7  
SEG4 SEG6 SEG8  
SEG9  
SEG10  
Figure 42. Example SEG Line Pattern  
Table 8. DDRAM Data Example  
COMA0  
COMA1  
COMA2  
COMA3  
Address  
0
0
0
0
1
0
0
0
0
1
1
1
0
0
1
0
0
0
1
1
0
0
1
1
1
0
0
0
1
1
0
1
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah  
0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h  
(The COMscan order: COMSET P0 = “0”)  
Figure 43. Example Display Pattern  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
56/69  
 
 
 
 
BU91R64CH-M  
Initialize Sequence  
Follow the Power On sequence below to set IC to initial reset condition.  
Power On  
START Condition  
9 clock pulses in SCL with SDA = High level  
STOP Condition  
START Condition  
9 clock pulses in SCL with SDA = High level  
STOP Condition  
START Condition  
Issue Slave Address  
Issue Control Byte  
Issue CMDXTN (Enter to Extension Mode)  
Issue SWRST (Execute Software Reset).  
After Power On and before sending initialize sequence, each register value, DDRAM address and DDRAM data are random  
if POR is disabled by TR = VDD or Power On sequence cannot keep the conditions in Figure 45. Power On / Off  
Waveform.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
57/69  
TSZ22111 15 001  
08.Jan.2020 Rev.003  
BU91R64CH-M  
Start Sequence  
Start Sequence Example1  
No.  
Input  
D7 D6 D5 D4 D3 D2 D1 D0  
Descriptions  
1
2
3
Power On  
Wait 100µs  
START  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VDD = 0 V3.3 V (tR = 1 ms), VLCD = 0 V5.0 V  
Initialize BU91R64CH-M  
START Condition  
4
5
Dummy Byte  
STOP  
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
9 clock pulses in SCL with SDA = High level  
STOP Condition  
6
START  
-
-
-
-
-
-
-
-
START Condition  
7
8
Dummy Byte  
STOP  
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
9 clock pulses in SCL with SDA = High level  
STOP Condition  
9
START  
-
-
-
-
-
-
-
-
START Condition  
10  
11  
12  
13  
14  
15  
Slave Address  
Control Byte  
CMDXTN  
SWRST  
0
0
1
1
-
1
0
1
0
-
1
0
1
0
-
1
0
1
0
-
1
0
1
0
-
1
0
1
0
-
0
0
0
0
-
0
0
1
1
-
Issue Slave Address  
Issue Control Byte  
Enter to Extension Mode  
Software Reset  
STOP Condition  
START Condition  
STOP  
START  
-
-
-
-
-
-
-
-
16 Slave Address  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
-
1
0
1
1
0
0
0
1
1
1
1
1
1
1
0
-
1
0
0
1
0
1
1
0
1
1
1
1
1
1
0
-
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
-
1
0
0
1
0
0
0
0
0
1
1
0
1
0
0
-
1
0
0
1
0
0
0
0
0
1
1
0
0
0
0
-
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
-
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
-
Issue Slave Address  
Issue Control Byte  
Display Off  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Control Byte  
MODESET1  
CMDXTN  
MODESET2  
MODESET3  
CNTSET  
Enter to Extension Mode  
All detections: disabled  
Line Inversion, Normal Frequency Mode  
V0 = 1.000 x VLCD level  
Read setting (disabled)  
COM Set  
Enter to Normal Mode  
Frame frequency = 155.3 Hz  
Blink off  
Data write access to Normal Display Area  
Sub Address Set  
Address Set  
STOP Condition  
START Condition  
RDCTL  
COMSET  
CMDXTN  
FRSET  
BLKCTL1  
BLKCTL2  
SADSET  
ADSET  
STOP  
START  
Slave Address  
Control Byte  
Display Data  
Display Data  
:
-
-
-
-
-
-
-
-
0
0
*
*
:
1
1
*
*
:
1
0
*
*
:
1
0
*
*
:
1
0
*
*
:
1
0
*
*
:
0
0
*
*
:
0
0
*
*
:
Issue Slave Address  
Issue Control Byte  
Address 00h to 01h  
Address 02h to 03h  
:
35  
Display Data  
STOP  
*
-
-
0
0
1
-
*
-
-
1
0
1
-
*
-
-
1
0
0
-
*
-
-
1
0
0
-
*
-
-
1
0
1
-
*
-
-
1
0
0
-
*
-
-
0
0
0
-
*
-
-
0
0
0
-
Address 4Eh to 4Fh  
STOP Condition  
START Condition  
Issue Slave Address  
Issue Control Byte  
Display On  
36  
37  
38  
39  
40  
41  
START  
Slave Address  
Control Byte  
MODESET1  
STOP  
STOP Condition  
(*: don’t care)  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
58/69  
TSZ22111 15 001  
BU91R64CH-M  
Start Sequence continued  
Start Sequence Example2  
Initialize  
Initialize Sequence  
DISPON Sequence  
DISPON  
Display Data Write  
DISPOFF  
Display Data Write Sequence  
DISPOFF Sequence  
BU91R64CH-M is initialized with “Initialize Sequence”, starts to display with “DISPON Sequence”, updates Display Data with  
Display Data Write Sequence” and stops the display with “DISPOFF Sequence”.  
Execute “DISPON Sequence” when MCU starts display again.  
Initialize Sequence  
Input  
DISPON Sequence  
Input  
Data  
Data  
Description  
Description  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
VDD on  
START  
VLCD on  
Wait for 100µs  
START  
Dummy Byte  
STOP  
START  
Dummy Byte  
STOP  
Slave Address  
Control Byte  
CMDXTN  
MODESET2  
MODESET3  
CNTSET  
RDCTL  
COMSET  
CMDXTN  
FRSET  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
1
1
1
1
1
1
1
0
1
0
1
1
0
1
1
1
1
1
0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0
1
0
0
0
0
0
1
1
0
1
1
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Enter to Extension Mode  
All detections: disabled  
Inversion / FR setting  
Contrast Set  
Read setting  
COM Set  
Enter to Normal Mode  
Frame Frequency  
Blink setting  
Data write setting  
Display On  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Keep high in ACK bit  
Keep high in ACK bit  
START  
Slave Address  
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
1
1
Control Byte  
CMDXTN  
SWRST  
BLKCTL1  
BLKCTL2  
MODESET1  
STOP  
Enter to Extension Mode  
Software Reset  
STOP  
START  
Slave Address  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
0
0
0
1
1
1
1
1
1
1
0
1
0
0
1
0
1
1
0
1
1
1
1
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
0
0
1
0
0
0
0
0
1
1
0
1
0
0
1
0
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Display Data Write Sequence  
Input  
Data  
Control Byte  
MODESET1  
CMDXTN  
MODESET2  
MODESET3  
CNTSET  
RDCTL  
COMSET  
CMDXTN  
FRSET  
Description  
Display Off  
D7 D6 D5 D4 D3 D2 D1 D0  
Enter to Extension Mode  
All detections: disabled  
Inversion / FR setting  
Contrast Set  
Read setting  
COM Set  
Enter to Normal Mode  
Frame Frequency  
Blink setting  
Data write setting  
Sub Address Set  
Address Set  
START  
Slave Address  
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
Control Byte  
MODESET1  
CMDXTN  
MODESET2  
MODESET3  
CNTSET  
RDCTL  
COMSET  
CMDXTN  
FRSET  
BLKCTL1  
BLKCTL2  
SADSET  
ADSET  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
1
1
1
1
1
1
1
0
0
1
0
1
1
0
1
1
1
1
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
1
0
0
0
0
0
1
1
0
1
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Display On  
Enter to Extension Mode  
All detections: disabled  
Inversion / FR setting  
Contrast Set  
Read setting  
COM Set  
Enter to Normal Mode  
Frame Frequency  
Blink setting  
Data write setting  
Sub Address Set  
Address Set  
BLKCTL1  
BLKCTL2  
SADSET  
ADSET  
STOP  
START  
Slave Address  
0
0
*
1
1
*
1
0
*
1
0
*
1
0
*
1
0
*
0
0
*
0
0
*
Control Byte  
Display Data  
:
STOP  
START  
Slave Address  
STOP  
0
0
*
1
1
*
1
0
*
1
0
*
1
0
*
1
0
*
0
0
*
0
0
*
Control Byte  
Display Data  
:
STOP  
DISPOFF Sequence  
Input  
Data  
D7 D6 D5 D4 D3 D2 D1 D0  
Description  
START  
Slave Address  
Control Byte  
MODESET1  
STOP  
0
0
1
1
0
1
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
Display Off  
(*: don’t care)  
Abnormal operation may occur in BU91R64CH-M due to the effect of noise or other external factor. To avoid this  
phenomenon, it is highly recommended to input command according to sequence described above during initialization,  
Display On / Off and refresh of Display Data.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
59/69  
BU91R64CH-M  
Cautions in Power On / Off  
Please keep Power On / Off sequence as below waveform. To prevent incorrect display, malfunction and abnormal current,  
VDD must be turned on before VLCD in power up sequence. VDD must be turned off after VLCD in power down sequence.  
Please satisfies t1 > 0 ns, t2 > 0 ns.  
To refrain from data transmission is strongly recommended while power supply is rising up or falling down to prevent from the  
occurrence of disturbances on transmission and reception.  
t1  
t2  
VLCD  
VDD  
10 %  
10 %  
VDD Min  
VDD Min  
Figure 44. Recommended Power On / Off Sequence  
BU91R64CH-M has “POR” (Power On Reset) circuit and Software Reset function. Keep the following recommended Power  
On conditions in order to power up properly.  
Set power up conditions to meet the recommended tR, tF, tOFF, and VBOT specification below in order to ensure POR  
operation. Set terminal TR = VSS to enable POR circuit.  
tF  
tR  
VDD  
Recommended condition of tR, tF, tOFF, VBOT (Ta = 25 °C)  
(Note)  
(Note)  
(Note)  
(Note)  
tOFF  
tR  
1 ms  
to 500 ms to 500 ms  
tF  
tOFF  
VBOT  
VBOT  
1 ms  
Less than  
0.1 V  
VSS  
Min 20 ms  
(Note) This function is guaranteed by design, not tested in production process.  
Figure 45. Power On / Off Waveform  
If it is difficult to keep above conditions, execute the following sequence as quickly as possible after Power On. Setting TR =  
VDD disables the POR circuit, in such case, execute the following sequence. Note that however it cannot accept command  
while supply is unstable or below the minimum supply range. Note also that software reset is not a complete alternative to  
POR function.  
2-wire Serial Interface  
3-wire Serial Interface  
1. Generate two dummy bytes with START and STOP 1. Set CSB to High level.  
Conditions SDAI must be 1as data.  
VDD  
VDD  
SDAI  
SCL  
CSB  
SCK  
SDI  
Dummy Byte  
(9 SCL pulses)  
Dummy Byte  
(9 SCL pulses)  
Figure 47. CSB Timing  
START  
Condition  
STOP START  
Condition Condition  
STOP  
Condition  
Figure 46. Dummy Clock / STOP / START Condition  
2. Set CSB to low level, then execute Software Reset as  
follows:  
2. Execute Software Reset as follows  
Send START Condition  
Send CMDXTN command (FDh)  
Send SWRST command (81h)  
Send Slave Address (7Ch, 7Eh, 70h or 72h)  
Send Control Byte (00h)  
Send CMDXTN command (FDh)  
Send SWRST command (81h)  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
60/69  
TSZ22111 15 001  
BU91R64CH-M  
Display Off Operation in External Clock Mode  
Clock stop timing in Display Off  
After receiving MODESET1 Display Off (DISPOFF), BU91R64CH-M enters to DISPOFF sequence synchronized with frame  
then Segment and Common terminals output VSS level.  
Therefore, in External Clock Mode, it is necessary to input the external clock (minimum 26 clock pulses) based on each  
Frame Frequency setting after sending MODESET1 DISPOFF command.  
Command  
OSCIO  
MODESET1 DISPOFF  
To Input External Clock at Least 26  
clock pulses or more  
Frame  
SEG  
VSS  
VSS  
VSS  
VSS  
VSS  
COMA0  
COMA1  
COMA2  
COMA3  
Display On  
Display Off  
The last display  
frame after receiving  
MODESET1  
Figure 48. External Clock Stop Timing  
In case of External Clock Mode, a clock signal shall be always supplied to BU91R64CH-M. Removing the clock may freeze  
the LCD in a DC state which is not suitable for the LCD.  
In Multi-chip Structure in Internal Clock Mode  
In multi-chip structure and in internal clock mode, clock signal for Slave 1 to Slave 3 display are provided by Master IC. So if  
Master IC receives Display Off before Slave ICs, the clock from Master IC will stop and Slave ICs hold the SEG and COM  
level not VSS level, then causes abnormal display. To prevent this issue, DISPOFF must be sent to Slave ICs earlier than to  
Master IC.  
DISPOFF in Slave 1 to Slave 3 must be set earlier than Master IC to  
prevent incorrect display in the panels driven by Slave 1 to Slave 3 ICs.  
MODESET1 DISPOFF  
for Slave1 to Slave3  
MODESET1 DISPOFF  
for Master  
Command  
Frame  
Master  
SEG  
VSS  
VSS  
COMA0  
OSCIO  
Display On in Master IC  
Display Off  
Slave1 to Slave3  
SEG  
VSS  
VSS  
COMA0  
Display On in Slave 1 to Slave3 IC  
Display Off  
Figure 49. DISPOFF Sequence in Multi-chip Structure  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
61/69  
TSZ22111 15 001  
BU91R64CH-M  
Note on The Multiple Device Connection to 2-wire Serial Interface.  
Do not access the other device without power supply (VDD) to the BU91R64CH-M.  
MCU  
BU91R64CH-M  
Other Device  
Figure 50. Example of BUS Connection  
To control the slope of the falling edge, a capacitor is connected between gate and drain of a NMOS transistor as shown in  
the following figure. The gate is in a high-impedance state when the power supply (VDD) is not supplied.  
In this condition, the gate voltage is pulled up by the current flow through the capacitance as a result of the SDAO signal's  
transition from low to high.  
The NMOS transistor turns on and draws some current (Ids) from the SDAO if the gate voltage (Vg) is higher than the  
threshold voltage (Vth).  
An external resistor (R) is connected between the power line and SDAO line to keep the SDA line as logic high.But the line  
cannot be kept as logic high if the voltage drop (R*Ids) is large.  
Apply power supply (VDD) to BU91R64CH-M when the multiple devices are on the same bus.  
VDD  
Z = 1/jωC  
SDAO  
Vg  
Internal Circuit  
Figure 51. SDA Output Cell Structure  
Note in Case that the SDA is stuck at LOW  
Normally, BU91R64CH-M SDA status is controlled by MCU, so it set SDA to VSS level only in ACK timing and in output “0”  
case during Read Mode.  
If the data line (SDAO) is stuck at LOW by BU91R64CH-M unexpectedly, MCU should send two dummy bytes with START  
and STOP Conditions as show in Figure 52. Recovery Sequence from SDA Stuck. BU91R64CH-M will release SDAO  
stuck within this sequence.  
SDAO will be released with in this sequence  
SDAO  
SDAI  
SCL  
Dummy Byte  
Dummy Byte  
(9 SCL pulses)  
(9 SCL pulses)  
START  
Condition  
STOP START  
Condition Condition  
STOP  
Condition  
Figure 52. Recovery Sequence from SDA Stuck  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
62/69  
 
BU91R64CH-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation  
of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage.  
Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin  
lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power  
supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have  
voltages within the values specified in the electrical characteristics of this IC.  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
63/69  
TSZ22111 15 001  
08.Jan.2020 Rev.003  
BU91R64CH-M  
Operational Notes continued  
12. Disturbance Light  
In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics  
may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that  
will prevent the chip from being exposed to light.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
64/69  
TSZ22111 15 001  
BU91R64CH-M  
Ordering Information  
B U 9 1 R 6 4 C H  
-
M 3 B W  
Part Number  
Product Rank  
M: for Automotive  
Minimum Order Quantity (MOQ)  
Orderable Part Number  
BU91R64CH-M3BW  
Minimum Order Quantity  
900 pcs  
Marking Diagram  
Product control number  
Y
X
(Bump side down)  
Refer to PAD Arrangement for the definition of X/Y coordinates.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
65/69  
TSZ22111 15 001  
BU91R64CH-M  
Packing Quantity  
Packing QTY.  
(Standard QTY)  
Tray:  
Block:  
Vacuum Pack:  
90 pcs / tray  
450 pcs / block (1 block = 5 trays)  
450 pcs / vacuum pack (1 vacuum pack = 1 blocks)  
Inner Box  
Outer Box  
900 pcs / inner box (1 inner box = 2 vacuum packs)  
1,800 pcs / outer box (1 outer box = 2 inner boxes)  
Pellet Drawing  
PAD No.160  
PAD No.1  
Input Side  
Output Side  
Y
X
PAD No.77  
PAD No.76  
(Bump side up)  
Refer to PAD Arrangement for the definition of X/Y coordinates.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
66/69  
TSZ22111 15 001  
BU91R64CH-M  
Package Condition  
Products should be aligned to the same direction with Bump side up.  
“Chamfering” side is aligned with X/Y direction of the chip as shown in the following drawing.  
C
RH21010466R-040A  
Y
X
Refer to PAD Arrangement for the definition of X/Y coordinates.  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
67/69  
TSZ22111 15 001  
BU91R64CH-M  
Physical Dimension Tray Information  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
68/69  
BU91R64CH-M  
Revision History  
Data  
Revision  
001  
Changes  
18.May. 2018  
New Release  
Updating Minimum Order Quantity and Packing Quantity  
Minor modifications by formality check  
Updating Minimum Order Quantity and Packing Quantity  
Minor modifications by formality check  
13.Sep. 2019  
08.Jan. 2020  
002  
003  
www.rohm.com  
TSZ02201-0P3P0D301690-1-2  
08.Jan.2020 Rev.003  
© 2016 ROHM Co., Ltd. All rights reserved.  
69/69  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BU91R65CH-M

本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。而且,具备显示数据及指令寄存器读取功能,可检测出因噪声导致的误动作。除此之外,还支持MCU通信校验和、玻璃破碎、逻辑电路状态、SEG/COM端子拨动动作的异常检测。使用ITO电阻测量端子,更方便进行COG贴装不良的管理。还支持+105℃动作,符合车载应用要求的AEC-Q 100标准。
ROHM

BU920

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR

BU920

isc Silicon NPN Darlington Power Transistor
ISC

BU92001KN

Silicon Monolithic Integrated Circuit
ROHM

BU92002GU

IrDA SIR, FIR Controller IC
ROHM

BU9206

PS / 2 Mouse Controller
ROHM

BU920P

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR

BU920PFI

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR

BU920PFI

Silicon NPN Darlington Power Transistor
ISC

BU920T

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR

BU920T

isc Silicon NPN Darlington Power Transistor
ISC

BU921

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR