BU97501KV-E2 [ROHM]

Liquid Crystal Driver,;
BU97501KV-E2
型号: BU97501KV-E2
厂家: ROHM    ROHM
描述:

Liquid Crystal Driver,

驱动 接口集成电路
文件: 总33页 (文件大小:1146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Multifunction LCD Segment Driver  
BU97501KV  
MAX 204 segments (51SEG×4COM)  
Features  
Key Specifications  
„
Key input function for up to 30 keys (A key scan is  
performed only when a key is pressed.)  
Either 1/4 or 1/3 duty can be selected  
1/4 duty driveUp to 204 segments  
1/3 duty driveUp to 156 segments  
Integrated RAM for display data (DDRAM)  
Segment/GPO (Max 4port) output mode selectable  
Support standby mode  
Supply Voltage Range:  
2.7V to 6.0V  
4.5V to 6.0V  
-40°C to +85°C  
LCD drive power supply Range:  
Operating Temperature Range:  
Max Segments:  
Display Duty:  
Bias:  
„
204 Segments  
1/3, 1/4 selectable  
1/2, 1/3 selectable  
„
„
„
„
„
„
„
Interface:  
3wire serial interface  
Package  
Integrated Power-on Reset circuit  
Integrated Oscillator circuit  
No external component  
VQFP64  
W(Typ.)×D(Typ.)×H(Max.)  
Low power consumption design  
Applications  
„
„
„
„
„
„
„
„
Telephone  
FAX  
Portable equipment (POS, ECR, PDA etc.)  
DSC  
DVC  
Car audio  
Home electrical appliance  
Meter equipment  
VQFP64  
12.00mm x 12.00mm x 1.60mm  
Typical Application Circuit  
Key Matrix  
(P1)  
(General purpose ports)  
(P2)  
(For use control of backlight)  
KI1/S48  
(P4)  
KS1/S42  
|
|
KI5/S52  
KS6/S47  
VDD  
COM1  
COM2  
COM3  
+5V  
P1/S1  
P2/S2  
(Note1)  
+5.5V  
VLCD  
P4/S4  
S5  
(Note1)  
LCD Panel  
(Up to 204  
Segments)  
OSC  
RESB  
From  
Controller  
CSB  
SCL  
SD  
S40  
COM4/S41  
To Controller  
DO  
(Note1) Insert capacitors between VDD/VLCD and VSS C0.1uF.  
Figure 1. Typical Application Circuit  
Product structureSilicon monolithic integrated circuit This product is not designed for protection against radioactive rays.  
www.rohm.com  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
© 2013 ROHM Co., Ltd. All rights reserved.  
1/30  
TSZ2211114001  
BU97501KV  
Daattaasshheeeett  
Block Diagram / Pin Configuration / Pin Description  
LCD VOLTAGE  
GENERATOR  
VLCD  
SEGMENT DRIVER & LATCH  
49  
32  
KS5/  
S
4
6
S32  
COMMON  
DRIVER  
+
-
KS6/S47  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
KI1/S48  
+
-
SHIFT REGISTER  
KI2/S49  
KI3/S50  
KI4/S51  
KI5/S52  
CLOCK  
GENERATOR  
OSC  
CONTROL  
REGISTER  
OSC  
DO  
RESB  
DO  
CSB  
SCL  
SD  
3-SPI  
INTERFACE  
KEY BUFFER  
SD  
SCL  
CSB  
VDD  
VLCD  
VDD  
VSS  
64  
17  
P.O.R  
KEY SCAN  
Figure 2. Block Diagram  
Figure 3. Pin Configuration (TOP VIEW)  
Terminal  
No.  
Handling When  
Terminal  
I/O  
Functions  
Unused  
VDD  
VSS  
VSS  
-
CSB  
SCL  
SD  
59  
60  
61  
63  
I
I
I
-
Chip select : “L” active  
Serial data transfer clock  
Input serial data  
VDD  
Power Supply for the logic  
External Clock Input:  
Fix to low or open when the internal clock mode setting.  
Output data  
OSC  
DO  
56  
58  
I/O  
O
OPEN/VSS  
OPEN  
Reset Input:  
RESB=“L” : Display is disabled.  
RESB=“H” : Display is controllable.  
RESB  
57  
I
VDD  
However, serial data can not be transferred when RESB is “L”.  
VSS  
VLCD  
64  
62  
-
-
-
-
Power supply pin. Must be connected to ground.  
Power Supply for the LCD driver  
COMMON output for LCD driver  
COM1~COM3  
41 to 43  
O
OPEN  
COMMON / SEGMENT output for LCD driver.  
COM4/S41  
44  
O
OPEN  
Assigned as SEGMENT output in 1/3Duty mode.  
SEGMENT output for LCD driving / General Purpose Output  
S1/P1S4/P4 pins can also be used as General Purpose  
Outputs when set up by the control data.  
S1/P1~S4/P4  
S5~S40  
1 to 4  
O
O
OPEN  
OPEN  
5 to 40  
SEGMENT output for LCD driver  
Key scan outputs  
Although normal key scan timing lines require diodes to be  
inserted in the timing lines to prevent shorts, since these  
outputs are unbalanced CMOS transistor outputs, these  
outputs will not be damaged by shorting when these outputs  
are used to form a key matrix.  
KS1/S42~KS6/S47 45 to 50  
O
OPEN  
The KS1/S42 to KS6/S47 pins can be used as segment  
outputs when specified by the control data.  
Key scan inputs  
These pins have built-in pull-down resistors.  
The KI1/S48 to KI5/S52 pins can be used as segment outputs  
when specified by the control data.  
KI1/S48~KI5/S52  
51 to 55  
I/O  
OPEN  
Table 1. Pin Description  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
2/30  
BU97501KV  
Daattaasshheeeett  
Absolute Maximum Ratings (Ta=25°C, VSS=0.0V)  
Parameters  
Symbol  
Ratings  
Unit  
Remarks  
Power Supply voltage 1  
Power Supply voltage 2  
Power Dissipation  
VDD  
VLCD  
Pd  
-0.5 to +7.0  
-0.5 to +7.0  
1.00(Note2)  
V
V
Power supply  
LCD drive voltage  
W
V
Input voltage range  
VIN  
-0.5 to VDD+0.5  
Operating temperature  
range  
Topr  
Tstg  
-40 to +85  
°C  
°C  
Storage temperature range  
-55 to +125  
(Note2) When operated higher than Ta=25°C, subtract 10mW per degree. (Using ROHM standard board)  
(Board size: 70mm×70mm×1.6mm material: FR4 board copper foil: land pattern only)  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated  
over the absolute maximum ratings.  
Recommended Operating Conditions  
Ratings  
Parameters  
Symbol  
Unit  
Remarks  
MIN  
2.7  
TYP  
MAX  
6.0  
Power Supply voltage 1  
Power Supply voltage 2  
VDD  
-
-
V
V
Power supply  
LCD driver voltage  
VLCD  
4.5  
6.0  
(Note3) The power supply condition shall be met VLCD VDD.  
Electrical Characteristics  
(Unless otherwise specified, Ta=-40°C to +85°C, VDD=2.7 to 6.0V, VLCD=4.5 to 6.0V, VSS=0.0V)  
Limits  
Parameters  
“H” Input Voltage  
“L” Input Voltage  
“H” Input Current  
“L” Input Current  
Input Floating Voltage  
Pull-down Resistance  
Symbol  
Unit  
Conditions  
MIN  
0.7VDD  
VSS  
-
-5.0  
TYP  
-
-
-
-
-
MAX  
VIH  
VIL  
IIH  
IIL  
VIF  
RPD  
VDD  
0.3VDD  
5.0  
V
V
µA  
µA  
V
SD, SCL, CSB, RESB, OSC  
SD, SCL, CSB, RESB, OSC  
SD, SCL, CSB, RESB, OSC, VI=5.5V  
SD, SCL, CSB, RESB, OSC, VI=0.0V  
KI1 to KI5  
-
-
50  
0.05VDD  
250  
100  
kΩ  
KI1 to KI5, VLCD=5.0V  
Output Off Leakage Current IOFFH  
-
-
6.0  
µA  
DO, Vo=5.5V  
VOH1 VLCD-1.0  
VOH2 VLCD-1.0  
VOH3 VLCD-1.0  
VOH4 VLCD-1.0  
-
-
-
-
-
-
-
-
-
-
-
-
P1 to P4, Io=-1mA  
S1 to S52, Io=-20µA  
COM1 to COM4, Io=-100µA  
KS1 to KS6, Io=-500µA  
P1 to P4, Io=1mA  
S1 to S52, Io=20µA  
COM1 to COM4, Io=100µA  
KS1 to KS6, Io=25µA  
DO, Io=1mA  
S1 to S52  
1/2 Bias, Io=±20µA  
COM1 to COM4  
1/2 Bias, Io=±100µA  
S1 to S52  
1/3 Bias, Io=±20µA  
S1 to S52  
1/3 Bias, Io=±20µA  
COM1 to COM4  
1/3Bias, Io=±100µA  
COM1 to COM4  
1/3 Bias, Io=±100µA  
Input Pin ALL ”L”  
Display off, Disable oscillator  
“H” Level Output Voltage  
“L” Level Output Voltage  
V
-
VOL1  
VOL2  
VOL3  
VOL4  
VOL5  
-
-
-
-
-
1.0  
1.0  
1.0  
1.0  
0.5  
V
V
1/2VLCD  
-1.0  
1/2VLCD  
-1.0  
2/3VLCD  
-1.0  
1/3VLCD  
-1.0  
2/3VLCD  
-1.0  
1/3VLCD  
-1.0  
1/2VLCD  
+1.0  
1/2VLCD  
+1.0  
2/3VLCD  
+1.0  
1/3VLCD  
+1.0  
2/3VLCD  
+1.0  
1/3VLCD  
+1.0  
VMID1  
VMID2  
VMID3  
VMID4  
VMID5  
VMID6  
IstVDD  
IstVLCD  
IVDD1  
IVLCD1  
IVLCD2  
-
-
-
LCD Bias Voltage  
-
-
-
-
-
-
-
-
1
1
2
40  
65  
5
5
Input Pin ALL ”L”  
Display off, Disable oscillator  
VDD=VLCD=5.0V, Output unloaded  
fFR=80Hz  
VDD=VLCD=5.0V,Output unloaded  
1/2 Bias, fFR=80Hz  
VDD=VLCD=5.0V, Output unloaded  
1/3 Bias, fFR=80Hz  
Current Consumption  
10  
95  
140  
µA  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
3/30  
BU97501KV  
Daattaasshheeeett  
Electrical Characteristics – continued  
Oscillation Characteristics (Ta=-40°C to +85°C, VDD=2.7 to 6.0V, VLCD=4.5V to 6.0V, VSS=0.0V)  
Limits  
Parameters  
Symbol  
Unit  
Conditions  
MIN  
56  
TYP  
80  
MAX  
104  
92  
Frame Frequency1  
Frame Frequency2  
fFR1  
fFR2  
Hz  
Hz  
VLCD=4.5V to 6.0V, fFR = 80Hz setting  
VLCD=5.0V, fFR = 80Hz setting  
68  
80  
External clock mode  
(DRV CTRL1 setting : P2P1=11)  
External Clock Frequency  
fFR3  
kHz  
30  
-
600  
Frame frequency is decided external frequency and dividing ratio of DRV CTRL1 setting.  
Reference Data】  
100  
VDD = 4.0V Setting  
90  
VLCD = 6.0V  
VLCD = 5.0V  
80  
VLCD = 4.5V  
70  
60  
-40 -20  
0
20  
40 60  
80  
Temperature[ ]  
Figure 4. Typical temperature characteristics  
MPU interface Characteristics (Ta=-40 to +85°C, VDD=2.7V to 6.0V, VLCD=4.5 to 6.0V, VSS=0.0V)  
Limits  
Parameters  
Symbol  
Unit  
Conditions  
MIN  
-
TYP  
MAX  
Input Rise Time  
tr  
-
-
-
-
-
-
-
-
-
-
-
-
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Input Fall Time  
tf  
-
80  
SCL Cycle Time  
“H” SCL Pulse Width  
“L” SCL Pulse Width  
SD Setup Time  
tSCYC  
tSHW  
tSLW  
tSDS  
tSDH  
tCSS  
tCSH  
tCHW  
tDC  
400  
100  
100  
20  
20  
50  
50  
50  
-
-
-
-
-
SD Hold Time  
-
-
CSB Setup Time  
CSB Hold Time  
-
“H” CSB Pulse Width  
DO Output Delay Time  
DO Rise Time  
-
1.5  
1.5  
DO RPU=4.7kΩ, CL=10pF (Note4)  
DO RPU=4.7kΩ, CL=10pF (Note4)  
tDR  
-
(Note4) Since DO can be an open-drain output; these values depend on the resistance of the pull-up resistor RPU and the load capacitance CL.  
tCHW  
CSB  
tCSS  
tCSH  
tr  
tSCYC  
tf  
tSLW  
SCL  
tSHW  
tSDS  
tSDH  
SD  
DO  
tDR  
tDC  
Figure 5. 3-wire Serial Interface Timing  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
4/30  
BU97501KV  
Daattaasshheeeett  
I/O equivalent circuit  
Figure 6. I/O equivalent circuit  
Function descriptions  
Command and Data Transfer Method  
3-SPI (3-wire Serial Interface)  
This device is controlled by a 3-wire signal (CSB, SCL, and SD).  
First, Interface counter is initialized with CSB=“H"  
Setting CSB=”L” enables SD and SCL inputs.  
First, Interface counter is initialized with CSB=“H", and then CSB=”L” makes SD and SCL input enable.  
The protocol of 3-SPI transfer is shown as follows.  
Each command starts with D7 bit as MSB data, followed by D6 to D0 (this is while CSB =”L”).  
(Internal data is latched at the rising edge of SCL, then the data is converted to an 8-bit parallel data at the falling edge of  
the 8th CLK.)  
When you rise CSB = “H”, in case command less than 8bit, command and data are canceled.  
(1) Write Mode  
Figure 7. 3-SPI Data Transfer Format  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
5/30  
BU97501KV  
Daattaasshheeeett  
(2) Read Mode (KEY RD command only)  
The following occurs when Key Read by KEY RD command.  
If KEY RD command is recognized at the rising edge of 8th CLK, it enters Read mode after the falling edge of 8th CLK  
and then key data is output through DO.  
Setting CSB=”H” can exit Read mode after or during Serial Data Transfer.  
Figure 8. Serial Data Output Format  
Command Transfer Method  
After CSB=”H””L”, the 1st byte shall be a command.  
Please refer to “Command Table”.  
When set command except Data write(DATAWR), the next byte will be (continuously) a command.  
When set DATAWR command, the following bytes will be display data bytes.  
Command  
Command  
Command  
Command  
(DATAWR)  
Display Data  
Once it becomes display data transfer mode, it will not be able to send command.  
If you send command again, please rise CSB=”H”.  
Display Data Transfer Method  
This LSI has Display Data RAM (DDRAM) of 51×4=204bit.  
The relationship between data input and display data, DDRAM data and address are as follows.  
Command  
00001010  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10 D11 D12 D13  
Display Data  
Display data will be stored in DDRAM. The address to be written is specified by Address set (ADSET) command and the  
address is automatically incremented in every 4bit data if 1/4 Duty mode or in every 3 bit if 1/3 Duty mode respectively.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
6/30  
BU97501KV  
Daattaasshheeeett  
1/3 Duty Mode  
DDRAM Address/Segment Outputs  
...  
...  
00h  
D1  
D2  
D3  
S1  
01h  
D4  
D5  
D6  
S2  
02h  
D7  
D8  
D9  
S3  
27h  
D118  
D119  
D120  
S40  
28h  
D121  
D122  
D123  
S41  
29h  
D124  
D125  
D126  
S42  
31h  
32h  
33h  
0
1
2
D148 D151  
D149 D152  
D150 D153  
D154 COM1  
D155 COM2  
D156 COM3  
S52  
BIT  
S50  
S51  
Transferred data is written to the DDRAM by every 3bits. The write operation is cancelled if it changes CSB=”L””H”  
before 3bits data transfer.  
1/4 Duty Mode  
DDRAM Address/ Segment Outputs  
...  
...  
00h  
D1  
D2  
D3  
D4  
S1  
01h  
D5  
D6  
D7  
D8  
S2  
02h  
D9  
27h  
D157  
D158  
D159  
D160  
S40  
28h  
D161  
D162  
D163  
D164  
S42  
29h  
D165  
D166  
D167  
D168  
S43  
30h  
31h  
32h  
0
1
2
3
D193 D197  
D194 D198  
D195 D199  
D196 D200  
D201 COM1  
D202 COM2  
D203 COM3  
D204 COM4  
S52  
D10  
D11  
D12  
S3  
BIT  
S50  
S51  
Transferred Data is written to the DDRAM by every 4bits. The write operation is cancelled if it changes CSB=”L””H”  
before 4bits data transfer.  
Relationship between Display Data and Segment Output Pins  
1/3 Duty Mode  
output  
terminal  
output  
terminal  
COM1  
COM2  
COM3  
Address  
COM1  
COM2  
COM3  
address  
S1/P1  
S2/P2  
S3/P3  
S4/P4  
S5  
D1  
D2  
D3  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
S27  
S28  
D79  
D82  
D80  
D83  
D81  
D84  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
D4  
D5  
D6  
D7  
D8  
D9  
S29  
D85  
D86  
D87  
D10  
D13  
D16  
D19  
D22  
D25  
D28  
D31  
D34  
D37  
D40  
D43  
D46  
D49  
D52  
D55  
D58  
D61  
D64  
D67  
D70  
D73  
D76  
D11  
D14  
D17  
D20  
D23  
D26  
D29  
D32  
D35  
D38  
D41  
D44  
D47  
D50  
D53  
D56  
D59  
D62  
D65  
D68  
D71  
D74  
D77  
D12  
D15  
D18  
D21  
D24  
D27  
D30  
D33  
D36  
D39  
D42  
D45  
D48  
D51  
D54  
D57  
D60  
D63  
D66  
D69  
D72  
D75  
D78  
S30  
D88  
D89  
D90  
S31  
D91  
D92  
D93  
S6  
S32  
D94  
D95  
D96  
S7  
S33  
D97  
D98  
D99  
S8  
S34  
D100  
D103  
D106  
D109  
D112  
D115  
D118  
D121  
D124  
D127  
D130  
D133  
D136  
D139  
D142  
D145  
D148  
D151  
D154  
D101  
D104  
D107  
D110  
D113  
D116  
D119  
D122  
D125  
D128  
D131  
D134  
D137  
D140  
D143  
D146  
D149  
D152  
D155  
D102  
D105  
D108  
D111  
D114  
D117  
D120  
D123  
D126  
D129  
D132  
D135  
D138  
D141  
D144  
D147  
D150  
D153  
D156  
S9  
S35  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S36  
S37  
S38  
S39  
S40  
COM4/S41  
KS1/S42  
KS2/S43  
KS3/S44  
KS4/S45  
KS5/S46  
KS6/S47  
KI1/S48  
KI2/S49  
KI3/S50  
KI4/S51  
KI5/S52  
(Note5) In case of S1/P1~S4/P4, COM4/S41, KS1/S42~KS6/S47 and KI1/S48~KI5/S52 are selected for segment output.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
7/30  
BU97501KV  
Daattaasshheeeett  
For example, S11 output case  
Bits in a DDRAM  
Segment Output Pin (S11)  
D31  
0
D32  
0
D33  
0
Off-state of the LCD elements corresponding to COM1, 2 and 3  
On-state of the LCD element corresponding to COM3  
On-state of the LCD element corresponding to COM2  
On-state of the LCD elements corresponding to COM2 and 3  
On-state of the LCD element corresponding to COM1  
On-state of the LCD elements corresponding to COM1 and 3  
On-state of the LCD elements corresponding to COM1 and 2  
On-state of the LCD elements corresponding to COM1, 2 and 3  
0
0
1
1
0
0
1
1
1
0
0
0
1
1
0
1
1
1
0
1
1
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
8/30  
BU97501KV  
Daattaasshheeeett  
1/4 duty  
output  
terminal  
output  
terminal  
COM1 COM2 COM3 COM4 Address  
COM1 COM2 COM3 COM4 address  
S1/P1  
S2/P2  
S3/P3  
S4/P4  
S5  
D1  
D2  
D3  
D4  
D8  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
S27  
S28  
D105 D106 D107 D108  
D109 D110 D111 D112  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
D5  
D6  
D7  
D9  
D10  
D14  
D18  
D22  
D26  
D30  
D34  
D38  
D42  
D46  
D50  
D54  
D58  
D62  
D66  
D70  
D74  
D78  
D82  
D86  
D90  
D94  
D98  
D11  
D15  
D19  
D23  
D27  
D31  
D35  
D39  
D43  
D47  
D51  
D55  
D59  
D63  
D67  
D71  
D75  
D79  
D83  
D87  
D91  
D95  
D99  
D12  
D16  
D20  
D24  
D28  
D32  
D36  
D40  
D44  
D48  
D52  
D56  
D60  
D64  
D68  
D72  
D76  
D80  
D84  
D88  
D92  
D96  
D100  
S29  
D113 D114 D115 D116  
D117 D118 D119 D120  
D121 D122 D123 D124  
D125 D126 D127 D128  
D129 D130 D131 D132  
D133 D134 D135 D136  
D137 D138 D139 D140  
D141 D142 D143 D144  
D145 D146 D147 D148  
D149 D150 D151 D152  
D153 D154 D155 D156  
D157 D158 D159 D160  
D161 D162 D163 D164  
D165 D166 D167 D168  
D169 D170 D171 D172  
D173 D174 D175 D176  
D177 D178 D179 D180  
D181 D182 D183 D184  
D185 D186 D187 D188  
D189 D190 D191 D192  
D193 D194 D195 D196  
D197 D198 D199 D200  
D201 D202 D203 D204  
D13  
D17  
D21  
D25  
D29  
D33  
D37  
D41  
D45  
D49  
D53  
D57  
D61  
D65  
D69  
D73  
D77  
D81  
D85  
D89  
D93  
D97  
S30  
S31  
S6  
S32  
S7  
S33  
S8  
S34  
S9  
S35  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S36  
S37  
S38  
S39  
S40  
KS1/S42  
KS2/S43  
KS3/S44  
KS4/S45  
KS5/S46  
KS6/S47  
KI1/S48  
KI2/S49  
KI3/S50  
KI4/S51  
KI5/S52  
D101 D102 D103 D104  
(Note6) In case of S1/P1~S4/P4, KS1/S42~KS6/S47 and KI1/S48~KI5/S52 are selected for segment output.  
For example, S11 output case  
Bits in the DDRAM  
Segment Output Pin (S11)  
D41  
0
D42  
0
D43  
0
D44  
0
Off-state of the LCD elements corresponding to COM1,2 ,3 and4  
On-state of the LCD element corresponding to COM4  
0
0
0
1
0
0
1
0
On-state of the LCD element corresponding to COM3  
0
0
1
1
On-state of the LCD elements corresponding to COM3 and 4  
On-state of the LCD element corresponding to COM2  
0
1
0
0
0
1
0
1
On-state of the LCD elements corresponding to COM2 and 4  
On-state of the LCD elements corresponding to COM2 and 3  
On-state of the LCD elements corresponding to COM2,3 and 4  
On-state of the LCD element corresponding to COM1  
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
On-state of the LCD elements corresponding to COM1 and 4  
On-state of the LCD elements corresponding to COM1 and 3  
On-state of the LCD elements corresponding to COM1, 3 and 4  
On-state of the LCD elements corresponding to COM1 and 2  
On-state of the LCD elements corresponding to COM1,2 and 4  
On-state of the LCD elements corresponding to COM1,2 and 3  
On-state of the LCD elements corresponding to COM1,2 3 and 4  
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
9/30  
BU97501KV  
Daattaasshheeeett  
Serial Data Output  
Figure 9. Serial Data Output  
KD1 to KD30: Key Data  
SA: Sleep Acknowledge Data  
Key Data Read Command (KEY RD): 1000_0101  
(Note7) If a key data operation is executed when DO is high, the read key data (KD1 to KD30) and sleep acknowledge data(SA) will be invalid.  
Output Data  
KD1 to KD30: Key Data  
When a key matrix of up to 30 keys is formed from the KS1 to KS6 output pins and the KI1 to KI5 input pins and one of  
those keys is pressed, the key output data corresponding to that key will be set to 1. The table shows the relationship  
between those pins and the key data bits.  
KI1  
KI2  
KI3  
KI4  
KI5  
KS1  
KS2  
KS3  
KS4  
KS5  
KS6  
KD1  
KD2  
KD3  
KD4  
KD5  
KD6  
KD7  
KD8  
KD9  
KD10  
KD15  
KD20  
KD25  
KD30  
KD11  
KD16  
KD21  
KD26  
KD12  
KD17  
KD22  
KD27  
KD13  
KD18  
KD23  
KD28  
KD14  
KD19  
KD24  
KD29  
SA: Sleep Acknowledge Data  
This output data is used to set the state when the key is pressed. In this case, DO will go to the low level. If serial data is  
input during this period and the mode is set (normal mode or sleep mode), the IC will be set to that mode. SA is set to 0  
in the sleep mode and to 1 in the normal mode.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
10/30  
BU97501KV  
Daattaasshheeeett  
Key Scan Operation  
Key Scan Timing  
The key scan period is 288T(s). To reliably determine the on/off state of the keys, the BU97501KV scans the keys twice  
and determines that a key has been pressed when the key data agrees. It outputs a key data read request (a low level on  
DO) 615T(s) after starting a key scan. If the key data does not agree and a key is pressed at that point, it scans the keys  
again. Thus, BU97501KV cannot detect a key press shorter than 615T(s).  
*
*
*
*
*
1
1
KS1  
KS2  
KS3  
KS4  
KS5  
KS6  
2
2
3
3
4
4
5
5
6
6
576 T[S]  
1
fosc  
T=  
Figure 10. Key Scan Timing  
Normal Mode  
KS1/S42 - KS6/S47 pins are set high.  
When a key is pressed, a key scan is started and the keys are scanned until all keys are released. Multiple key presses  
are recognized by determining whether multiple key data bits are set.  
If a key is pressed for longer than 615 T(s) (Where T=1/fosc (When External clock input, fosc is a quarter of external  
clock)), the BU97501KV outputs a key data read request (a low level on DO) to the controller. The controller  
acknowledges this request and reads the key data. However, if CSB is ”L” during a serial data transfer, DO will be set  
high.  
After the controller reads the key data, the key data read request is cleared (DO is set high) and BU97501KV performs  
another key scan. Also note that DO can be controlled to be an open-drain output or a CMOS output. If set to be an  
open-drain output, a pull-up resistor (between 1 and 10K) is required.  
Figure 11. Key scan operation in normal mode  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
11/30  
BU97501KV  
Daattaasshheeeett  
Sleep Mode  
KS1/S42 - KS6/S47 pins are set high or low by SLP CTRL P3,P2 data. (Refer to the SLP CTRL description).  
If a key on one of the lines corresponding to a KS1 to KS6 pin which is set high is pressed, the oscillator on the OSC pin  
is started and a key scan is performed. Keys are scanned until all keys are released. Multiple key presses are recognized  
by determining whether multiple key data bits are set.  
If a key is pressed for longer than 615T(s)(Where T=1/fosc (When External clock input, fosc is a quarter of external  
clock)) the BU97501KV outputs a key data read request (a low level on DO) to the controller. The controller  
acknowledges this request and reads the key data. However, if CSB is ”L” during a serial data transfer, DO will be set  
high.  
After the controller reads the key data, the key data read request is cleared (DO is set high) and the BU97501KV  
performs another key scan. However, this does not clear sleep mode. Also note that DO can be controlled to be an  
open-drain output or a CMOS output. During open-drain output selection, DO is an open-drain output so a pull-up  
resistor (between 1 Kand 10K) is required.  
Sleep mode key scan example  
Example: when SLP CTRL P3= [0], P2= [1] (sleep with only KS6 high)  
(Note8) These diodes are required to reliably recognize multiple key presses on the KS6 line when sleep mode state with only KS6 high, as in the  
above example. That is, these diodes prevent incorrect operations due to sneak currents in the KS6 key scan output signal when keys on the KS1 to  
KS5 lines are pressed at the same time.  
Figure 12. Key scan operation in sleep mode  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
12/30  
BU97501KV  
Daattaasshheeeett  
Multiple Key Presses  
Although the BU97501KV is capable of key scanning without inserting diodes for dual key presses, triple key presses on  
the KI1 to KI5 input pin lines, or multiple key presses on the KS1 to KS6 output pin lines, multiple presses other than  
these cases may result in keys that were not pressed recognized as having been pressed. Therefore, a diode must be  
inserted in series with each key. Applications that do not recognize multiple key presses of three or more keys should  
check the key data for three or more 1 bit and ignore such data.  
OSCILLATOR  
Several kinds of clock for logic and analog circuits are generated from internal oscillation circuit or external clock.  
The OSC pins are open if the internal oscillator is used.  
(Note9) To use external clock mode, please set in DRV CTRL1 command.  
Clock Input  
OSC  
VSS  
OSC  
OPEN  
BU97501KV  
BU97501KV  
Figure 13. Internal clock mode  
Figure 14. External clock mode  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
13/30  
BU97501KV  
Daattaasshheeeett  
LCD Driver Bias/Duty Circuit  
This LSI generates LCD driving voltage with on-chip Buffer AMP.  
And it can drive LCD at low power consumption.  
* 1/3 or 1/2Bias and line or frame inversion mode can be selected by DRV CTRL2.  
* 1/4 or 1/3Duty can be selected by DRV CTRL1 command.  
Refer to “LCD waveform” about each LCD waveform.  
LCD waveform  
1/4duty, 1/3bias  
Line inversion  
Frame inversion  
Figure 15. LCD waveform in line inversion  
Figure 16. LCD waveform in frame inversion  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
14/30  
BU97501KV  
Daattaasshheeeett  
1/4duty, 1/2bias  
Line inversion  
Frame inversion  
Figure 17. LCD waveform in line inversion  
Figure 18. LCD waveform in frame inversion  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
15/30  
BU97501KV  
Daattaasshheeeett  
1/3duty, 1/3bias  
Line inversion  
Frame inversion  
Figure 19. LCD waveform in line inversion  
Figure 20. LCD waveform in frame inversion  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
16/30  
BU97501KV  
Daattaasshheeeett  
1/3duty, 1/2bias  
Line inversion  
Frame inversion  
Figure 21. LCD waveform in line inversion  
Figure 22. LCD waveform in frame inversion  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
17/30  
BU97501KV  
Daattaasshheeeett  
Command Table  
BIN  
Command.  
Descriptions  
D7 D6 D5 D4 D3 D2 D1 D0  
SLP CTRL  
SEG CTRL  
DRV CTRL1  
DRV CTRL2  
DRV CTRL3  
KEY RD  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
1
0
0
1
0
0
1
0
1
1
1
1
0
1
0
0
1
1
P3 P2  
*
*
*
Sleep Control  
P3 P2 P1  
P3 P2 P1  
Segment Control  
0
0
Drive Control1 Duty Set, OSC Control)  
Drive Control2 Bias Set, Inversion Mode)  
0
P2 P1  
P3 P2  
*
0
P0 Drive Control3 Keyscan Output Set, DO Set)  
0
0
1
1
0
0
1
1
*
Key Data Read  
SWRST  
0
Software Reset  
DISCTRL  
ADSET  
P1  
Display Control Display On/Off)  
P5 P4 P3 P2 P1 P0 Address Set  
DATA WR  
0
0
1
0
1
0
Data Write  
(* : Don’t care)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
18/30  
BU97501KV  
Daattaasshheeeett  
Detailed command description  
Sleep Control (SLP CTRL)  
MSB  
LSB  
D0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
P3  
D2  
P2  
D1  
*
*
(* : Don’t care)  
P3, P2: Normal mode/Sleep mode switching control data  
These control data bits select Key Scan Output Pins KS1 to KS6 States of during Key Scan Standby.  
Control  
bits  
Output Pin States During Key Scan  
Standby  
KS1 KS2 KS3 KS4 KS5 KS6  
Reset  
Conditions  
Segment  
outputs/Common  
Outputs  
Internal  
OSC  
Mode  
P3  
P2  
0
0
0
1
1
Normal  
Sleep  
Sleep  
Sleep  
enabled  
disabled  
Operating  
H
L
H
L
L
H
L
L
H
L
L
H
L
H
H
H
H
H
H
1
0
Low(VSS)  
L
1
H
H
H
H
Note10When DRV CTRL3P3, P2=1, 1, KS1 to KS6 outputs are selected as Segment outputs.  
Segment Control (SEG CTRL)  
MSB  
D7  
LSB  
D0  
D6  
0
D5  
1
D4  
1
D3  
P3  
D2  
P2  
D1  
P1  
1
*
(* : Don’t care)  
P3 to P1 : Segment Output / General purpose output switching control data  
These control bits select the function of the S1/P1 to S4/P4 output pins.  
(Segment Output Pins or General Purpose Output Pins).  
Reset  
Control bits  
Status of the pins  
conditions  
P3  
0
P2  
0
P1  
0
S1/P1 S2/P2 S3/P3 S4/P4  
S1  
P1  
P1  
P1  
P1  
S2  
S2  
P2  
P2  
P2  
S3  
S3  
S3  
P3  
P3  
S4  
S4  
S4  
S4  
P4  
0
0
1
0
1
0
0
1
1
1
0
0
(Note11) Sn(n=1 to 4)  
Pn(n=1 to 4)  
:
:
assigned as a Segment Output pin  
assigned as a General Purpose Output pin  
Relationship of bit assignment between general purpose output pin and bit in DDRAM  
Corresponding bit in DDRAM  
Output Pin  
1/3 Duty  
1/4 Duty  
S1/P1  
S2/P2  
S3/P3  
S4/P4  
D1  
D4  
D1  
D5  
D7  
D9  
D10  
D13  
In case of 1/4 Duty mode and S4/P4 is configured as a general purpose output pins.  
S4/P4 is set to HIGH (VLCD level) if D13 is set to “1” in DDRAM.  
S4/P4 is cleared to LOW (VSS level) if D13 is set to “0” in DDRAM.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
19/30  
BU97501KV  
Daattaasshheeeett  
Drive Control1 (DRV CTRL1)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
0
D4  
0
D3  
P3  
D2  
P2  
D1  
P1  
1
0
P3: 1/3 duty drive or 1/4 duty drive switching control data  
This control data bit selects either 1/3 duty drive or 1/4 duty drive.  
Reset  
conditions  
Status of (COM4/  
S41)  
P3  
Duty mode  
0
1
1/4  
1/3  
COM4  
S41  
(Note12) COM4: COMMON output  
S41: SEGMENT output  
P2,P1 : Frame frequency switching control data  
These control data bits select Frame frequency setting.  
Reset  
Setting  
P2  
P1  
conditions  
80Hz  
100Hz  
120Hz  
0
0
1
0
1
0
External Clock  
input  
1
1
Relationships between Frame frequency (fFR) and Divide number  
Divide number  
fFR [Hz]  
P2  
P1  
1/3 Duty  
1/4 Duty  
512  
1/3 Duty  
1/4 Duty  
0
0
1
1
0
1
0
1
510  
408  
80  
100  
120  
-
80  
100  
120  
-
408  
342  
344  
2040  
2048  
Formula to calculate Frame frequency from frequency and Divide number:  
“Frame frequency = frequency / Divide number”  
Ex) In case, 1/4 Duty mode,(P2,P1) = (0,0)  
fFR = 40.96[KHz] / 512 = 80[Hz]  
(Note13) Built-in Oscillator circuit frequency = 40.96 KHz (typ).  
Drive Control2 (DRV CTRL2)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
0
D4  
1
D3  
0
D2  
P2  
D1  
P1  
1
0
P2: 1/3 bias drive or 1/2 bias drive switching control data  
This control data bit selects either 1/3 bias drive or 1/2 bias drive.  
Reset  
P2  
Bias mode  
conditions  
0
1
1/2  
1/3  
P1: Line Inversion or Frame Inversion switching control data  
This control data bit selects either line inversion drive or frame inversion drive.  
Inversion  
mode  
Reset  
conditions  
P1  
0
1
Line  
Frame  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
20/30  
BU97501KV  
Daattaasshheeeett  
Drive Control3 (DRV CTRL3)  
MSB  
D7  
LSB  
D0  
D6  
0
D5  
1
D4  
0
D3  
P3  
D2  
P2  
D1  
*
1
P0  
(* : Don’t care)  
P3 to P2: Key Scan output port/Segment output port switching control data  
These control data bits select Key Scan outputs or Segment outputs.  
Control  
Output Pin State  
Bits  
Maximum  
Number of  
Input keys  
Reset  
Conditions  
KS1/  
S42  
KS2/  
S43  
KS3/  
S44  
KS4/  
S45  
KS5/  
S46  
KS5  
KS6/  
S47  
KS6  
P3  
0
P2  
0
KS1  
KS2  
KS3  
KS4  
30  
0
1
1
1
0
1
S42  
S42  
S42  
KS2  
S43  
S43  
KS3  
KS3  
S44  
KS4  
KS4  
S45  
KS5  
KS5  
S46  
KS6  
KS6  
S47  
25  
20  
0
When (P3,P2)=(1,1), Keyscan doesn't function. Key scan pins are all segment outputs.  
Thus, maximum segment display number and RAM last address change based on this value.  
Control  
Bits  
Maximum Segment  
Display Number  
Status of Pins  
Last Address  
KS1/  
S42  
KS1  
S42  
S42  
S42  
KS2/  
S43  
KS2  
KS2  
S43  
S43  
KS3/  
S44  
KS3  
KS3  
KS3  
S44  
KS4/  
S45  
KS4  
KS4  
KS4  
S45  
KS5/  
S46  
KS5  
KS5  
KS5  
S46  
KS6/  
S47  
KS6  
KS6  
KS6  
S47  
P3  
P2  
1/3 Duty 1/4 Duty 1/3 Duty 1/4 Duty  
0
0
1
1
0
1
0
1
123  
126  
129  
156  
160  
164  
168  
204  
28h  
29h  
2Ah  
33h  
27h  
28h  
29h  
32h  
P0: Output setting for DO  
This control data bit selects either open drain output or CMOS output.  
Reset  
Conditions  
P0  
Setting  
0
1
open drain output  
CMOS output  
Pull up resistor (1k- 10k) is required when selecting Open Drain Output setting for DO.  
Be careful the Pull up voltage not to be higher than VDD voltage.  
Key Data Read (KEY RD)  
MSB  
D7  
LSB  
D0  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
1
D1  
0
1
1
Display Control (DISCTRL)  
MSB  
LSB  
D0  
*
D7  
1
D6  
1
D5  
1
D4  
1
D3  
1
D2  
0
D1  
P1  
(* : Don’t care)  
P1: Segment on/off control data  
This control data bit controls the on/off state of the segments.  
Reset  
conditions  
Display status  
P1  
1
ON  
0
OFF  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
21/30  
BU97501KV  
Daattaasshheeeett  
Software Reset (SWRST)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
1
1
This is the Software Reset command.  
After sending this command, each register, DDRAM data and DDRAM address are initialized.  
Address Set (ADSET)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
P5  
D4  
P4  
D3  
P3  
D2  
P2  
D1  
P1  
0
P0  
Address which could be set starts from 00(Hex) until RAM last address.  
Setting of values other than the above is not allowed. (Otherwise, address is set to 0.)  
Refer to “Display Data Transfer Method” for RAM last address.  
Data Write (DATAWR)  
MSB  
D7  
LSB  
D0  
D6  
0
D5  
0
D4  
0
D3  
1
D2  
0
D1  
1
0
0
Data transfer can be started by this command.  
Set the CSB pin to High to terminate the data transfer.  
Refer to “Command and Data Transfer Method”.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
22/30  
BU97501KV  
Daattaasshheeeett  
Initialize sequence  
Recommended sequence after Power-On to set this device to initial condition.  
Software reset sequence  
Hardware reset sequence  
Power on  
Power on  
CSB ‘H’ …Initialized I/F  
RESB ‘L’  
CSB ‘L’ …Start transferring I/F Data  
RESB ‘H’  
SWRST (execute Software Reset)  
CSB ‘H’ …Initialized I/F  
DISCTRL (Display off)  
CSB ‘L’ …Start transferring I/F Data  
Set each Command  
SWRST (execute Software Reset)  
DATA WR  
DISCTRL (Display off)  
CSB ‘H’  
Set each Command  
CSB ‘L’  
DATA WR  
SLP CTRL  
CSB ‘H’  
DISCTRL (Display on)  
CSB ‘L’  
Start display  
SLP CTRL  
DISCTRL (Display on)  
Start display  
(Note14) Each register value, DDRAM address and DDRAM data are random condition after power on till initialize sequence is executed.  
(Note15) Each register value, DDRAM address are reset by a hardware reset operation.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
23/30  
BU97501KV  
Daattaasshheeeett  
Cautions in Power-On Sequence  
Power-On Reset (POR) Circuit  
This LSI has “P.O.R” (Power-On Reset) circuit and Software Reset function.  
When the power is ON, IC internal circuit and reset pass through unstable low-voltage region.  
Internal IC is not totally reset because VDD rises and this may result to malfunction.  
Thus, POR circuit and function of software reset are installed in order to prevent this.  
Please follow the following recommended Power-On sequences to allow the reset action to complete.  
Set the power up conditions to meet the recommended tR, tF, tOFF, and Vbot spec below in order to ensure  
P.O.R operation.  
tR  
tF  
tR, tF, tOFF, Vbot recommended conditions  
VDD  
tR  
tF  
tOFF  
Vbot  
Less than  
5ms  
Less than  
5ms  
More than  
150ms  
Less than  
0.1V  
tOFF  
Vbot  
Figure 23. Power ON/OFF waveform  
If it is difficult to meet above conditions, execute the following sequence after Power-On.  
(1)  
(2)  
Set CSB to High  
Clear CSB to Low and then issue a SWRST command.  
VDD  
CSB  
Min 1ms  
Min 50ns  
SWRST  
Command  
Figure 24. SWRST Command Sequence  
Power Up Sequence and Power Down Sequence  
To prevent incorrect display, malfunction and abnormal current,  
VDD must be turned on before VLCD In power up sequence.  
VDD must be turned off after VLCD In power down sequence.  
Please satisfies VLCDVDD, t1>0ns, t2>0ns  
t2  
t1  
VLCD  
10%  
10%  
VDD min  
VDD min  
VDD  
Figure 25. Power On/Off Sequence  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
24/30  
BU97501KV  
Daattaasshheeeett  
DISPLAY DDRAM DATA EXAMPLE  
If LCD layout pattern is shown as in Figure 26 and 27 and DDRAM data is shown as in Table2, display  
pattern will be shown as in Figure 28.  
com1  
com2  
com3  
com4  
Figure 26. Example COM Line pattern  
S6  
S5  
S1  
S8  
S3  
S4  
S2  
B
Figure 27. Example of SEG Line pattern  
Figure 28. Example of display pattern  
S
1
S
2
S
3
S
4
S
5
S
6
S
7
S
8
S
9
S
S
S
S
S
S
S
S
S
S
S
10 11 12 13 14 15 16 17 18 19 20  
COM1  
COM2  
COM3  
D0  
D1  
D2  
D3  
1
0
0
0
1
1
0
1
0
1
1
1
1
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
0
1
0
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
COM4  
Address  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h  
Table 2. DDRAM Data map  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
25/30  
20.Jan.2015 Rev.005  
BU97501KV  
Daattaasshheeeett  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply terminals.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Rush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Terminals  
Input terminals of an IC are often connected to the gate of a MOS transistor (CMOS?). The gate has extremely high  
impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it.  
The small charge acquired in this way is enough to produce a significant effect on the conduction through the  
transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input terminals should be  
connected to the power supply or ground line.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
26/30  
BU97501KV  
Daattaasshheeeett  
12. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The  
operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical  
damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an  
input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input terminals  
when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the  
input terminals have voltages within the values specified in the electrical characteristics of this IC.  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
16. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
27/30  
BU97501KV  
Daattaasshheeeett  
Ordering Information  
B
U
9
7
5
0
1
K
V
-
E 2  
Package  
Part Number  
Packaging and forming specification  
E2: Embossed tape and reel  
(VQFP64)  
KV : VQFP64  
Marking Diagram(s)  
VQFP64 (TOP VIEW)  
Part Number Marking  
LOT Number  
B U 9 7 5 0 1 K V  
1PIN MARK  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
28/30  
BU97501KV  
Daattaasshheeeett  
Physical Dimension, Tape and Reel Information  
Package Name  
VQFP64  
1 PIN MARK  
UNITmm)  
PKGVQFP64  
Drawing: EX252-5001-1  
<Tape and Reel information>  
Tape  
Embossed carrier tape (with dry pack)  
Quantity  
1000pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
29/30  
BU97501KV  
Daattaasshheeeett  
Version / Revision History  
Version  
001  
002  
date  
07. Aug. 2013 1st ver  
07. Nov. 2013 Page.4 Add Electrical Characteristics of External Clock Frequency  
description  
Page.2 Modify Pin Description OSC, DO, RESB, VSS and S1/P1S4/P4 Functions  
Page.3 Modify Absolute Maximum Ratings Power Dissipation  
Page.3 Modify Electrical Characteristics precondition  
Page.3 Modify Electrical Characteristics LCD Bias Voltage VMID1 Conditions  
Page.4 Modify Electrical Characteristics External Clock Frequency Symbol  
Page.4 Add Typical temperature characteristics VDD condition  
Page.4 Modify MPU Interface Characteristics tCHW Parameter name  
Page.4 Modify Figure 5 Title  
Page.5 Modify I/O equivalent circuit  
Page.5-6 Modify Command and Data Transfer Method description  
Page.6 Modify Command Transfer Method description  
Page.6 Modify Display Data Transfer Method description  
Page.10 Modify Serial Data Output description  
Page.10 Modify Output Data description  
Page.11-12 Modify Key Scan Operation description  
Page.14-17 Modify LCD Driver Bias/Duty Circuit figure  
Page.18 Modify Table name  
Page.19 Minor translation change Sleep Control command description to have more  
conformity between Japanese and English version  
003  
31. Jan. 2014  
Page.19 Minor translation change Segment Control command description to have  
more conformity between Japanese and English version  
Page.20 Minor translation change Drive Control1 command description to have more  
conformity between Japanese and English version  
Page.20 Minor translation change Drive Control2 command description to have more  
conformity between Japanese and English version  
Page.21 Add Drive Control3 command description  
Page.21 Minor translation change Drive Control3 command description to have more  
conformity between Japanese and English version  
Page.22 Minor translation change Software command description to have more  
conformity between Japanese and English version  
Page.22 Delete Address Set command description  
Page.22 Minor translation change Address command description to have more  
conformity between Japanese and English version  
Page.22 Modify Data Write command description  
Page.23 Add Initialize sequence Note14, Note15  
Page.29 Add Physical Dimension, Tape and Reel Information description  
Page.11 Add fosc explanation when External clock input  
Page.12 Add fosc explanation when External clock input  
Page.24 Add the condition when power up and power down  
004  
005  
11.Apr.2014  
20. Jan. 2015 Page.24 Add the condition when power up and power down  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0P4P0D300390-1-2  
20.Jan.2015 Rev.005  
30/30  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BU9750FUV-E2

Standard Segment Drivers
ROHM

BU9750FV-E2

Standard Segment Drivers
ROHM

BU9750GUW-E2

Standard Segment Drivers
ROHM

BU9750KV-E2

Standard Segment Drivers
ROHM

BU97510CKV-E2

Multi- function LCD Segment Drivers
ROHM

BU97510CKV-M

Multi- function LCD Segment Drivers
ROHM

BU97510CKV-ME2

Liquid Crystal Driver,
ROHM

BU97510CKV-M_16

Multi- function LCD Segment Drivers
ROHM

BU97520AKV-M

BU97520AKV-M是1/4、1/3占空比车载用通用LCD驱动器,最多可显示276段LCD。本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。最多可控制6个通用/PWM输出,通过丰富的频率设定功能,无需频闪即可实现LED背光和LED按钮的照明。还内置最多30键的键盘扫描功能,可实现PCB上的配线削减和MCU的尺寸缩减和成本削减。支持TTL电平输入,可直接连接各种电源电压的MCU。
ROHM

BU97530KVT-M

BU97530KVT-M是1/5、1/4、1/3占空比、Static车载用通用LCD驱动器,最多可显示445段LCD。本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。最多可控制9个通用/PWM输出,通过丰富的频率设定功能,无需频闪即可实现LED背光和LED按钮的照明。还内置最多30键的键盘扫描功能,可实现PCB上的配线削减和MCU的尺寸缩减和成本削减。内置有EVR功能,可进行LCD对比度的调节,还支持TTL电平输入,因此能直接连接各种电源电压的MCU。
ROHM

BU97540KV-E2

Multi-function Segment Drivers
ROHM

BU97540KV-M

Multi-function Segment Drivers
ROHM