BV1LF080EFJ-C [ROHM]

BV1LF080EFJ-C是车载用1ch低边开关。可通过SR引脚外接电阻调整转换速率。内置OCP、DualTSD和有源钳位功能。可通过诊断功能,进行TSD的诊断。;
BV1LF080EFJ-C
型号: BV1LF080EFJ-C
厂家: ROHM    ROHM
描述:

BV1LF080EFJ-C是车载用1ch低边开关。可通过SR引脚外接电阻调整转换速率。内置OCP、DualTSD和有源钳位功能。可通过诊断功能,进行TSD的诊断。

开关
文件: 总36页 (文件大小:1838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive IPD 1ch Low-Side Switch  
with Slew Rate Control and Output  
Diagnostic Function  
BV1LF080EFJ-C  
Features  
Key Specifications  
(Note 1)  
AEC-Q100 Qualified  
On-state Resistance (Tj = 25 °C, Typ)  
Over Current Limitation Level  
(Tj = 25 °C, Typ)  
Output Clamp Voltage (Min)  
Active Clamp Energy (Tj(START) = 25 °C)  
80 mΩ  
7.5 A  
(Note 2)  
Built-in Dual TSD  
Built-in Over Current Protection Function (OCP)  
Built-in Thermal Shutdown Function (TSD)  
Built-in Active Clamp Function  
42 V  
200 mJ  
Built-in Diagnostic Function  
Built-in Slew Rate Control Function  
Directly Controllable from CMOS logic ICs  
On-Resistance RDS(ON) = 80mΩ (Typ)  
(VDD = 5 V, IOUT = 1.0 A, Tj = 25 °C)  
Monolithic Power Management IC with Control  
Unit (CMOS) and Power MOSFET on a Single  
Chip  
Package  
HTSOP-J8  
W (Typ) x D (Typ) x H (Max)  
4.9 mm x 6.0 mm x 1.0 mm  
(Note 1) Grade 1  
(Note 2) This IC has thermal shutdown (Junction temperature  
detect) and ΔTj Protection (Power-MOS steep temperature rising  
detect).  
General Description  
BV1LF080EFJ-C is a 1ch low-side switch for  
automotive application. Output slew rate are  
variably controlled by external resistance of the SR  
terminal. It has built-in OCP, Dual TSD and Active  
Clamp function. It is equipped with output  
diagnostic function for TSD  
Application  
Driving Resistive, Inductive and Capacitive Loads  
Block Diagram  
VDD  
Supply  
Unit  
OUT  
STBY  
Active  
Clamp  
IN  
SR  
GATE  
Control  
Dual TSD  
OCP  
ST  
Contorol  
ST  
GND  
〇Product structure : Silicon integrated circuit 〇This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
1/33  
 
 
 
 
 
 
BV1LF080EFJ-C  
Contents  
Features.........................................................................................................................................................................................1  
General Description......................................................................................................................................................................1  
Key Specifications ........................................................................................................................................................................1  
Package .........................................................................................................................................................................................1  
Application.....................................................................................................................................................................................1  
Block Diagram ..............................................................................................................................................................................1  
Contents........................................................................................................................................................................................2  
Pin Configuration..........................................................................................................................................................................3  
Pin Description..............................................................................................................................................................................3  
Definition.......................................................................................................................................................................................3  
Absolute Maximum Ratings ........................................................................................................................................................4  
Recommended Operating Condition..........................................................................................................................................4  
Thermal Resistance......................................................................................................................................................................5  
Electrical Characteristics .............................................................................................................................................................9  
Typical Performance Curves .....................................................................................................................................................12  
Measurement Circuit..................................................................................................................................................................19  
Truth Table..................................................................................................................................................................................21  
Timing Chart...............................................................................................................................................................................21  
Function Description..................................................................................................................................................................23  
I/O Equivalent Circuit ................................................................................................................................................................26  
Operational Notes ......................................................................................................................................................................27  
Ordering Information.................................................................................................................................................................31  
Marking Diagram........................................................................................................................................................................31  
Physical Dimension and Packing Information.........................................................................................................................32  
Revision History..........................................................................................................................................................................33  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
2/33  
28.Oct.2020 Rev.002  
TSZ22111 • 15 • 001  
 
BV1LF080EFJ-C  
Pin Configuration  
HTSOP-J8  
(TOP VIEW)  
VDD  
STBY  
IN  
1
2
3
8
7
6
GND  
GND  
GND  
OUT  
EXP-PAD  
ST  
4
5
SR  
Pin Description  
Pin No.  
Pin Name  
Function  
1
2
3
4
5
6
7
8
VDD  
STBY  
IN  
Power supply pin.  
Input pin. Pull-down resistor is internally connected  
Input pin. Pull-down resistor is internally connected  
Self-diagnostic output pin.  
Slew rate control pin  
ST  
SR  
GND  
GND  
GND  
Ground pin.  
Ground pin.  
Ground pin.  
Output pin. When output pin is shorted to power supply and the output current is  
limited to protect IC.  
EXP-PAD  
OUT  
Definition  
VBAT  
VDD  
VBAT  
IDD  
RL, ZL  
RST  
VDD  
VDD  
GND  
VSTBY  
VIN  
STBY  
OUT  
SR  
VSTBY  
VIN  
IOUT  
IN  
VOUT  
ST  
IST  
RSR  
VST  
VSR  
GND  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
3/33  
BV1LF080EFJ-C  
Absolute Maximum Ratings (Tj = 25 °C)  
Parameters  
Symbol  
VDD  
Rating  
-0.3 to +7  
-0.3 to +42  
-0.3 to VDD + 0.3  
-0.3 to +7  
-0.3 to +7  
5 (internal limit)  
-0.3 to +7  
10  
Unit  
V
Power Supply Voltage  
VOUT  
VSR  
V
Output Voltage  
Input Voltage  
V
VIN  
V
VSTBY  
IOUT  
VST  
V
(Note 1)  
Output Current  
A
Diagnostic Output Voltage  
Diagnostic Output Current  
V
IST  
mA  
Active Clamp Energy (Single Pulse)  
Tj(START) = 25 °C (Note 2)  
EAS(25 °C)  
200  
80  
mJ  
Active Clamp Energy (Single Pulse)  
EAS(150 °C)  
(Note 3)  
Tj(START) = 150 °C (Note 2)  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Tj  
-40 to +150  
-55 to +150  
150  
°C  
°C  
°C  
Tstg  
Tjmax  
Caution 1:  
Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between  
pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures,  
such as adding a fuse, in case the IC is operated over the absolute maximum ratings.  
Caution 2:  
Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result  
in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal  
resistance taken into consideration by increasing board size and copper area so as not to exceed the maximum junction  
temperature rating.  
(Note 1) Internally limited by over current protection function.  
(Note 2) Active clamp energy (Single Pulse), at the condition IOUT(START) = 1.0 A, VBAT = 16 V.  
1
퐵퐴푇  
퐴푆  
=
퐿퐼푂푈푇(푆푇퐴푅푇)× ꢁ1 −  
2
퐵퐴푇 푂푈푇(퐶ꢂ)  
(Note 3) Not 100 % tested.  
Recommended Operating Condition  
Parameters  
Power Supply Voltage  
Symbol  
VDD  
Min  
3.5  
-40  
Typ  
5.0  
Max  
6.5  
Unit  
V
Operating Temperature  
Tj  
+25  
+150  
°C  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
4/33  
BV1LF080EFJ-C  
(Note 1)  
Thermal Resistance  
Parameter  
Symbol  
θJA  
Typ  
Unit  
Condition  
BV1LF080EFJ-C  
(Note 2)  
126.5  
37.8  
25.3  
°C/W  
°C/W  
°C/W  
1s  
2s  
Between Junction and Surroundings Temperature  
Thermal Resistance  
(Note 3)  
(Note 4)  
2s2p  
(Note 1) The thermal impedance is based on JESD51-2A (Still-Air) standard. It is used the chip of BV1LF080EFJ-C  
(Note 2) JESD51-3 standard FR4 114.3 mm x 76.2 mm x 1.57 mm 1-layer (1s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure, 2 oz. copper.)  
(Note 3) JESD51-5 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 2-layers (2s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure/  
Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm,  
copper (top & reverse side) 2 oz.)  
(Note 4) JESD51-5/- 7 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 4-layers (2s2p)  
(Top copper foil: ROHM recommended Footprint + wiring to measure/  
2 inner layers and copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm,  
copper (top & reverse side/inner layers) 2 oz./1 oz.)  
PCB Layout 1 Layer (1s)  
Footprint  
100 mm2  
600 mm2  
1200 mm2  
Dimension  
Value  
Board Finish Thickness  
Board Dimension  
1.57 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top Layer)  
Copper Foil Area Dimension  
0.070 mm (Cu:2 oz)  
Footprint / 100 mm2 / 600 mm2 / 1200 mm2  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
5/33  
BV1LF080EFJ-C  
Thermal Resistance - continued  
PCB Layout 2 Layers (2s)  
Bottom Layer  
Top Layer  
Top Layer  
Bottom Layer  
via  
Isolation Clearance Diameter : ≥ 0.6 mm  
Cross Section  
Dimension  
Board Finish Thickness  
Board Dimension  
Board Material  
Value  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Copper Thickness (Top/Bottom Layers)  
Thermal Vias Separation/Diameter  
0.070 mm (Cu +Plating)  
1.2 mm / 0.3 mm  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
6/33  
BV1LF080EFJ-C  
Thermal Resistance - continued  
PCB Layout 4 Layers (2s2p)  
2nd / Bottom Layers  
3rd Layer  
Top Layer  
Top Layer  
2nd Layer  
3rd Layer  
Bottom Layer  
via  
Isolation Clearance Diameter : 0.6 mm  
Cross Section  
Dimension  
Value  
Board Finish Thickness  
Board Dimension  
Board Material  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Copper Thickness (Top/Bottom Layers)  
Thermal Vias Separation/Diameter  
0.070 mm (Cu +Plating)  
1.2 mm / 0.3 mm  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
7/33  
BV1LF080EFJ-C  
Thermal Resistance - continued  
Transient Thermal Resistance (Single Pulse)  
Thermal Resistance (θJA vs. Copper Foil Area – (1s))  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
8/33  
BV1LF080EFJ-C  
Electrical Characteristics  
(Unless otherwise specified, -40 °C ≤ Tj ≤ +150 °C, VDD = 5 V)  
Limit  
Parameters  
Power Supply  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
VDD = 5 V, VSTBY = VIN = 0 V  
RSR = 68 kΩ  
VDD = VSTBY = VIN = 5 V  
RSR = 68 kΩ  
IVDD(S)  
IVDD  
VUVLOR  
VUVLOHYS  
-
-
-
-
0
10  
500  
3.0  
0.4  
μA  
μA  
V
Standby Current  
200  
2.5  
0.2  
Operating Current  
VDD Sweep up  
Under Voltage Release Voltage  
Under Voltage Hysteresis Voltage  
Input (STBY)  
V
VSTBY(H)  
VSTBY(L)  
VSTBY(HYS)  
ISTBY(H)  
3.0  
-
-
-
-
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input hysteresis Voltage  
High Level Input Current  
Low Level Input Current  
Input (IN)  
1.5  
-
-
0.2  
50  
0
V
-
150  
+1  
μA  
μA  
VSTBY = 5 V  
VSTBY = 0 V  
ISTBY(L)  
-1  
High Level Input Voltage  
Low Level Input Voltage  
Input hysteresis Voltage  
High Level Input Current  
Low Level Input Current  
VINH  
VINL  
3.0  
-
-
-
-
V
V
1.5  
-
VINHYS  
IINH  
-
0.2  
50  
0
V
-
150  
+1  
μA  
μA  
VIN = 5 V  
VIN = 0 V  
IINL  
-1  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
9/33  
BV1LF080EFJ-C  
Electrical Characteristics – Continued  
(Unless otherwise specified, -40 °C ≤ Tj ≤ +150 °C, VDD = 5 V)  
Limit  
Parameters  
Power MOS Output  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
VDD = 5 V, IOUT = 1.0 A,  
Tj = 25 °C  
VDD = 5 V, IOUT = 1.0 A,  
Tj = 150 °C  
VSTBY = 0 V, VOUT = 18 V,  
Tj = 25 °C  
VSTBY = 0 V, VOUT = 18 V,  
Tj = 150 °C  
-
-
80  
150  
0.0  
104  
180  
0.5  
mΩ  
mΩ  
μA  
RDS(ON)  
On-state Resistance  
Leak Current  
-
IOUT(L)  
-
1
20  
μA  
VOUT(CL)  
tONDLY1  
tOFFDLY1  
tF1  
42  
48  
52  
V
VIN = 0 V, IOUT = 1 mA  
Output Clamp Voltage  
Turn-ON Delay Time 1  
Turn-OFF Delay Time 1  
Fall Time 1  
38  
60  
μs  
-
-
95  
145  
52  
μs  
VDD = 5 V,  
RL = 10 Ω,  
RSR = 24 kΩ  
VBAT = 12 V  
28  
40  
μs  
tR1  
28  
40  
52  
μs  
Rise Time 1  
SRON1  
SROFF1  
tONDLY2  
tOFFDLY2  
tF2  
0.138  
0.138  
0.180  
0.180  
105  
266  
113  
113  
0.064  
0.064  
230  
585  
249  
249  
0.029  
0.029  
0.257  
0.257  
155  
410  
V/μs  
V/μs  
μs  
Slew Rate ON 1  
Slew Rate OFF 1  
Turn-ON Delay Time 2  
Turn-OFF Delay Time 2  
Fall Time 2  
-
-
μs  
VDD = 5 V,  
RL = 10 Ω,  
RSR = 68 kΩ  
VBAT = 12 V  
μs  
78  
147  
147  
tR2  
μs  
Rise Time 2  
78  
SRON2  
SROFF2  
tONDLY3  
tOFFDLY3  
tF3  
V/μs  
V/μs  
μs  
Slew Rate ON 2  
Slew Rate OFF 2  
Turn-ON Delay Time 3  
Turn-OFF Delay Time 3  
Fall Time 3  
0.049  
0.049  
-
0.092  
0.092  
335  
904  
μs  
-
VDD = 5 V,  
174  
174  
0.022  
0.022  
324  
μs  
RL = 10 Ω,  
RSR = 150 kΩ  
VBAT = 12 V  
tR3  
324  
μs  
Rise Time 3  
SRON3  
SROFF3  
0.041  
0.041  
V/μs  
V/μs  
Slew Rate ON 3  
Slew Rate OFF 3  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
10/33  
BV1LF080EFJ-C  
Electrical Characteristics – Continued  
(Unless otherwise specified, -40 °C ≤ Tj ≤ +150 °C, VDD = 5 V)  
Limit  
Parameters  
Symbol  
VSR  
Unit  
V
Condition  
Min  
Typ  
Max  
SR Pin  
0.95  
1.00  
1.05  
VDD = VSTBY = 5 V, RSR = 68 kΩ  
SR Output Voltage  
Diagnostic Output  
(Note 1)  
VST(L)  
IST(L)  
tSTDET  
tSTREL  
-
-
-
-
0.5  
1
V
IST = 1 mA  
VST = 5 V  
ST Low Voltage  
-
-
-
-
μA  
µs  
µs  
ST Leak Current  
(Note 1)  
ST Detection Delay Time  
65  
10  
(Note 1)  
ST Release Delay Time  
Protection Function  
IOUT(LIM)  
TTSDD  
7.5  
175  
160  
15  
10.0  
A
Tj = 25 °C  
Over Current Limitation Level  
Thermal Shutdown  
5.0  
-
-
-
-
-
-
°C  
°C  
°C  
°C  
°C  
°C  
150  
(Note 1)  
Detected Temperature  
Thermal Shutdown  
TTSDR  
135  
Released Temperature (Note 1)  
Thermal Shutdown  
TTSDHYS  
TDTJD  
-
-
-
-
(Note 1)  
Hysteresis Temperature  
ΔTj Protection Detected  
93  
(Note 1)  
Temperature  
ΔTj Protection Released  
43  
TDTJR  
(Note 1)  
Temperature  
ΔTj Protection Hysteresis  
50  
TDTJHYS  
(Note 1)  
Temperature  
(Note 1): Not 100 % tested.  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
11/33  
BV1LF080EFJ-C  
Typical Performance Curves  
(Unless otherwise specified, Tj = 25 °C, VDD = 5 V)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
500  
450  
400  
350  
300  
250  
200  
150  
100  
150  
-40  
0
40  
80  
120  
3.0  
4.0  
5.0  
6.0  
7.0  
Junction Temperature:
Tj [°C]  
VDD Voltage: VVDD [V]  
Figure 1. Operating Current vs VDD Input Voltage  
Figure 2. Operating Current vs Junction Temperature  
3.0  
2.9  
3.0  
2.9  
VUVLO(R)  
VSTBY(H)  
2.8  
2.8  
VSTBY(L)  
VUVLO(D)  
2.7  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
150  
-40  
0
40  
80  
120  
150  
-40  
0
40  
80  
120  
Tj [°C]  
Junction Temperature:
Tj [°C]  
Junction Temperature:
Figure 3. Under Voltage Detection (Release) Voltage  
vs Junction Temperature  
Figure 4. High Level Input Voltage / Low Level Input  
Voltage (STBY) vs Junction Temperature  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
12/33  
BV1LF080EFJ-C  
Typical Performance Curves - Continued  
(Unless otherwise specified, Tj = 25 °C, VDD = 5 V)  
3.0  
150  
140  
130  
120  
110  
100  
90  
2.9  
VIN(H)  
ISTBY(H)  
ISTBY(L)  
2.8  
VIN(L)  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
80  
70  
60  
50  
40  
30  
20  
10  
0
150  
-40  
0
40  
80  
120  
150  
-40  
0
40  
80  
120  
Junction Temperature:
Tj [°C]  
Tj [°C]  
Junction Temperature:
Figure 5. High Level Input Voltage / Low Level Input  
Voltage (IN) vs Junction Temperature  
Figure 6. High Level Input Current / Low Level Input  
Current (STBY) vs Junction Temperature  
200  
180  
160  
140  
120  
100  
80  
150  
140  
IIN(H)  
IIN(L)  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
40  
20  
0
150  
-40  
0
40  
80  
120  
3
4
5
6
7
Junction Temperature:
Tj [°C]  
VDD Input Voltage: VVDD [V]  
Figure 7. High Level Input Current / Low Level Input  
Current (IN) vs Junction Temperature  
Figure 8. On-state Resistance vs Input Voltage  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
13/33  
BV1LF080EFJ-C  
Typical Performance Curves - Continued  
(Unless otherwise specified, Tj = 25 °C, VDD = 5 V)  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
200  
180  
160  
140  
120  
100  
80  
VDD = 3.5 V  
VDD = 5 V  
60  
40  
20  
0
150  
-40  
0
40  
80  
120  
0
2
4
6
8
10  
12  
14  
16  
18  
Junction Temperature:
Tj [°C]  
Out Voltage: VOUT [V]  
Figure 9. On-state Resistance vs Junction Temperature  
Figure 10. Leak Current vs OUT Voltage  
20  
18  
16  
14  
12  
10  
8
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
6
4
2
0
150  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
150  
Junction Temperature:
Tj [°C]  
Tj [°C]  
Junction Temperature:
Figure 11. Leak Current vs Junction Temperature  
Figure 12. Output Clamp Voltage vs  
Junction Temperature  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
14/33  
BV1LF080EFJ-C  
Typical Performance Curves - Continued  
(Unless otherwise specified, Tj = 25 °C, VDD = 5 V)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
60  
60  
40  
40  
150  
3
4
5
6
7
-40  
0
40  
80  
120  
Tj [°C]  
Junction Temperature:
VDD Input Voltage: VVDD [V]  
Figure 13. Turn-ON Delay Time2 vs VDD Input Voltage  
(RSR = 68 kΩ)  
Figure 14. Turn-ON Delay Time2 vs Junction  
Temperature (RSR = 68 kΩ)  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
150  
-40  
0
40  
80  
120  
3
4
5
6
7
Junction Temperature:
Tj [°C]  
VDD Input Voltage: VVDD [V]  
Figure 15. Turn-OFF Delay Time2 vs VDD Input  
Voltage (RSR = 68 kΩ)  
Figure 16. Turn-OFF Delay Time2 vs Junction  
Temperature (RSR = 68 kΩ)  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
15/33  
BV1LF080EFJ-C  
Typical Performance Curves - Continued  
(Unless otherwise specified, Tj = 25 °C, VDD = 5 V)  
150  
140  
130  
120  
110  
100  
90  
150  
140  
130  
120  
110  
100  
90  
80  
80  
70  
70  
3
4
5
6
7
-40  
0
40  
80  
120  
150  
Tj [°C]  
Junction Temperature:
VDD Input Voltage: VVDD [V]  
Figure 17. Output Fall Time2 vs VDD Input Voltage  
(RSR = 68 kΩ)  
Figure 18. Output Fall Time2 vs Junction Temperature  
(RSR = 68 kΩ)  
150  
140  
130  
120  
110  
100  
90  
150  
140  
130  
120  
110  
100  
90  
80  
80  
70  
70  
3
4
5
6
7
-40  
0
40  
80  
120  
150  
VDD Input Voltage: VVDD [V]  
Junction Temperature:
Tj [°C]  
Figure 19. Rise Time2 vs VDD Input Voltage  
(RSR = 68 kΩ)  
Figure 20. Rise Time2 vs Junction Temperature  
(RSR = 68 kΩ)  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
16/33  
BV1LF080EFJ-C  
Typical Performance Curves - Continued  
(Unless otherwise specified, Tj = 25 °C, VDD = 5 V)  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
-40  
0
40  
80  
120  
150  
3
4
5
6
7
Junction Temperature: Tj[°C]  
VDD Input Voltage: VVDD [V]  
Figure 21. Slew Rate ON2 vs VDD Input Voltage  
(RSR = 68 kΩ)  
Figure 22. Slew Rate ON2 vs Junction Temperature  
(RSR = 68 kΩ)  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
-40  
0
40  
80  
120  
150  
3
4
5
6
7
Junction Temperature: [°
Tj C]  
VDD Input Voltage: VVDD [V]  
Figure 23. Slew Rate OFF2 vs VDD Input Voltage  
(RSR = 68 kΩ)  
Figure 24. Slew Rate OFF2 vs Junction Temperature  
(RSR = 68 kΩ)  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
17/33  
BV1LF080EFJ-C  
Typical Performance Curves - Continued  
(Unless otherwise specified, Tj = 25 °C, VDD = 5 V)  
10000  
1000  
100  
10  
9
Tj(START) = 25 ℃  
Tj(START) = 150 ℃  
8
7
6
5
10  
-40  
0
40  
80  
120  
150  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Tj [°C]  
Junction Temperature:
Output Current (Start): IOUT(START)[A]  
Figure 25. Over Current Limit Value  
vs Junction Temperature  
Figure 26. Active Clamp Energy (Single Pulse)  
vs Output Current (Start)  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
18/33  
BV1LF080EFJ-C  
Measurement Circuit  
VDD  
VDD  
VDD  
VDD  
RL = 10 Ω  
RL = 10 Ω  
IN  
OUT  
IN  
OUT  
VBAT = 12 V  
VIN  
= 5 V  
VIN  
= 5 V  
VBAT = 12 V  
STBY  
SR  
STBY  
SR  
ST  
ST  
RSR  
68 kΩ  
=
GND  
GND  
Measurement Circuit for Figure 1 and Figure 2  
Measurement Circuit for Figure 3  
VDD  
= 5 V  
VDD  
= 5 V  
VDD  
VDD  
RL = 10 Ω  
RL = 10 Ω  
IN  
OUT  
IN  
OUT  
VBAT = 12 V  
VBAT = 12 V  
VIN  
STBY  
SR  
STBY  
SR  
VSTBY  
ST  
ST  
RSR  
= 68 kΩ  
GND  
GND  
Measurement Circuit for Figure 4  
Measurement Circuit for Figure 5  
VDD  
VDD  
= 5 V  
= 5 V  
VDD  
RL = 10 Ω  
VDD  
RL = 10 Ω  
IN  
OUT  
IN  
OUT  
VBAT = 12 V  
VBAT = 12 V  
VIN  
= 0 V  
or 5 V  
STBY  
SR  
STBY  
SR  
VSTBY  
= 0V  
or 5 V  
ST  
ST  
RSR=  
RSR =  
68k Ω  
GND  
GND  
68 kΩ  
Measurement Circuit for Figure 7  
Measurement Circuit for Figure 6  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
19/33  
BV1LF080EFJ-C  
Measurement Circuit – Continued  
VDD  
= 5 V  
VDD  
VDD  
VDD  
IN  
OUT  
IN  
OUT  
VOUT = 18 V  
IOUT = 1.0 A  
RDS(ON)  
= VOUT/IOUT  
STBY  
SR  
STBY  
SR  
ST  
ST  
GND  
GND  
Measurement Circuit for Figure 8 and Figure 9  
Measurement Circuit for Figure 10 and Figure 11  
VIN = 0 V to 5 V or 5 V to 0 V  
VDD = 5 V  
VDD  
= 5 V  
VDD  
VDD  
IN  
OUT  
RL = 10 Ω  
IN  
OUT  
IOUT = 1 mA  
VBAT = 12 V  
Monitor  
Monitor  
STBY  
SR  
STBY  
SR  
ST  
ST  
GND  
RSR  
GND  
Measurement Circuit for Figure 12  
Measurement Circuit for  
Figure 13, Figure 14, Figure 15, Figure 16, Figure 17,  
Figure 18, Figure 19, Figure 20, Figure 21, Figure 22,  
Figure 23 and Figure 24  
VDD  
= 5 V  
VDD  
IN  
OUT  
VOUT 12 V  
STBY  
SR  
ST  
GND  
Measurement Circuit for Figure 25  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
20/33  
28.Oct.2020 Rev.002  
BV1LF080EFJ-C  
Truth Table  
OUT Output and Diagnostic Output Function  
Performs diagnostic test to check for any abnormal conditions and output to the ST pin. Once Thermal  
Shutdown is detected, the ST pin is latched Low. ST pin Low latch is released by setting the STBY pin to  
Low or set VDD voltage to “Low Voltage Detection (VUVLO-VUVLOHYS)”  
Power  
Supply  
(VDD)  
Output State  
STBY Pin  
Voltage  
IN Pin  
Voltage  
TSD  
ΔTj  
OCP  
Under  
OUT Pin  
ST Pin  
Voltage  
Detection  
Low  
High  
High  
High  
High  
High  
*
*
*
*
*
*
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
High  
High  
High  
Low  
Detected  
*
*
*
Undetected  
Undetected  
Undetected  
Undetected  
Low  
High  
High  
High  
*
*
*
*
Detected  
Undetected  
Undetected  
*
*
Detected  
Undetected  
High  
High  
No Limit  
Current  
Limitation  
High  
Undetected  
High  
Undetected  
Undetected  
Limited  
High  
Timing Chart  
VDD [V]  
VDD and VSTBY can be input simultaneously  
VUVLOR  
VDD  
VUVLOHYS  
VUVLOD  
t
0
VSTBY [V]  
VSTBY  
VSTBY(H)  
VSTBY(L)  
t
0
VIN [V]  
tSETUP ≥ 100 [µs]  
VIN  
VIN(H)  
VIN(L)  
t
0
VOUT [V]  
tONDLY [µs]  
tOFFDLY [µs]  
VBAT  
80 %  
20 %  
VOUT  
0 V  
t
0
tF [µs]  
( SRON [V/µs ])  
tR [µs]  
( SROFF [V/µs ])  
Figure 27. Definition of Turn-ON TIME, Turn-OFF TIME, Fall TIME (Slew Rate ON), and Rise TIME (Slew Rate OFF)  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
21/33  
28.Oct.2020 Rev.002  
TSZ22111 • 15 • 001  
BV1LF080EFJ-C  
Timing Chart ― Continued  
V [V]  
IN  
VIN(H)  
VIN  
V
IN(L)  
0
t
VOUT [V]  
VOUT(CL)  
VOUT  
VBAT  
IOUT x RDS(ON)  
t
t
0
IOUT [A]  
VBAT  
ZL + RDS(ON)  
IOUT  
0
Figure 28. Inductive Load Operation  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
22/33  
BV1LF080EFJ-C  
Function Description  
Over Current Protection Function  
This IC built-in over current protection function. Following is shown that the timing chart of over current  
protection function.  
Occurrence of Over Current  
Dissolution of Over Current  
VDD  
VSTBY  
VIN  
VOUT  
IOUT(LIM)  
IOUT  
Normal Current  
VST  
Figure 29. Timing Chart of OCP Function  
① When an overcurrent occurs, IOUT is controlled by the overcurrent limit level (IOUT(LIM)) and VOUT rises.  
IOUT(LIM) is 7.5 A (Typ). The VST does not change at this time.  
② When the overcurrent disappears, the over current limit is released.  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
23/33  
BV1LF080EFJ-C  
Function Description – Continued  
Dual TSD Function  
This IC has a built-in TSD function and ΔTj protection function. Following is shown that the timing chart of  
Dual TSD function.  
① ②  
① ②  
① ②  
③ ④③ ④③ ④③  
VDD  
VSTBY  
VIN  
VOUT  
TTSDD  
TTSDR  
TPOWER-MOS  
Tj  
TAMB  
TDTJR  
TDTJD  
tSTDET  
tSTREL  
VST  
ΔTj Protection  
Thermal Shutdown  
Figure 30. Timing Chart of Dual TSD Function  
① The temperature of Power MOS FET part and the control part in his IC is each TPOWER-MOS, TAMB. When the  
temperature difference becomes 93 °C (Typ) or more, the output turns OFF. This temperature defines as ΔTj  
Protection Detected Temperature (TDTJD). At This time, the VST does not change.  
② When the temperature difference of TPOWER-MOS and TAMB becomes 43 °C (Typ) or less, the output turns  
automatically ON. This temperature defines as ΔTj Protection Released Temperature (TDTJR).  
③ The output is turned off when the temperature of the IC reaches Thermal Shutdown Detected Temperature  
(TTSDD) = 175 °C (Typ) or more. At this time, the VST latches Low.  
④ The output returns to its normal state when the temperature of the IC becomes Thermal Shutdown Released  
Temperature (TTSDR) = 160 °C (Typ) or less. VST keeps latching Low.  
⑤ the VST become High after tSTREL when the VSTBY become Low.  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
24/33  
BV1LF080EFJ-C  
Function Description ― Continued  
Slew rate control function  
This IC can variably adjust the rise time (Slew Rate ON) and fall time (Slew Rate OFF) of OUT output voltage  
by setting the SR pin external resistor (RSR).  
The approximate expression when VBAT = 12V is as follows.  
(
)
1.636 × ꢄ푆푅  
Rise time: =  
+ 3.73 [µs]  
1000  
(
)
1.636 × ꢄ푆푅  
Fall time: =  
+ 3.73 [µs]  
1000  
(퐵퐴푇 × 0.8 − 퐵퐴푇 × 0.2)  
Slew Rate ON: ꢅꢄ푂푁  
=
[V / µs]  
[V / µs]  
퐹  
(퐵퐴푇 × 0.8 − 퐵퐴푇 × 0.2)  
Slew Rate OFF: ꢅꢄ푂퐹퐹  
=
푅  
RSR recommended range: 24 kΩ to 150 kΩ  
(Calculation example)  
(
)
1.636 × 150푘  
Rise time 3: 푅ꢆ  
=
+ 3.73 = 249 [µs]  
1000  
(12 × 0.8 − 12 × 0.2)  
Slew Rate OFF 3: ꢅꢄ푂퐹퐹ꢆ  
=
= 0.029 [V / µs]  
249  
400  
350  
300  
250  
200  
150  
100  
50  
VBAT = 12V  
Max  
Typ  
Min  
0
0
50  
100  
150  
SR Resistor: RSR [kΩ]  
Figure 31. Output rise (fall) time vs The SR pin resistance  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
25/33  
BV1LF080EFJ-C  
I/O Equivalent Circuit  
VDD  
ST  
100 Ω  
ST  
VDD  
100 Ω  
IN  
SR  
IN  
39 kΩ  
46 kΩ  
SR  
15 kΩ  
STBY  
OUT  
STBY  
41 kΩ  
47 kΩ  
12 kΩ  
OUT  
Resistor values in the figure are typical values.  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
26/33  
BV1LF080EFJ-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse  
polarity when connecting the power supply, such as mounting an external diode between the power supply  
and the IC’s power supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to  
ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value  
when using electrolytic capacitors.  
3. Ground Voltage  
Except for pins the output and the input of which were designed to go below ground, ensure that no pins  
are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed  
separately but connected to a single ground at the reference point of the application board to avoid  
fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of  
external components do not cause variations on the ground voltage. The ground lines must be as short and  
thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended  
operating conditions. The characteristic values are guaranteed only under the conditions of each item  
specified by the electrical characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin  
may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s  
power supply should always be turned off completely before connecting or removing it from the test setup  
during the inspection process. To prevent damage from static discharge, ground the IC during assembly  
and use similar precautions during transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting  
may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power  
supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets  
(in very humid environment) and unintentional solder bridge deposited in between pins during assembly to  
name a few.  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
27/33  
28.Oct.2020 Rev.002  
TSZ22111 • 15 • 001  
BV1LF080EFJ-C  
Operational Notes ― Continued  
9. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
10. Thermal Shutdown Function (TSD)  
This IC has a built-in thermal shutdown function that prevents heat damage to the IC. Normal operation  
should always be within the IC’s maximum junction temperature rating. If however the rating is exceeded  
for a continued period, the junction temperature (Tj) will rise which will activate the TSD function that will  
turn OFF power output pins. When the Tj falls below the TSD threshold, the circuits are automatically  
restored to normal operation.  
Note that the TSD function operates in a situation that exceeds the absolute maximum ratings and therefore,  
under no circumstances, should the TSD function be used in a set design or for any purpose other than  
protecting the IC from heat damage.  
11. Over Current Protection Function (OCP)  
This IC incorporates an integrated overcurrent protection function that is activated when the load is shorted.  
This protection function is effective in preventing damage due to sudden and unexpected incidents. However,  
the IC should not be used in applications characterized by continuous operation or transitioning of the  
protection function.  
12. Active Clamp Operation  
The IC integrates the active clamp function to internally absorb the reverse energy EL which is generated  
when the inductive load is turned off. When the active clamp operates, the thermal shutdown function does  
not work. Decide a load so that the reverse energy EL is active clamp tolerance EAS (refer to Figure 26.  
Active Clamp Energy (Single Pulse) vs Output Current (Start)) or under when inductive load is used.  
13. Negative Current of Output  
When the OUT pin (DRAIN) becomes lower than the GND pin (SOURCE) voltage, a current flow from power  
supply pin (VDD) and the input pins (the STBY pin and the IN pin) to the OUT pin through a parasitic  
transistor. When the power supply pin is high, as shown in Figure 32, when the input pins are high, as  
shown in Figure 33, a current flow from the power supply pin and the input pins of connected parts (LDO,  
MCU, etc.) to the OUT pin. When the power supply pin is low, as shown in Figure 34, and when the input  
pins are low, as shown in Figure 35, a current flow from the power supply pin and the GND of parts (LDO,  
MCU, etc.) that connected to the input pins to the OUT pin.  
Therefore, set the OUT pin (DRAIN) is -0.3 V or higher. When the OUT pin becomes lower than -0.3 V, add  
a restriction resistance 82 Ω or higher to the VDD pin, a restriction resistance 1k Ω or higher to the STBY  
pin and a restriction resistance 1k Ω or higher to the IN pin. However, set the value of restriction resistance  
in consideration of the voltage descent caused by power supply pin and input pins currents.  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
28/33  
28.Oct.2020 Rev.002  
TSZ22111 • 15 • 001  
BV1LF080EFJ-C  
13. Negative Current of Output ― Continued  
LDO, and so on  
GND  
(SOURCE)  
Power supply pin  
Restriction  
resistance  
N+  
N+  
N+  
N+  
N+  
P+  
P-  
P-  
Parasitic Element  
N-epi  
N+sub  
OUT  
(DRAIN)  
Figure 32. Negative Current Path (when the power supply pin is High)  
MCU, and so on  
GND  
(SOURCE)  
Restriction  
resistance  
Input pin  
N+  
N+  
N+  
N+  
N+  
P+  
P-  
P-  
Parasitic Element  
N-epi  
N+sub  
OUT  
(DRAIN)  
Figure 33. Negative Current Path (when the input pins are High)  
LDO, and so on  
GND  
(SOURCE)  
Restriction  
resistance  
Power supply pin  
N+  
N+  
N+  
N+  
N+  
P+  
P-  
P-  
Parasitic Element  
N-epi  
N+sub  
OUT  
(DRAIN)  
Figure 34. Negative Current Path (when the power supply pin is Low)  
MCU, and so on  
GND  
(SOURCE)  
Input pin  
Restriction  
resistance  
N+  
N+  
N+  
N+  
N+  
P+  
P-  
P-  
Parasitic Element  
N-epi  
N+sub  
OUT  
(DRAIN)  
Figure 35. Negative Current Path (when the input pins are Low)  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
29/33  
BV1LF080EFJ-C  
Operational Notes ― Continued  
14. Power Supply Steep Fluctuation  
If the voltage of the power supply pin (VDD) falls sharply, the output pin (OUT) may temporarily turn off as  
shown in Figure 36. If the power supply pin is expected to fall sharply, take measures such as inserting a  
capacitor between the power supply pin and the ground pin so that it falls within the recommended usage  
range shown in Figure 37.  
2.5  
VDD[V]  
2.0  
Deprecated use range  
VDD(FALL)  
VDD  
1.5  
1.0  
0.5  
0.0  
tVDD(FALL)  
0
t
VOUT[V]  
Recommended use range  
VBAT  
VOUT  
0 V  
0
t
0
10  
20  
30  
tVDD(FALL) [μs]  
Figure 36. Output OFF Operation when Power  
Supply Fluctuates Sharply  
Figure 37. Recommended Use Range  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
30/33  
BV1LF080EFJ-C  
Ordering Information  
B V 1 L F 0 8 0 E F J  
C E 2  
Package  
Product Grade  
EFJ: HTSOP-J8  
C: For Automotive  
Packaging and Forming Specification  
E2: Embossed Tape and Reel  
Marking Diagram  
HTSOP-J8 (TOP VIEW)  
Part Number Marking  
V 1 L F 8 0  
LOT Number  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
31/33  
TSZ22111 • 15 • 001  
BV1LF080EFJ-C  
Physical Dimension and Packing Information  
Package Name  
HTSOP-J8  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
32/33  
BV1LF080EFJ-C  
Revision History  
Date  
Revision  
Changes  
24.Jun.2020  
001  
002  
New release  
28.Oct.2020  
Page 25. Updated slew rate control function formula.  
www.rohm.com  
TSZ02201-0GYG1G400100-1-2  
28.Oct.2020 Rev.002  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
33/33  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BV2

RUNDVERBINDUNGSHUELSEN BLAU 100ST Inhalt pro Packung: 100 Stk.
ETC

BV201D06003A

SEALED POWER TRANSFORMERS
ETC

BV201D06005

SEALED POWER TRANSFORMERS
ETC

BV201D06006

SEALED POWER TRANSFORMERS
ETC

BV201D09003A

SEALED POWER TRANSFORMERS
ETC

BV201D09005

SEALED POWER TRANSFORMERS
ETC

BV201D09006

SEALED POWER TRANSFORMERS
ETC

BV201D10003A

SEALED POWER TRANSFORMERS
ETC

BV201D10005

SEALED POWER TRANSFORMERS
ETC

BV201D10006

SEALED POWER TRANSFORMERS
ETC

BV201D12003A

SEALED POWER TRANSFORMERS
ETC

BV201D12005

密封变压器
ETC