BV2HM050EFV-C (新产品) [ROHM]

BV2HM050EFV-C是一款车载用双通道高边开关。内置过电流保护功能(间歇工作模式)、过热保护功能、负载开路检测功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。;
BV2HM050EFV-C (新产品)
型号: BV2HM050EFV-C (新产品)
厂家: ROHM    ROHM
描述:

BV2HM050EFV-C是一款车载用双通道高边开关。内置过电流保护功能(间歇工作模式)、过热保护功能、负载开路检测功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。

开关 过电流保护
文件: 总32页 (文件大小:1310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive IPD Series  
2ch High Side Switch  
BV2HM050EFV-C  
General Description  
Key Specifications  
Power Supply Voltage Operating Range: 6 V to 28 V  
BV2HM050EFV-C is  
a 2ch high side switch for  
automotive application. It has a built in hiccup mode  
overcurrent protection function, thermal shutdown  
protection function, open load detection function, under  
voltage lockout function. It is equipped with diagnostic  
output function for abnormality detection.  
ON-Resistance (Tj = 25 °C):  
Overcurrent Value:  
Standby Current (Tj = 25 °C):  
Active Clamp Energy (Tj = 25 °C):  
50 mΩ (Typ)  
5 A (Min)  
0.5 µA (Max)  
140 mJ  
Package  
HTSSOP-B20  
W (Typ) x D (Typ) x H (Max)  
Features  
6.5 mm x 6.4 mm x 1.0 mm  
AEC-Q100 Qualified(Note 1)  
Built in Hiccup Mode Overcurrent Protection Function  
(OCP)  
Built-in Thermal Shutdown Protection Function (TSD)  
Built-in Open Load Detection Function (OLD)  
Built-in Under Voltage Lockout Function (UVLO)  
Low On-Resistance RON = 50 mΩ (Typ)  
Monolithic Power Management IC with the Control  
Block (CMOS) and Power MOSFET Mounted on a  
Single Chip  
(Note 1) Grade1  
HTSSOP-B20  
Application  
Resistance Load, Inductance Load and Capacitance  
Load for Automotive Application  
Typical Application Circuit  
C
VBB  
ROLD1  
OUT1  
OUT1  
OUT1  
OUT1  
VBB  
+B  
ROLD2  
RIN1  
IN1  
RGND  
GND  
GND  
load1  
DI  
RST1  
MCU  
ST1  
OUT2  
RST2  
ST2  
IN2  
OUT2  
OUT2  
RIN2  
OUT2  
load2  
Figure 1. Application Circuit  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0G5G1G400130-1-2  
1/29  
31.Jan.2023 Rev.003  
 
 
 
 
 
 
BV2HM050EFV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Application ......................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Description................................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................4  
Definition.........................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................5  
Recommended Operating Conditions.............................................................................................................................................6  
Thermal Resistance........................................................................................................................................................................6  
Electrical Characteristics...............................................................................................................................................................10  
Typical Performance Curves.........................................................................................................................................................11  
Measurement Circuits...................................................................................................................................................................16  
Measurement Conditions for Time Items ......................................................................................................................................19  
Timing Chart .................................................................................................................................................................................20  
Description of Blocks ....................................................................................................................................................................20  
Applications Example ...................................................................................................................................................................23  
I/O Equivalence Circuits................................................................................................................................................................24  
Operational Notes.........................................................................................................................................................................25  
Ordering Information.....................................................................................................................................................................27  
Marking Diagram ..........................................................................................................................................................................27  
Physical Dimension and Packing Information...............................................................................................................................28  
Revision History............................................................................................................................................................................29  
www.rohm.com  
TSZ02201-0G5G1G400130-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
2/29  
31.Jan.2023 Rev.003  
TSZ22111 • 15 • 001  
 
BV2HM050EFV-C  
Pin Configuration  
(TOP VIEW)  
VBB  
N.C.  
IN1  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
OUT1  
OUT1  
OUT1  
OUT1  
N.C.  
3
GND  
GND  
ST1  
N.C.  
ST2  
IN2  
4
5
EXP-PAD  
VBB  
6
N.C.  
7
OUT2  
OUT2  
OUT2  
OUT2  
8
9
N.C.  
10  
Figure 2. Pin Configuration  
Pin Description  
Pin No.  
Pin Name  
VBB  
N.C.  
IN1  
Function  
1
Power input pin, switch input pin  
2
-
3
Channel 1 Input pin. Pull-down resistor is connected internally.  
4
GND  
GND  
ST1  
Ground pin  
5
Ground pin  
6
Channel 1 Self-diagnostic output pin  
7
N.C.  
ST2  
-
8
9
Channel 2 Self-diagnostic output pin  
IN2  
Channel 2 Input pin. Pull-down resistor is connected internally.  
10  
N.C.  
OUT2  
N.C.  
N.C.  
OUT1  
VBB  
-
11 to 14  
15  
Channel 2 Switch output pin  
-
16  
-
17 to 20  
EXP-PAD  
Channel 1 Switch output pin  
Power input pin, switch input pin  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
31.Jan.2023 Rev.003  
3/29  
BV2HM050EFV-C  
Block Diagram  
VBB  
Channel2  
Channel1  
Gate Control  
CLK  
IN1  
IN2  
Charge  
Pump  
Clamp  
Gate  
Driver  
lnternal  
supply  
Protect  
Control  
Hiccup Control  
for OCP  
OUT2  
OUT1  
OCP  
OLD  
ST1  
ST2  
TSD  
UVLO  
GND  
Figure 3. Block Diagram  
Definition  
IBB  
VBB  
VDS1, VDS2  
IOUT1, IOUT2  
IIN1, IIN2  
IN1, IN2  
OUT1, OUT2  
VOUT1, VOUT2  
VBB  
IST1, IST2  
ST1, ST2  
VST1, VST2  
VIN1, VIN2  
GND  
IGND  
Figure 4. Voltage and Current Definition  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
4/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
VDS  
Rating  
-0.3 to Internal clamp(Note 1)  
-0.3 to +40  
Unit  
V
VBB - OUT Voltage  
Power Supply Voltage  
Input Voltage  
VBB  
V
VIN1, VIN2  
IIN1, IIN2  
VST1, VST2  
IOUT1, IOUT2  
Tj  
-0.3 to +7.0  
V
Input Current  
-2.0 to +2.0  
mA  
V
Diagnostic Output Voltage  
Output Current  
-0.3 to +7.0  
(Note 2)  
11.0 (Overcurrent Value IOC  
-40 to +150  
)
A
Junction Temperature Width  
Storage Temperature Range  
Maximum Junction Temperature  
°C  
°C  
°C  
Tstg  
-55 to +150  
Tjmax  
150  
Active Clamp Energy(Note 3) (Note 4)  
(Single Pulse, Tj = 25 °C)  
EAS  
EAS  
140  
65  
mJ  
mJ  
V
Active Clamp Energy(Note 3) (Note 4)  
(Single Pulse, Tj = 150 °C)  
Supply Voltage for Short Circuit Protection  
VBBLIM  
28  
(Note 4) (Note 5)  
(Note 1) Internally limited by output clamp voltage.  
(Note 2) When overcurrent flows, output is turned off. (Output self-restarts after a certain time.)  
(Note 3) Maximum active clamp energy using Single Pulse of IOUT(START) = 2 A and VBB = 14 V.  
(Note 4) Not 100 % tested.  
(Note 5) Maximum power supply voltage that can detect short circuit protection.  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Caution 3: When IC turns off with an inductive load, reverse energy is generated. This energy can be calculated by the following equation:  
1
퐵퐵  
= × ꢀ × 퐼푂푈푇 푆푇퐴푅푇 × ꢂ1 −  
(
)
2
퐵퐵 퐷푆  
Where:  
is the inductance of the inductive load.  
푂푈푇(푆푇퐴푅푇) is the output current at the time of turning off.  
The BV2HM050EFV-C integrates the active clamp function to internally absorb the reverse energy EL which is generated when the inductive load is  
turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a load so that the reverse energy EL is active  
clamp energy EAS (refer to Figure 5. Active Clamp Energy vs Output Current) or under when inductive load is used.  
1000  
Tj(start) = 25 °C  
100  
Tj(start) = 150 °C  
10  
0.5  
1.0  
2.0  
4.0 5.0  
Output Current : IOUT [A]  
Figure 5. Active Clamp Energy vs Output Current  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
5/29  
31.Jan.2023 Rev.003  
 
BV2HM050EFV-C  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VBB  
6
14  
28  
V
Operating Power Supply Voltage  
Operating Temperature  
Topr  
-40  
+25  
+150  
°C  
Operating Frequency  
(Input Voltage 50 % Duty)  
fIN  
-
-
1
kHz  
Thermal Resistance(Note 1)  
Parameter  
Typ  
Unit  
Condition  
Symbol  
HTSSOP-B20  
108.1  
42.4  
33.1  
°C/W  
°C/W  
°C/W  
1s(Note 2)  
2s(Note 3)  
Between Junction and Surroundings Temperature  
Thermal Resistance  
θJA  
2s2p(Note 4)  
(Note 1) The thermal impedance is based on JESD51-2A (Still-Air) standard. It is used the chip of BV2HM050EFV-C  
(Note 2) JESD51-3 standard FR4 114.3 mm x 76.2 mm x 1.57 mm 1-layer (1s)  
(Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper.)  
(Note 3) JESD51-5 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 2-layer (2s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure  
Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm, copper (top & reverse side) 2 oz.)  
(Note 4) JESD51-5 / -7 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 4-layers (2s2p)  
(Top copper foil: ROHM recommended Footprint + wiring to measure  
2 inner layers and copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm, copper (top & reverse side / inner layers) 2 oz / 1 oz.)  
PCB Layout 1 layer (1s)  
Footprint  
100 mm2  
600 mm2  
1200 mm2  
Figure 6. PCB Layout 1 layer (1s)  
Dimension  
Value  
Board finish thickness  
Board dimension  
Board material  
1.57 mm  
76.2 mm x 114.3 mm  
FR4  
Copper thickness  
Copper foil area  
0.070 mm (Cu: 2oz)  
Footprint / 100 mm2 / 600 mm2 / 1200 mm2  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
6/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Thermal Resistance – continued  
PCB Layout 2 layers (2s)  
Top Layer  
Bottom Layer  
Top Layer  
Bottom Layer  
via  
Cross Section  
Figure 7. PCB Layout 2 layers (2s)  
Dimension  
Value  
1.60 mm  
Board finish thickness  
Board dimension  
76.2 mm x 114.3 mm  
FR4  
Board material  
Copper thickness (Top / Bottom layers)  
Thermal vias separation / diameter  
0.070 mm (Cu: 1oz + Plating)  
1.2 mm / 0.3 mm  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
31.Jan.2023 Rev.003  
7/29  
BV2HM050EFV-C  
Thermal Resistance – continued  
PCB Layout 4 layers (2s2p)  
Top Layer  
2nd / Bottom Layer  
3rd Layer  
Top Layer  
2nd Layer  
3rd Layer  
Bottom Layer  
Isolation Clearance Diameter ≥ 0.6 mm  
via  
Cross Section  
Figure 8. PCB Layout 4 layers (2s2p)  
Dimension  
Value  
1.60 mm  
Board finish thickness  
Board dimension  
76.2 mm x 114.3 mm  
FR4  
Board material  
Copper thickness (Top / Bottom layers)  
Copper thickness (Inner layers)  
Thermal vias separation / diameter  
0.070 mm (Cu: 1oz + Plating)  
0.035 mm  
1.2 mm / 0.3 mm  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
31.Jan.2023 Rev.003  
8/29  
BV2HM050EFV-C  
Thermal Resistance – continued  
Transient Thermal Resistance (Single Pulse)  
1000  
100  
10  
1
1s_Footprint  
0.1  
0.01  
2s  
2s2p  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Pulse Time [s]  
Figure 9. Transient Thermal Resistance  
Thermal Resistance (θJA vs Copper foil area- 1s)  
120  
100  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
1200  
Copper Foil Area (1s) [mm2]  
Figure 10. Thermal Resistance  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
9/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Electrical Characteristics (unless otherwise specified VBB = 6 V to 28 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[Power Supply]  
Standby Current  
VBB = 14 V, VIN = 0 V,  
VOUT = 0 V, Tj = 25 °C  
IBBL1  
IBBL2  
IBBH  
-
-
-
-
-
0.5  
20  
10  
μA  
μA  
VBB = 14 V, VIN = 0 V,  
VOUT = 0 V, Tj = 150 °C  
VBB = 14 V, VIN = 5 V,  
VOUT = Open  
5
mA  
Operating Current  
UVLO Detection Voltage  
UVLO Hysteresis Voltage  
[Input (VIN1, VIN2) ]  
VUVLO  
-
-
-
-
5.0  
1.0  
V
V
VUVHYS  
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis Voltage  
High Level Input Current  
Low Level Input Current  
[Power MOS Output]  
VINH  
VINL  
VHYS  
IINH  
2.1  
-
-
-
V
V
-
-
0.9  
-
0.3  
50  
-
V
-
150  
+10  
μA  
μA  
VIN = 5 V  
VIN = 0 V  
IINL  
-10  
RON1  
RON2  
-
50  
-
65  
115  
90  
mΩ  
mΩ  
mΩ  
μA  
VBB = 8 V to 18 V, Tj = 25 °C  
VBB = 8 V to 18 V, Tj = 150 °C  
VBB = 6 V, Tj = 25 °C  
-
Output ON Resistance  
-
-
RON3  
-
-
0.5  
20  
VIN = 0 V, VOUT = 0 V, Tj = 25 °C  
VIN = 0 V, VOUT = 0 V, Tj = 150 °C  
IOUTL1  
IOUTL2  
SRON  
SROFF  
tOUTON  
tOUTOFF  
VDSCLP  
Output Leak Current  
-
0.05  
0.05  
-
-
μA  
0.20  
0.20  
70  
70  
50  
0.50  
0.50  
160  
160  
55  
V/μs VBB = 14 V, RL = 6.5 Ω  
V/μs VBB = 14 V, RL = 6.5 Ω  
Output Slew Rate when ON  
Output Slew Rate when OFF  
Output Propagation Delay Time when ON  
Output Propagation Delay Time when OFF  
Output Clamp Voltage  
μs  
μs  
V
VBB = 14 V, RL = 6.5 Ω  
VBB = 14 V, RL = 6.5 Ω  
VIN = 0 V, IOUT = 10 mA  
-
45  
[Diagnostics]  
VSTL  
ISTL  
-
-
-
-
0.5  
10  
V
IST = 1 mA  
VST = 5 V  
Diagnostic Output Low Voltage  
Diagnostic Output Leak Current  
µA  
Diagnostic Output Propagation Delay Time  
when ON  
Diagnostic Output Propagation Delay Time  
when OFF  
tSTON  
10  
50  
100  
500  
µs  
µs  
tSTOFF  
125  
300  
[Protection Circuit]  
IOC  
tOCON  
tOCOFF  
VOLD  
IOLD  
5
-
8
11  
40  
A
µs  
ms  
V
VOUT = 0 V  
VOUT = 0 V  
Overcurrent Value  
10  
2.5  
3.0  
20  
Overcurrent Detection ON Time  
Overcurrent Detection OFF Time  
Open Load Detection Voltage  
Open Load Detection Sink Current  
1.0  
2.0  
-
4.0  
4.0  
60  
µA  
VIN = 0 V, VOUT = 5 V  
Thermal Shutdown Detection Temperature  
TTSDDET  
TTSDREL  
TTSDHYS  
160  
150  
-
185  
-
210  
°C  
°C  
°C  
(Note 1)  
Thermal Shutdown Release Temperature  
-
-
(Note 1)  
Thermal Shutdown Hysteresis Temperature  
10  
(Note 1)  
(Note 1) Not 100 % tested.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
10/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Typical Performance Curves  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5
4
3
2
1
0
-50  
0
50  
100  
150  
0
5
10 15 20 25 30 35 40  
Power Supply Voltage : VBB [V]  
Junction Temperature : Tj [ºC]  
Figure 11. Standby Current vs Power Supply Voltage  
Figure 12. Standby Current vs Junction Temperature  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
0
5
10 15 20 25 30 35 40  
Power Supply Voltage : VBB [V]  
-50  
0
50  
100  
150  
Junction Temperature : Tj [ºC]  
Figure 13. Operating Current vs Power Supply Voltage  
Figure 14. Operating Current vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
11/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
5
4
3
2
1
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VINH  
VINL  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [ºC]  
Junction Temperature : Tj [ºC]  
Figure 15. UVLO Detection Voltage vs Junction Temperature  
Figure 16. High / Low Level Input Voltage  
vs Junction Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-50  
0
50  
100  
150  
0
5
10 15 20 25 30 35 40  
Power Supply Voltage : VBB [V]  
Junction Temperature : Tj [ºC]  
Figure 17. High Level Input Current vs Junction Temperature  
Figure 18. Output ON Resistance vs Power Supply Voltage  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
12/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [ºC]  
Junction Temperature : Tj [ºC]  
Figure 19. Output ON Resistance vs Junction Temperature  
Figure 20. Output Leak Current vs Junction Temperature  
0.5  
0.4  
160  
140  
120  
100  
0.3  
SROFF  
80  
tOUTON  
0.2  
60  
SRON  
tOUTOFF  
40  
20  
0
0.1  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [ºC]  
Junction Temperature : Tj [ºC]  
Figure 21. Output Slew Rate when ON / OFF  
vs Junction Temperature  
Figure 22. Output Propagation Delay Time when ON / OFF  
vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
13/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
60  
50  
40  
30  
20  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [ºC]  
Junction Temperature : Tj [ºC]  
Figure 23. Output Clamp Voltage vs Junction Temperature  
Figure 24. Diagnostic Output Low Voltage  
vs Junction Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [ºC]  
Junction Temperature : Tj [ºC]  
Figure 25. Diagnostic Output Propagation Delay Time  
when ON vs Junction Temperature  
Figure 26. Diagnostic Output Propagation Delay Time  
when OFF vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
14/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN = 5 V, Tj = 25 °C)  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
6
4
2
0
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [ºC]  
Junction Temperature : Tj [ºC]  
Figure 27. Overcurrent Value vs Junction Temperature  
Figure 28. Overcurrent Detection ON Time  
vs Junction Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [ºC]  
Junction Temperature : Tj [ºC]  
Figure 29. Overcurrent Detection OFF Time  
vs Junction Temperature  
Figure 30. Open Load Detection Voltage  
vs Junction Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
15/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Measurement Circuits  
VBB  
VBB  
VBB  
VBB  
IN1  
(IN2)  
IN1  
(IN2)  
ST1  
(ST2)  
ST1  
(ST2)  
OUT1  
(OUT2)  
OUT1  
(OUT2)  
VIN  
VST  
VIN  
GND  
GND  
Figure 31. Standby Current  
Low Level Input Current  
Output Leak Current  
Figure 32. Operating Current  
Diagnostic Output Leak Current  
VBB  
VBB  
VBB  
IN1  
(IN2)  
VBB  
IN1  
(IN2)  
ST1  
(ST2)  
ST1  
(ST2)  
OUT1  
(OUT2)  
OUT1  
(OUT2)  
VIN  
VIN  
GND  
GND  
1 kΩ  
Figure 33. UVLO Detection / Hysteresis Voltage  
High / Low Level Input Voltage  
Input Hysteresis Voltage  
Figure 34. Output ON Resistance  
Output Clamp Voltage  
High Level Input Current  
Thermal Shutdown Detection  
/ Release / Hysteresis Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
31.Jan.2023 Rev.003  
16/29  
BV2HM050EFV-C  
Measurement Circuits - continued  
VBB  
VBB  
VBB  
IN1  
(IN2)  
VBB  
IN1  
(IN2)  
10 kΩ  
ST1  
(ST2)  
ST1  
(ST2)  
Monitor  
Monitor  
IST  
VIN  
OUT1  
(OUT2)  
OUT1  
(OUT2)  
VST  
VIN  
Monitor  
6.5 Ω  
GND  
GND  
1 kΩ  
Figure 35. Output Slew Rate when ON / OFF  
Figure 36. Diagnostic Output Low Voltage  
Output Propagation Delay Time when ON / OFF  
Diagnostic Output Propagation Delay Time when ON  
VBB  
VBB  
VBB  
VBB  
IN1  
(IN2)  
IN1  
(IN2)  
10 kΩ  
10 kΩ  
ST1  
(ST2)  
ST1  
(ST2)  
Monitor  
Monitor  
Monitor  
Monitor  
VIN  
VIN  
OUT1  
(OUT2)  
OUT1  
(OUT2)  
VST  
VST  
GND  
GND  
Figure 37. Diagnostic Output Propagation Delay Time when OFF  
Figure 38. Overcurrent Value  
Overcurrent Detection ON / OFF Time  
www.rohm.com  
TSZ02201-0G5G1G400130-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
17/29  
31.Jan.2023 Rev.003  
TSZ22111 • 15 • 001  
BV2HM050EFV-C  
Measurement Circuits - continued  
VBB  
VBB  
IN1  
(IN2)  
10 kΩ  
ST1  
(ST2)  
VST  
OUT1  
(OUT2)  
GND  
VOUT  
Figure 39. Open Load Detection Voltage  
Open Load Detection Sink Current  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
18/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Measurement Conditions for Time Items  
VINL  
VINH  
VINL  
IN1  
IN1  
(IN2)  
(IN2)  
80 %  
ΔV  
80 %  
ΔV  
SRON = ΔV/t1  
SROFF = ΔV/t2  
OUT1  
(OUT2)  
OUT1  
(OUT2)  
20 %  
20 %  
t1  
t2  
tOUTON  
tOUTOFF  
ST1  
(ST2)  
ST1  
(ST2)  
10 %  
10 %  
tSTOFF  
tSTON  
Figure 40. Output Slew Rate when ON / OFF  
Figure 41. Diagnostic Output Propagation Delay Time when OFF  
Output Propagation Delay Time when ON / OFF  
Diagnostic Output Propagation Delay Time when ON  
IN1  
(IN2)  
OUT1  
(OUT2)  
ST1  
(ST2)  
IOC  
IOC (min)  
IOUT1  
(IOUT2  
)
tOCOFF  
tOCOFF  
tOCOFF  
tOCON  
tOCON  
tOCON  
Figure 42. Overcurrent Value  
Overcurrent Detection ON / OFF Time  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
19/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Timing Chart  
IN1  
(IN2)  
OUT1  
(OUT2)  
ST1  
(ST2)  
Normal  
Open Load Detction  
OLD)  
Normal  
Low Voltage Output OFF  
Normal  
Thermal Shutdown  
Normal  
Overcurrent Protection  
Normal  
UVLO)  
TSD)  
OCP)  
Figure 43. Timing Chart  
Description of Blocks  
1. Protection Functions  
Table 1. Detection and Release Conditions and Diagnostic Output of Each Protection Function(Note 1)  
Input Voltage  
Diagnostic Output  
VSTx  
Mode  
Detection / Release Conditions  
VINx  
Standby  
Operating  
-
Low  
High  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
Normal  
Condition  
-
High  
Low  
Low  
High  
High  
High  
High  
High  
High  
Detect VOUTx ≥ 3.0 V (Typ)  
Release VOUTx ≤ 2.2 V (Typ)  
Detect VBB ≤ 5.0 V (Max)  
Release VBB ≥ 6.0 V (Max)  
Detect Tj ≥ 185 °C (Typ)  
Release Tj ≤ 175 °C (Typ)  
Detect IOUTx ≥ 6 A (Typ)  
Release IOUTx < 6 A (Typ)  
Open Load Detect (OLD)  
Under Voltage Lockout (UVLO)  
Thermal Shutdown Protection  
(TSD)(Note 2)  
Overcurrent Protection (OCP)  
(Note 1) x = 1, 2 and this is the same for x in the following sentence.  
(Note 2) Thermal shutdown is automatically restored to normal operation.  
This IC has a built-in protection detection function as mentioned above and outputs the condition with diagnostic output pin  
STx.  
In normal condition, when input voltage VINx is switched from Low to High, diagnostic output VSTx turns from High to Low.  
Inversely, when VINx is switched from High to Low, VSTx turns from Low to High.  
In protection function detected condition, VSTx is High when VINx is High, and VSTx is Low when VINx is Low. And after  
detecting protection function, this IC self-restarts and operation becomes normal if above release condition is satisfied.  
2. Overcurrent Protection (Output ground fault detection)  
This IC has a built-in hiccup mode overcurrent protection function. When the output pin (OUTx) outputs overcurrent, the  
output of Channel x is turned off and diagnostic output VSTx becomes High. After Overcurrent Detection OFF Time (tOCOFF  
)
from turn-off, output self-restarts and operation becomes normal if overcurrent doesn’t flow. When overcurrent flows after the  
self-restart, output is turned off again. So, if the condition that causes overcurrent continues, output repeats ON and OFF  
periodically. And in this time VSTx keeps High.  
And output current can exceed Overcurrent Value IOC depending on the condition of impedance connected to VBB, OUT  
pins.  
3.Thermal Shutdown Protection  
This IC has a built-in thermal shutdown protection function. When the chip temperature of POWER-MOS unit for Channel x  
in this IC exceeds 185 °C (Typ), the output of Channel x is turned OFF and diagnostic output VSTx becomes High.  
When the chip temperature of POWER-MOS unit for Channel x goes below 175 °C (Typ), output self-restarts and operation  
becomes normal.  
www.rohm.com  
TSZ02201-0G5G1G400130-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
20/29  
31.Jan.2023 Rev.003  
TSZ22111 • 15 • 001  
BV2HM050EFV-C  
Description of Blocks - continued  
4. Open Load Detection  
VBB  
VBB  
SOLD  
ROLD  
OUT1, OUT2  
IN1, IN2  
Internal  
supply  
5 V  
R1  
R2  
ST1, ST2  
R3  
logic  
RL  
Figure 44. Open Load Detection Block Diagram  
This IC has a built-in Open Load Detection function. By connecting an external resistance ROLD between power supply pin  
(VBB) and output pin (OUTx), when output load (RL) is disconnected during input voltage VINx is Low, diagnostic output VSTx  
becomes Low.  
To reduce the standby current of the system, inserting a switch SOLD is recommended.  
The value of ROLD is decided based on below formula.  
푂퐿퐷 < 퐵퐵푀ꢅ푁 × 37.5 × 10− 150 × 10[Ω]  
ꢇꢈꢉ  
− ꢄ푀ꢅ푁 [Ω] )  
ꢋꢌꢍꢇꢎ푋  
( = 퐵퐵푀ꢅ푁  
×
Where:  
is the minimum value of power supply voltage (VBB).  
ꢏꢏꢐ퐼ꢑ  
OLDMAX is the maximum value of Open Load Detection Voltage (VOLD).  
푀ꢅ푁 is the minimum value of combined resistance of internal resistors R1, R2 and R3.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
21/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Description of Blocks - continued  
5. Other Protection  
5.1 GND Open Protection  
5 V  
VBB  
Clamp  
IN1, IN2  
Internal  
supply  
Control  
logic  
OUT1, OUT2  
ST1, ST2  
GND  
Figure 45. GND Open Protection Block Diagram  
When GND of the IC is open, the output is switched OFF regardless of the input voltage VINx. However, diagnostic output  
VSTx is not flagged.  
The active clamp operates when GND become open during driving inductive load.  
5.2 MCU I/O Protection  
VBB  
5 V  
Internal  
supply  
Clamp  
IN1, IN2  
Control  
logic  
MCU  
OUT1, OUT2  
ST1, ST2  
GND  
Figure 46. MCU I/O Protection Diagram  
Negative surge voltage to input pin (IN1, IN2) or diagnostic output pin (ST1, ST2) may cause damage to the MCU's I/O  
pins. In order to prevent those damages, it is recommended to insert limiting resistors between IC pins and MCU.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
22/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Applications Example  
RST2PU  
RST1PU  
CVBB  
VBB  
BV2HM050EFV-C  
GND  
R
IN1  
ROLD1  
ROLD2  
IN1  
IN2  
ST1  
ST2  
OUT1  
R
IN2  
RL1  
MCU  
COUT1  
RST1  
OUT2  
RST2  
RL2  
COUT2  
RGND  
DGND  
Symbol  
Value  
Purpose  
RIN1, RIN2  
RST1, RST2  
1 kΩ  
1 kΩ  
Limit resistance for negative surge  
Limit resistance for negative surge  
Pull up resistance for diagnostic output  
RST1PU, RST2PU  
10 kΩ  
The ST1 and ST2 pins are open drain output and pull up  
these pins to MCU power supply.  
CVBB  
RGND  
10 µF  
1 kΩ  
Filter for battery line voltage spike  
Current limit resistance for reverse battery connection  
Protection diode for BV2HM050EFV-C against reverse  
battery connection  
DGND  
-
ROLD1, ROLD2  
COUT1, COUT2  
RL1, RL2  
2 kΩ  
1000 pF  
-
Resistance for open load detection  
Filter for radiation noise from outside of BV2HM050EFV-C  
Output load  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
31.Jan.2023 Rev.003  
23/29  
BV2HM050EFV-C  
I/O Equivalence Circuits  
IN1, IN2  
ST1, ST2  
10 kΩ  
150 Ω  
IN1  
IN2  
ST1  
ST2  
100 kΩ  
OUT1, OUT2  
VBB  
OUT1  
OUT2  
200 kΩ  
300 kΩ  
500 kΩ  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
24/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Except for pins the output and the input of which were designed to go below ground, ensure that no pins are at a  
voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
11. Thermal Shutdown Function (TSD)  
This IC has a built-in thermal shutdown function that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD function that will turn OFF power output pins. When the  
Tj falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD function operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD function be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
www.rohm.com  
TSZ02201-0G5G1G400130-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
25/29  
31.Jan.2023 Rev.003  
TSZ22111 • 15 • 001  
BV2HM050EFV-C  
Operational Notes – continued  
12. Over Current Protection Function (OCP)  
This IC incorporates an integrated overcurrent protection function that is activated when the load is shorted. This  
protection function is effective in preventing damage due to sudden and unexpected incidents. However, the IC  
should not be used in applications characterized by continuous operation or transitioning of the protection function.  
13. Active Clamp Operation  
The IC integrates the active clamp function to internally absorb the reverse energy EL which is generated when the  
inductive load is turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a  
load so that the reverse energy EL is active clamp energy EAS (refer to Figure 5. Active Clamp Energy vs Output  
Current) or under when inductive load is used.  
14. Open Power Supply Pin  
When the power supply pin (VBB) becomes open at ON (IN = High), the output is switched to OFF regardless of input  
voltage. If an inductive load is connected, the active clamp operates when VBB is open and becomes the same  
potential as that on the ground. At this time, the output voltage drops down to -50 V (Typ).  
15. Open GND Pin  
When the GND pin becomes open at ON (IN = High), the output is switched to OFF regardless of input voltage. If an  
inductive load is connected, the active clamp operates when the GND pin is open.  
16. OUT Pin Voltage  
Ensure that keep OUT pin voltage less than (VBB + 0.3 V) at any time, even during transient condition. And ensure  
that OUT pin voltage is more than (GND - 0.3 V) when this IC is turned ON. Otherwise malfunction or other problems  
can occur.  
17. Same Pin Connection  
Connect all VBB pins, GND pins, OUT1 pins, OUT2 pins to same line respectively.  
www.rohm.com  
TSZ02201-0G5G1G400130-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
26/29  
31.Jan.2023 Rev.003  
TSZ22111 • 15 • 001  
BV2HM050EFV-C  
Ordering Information  
B V 2 H M 0  
5
0
E
F
V
-
C E 2  
Part Number  
Package  
EFV: HTSSOP-B20  
Product Rank  
C: Automotive product  
Packaging and Forming Specification  
E2: Embossed tape and reel  
Marking Diagram  
HTSSOP-B20 (TOP VIEW)  
Part Number Marking  
LOT Number  
V 2 H M 5 0  
Pin 1 Mark  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
27/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-B20  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
28/29  
31.Jan.2023 Rev.003  
BV2HM050EFV-C  
Revision History  
Date  
Revision  
Changes  
20.Jan.2022  
31.Oct.2022  
001  
002  
New Release  
Page 27 Ordering Information  
The Description of “Part Number” is added.  
Page 5 Absolute Maximum Ratings  
Figure 5 is changed.  
Page 9 Thermal Resistance  
31.Jan.2023  
003  
The vertical axis name in Figure 10 is corrected.  
Page 26 Operational Notes  
14.Open Power Supply Pin  
The value of output clamp voltage is changed.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400130-1-2  
29/29  
31.Jan.2023 Rev.003  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BV301D06006

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06010

密封变压器
ZETTLER

BV301D06012

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06015

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06015-22

密封变压器
ETC

BV301D06015A

密封变压器
ETC

BV301D06017

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06018

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06020

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06023

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06023A

密封变压器
ETC

BV301D06024

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER