D90FCFP-E2 [ROHM]

35V Withstand Voltage 1A LDO Regulators;
D90FCFP-E2
型号: D90FCFP-E2
厂家: ROHM    ROHM
描述:

35V Withstand Voltage 1A LDO Regulators

文件: 总42页 (文件大小:1565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Single-Output LDO Regulators  
35V Withstand Voltage  
1A LDO Regulators  
BDxxFC0 series  
Description  
Packages  
(Typ)  
(Typ)  
(Max)  
The BDxxFC0 series are low-saturation regulators. The  
series’ output voltages are Variable, 3.0V, 3.3V, 5.0V, 6.0V,  
7.0V, 8.0V, 9.0V, 10.0V, 12.0V and 15.0V and packages  
are HTSOP-J8, TO252-3, and TO252-5. This series has a  
built-in over-current protection circuit that prevents the  
destruction of the IC due to output short circuits and a  
thermal shutdown circuit that protects the IC from thermal  
damage due to overloading.  
HTSOP-J8  
4.90mm x 6.00mm x 1.00mm  
TO252-3  
TO252-5  
6.50mm x 9.50mm x 2.50mm  
6.50mm x 9.50mm x 2.50mm  
Key Specifications  
1) Output current capability: 1A  
2) Output voltage: Variable, 3.0V, 3.3V, 5.0V, 6.0V, 7.0V,  
8.0V, 9.0V, 10.0V, 12.0V and 15.0V  
3) High output voltage accuracy (Ta=25): ±1%  
4) Low saturation with PDMOS output  
5) Built-in over-current protection circuit that prevents the  
destruction of the IC due to output short circuits  
6) Built-in thermal shutdown circuit for protecting the IC  
from thermal damage due to overloading  
7) Available Ceramic Capacitor to prevent oscillation  
8) HTSOP-J8, TO252-3 and TO252-5 packages  
Features  
Output Voltage:  
1.0V to 15.0V  
±1%  
VO+1.0V to 26.5V  
4.0V to 26.5V  
1A  
Output Voltage Precision(Ta=25):  
Supply Voltage(VO3.0V):  
Supply Voltage(VO3.0V):  
Output Current:  
Operating Temperature Range:  
-25℃≦Ta+85℃  
Ordering part number  
B D  
x
x
F
C
0 W x x x  
-
E 2  
Part  
Number  
Output  
voltage  
Input  
Voltage Current  
Output  
Shutdown  
Mode  
Package  
Packaging and forming specification  
E2: Emboss tape reel  
00: Variable  
30: 3.0V  
33: 3.3V  
50: 5.0V  
60: 6.0V  
70: 7.0V  
80: 8.0V  
90: 9.0V  
J0: 10.0V  
J2: 12.0V  
J5: 15.0V  
EFJ: HTSOP-J8  
FP: TO252-3/5  
F:35V C0:1.0A  
“W”: Included  
shutdown mode  
None: Without  
shutdown mode  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
1/38  
Daattaasshheeeett  
BDxxFC0 Series  
Lineup  
Variable 3.0 3.3 5.0 6.0 7.0 8.0 9.0 10.0 12.0 15.0  
Articles  
パッケージ  
Reel of 2500  
Reel of 2000  
Reel of 2000  
BDxxFC0WEFJ-E2  
BDxxFC0FP-E2  
-
○ ○ ○ ○ ○ ○ ○  
○ ○  
○ ○ ○ ○ ○ ○ ○  
-
-
-
HTSOP-J8  
TO252-3  
TO252-5  
-
-
-
-
-
BDxxFC0WFP-E2(Note 1)  
(Note 1) under development except for Variable  
Typical Application Circuits  
Output Voltage Variable Type (With shutdown SW)〉  
Vcc  
Vo  
R1  
R2  
CIN  
Vcc  
COUT  
EN  
FB  
GND  
Figure 1. Typical Application Circuit  
Output Voltage Variable Type(With shutdown SW)  
Output Voltage Fixed Type (With Shutdown SW)〉  
Vcc  
Vo  
CIN  
Vcc  
COUT  
EN  
GND  
Figure 2. Typical Application Circuit  
Output Voltage Fixed Type(With shutdown SW)  
Output Voltage Fixed Type (Without Shutdown SW)〉  
Vcc  
Vo  
CIN  
Vcc  
COUT  
GND  
Figure 3. Typical Application Circuit  
Output Voltage Fixed Type (Without Shutdown SW)  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
2/38  
Daattaasshheeeett  
BDxxFC0 Series  
Pin Configuration/Pin Description  
With Shutdown SW (HTSOP-J8)〉  
HTSOP-J8  
(TOP VIEW)  
1
2
3
4
8
7
6
5
Vo  
FB/N.C.  
GND  
Vcc  
N.C  
N.C  
EN  
N.C  
Figure 4. Pin Configuration (With Shutdown SW)  
Pin Function  
Pin No.  
1
Pin name  
Vo  
Output pin  
Feedback pin (Variable Output Type)  
No Connection (Fixed Output Type)  
GND pin  
FB  
/ N.C. (Note 1)  
GND  
2
3
4
N.C. (Note 1)  
No Connection (Connect to GND or leave OPEN)  
Enable pin  
5
EN  
6
N.C. (Note 1)  
N.C. (Note 1)  
VCC  
No Connection (Connect to GND or leave OPEN)  
No Connection (Connect to GND or leave OPEN)  
Power supply pin  
7
8
Exposed  
PAD  
GND  
Substrate(Connect to GND)  
(Note 1) N.C. Pin can be open, because it is not connected to the IC.  
Without Shutdown SW (TO252-3)〉  
TO252-3  
(TOP VIEW)  
1
3
2
Figure 5. Pin Description (Without Shutdown SW)  
Pin No.  
Pin Name  
Vcc  
Pin Function  
Power Supply Pin  
No Connection (leave OPEN)  
Output Pin  
1
2
N.C. (Note 1)  
Vo  
3
FIN  
GND  
GND  
(Note 1) N.C.Pin can be open since it is not connected inside of IC.  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
3/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
With Shutdown SW (TO252-5)〉  
TO252-5  
(TOP VIEW)  
1 2 3 4  
5
Figure 6. Pin Configuration (With Shutdown SW)  
Pin No.  
Pin Name  
EN  
Pin Function  
Enable Pin  
1
2
3
4
Vcc  
Power Supply Pin  
No Connection (leave OPEN)  
Output Pin  
N.C. (Note 1)  
Vo  
FB  
Variable Pin (Variable Output Type)  
N.C. Pin (Fixed Output Type)  
5
N.C. (Note 1)  
FIN  
GND  
GND  
(Note 1) N.C.Pin can be open since it is not connected inside of IC.  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
4/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Block diagrams  
HTSOP-J8 BD00FC0WEFJ (Output Voltage Variable Type) with Shutdown SW〉  
VREF :  
OCP :  
TSD :  
Bandgap Reference  
Over Current Protection Circuit  
Thermal Shut Down Circuit  
Power Transistor Driver  
Driver :  
VREF  
Driver  
OCP  
TSD  
1
2
3
4
5
EN  
Vcc  
Vo  
FB  
GND  
Figure 7. Block diagrams  
BD00FC0WEFJ (Output Voltage Variable Type with Shutdown SW)  
HTSOP-J8 BDxxFC0WEFJ (Output Voltage Fixed Type) with Shutdown SW〉  
VREF : Bandgap Reference  
OCP : Over Current Protection Circuit  
TSD : Thermal Shut Down Circuit  
Driver : Power Transistor Driver  
VREF  
Driver  
OCP  
TSD  
1
2
3
4
5
EN  
Vcc  
GND  
Vo  
N.C.  
Figure 8. Block diagrams  
BxxFC0WEFJ (Output Voltage Variable Type with shutdown SW)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
5/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
TO252-3BDxxFC0FP (Output Voltage Fixed Type) without Shutdown SW〉  
GND  
FIN  
VREF Bandgap Reference  
:
OCP Over Current Protection Circuit  
:
TSD Thermal Shut Down Circuit  
:
Power Transistor Driver  
Driver :  
VREF  
Driver  
OCP  
TSD  
1
2
3
NC.  
.
Vcc  
Vo  
Figure 9. Block diagrams  
BDxxFC0FP (Output Voltage Fixed Type, without Shutdown SW)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
6/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
TO252-5 BD00FC0WFP (Output Voltage Variable Type) With Shutdown SW〉  
GND  
FIN  
VREF Bandgap Reference  
:
OCP Over Current Protection Circuit  
:
TSD Thermal Shut Down Circuit  
:
Power Transistor Driver  
Driver :  
VREF  
Driver  
OCP  
TSD  
1
2
3
4
5
EN  
Vcc  
Vo  
FB  
N.C.  
Figure 10. Block diagram  
BD00FC0WFP (Output Voltage Variable Type, with Shutdown SW)  
TO252-5BDxxFC0WFP (Output Voltage Fixed Type) With Shutdown SW〉  
GND  
FIN  
VREF Bandgap Reference  
:
OCP Over Current Protection Circuit  
:
TSD Thermal Shut Down Circuit  
:
Power Transistor Driver  
Driver :  
VREF  
Driver  
OCP  
TSD  
1
2
3
4
5
EN  
Vcc  
Vo  
N.C.  
N.C.  
Figure 11. Block diagram  
BDxxFC0WFP (Output Voltage Fixed Type, with Shutdown SW)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
7/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Absolute Maximum Ratings (Ta= 25)  
Parameter  
Symbol  
Vcc  
VEN  
Ta  
Tstg  
Ratings  
-0.3 to +35.0  
-0.3 to +35.0  
-25 to +85  
-55 to +150  
150  
Unit  
V
V
Supply Voltage *  
1
EN Voltage *2  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Tjmax  
*1 Do not exceed Tjmax.  
*2 Power Supply (Vcc) and EN pin startup sequence does not matter provided they are operated within the power supply voltage range.  
Operating Conditions (-25℃≦Ta+85)  
Parameter  
Supply Voltage (VO3.0V)  
Supply Voltage (VO<3.0V)  
Startup Voltage (IO=0mA)  
EN Voltage (with shutdown SW)  
Output Current  
Symbol  
Vcc  
Vcc  
Vcc  
VEN  
IO  
Min  
VO+1  
4.0  
-
0
0
Max  
26.5  
26.5  
3.8  
26.5  
1.0  
Unit  
V
V
V
V
A
Output Voltage *3 (BD00FC0)  
VO  
1.0  
15.0  
V
*3 Please refer to Notes when using BD00FC0 at output voltage of 1.0V to 3.0V.  
Electrical Characteristics  
Unless otherwise specified, Ta=25°C, Vcc=13.5V, IO=0mA, VEN=5.0V  
The resistor between FB and OUT =56.7k, FB and GND =10k(BD00FC0)  
Guaranteed Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
-
-
Typ  
0
0.5  
Max  
5
2.5  
Circuit Current at shutdown mode  
Circuit Current  
Output Reference Voltage (BD00FC0)  
Output Voltage  
ISD  
Icc  
VFB  
µA  
mA  
V
0.742  
0.750  
0.758  
IO =50mA  
VO  
VO  
VO×0.99  
VO  
VO  
0.4  
VO×1.01  
VO×1.01  
0.7  
V
V
V
V
IO =200mA  
(BD30/33/50FC0)  
Output Voltage  
VO×0.99  
IO =500mA *4  
(BD60/70/80/90/J0/J2/J5FC0)  
Vcc=4.0V  
Minimum dropout voltage  
Vd  
Vd  
-
-
IO =500mA *  
Minimum dropout voltage  
(BD00/50/60/70/80/90/J0/J2/J5FC0)  
Line Regulation  
Load Regulation  
EN High Voltage (with shutdown SW)  
EN Low Voltage (with shutdown SW)  
EN Bias Current  
*4 In case of J0, J2 and J5, Vcc=Vo+4.5V  
Vcc= VO×0.95,  
IO =500mA  
0.3  
20  
0.5  
80  
Reg.I  
Reg.IO  
VEN(High)  
VEN(Low)  
IEN  
-
-
mV Vcc=VO+1.0V26.5V  
V
V
V
μA  
VO×0.010 VO×0.020  
IO =5mA1A *4  
ACTIVE MODE  
OFF MODE  
2.0  
-
-
-
-
25  
-
0.8  
50  
*5 In case of Vo 4.0V  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
8/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Thermal Resistance  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
HTSOP-J8  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
206.4  
21  
45.2  
13  
°C/W  
°C/W  
ΨJT  
TO252-5 / TO252-3  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
115.3  
14  
20.8  
3
°C/W  
°C/W  
ΨJT  
(Note 1)Based on JESD51-2A(Still-Air)  
(Note 2)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3)Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
(Note 4)Using a PCB board based on JESD51-5, 7.  
Thermal Via (Note 5)  
Layer Number of  
Material  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
Pitch  
Diameter  
4 Layers  
FR-4  
1.20mm  
Φ0.30mm  
Top  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
74.2mm x 74.2mm  
(Note 5) This thermal via connects with the copper pattern of all layers  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
9/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data  
BD00FC0 series (5.0V Output Setting)  
Unless otherwise specified, Ta=25°C, Vcc=13.5V, VEN=5.0V, IO=0mA, VO=5.0V  
(The resistor between FB and Vo =56.7k, FB and GND =10k)  
18  
15  
12  
9
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
6
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 12. Circuit Current  
Figure 13. Shutdown Current  
(IFEEDBACK_R75µA)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 14. Line Regulation  
(IO=0mA)  
Figure 15. Line Regulation  
(IO=500mA)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
10/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data - Continued  
6
5
4
3
2
1
0
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
400  
800  
1200 1600 2000 2400  
0
200  
400  
600  
800  
1000  
Output Current:IO[mA]  
Output Current:IO[mA]  
Figure 16. Load Regulation  
Figure 17. Dropout Voltage  
(Vcc=4.75V)  
(lO=0mA1000mA)  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1000  
10000 100000 1000000  
-25  
-5  
15  
35  
55  
75  
Frequency: f [Hz]  
Ambient Temperature: []  
Figure 18. Ripple Rejection  
(IO =100mA)  
Figure 19. Output Voltage  
Temperature Characteristic  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
11/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data - Continued  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Enable Voltage: VEN[V]  
Figure 21. EN Voltage vs EN Current  
Output Current:IO[mA]  
Figure 20. Circuit Current  
(IO =0mA1000 mA)  
(IFEEDBACK_R75µA)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Enable Voltage: VEN[V]  
130  
140  
150  
160  
170  
180  
190  
Ambient Temperature:Ta []  
Figure 23. Thermal Shutdown  
Circuit Characteristic  
Figure 22. EN Voltage vs Output Voltage  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
12/38  
Daattaasshheeeett  
BDxxFC0 Series  
Measurement setup for reference data  
BD00FC0 series5.0V Output Setting)  
Measurement setup for Figure 12  
Measurement setup for Figure 13  
Measurement setup for Figure 14  
Measurement setup for Figure 15  
Measurement setup for Figure 16  
Measurement setup for Figure 17  
Vcc  
EN  
Vo  
56.7kΩ  
10kΩ  
1µF  
FB  
13.5V  
1µF  
GND  
IFEEDBACK_R  
5V  
Measurement setup for Figure 18  
Measurement setup for Figure 19  
Measurement setup for Figure 20  
Measurement setup for Figure 21  
Measurement setup for Figure 22  
Measurement setup for Figure 23  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
13/38  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data  
BD33FC0 series  
Unless otherwise specified Ta = 25°C, Vcc=13.5V, VEN=5.0V, Io=0mA  
1.0  
18  
15  
12  
9
0.8  
0.6  
0.4  
0.2  
0.0  
6
3
0
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Figure 25. Shutdown Current  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Figure 24. Circuit Current  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Figure 26. Line Regulation  
(Io=0mA)  
Figure 27. Line Regulation  
(Io=500mA)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
14/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data - Continued  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
10  
100  
1000  
10000 100000 1000000  
0
400  
800 1200 1600 2000 2400  
Output Current:Io [mA]  
Frequency: f [Hz]  
Figure 28. Load Regulation  
Figure 29. Ripple Rejection  
(lo=100mA)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
-25  
-5  
15  
35  
55  
75  
0
200  
400  
Output Current:Io [mA]  
Figure 31. Circuit Current  
600  
800  
1000  
Ambient Temperature: []  
Figure 30. Output Voltage Temperature Characteristic  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
15/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data - Continued  
6
5
4
3
2
1
0
160  
140  
120  
100  
80  
60  
40  
20  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Enablel Voltage: VEN[V]  
Figure 32. EN Voltage vs EN Current  
Enable Voltage: VEN[V]  
Figure 33. EN Voltage vs Output Voltage  
6
5
4
3
2
1
0
130  
140  
Ambient Temperature:Ta []  
Figure 34. Thermal Shutdown Circuit Characteristic  
150  
160  
170  
180  
190  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
16/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data  
BD50FC0 series  
Unless otherwise specified, Ta = 25°C, Vcc=13.5V, VEN=5.0V, Io=0mA  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
18  
15  
12  
9
6
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Figure 35. Circuit Current  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Figure 36. Shutdown Current  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 37. Line Regulation  
(Io=0mA)  
Figure 38. Line Regulation  
(Io=500mA)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
17/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data - Continued  
6
5
4
3
2
1
0
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
400  
800  
1200 1600 2000 2400  
0
200  
400  
600  
800  
1000  
Output Current:Io [mA]  
Output Current:Io [mA]  
Figure 39. Load Regulation  
Figure 40. Dropout Voltage  
(Vcc=Vo×0.95V)  
5.15  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
10  
100  
1000  
10000 100000 1000000  
-25  
-5  
15  
35  
55  
75  
Frequency: f [Hz]  
Ambient Temperature: []  
Figure 41. Ripple Rejection  
(lo=100mA)  
Figure 42. Output Voltage  
Temperature Characteristic  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
18/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data - Continued  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Enable Voltage: VEN[V]  
Figure 44. EN Voltage vs EN Current  
0
200  
400  
600  
800  
1000  
Output Current:Io [mA]  
Figure 43. Circuit Current  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Enable Voltage: VEN[V]  
Figure 45. EN Voltage vs Output Voltage  
130  
140  
150  
160  
170  
180  
190  
Ambient Temperature:Ta []  
Figure 46. Thermal Shutdown Circuit Characteristic  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
19/38  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data  
BD80FC0 series  
Unless otherwise specified, Ta = 25°C, Vcc=13.5V, VEN=5.0V, Io=0mA  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
18  
15  
12  
9
6
3
0
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Figure 48. Shutdown Current  
Figure 47. Circuit Current  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 49. Line Regulation  
(Io=0mA)  
Figure 50. Line Regulation  
(Io=500mA)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
20/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data - Continued  
10  
9
8
7
6
5
4
3
2
1
0
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
200  
400  
600  
800  
1000  
0
400  
800  
Output Current:Io [mA]  
Figure 51. Load Regulation  
1200 1600 2000 2400  
Output Current:Io [mA]  
Figure 52. Dropout Voltage  
(Vcc=Vo×0.95V)  
80  
70  
60  
50  
40  
30  
20  
10  
0
8.21  
8.16  
8.11  
8.06  
8.01  
7.96  
7.91  
7.86  
7.81  
7.76  
10  
100  
1000  
10000 100000 1000000  
-25  
-5  
15  
35  
55  
75  
Frequency: f [Hz]  
Ambient Temperature: []  
Figure 53. Ripple Rejection  
(lo=100mA)  
Figure 54. Output Voltage Temperature Characteristic  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
21/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data - Continued  
160  
140  
120  
100  
80  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Enable Voltage: VEN[V]  
Figure 56. EN Voltage vs EN Current  
Output Current:Io [mA]  
Figure 55. Circuit Current  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
130  
140  
150  
160  
170  
180  
190  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Enable Voltage: VEN[V]  
Figure 57. EN Voltage vs Output Voltage  
Ambient Temperature:Ta []  
Figure 58. Thermal Shutdown Circuit Characteristic  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
22/38  
Daattaasshheeeett  
BDxxFC0 Series  
Reference Data  
BD90FC0 series  
Unless otherwise specified, Ta = 25°C, Vcc=13.5V, VEN=5.0V, Io=0mA  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
18  
15  
12  
9
6
3
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Figure 59. Circuit Current  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Figure 60. Shutdown Current  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
Supply Voltage:Vcc [V]  
Supply Voltage:Vcc [V]  
Figure 61. Line Regulation  
(Io=0mA)  
Figure 62. Line Regulation  
(Io=500mA)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
23/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
Reference Data - Continued  
10  
9
8
7
6
5
4
3
2
1
0
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
200  
400  
600  
800  
1000  
0
400  
800  
Output Current:Io [mA]  
Figure 63. Load Regulation  
1200 1600 2000 2400  
Output Current:Io [mA]  
Figure 64. Dropout Voltage  
(Vcc=Vo×0.95V)  
80  
70  
60  
50  
40  
30  
20  
10  
0
9.23  
9.13  
9.03  
8.93  
8.83  
8.73  
10  
100  
1000  
10000 100000 1000000  
-25  
-5  
15  
35  
55  
75  
Frequency: f [Hz]  
Ambient Temperature: []  
Figure 65. Ripple Rejection  
(Io =100mA)  
Figure 66. Output Voltage  
Temperature Characteristic  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
24/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
Reference Data - Continued  
160  
140  
120  
100  
80  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
60  
40  
20  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Enable Voltage: VEN[V]  
Figure 68. EN Voltage vs EN Current  
0
200  
400  
Output Current:Io [mA]  
Figure 67. Circuit Current  
600  
800  
1000  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
130  
140  
150  
160  
170  
180  
190  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
Enable Voltage: VEN[V]  
Figure 69. EN Voltage vs Output Voltage  
Ambient Temperature:Ta []  
Figure 70. Thermal Shutdown  
Circuit Characteristic  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
25/38  
Daattaasshheeeett  
BDxxFC0 series  
Measurement setup for reference data  
BDxxFC0 series(Output Voltage FixedType)  
Measurement setup for  
Figure 24, 35, 47 and 59  
Measurement setup for  
Figure 25, 36, 48 and 60  
Measurement setup for  
Figure 26, 37, 49 and 61  
Vcc  
EN  
Vo  
(1.0µF)  
2.2µF  
1µF  
N.C.  
13.5V  
GND  
5V  
Measurement setup for  
Figure 27, 38, 50 and 62  
Measurement setup for  
Figure 40, 52 and 64  
Measurement setup for  
Figure 28, 39, 51 and 63  
Measurement setup for  
Figure 29, 41, 53 and 65  
Measurement setup for  
Figure 30, 42, 54 and 66  
Measurement setup for  
Figure 31, 43, 55 and 67  
Measurement setup for  
Figure 32, 44, 56 and 68  
Measurement setup for  
Figure 33, 45, 57 and 69  
Measurement setup for  
Figure 34, 46, 58 and 70  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
26/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
Application Examples  
Applying positive surge to the Vcc pin  
If there is a possibility that surges higher than 35.0V will be applied to the Vcc pin, a Zener diode should be placed  
between the Vcc pin and GND pin, as shown in the Figure below.  
Vcc  
GND  
Figure 71.  
Applying negative surge to the Vcc pin  
If there is a possibility that negative surges lower than the GND are applied to the Vcc pin, a Schottky diode should be  
place between the Vcc pin and GND pin, as shown in the Figure below.  
Vcc  
GND  
Figure 72.  
Implementing a protection diode  
If there is a possibility that a large inductive load is connected to the output pin resulting in back-EMF at time of startup  
and Shutdown, a protection diode should be placed as shown in the Figure below.  
Vo
Figure 73.  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
27/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
Thermal Design  
HTSOP-J8  
IC mounted on ROHM standard board based on JEDEC.  
Board material: FR4  
3.5  
Board size  
1s  
114.3 mm x 76.2 mm x 1.57 mmt  
3
2.5  
2
2.8 W  
2s2p 114.3 mm x 76.2 mm x 1.6 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: The footprint ROHM recommend.  
+ wiring to measure.  
1.5  
1
: 1-layer PCB (Copper foil area on the reverse side of  
PCB: 0 mm x 0 mm)  
0.6W  
: 4-layer PCB (2 inner layers and copper foil area on the  
reverse side of PCB: 74.2mm x 74.2 mm)  
0.5  
0
Condition: θja = 206.4 °C/W, ΨJT = 21°C/W  
Condition: θja = 45.2 °C/W, ΨJT = 13°C/W  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta[°C]  
Figure 74.  
TO252-3/5  
IC mounted on ROHM standard board based on JEDEC.  
8
Board material: FR4  
Board size  
6 W  
1s  
114.3 mm x 76.2 mm x 1.57 mmt  
6
4
2
0
2s2p 114.3 mm x 76.2 mm x 1.6 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: The footprint ROHM recommend.  
+ wiring to measure.  
: 1-layer PCB (Copper foil area on the reverse side of  
PCB: 0 mm x 0 mm)  
1.1 W  
: 4-layer PCB (2 inner layers and copper foil area on the  
reverse side of PCB: 74.2mm x 74.2 mm)  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [°C]  
Figure 75.  
Condition: θja = 115.3 °C/W, ΨJT = 14°C/W  
Condition: θja = 20.8 °C/W, ΨJT = 3°C/W  
When operating at temperature more than Ta=25°C, please refer to the power dissipation characteristic curve shown in Figure  
74 and 75.  
The IC characteristics are closely related to the temperature at which the IC is used, so it is necessary to operate the IC at  
temperatures less than the maximum junction temperature Tjmax.  
Figure 74 and 75 show the acceptable power dissipation characteristic curves of the HTSOP-J8 and TO252-3/5 packages. Even  
when the ambient temperature (Ta) is at normal temperature (25°C), the chip junction temperature (Tj) may be quite high so  
please operate the IC at temperatures less than the acceptable power dissipation.  
The calculation method for power consumption Pc(W) is as follows  
Pc=(VccVo)×Io+Vcc×Icc  
Acceptable loss Pd Pc  
Vcc : Input voltage  
Solving this for load current Io in order to operate within the acceptable loss  
Vo  
Io  
: Output voltage  
: Load current  
: Circuit current  
PdVcc×Icc  
VccVo  
Icc  
Io ≤  
It is then possible to find the maximum load current Iomax with respect to the applied voltage Vcc at the time of thermal design.  
Calculation Example) When TO252-3 / TO252-5, Ta=85°C, Vcc=13.5V, Vo=5.0V  
3.11513.5×Icc  
Figure 75 θja=20.8 °C/W -48.1mW/°C  
25°C = 6W 85°C =3.115W  
Io ≤  
8.5  
Io 365.6mA (Icc : 0.5mA)  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
28/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
I/O equivalent circuit  
Vcc Terminal  
EN Terminal  
200kΩ  
200kΩ  
1kΩ  
Vcc  
EN  
IC  
Vo Terminal BD30/33/50/60/70/80/90/J0/J2/J5FC0(W)  
R1 (k)  
(Typ)  
R2 (k)  
R3 (k)  
(Typ)  
(Typ)  
30.3  
34  
Vcc  
BD30FC0(W)  
BD33FC0(W)  
BD50FC0(W)  
BD60FC0(W)  
BD50FC0(W)  
BD80C0A(W)  
BD90C0A(W)  
BDJ0C0A(W)  
BDJ2C0A(W)  
BDJ5C0A(W)  
10  
56.6  
83.5  
61.7  
48.3  
55  
61.7  
75  
76.1  
15  
R3  
Vo  
5
20  
15  
R2  
R1  
5
4
BD00FC0W  
Vo Terminal  
FB Terminal  
Vcc  
15kΩ  
(Typ)  
FB  
Vo  
Figure 76.  
Output Voltage Configuration Method (BD00FC0)  
Please connect resistors R1 and R2 (which determines the output voltage) as shown in Figure 77.  
Please be aware that the offset, due to the current that flows from the FB terminal, becomes large when resistors with large  
values are used. Resistance values ranging from R2=5kto 10kis recommended.  
VO  
VOUT setting equation is,  
IC  
R1  
R2  
VFB 0.75V  
VOUTVFB×(R1+R2)/R2  
(
)
TYP  
FB pin  
Thoroughly check the constant settings on the application because  
circuit current increases depending on connected resistor.  
Resistance value of R2 is from 5kto 10k.  
Determine R1 by adjusting with R2.  
Figure 77.  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
29/38  
TSZ2211115001  
16.May.2016 Rev.004  
Daattaasshheeeett  
BDxxFC0 series  
Operational Notes  
1. Absolute maximum ratings  
Use of the IC in excess of absolute maximum ratings (such as the input voltage or operating temperature range) may  
result in damage to the IC. Assumptions should not be made regarding the state of the IC (e.g., short mode or open  
mode) when such damage is suffered. If operational values are expected to exceed the maximum ratings for the device,  
consider adding protective circuitry (such as fuses) to eliminate the risk of damaging the IC.  
2. Electrical characteristics described in these specifications may vary, depending on temperature, supply voltage, external  
circuits, and other conditions. Therefore, be sure to check all relevant factors, including transient characteristics.  
3. GND potential  
The potential of the GND pin must be the minimum potential in the system in all operating conditions.  
Ensure that no pins are at a voltage below the GND at any time, regardless of transient characteristics.  
4. Ground wiring pattern  
When using both small-signal and large-current GND traces, the two ground traces should be routed separately but  
connected to a single ground potential within the application in order to avoid variations in the small-signal ground caused  
by large currents. Also, ensure that the GND traces of external components do not cause variations on GND voltage. The  
power supply and ground lines must be as short and thick as possible to reduce line impedance.  
5. Inter-pin shorts and mounting errors  
Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in  
damage to the IC. Shorts between output pins or between output pins and the power supply or GND pins (caused by  
poor soldering or foreign objects) may result in damage to the IC.  
6. Operation in strong electromagnetic fields  
Using this product in strong electromagnetic fields may cause IC malfunction. Caution should be exercised in applications  
where strong electromagnetic fields may be present.  
7. Testing on application boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance pin may subject the IC to  
stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be  
turned off completely before connecting or removing it from a jig or fixture during the evaluation process. To prevent  
damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.  
8. Power Dissipation Pd  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics including  
reduced current capability due to the rise of chip temperature. The mentioned power dissipation in the absolute maximum  
rating of this specification, at HTSOP-J8 andTO252-3/5 package when 114.3mm×76.2mm×1.6mm glass epoxy board is  
mounted, is the value of when there is no heat dissipation board. And in case this exceeds, take the measures like  
enlarge the size of board; make copper foil area for heat dissipation big; and use dissipation board and do not exceed the  
power dissipation.  
9. Thermal consideration  
Use a thermal design that allows for a sufficient margin in light of the Pd in actual operating conditions. Consider Pc that  
does not exceed Pd in actual operating conditions. (PdPc)  
Tjmax : Maximum junction temperature=150(), Ta : Peripheral temperature() ,  
θja : Thermal resistance of package-ambience(/W), Pd : Package Power dissipation (W),  
Pc : Power consumption (W), Vcc : Input Voltage, VO : Output Voltage, IO : Load, Icc : Circut Current  
Package Power dissipation  
Power consumption  
: Pd (W) = (Tjmax-Ta) / θja  
: Pc (W) = (Vcc-VO)×IO+Vcc×Icc  
10. Vcc pin  
Insert a capacitor (VO5.0V:capacitorF, 1.0VO5.0V:capacitor2.2µF) between the Vcc and GND pins. Choose  
the capacitance according to the line between the power smoothing circuit and the Vcc pin. Selection of the capacitance  
also depends on the application. Verify the application and allow for sufficient margins in the design. It is recommended  
to use a capacitor with excellent voltage and temperature characteristics.  
Electrolytic capacitor  
IC  
Ceramic capacitor, Low ESR capacitor  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
30/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
11. Output pin  
In order to prevent oscillation, a capacitor needs to be placed between the output pin and GND pin. We recommend a  
capacitor with a capacitance of more than 1μF(3.0VVO15.0V). Electrolytic, tantalum and ceramic capacitors can be  
used. We recommend a capacitor with a capacitance of more than 4.7μF(1.0VVO<3.0V). Ceramic capacitors can be  
used. When selecting the capacitor, ensure that the capacitance of more than 1μF(3.0VVO15.0V) or more than  
4.7μF(1.0VVO<3.0V) is maintained at the intended applied voltage and temperature range. Due to changes in  
temperature, the capacitance can fluctuate possibly resulting in oscillation. For selection of the capacitor, refer to the  
Cout_ESR vs IOUT data. The stable operation range given in the reference data is based on the standalone IC and  
resistive load. For actual applications, the stable operating range is influenced by the PCB impedance, input supply  
impedance, and load impedance. Therefore, verification of the final operating environment is needed.  
When selecting a ceramic type capacitor, we recommend using X5R, X7R, or better, with excellent temperature and  
DC-biasing characteristics and high voltage tolerance.  
Also, in case of rapidly changing input voltage and load current, select the capacitance in accordance with verifying that  
the actual application meets the required specification.  
6.0VVcc26.5V  
5.0VVO15.0V  
4.0V Vcc 26.5V  
-25Ta +85℃  
5kΩ ≤ R2 10k(BD00FC0W)  
Cin=2.2µF Cin 100µF  
1µF Cout 100µF  
3.0V VO 15.0V  
4.0V Vcc 26.5V  
3.0V VO 15.0V  
-25Ta+85℃  
0AIO1A  
-25Ta +85℃  
0A IO 1A  
5kΩ≤R210k(BD00FC0W)  
5kΩ ≤ R2 10k(BD00FC0W)  
100  
100  
100  
Unstable operating region  
Stable operating region  
10  
1
10  
Stable operating region  
Stable operating region  
10  
0.1  
0.01  
2.2  
1
Unstable  
operating region  
1
0.001  
1
10  
100  
0
200  
400  
600  
800  
1000  
1
10  
100  
Cout(µF)  
IO(mA)  
Cout µF  
Cout_ESR vs Io  
Cin vs Cout  
3.0V Vo 15.0V  
3.0V Vo 15.0V  
(Reference data)  
(Reference data)  
4.0V Vcc 26.5V  
4.0V Vcc 26.5V  
4.0V Vcc 26.5V  
1.0V Vo < 1.5V  
1.5V Vo < 3.0V  
1.0V Vo < 3.0V  
-25°C Ta +85°C  
-25°C Ta +85°C  
-25°C Ta +85°C  
0A Io 1A  
5kΩ≤ R1 10k(BD00FC0W)  
5kΩ ≤ R1 10k(BD00FC0W)  
2.2µF Cin 100µF  
4.7µF Cout 100µF  
5kΩ ≤ R1 10k(BD00FC0W)  
2.2µF Cin 100µF  
4.7µF Cout 100µF  
100  
10  
100  
100  
Unstable operating region  
Stable operating region  
Unstable operating region  
Stable operating region  
10  
1
1
0.5  
Unstable  
Stable  
10  
operating region  
operating region  
0.1  
0.1  
0.01  
0.01  
2.2  
0.001  
0.001  
1
0
200  
400  
600  
800  
1000  
4.7  
0
200  
400  
600  
800  
1000  
1
10  
100  
Io(mA)  
Io(mA)  
Cout µF  
Cout_ESR vs Io  
1.0V Vo < 3.0V  
(Reference data)  
Cin vs Cout  
1.0V Vo < 3.0V  
(Reference data)  
Vcc  
EN  
Vo  
FB  
Cin  
Cout  
(1µF or higher)  
R2  
(1µF or higher)  
VCC  
(4.0V to 26.5V)  
Io  
(Rout)  
GND  
ESR  
(0.001Ω  
or higher)  
VEN  
(5.0V)  
R1  
(5k to 10kΩ)  
Operation Note 11 Measurement circuit (BD00FC0W)  
31/38  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
4.0V Vcc 26.5V  
1.0V Vo < 3.0V  
4.0V Vcc 26.5V  
1.0V Vo < 3.0V  
(Cout and Ceramic capacitor 10µF is connected in parallel.)  
-25°C Ta +85°C  
(Cout and Ceramic capacitor 10µF is connected in  
parallel.)  
0A Io 1A  
5kΩ≤ R1 10k(BD00FC0W)  
-25°C Ta +85°C  
5kΩ ≤ R1 10k(BD00FC0W)  
2.2µF Cin 100µF  
1µF Cout 100µF  
100  
100  
Unstable operating region  
10  
1
Stable operating region  
10  
Stable operating region  
0.1  
0.01  
2.2  
1
Unstable  
operating region  
0.001  
1
10  
100  
0
200  
400  
600  
Io(mA)  
800  
1000  
Cout µF  
Cin vs Cout  
1.0V Vo < 3.0V  
Cout and Ceramic capacitor 10µF is  
connected in parallel.  
Cout_ESR vs Io  
1.0V Vo < 3.0V  
Cout and Ceramic capacitor 10µF is  
connected in parallel.  
(Reference data)  
(Reference data)  
Vcc  
Vo  
FB  
VCC  
Cin  
R2  
(4.0V to 26.5V)  
(1µF or higher)  
Cout  
(1µF  
EN  
or higher)  
Output  
10µF  
GND  
load  
ESR  
(0.001Ω  
R1  
VEN  
Io(Rout)  
(5.0V)  
(5k to 10kΩ)  
or higher)  
Operation Note 11 Measurement circuit (BD00FC0W)  
12. EN pin  
Do not make the voltage level of the chip’s enable pin at floating level or in between VEN(High) and VEN(Low). Otherwise,  
the output voltage would be unstable or indefinite.  
13. For a steep change of the Vcc voltage  
Because MOSFET for output Transistor is used when an input voltage change is very steep, it may evoke large current.  
When selecting the value of external circuit constants, please make sure that the operation on the actual application  
takes these conditions into account.  
14. For infinitesimal fluctuations of output voltage.  
For applications that have infinitesimal fluctuations of the output voltage caused by some factors (e.g. disturbance noise,  
input voltage fluctuations, load fluctuations, etc.), please take enough measures to avoid some influence (e.g. insert a  
filter, etc.).  
15. Over current protection circuit (OCP)  
The IC incorporates an integrated over-current protection circuit that operates in accordance with the rated output  
capacity. This circuit serves to protect the IC from damage when the load becomes shorted. It is also designed to limit  
output current (without latching) in the event of a large and instantaneous current flow from a large capacitor or other  
component. These protection circuits are effective in preventing damage due to sudden and unexpected accidents.  
However, the IC should not be used in applications characterized by the continuous or transitive operation of the  
protection circuits.  
16. Thermal Shutdown circuit (TSD)  
The IC incorporates a built-in thermal shutdown circuit, which is designed to turn the IC off, completely, in the event of  
thermal overload. It is not designed to protect the IC from damage or guarantee its operation. IC’s should not be used  
after this function has activated, or in applications where the operation of this circuit is assumed.  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
32/38  
TSZ2211115001  
16.May.2016 Rev.004  
Daattaasshheeeett  
BDxxFC0 series  
17. In some applications, the Vcc and the Vo potential might be reversed, possibly resulting in circuit internal damage or  
damage to the elements. For example, the accumulated charge in the output pin capacitor flow backward from the Vo to  
the Vcc when the Vcc shorts to the GND. Use a capacitor with a capacitance with less than 1000μF for reducing the  
damage. We also recommend using reverse polarity diodes in series between the Vcc and the GND or a bypass diode  
between the Vo and the Vcc.  
18. Regarding input pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
PN junctions are formed at the intersection of these P layers with the N layers of other elements, creating parasitic diodes  
and/or transistors. For example (refer to the Figure below):  
When GND > Pin A and GND > Pin B, the PN junction operates as a parasitic diode  
When GND > Pin B, the PN junction operates as a parasitic transistor  
Parasitic diodes occur inevitably in the structure of the IC, and the operation of these parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Accordingly, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Example of monolithic IC structure  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
© 2016 ROHM Co., Ltd. All rights reserved.  
33/38  
TSZ2211115001  
16.May.2016 Rev.004  
Daattaasshheeeett  
BDxxFC0 series  
Physical Dimension Tape and Reel InformationS  
Package Name  
HTSOP-J8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
34/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
Package Name  
TO252-3  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
35/38  
Daattaasshheeeett  
BDxxFC0 series  
Package Name  
TO252-5  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
36/38  
Daattaasshheeeett  
BDxxFC0 series  
Marking Diagram  
TO252-3  
TO252-3  
(TOP VIEW)  
Part Number Marking  
Output  
Voltage[V]  
Part Number  
Marking  
3.3  
5.0  
33FC0  
50FC0  
LOT Number  
1PIN  
TO252-5  
TO252-5  
(TOP VIEW)  
Output  
Voltage[V]  
Part Number  
Marking  
Part Number Marking  
Variable  
3.0  
00FC0W  
30FC0W  
33FC0W  
50FC0W  
60FC0W  
70FC0W  
80FC0W  
90FC0W  
J0FC0W  
J2FC0W  
J5FC0W  
3.3  
5.0  
6.0  
7.0  
LOT Number  
8.0  
9.0  
1PIN  
10.0  
12.0  
15.0  
HTSOP-J8  
HTSOP-J8 (TOP VIEW)  
Output  
Voltage[V]  
Part Number  
Marking  
Part Number Marking  
LOT Number  
Variable  
3.0  
00FC0W  
30FC0W  
33FC0W  
50FC0W  
60FC0W  
70FC0W  
80FC0W  
90FC0W  
J0FC0W  
J2FC0W  
J5FC0W  
x x F C 0 W  
3.3  
5.0  
6.0  
7.0  
1PIN MARK  
8.0  
9.0  
10.0  
12.0  
15.0  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
37/38  
TSZ2211115001  
Daattaasshheeeett  
BDxxFC0 series  
Revision History  
Date  
Revision  
Changes  
27.Aug.2013  
001  
002  
003  
New Release  
Add BDxxFC0FP and BDxxFC0WFP  
Change pin name OUT -> Vo  
P2 Lineup modified  
20.Oct. 2015  
02.Dec. 2015  
The document control number:TSZ02201-0GAG0A600040-1-2  
-> TSZ02201-0G2G0A600040-1-2  
P8 Power dissipation deleted  
P8 notes added in electrical characteristics  
P9 Copper Pattern area modified  
16.May. 2016  
004  
Misentry modified in Whole page  
www.rohm.com  
TSZ02201-0G2G0A600040-1-2  
16.May.2016 Rev.004  
© 2016 ROHM Co., Ltd. All rights reserved.  
38/38  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
BD50FC0FP - Web Page  
Part Number  
Package  
Unit Quantity  
BD50FC0FP  
TO252-3  
2000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2000  
Taping  
inquiry  
Yes  

相关型号:

D90FCWFFJ-E2

35V Withstand Voltage 1A LDO Regulators
ROHM

D90FCWFP-E2

35V Withstand Voltage 1A LDO Regulators
ROHM

D90FF06

Rectifier Diode, 1 Phase, 1 Element, 2A, 600V V(RRM), Silicon, DIE-1
VMI

D90FF08

Rectifier Diode, 1 Phase, 1 Element, 2A, 800V V(RRM), Silicon, DIE-1
VMI

D90FF10R

Rectifier Diode, 1 Element, 1A, 1000V V(RRM), Silicon, HERMETIC SEALED, DIE-2
VMI

D90FF18R

Spice Model
VMI

D90N02L

N-channel 24V - 0.0052ohm - 60A - DPAK - IPAK STripFET TM III Power MOSFET
STMICROELECTR

D90S08

Rectifier Diode, 1 Phase, 1 Element, 4A, 800V V(RRM), Silicon, DIE-2
VMI

D90S18R

Rectifier Diode, 1 Phase, 1 Element, 2A, 1800V V(RRM), Silicon, DIE-2
VMI

D90U000-20502TT-G

Parallel - 3Rd Overtone Quartz Crystal, 90MHz Nom, SMD, 4 PIN
DBLECTRO

D90U000-20505TT-G

Parallel - 3Rd Overtone Quartz Crystal, 90MHz Nom, SMD, 4 PIN
DBLECTRO

D90U000-30505ETB-G

Parallel - 3Rd Overtone Quartz Crystal, 90MHz Nom, SMD, 4 PIN
DBLECTRO