EMF5_08 [ROHM]

Power management (dual transistors); 电源管理(双晶体管)
EMF5_08
型号: EMF5_08
厂家: ROHM    ROHM
描述:

Power management (dual transistors)
电源管理(双晶体管)

晶体 晶体管
文件: 总5页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EMF5  
Transistors  
Power management (dual transistors)  
EMF5  
2SA2018 and DTC144EE are housed independently in a EMT6 package.  
zApplication  
zDimensions (Units : mm)  
Power management circuit  
zFeatures  
( )  
3
( )  
2
( )  
1
( )  
4
( )  
5
( )  
6
1) Power switching circuit in a single package.  
2) Mounting cost and area can be cut in half.  
1.2  
1.6  
zStructure  
Silicon epitaxial planar transistor  
ROHM : EMT6  
Each lead has  
same dimensions  
zEquivalent circuits  
Abbreviated symbol : F5  
(3)  
(2) (1)  
DTr2  
Tr1  
R1  
R2  
(4)  
(5)  
(6)  
R1=47k  
R2=47kΩ  
zPackaging specifications  
Type  
Package  
Marking  
Code  
EMF5  
EMT6  
F5  
T2R  
Basic ordering unit (pieces) 8000  
Rev.A  
1/4  
EMF5  
Transistors  
zAbsolute maximum ratings (Ta=25°C)  
Tr1  
Parameter  
Collector-base voltage  
Collector-emitter voltage  
Emitter-base voltage  
Symbol  
Limits  
15  
12  
Unit  
V
V
VCBO  
VCEO  
VEBO  
6  
V
I
C
500  
1.0  
150(TOTAL)  
150  
55~+150  
mA  
A
mW  
°C  
°C  
Collector current  
1  
2  
I
CP  
Power dissipation  
Junction temperature  
Range of storage temperature  
P
Tj  
Tstg  
C
1 Single pulse PW=1ms  
2 120mW per element must not be exceeded.  
Each terminal mounted on a recommended land.  
DTr2  
Parameter  
Supply voltage  
Symbol  
Limits  
50  
Unit  
V
V
CC  
Input voltage  
Collector current  
V
IN  
10~+40  
100  
V
1  
2  
I
C
mA  
mA  
mW  
°C  
I
O
30  
Output current  
Power dissipation  
P
Tj  
Tstg  
C
150(TOTAL)  
150  
55~+150  
Junction temperature  
Range of storage temperature  
1 Characteristics of built-in transistor.  
°C  
2 120mW per element must not be exceeded.  
Each terminal mounted on a recommended land.  
zElectrical characteristics (Ta=25°C)  
Tr1  
Parameter  
Symbol  
BVCEO  
BVCBO  
BVEBO  
Min.  
Typ.  
Max.  
Unit  
V
Conditions  
Collector-emitter breakdown voltage  
Collector-base breakdown voltage  
Emitter-base breakdown voltage  
Collector cut-off current  
Emitter cut-off current  
12  
15  
6  
270  
I
I
I
C
=−1mA  
=−10µA  
V
C
V
E
=−10µA  
CB=−15V  
EB=−6V  
I
CBO  
EBO  
CE(sat)  
FE  
100  
100  
250  
680  
nA  
nA  
mV  
MHz  
pF  
V
V
I
Collector-emitter saturation voltage  
DC current gain  
V
100  
260  
6.5  
I
C
=−200mA, I  
B
=−10mA  
=−10mA  
=10mA, f=100MHz  
=0mA, f=1MHz  
h
V
V
V
CE=−2V, I  
CE=−2V, I  
C
Transition frequency  
f
T
E
CB=−10V, I  
E
Collector output capacitance  
Cob  
DTr2  
Parameter  
Symbol  
Min.  
3.0  
Typ.  
100  
Max.  
0.5  
300  
180  
500  
Unit  
V
Conditions  
V
V
I(off)  
V
V
V
V
V
V
V
CC=5V, I  
O
=100µA  
Input voltage  
I(on)  
V
O
=0.3V, I  
O
=2mA  
Output voltage  
Input current  
V
O(on)  
mV  
µA  
nA  
O
=10mA, I  
I
=0.5mA  
I
I
I
=5V  
CC=50V, V  
=5V, I  
CE=10V, I  
Output current  
DC current gain  
Transition frequency  
I
O(off)  
I
=0V  
G
I
68  
250  
O
O
=5mA  
f
T
MHz  
E
=−5mA, f=100MHz  
Input resistance  
R
1
32.9  
0.8  
47  
61.1  
1.2  
kΩ  
Resistance ratio  
R
2/R  
1
1.0  
Characteristics of built-in transistor.  
Rev.A  
2/4  
EMF5  
Transistors  
zElectrical characteristic curves  
Tr1  
1000  
1000  
1000  
100  
10  
V
CE=2V  
V
CE=2V  
Ta=25°C  
Ta=125°C  
Pulsed  
Pulsed  
Pulsed  
Ta=25°C  
Ta=−40°C  
100  
10  
1
100  
10  
I
C
/I  
B
=50  
C
°
C
C
°
I
C/I  
B
=20  
°
40  
IC/IB  
=10  
Ta=125  
Ta=25  
Ta=  
1 1  
10  
100  
1000  
11  
10  
100  
1000  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
BASE TO EMITTER VOLTAGE : VBE (V)  
COLLECTOR CURRENT : I  
C
(mA)  
COLLECTOR CURRENT : IC (mA)  
Fig.2 DC current gain vs.  
collector current  
Fig.3 Collector-emitter saturation voltage  
Fig.1 Grounded emitter propagation  
characteristics  
vs. collector current ( Ι )  
1000  
10000  
1000  
100  
1000  
I
C
/I  
B
=20  
VCE=2V  
I
C B=20  
/I  
Pulsed  
Ta=25°C  
Pulsed  
Pulsed  
Ta=−40°C  
Ta=25°C  
Ta=125°C  
100  
10  
100  
10  
Ta=25°C  
Ta=125°C  
Ta=−40°C  
11  
10  
100  
1000  
10 1  
10  
100  
1000  
11  
10  
100  
1000  
COLLECTOR CURRENT : I  
C
(mA)  
EMITTER CURRENT : IE (mA)  
COLLECTOR CURRENT : I  
C
(mA)  
Fig.5 Base-emitter saturation voltage  
vs. collector current  
Fig.6 Gain bandwidth product  
vs. emitter current  
Fig.4 Collector-emitter saturation voltage  
vs. collector current ( ΙΙ )  
1000  
I
E
=
0A  
f
=
1MHz  
Ta=25°C  
100  
Cib  
10  
1
Cob  
0.1  
1
10  
100  
EMITTER TO BASE VOLTAGE : VEB V)  
(
Fig.7 Collector output capacitance  
vs. collector-base voltage  
Emitter input capacitance  
vs. emitter-base voltage  
Rev.A  
3/4  
EMF5  
Transistors  
DTr2  
100  
10m  
5m  
1k  
V
CC=5V  
V
O
=0.3V  
V
O
=5V  
500  
50  
20  
Ta=100°C  
25°C  
2m  
1m  
Ta=100°C  
25°C  
40°C  
200  
100  
50  
40°C  
500µ  
10  
Ta=−40°C  
25°C  
200µ  
100µ  
50µ  
5
100°C  
20  
2
1
10  
5
20µ  
10µ  
5µ  
500m  
2
1
200m  
100m  
2µ  
1µ  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
100µ 200µ  
500µ 1m  
2m  
5m 10m 20m  
50m 100m  
100µ 200µ 500µ 1m  
2m  
5m 10m 20m  
50m 100m  
INPUT VOLTAGE : VI(off) (V)  
OUTPUT CURRENT : I (A)  
O
OUTPUT CURRENT : I (A)  
O
Fig.10 Output current vs. input voltage  
(OFF characteristics)  
Fig.9 Input voltage vs. output current  
(ON characteristics)  
Fig.11 DC current gain vs. output  
current  
1
lO  
/lI  
=20  
500m  
Ta=100°C  
25°C  
40°C  
200m  
100m  
50m  
20m  
10m  
5m  
2m  
1m  
100µ 200µ  
500µ 1m  
2m  
5m 10m 20m  
50m 100m  
OUTPUT CURRENT : I (A)  
O
Fig.12 Output voltage vs. output  
current  
Rev.A  
4/4  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

EMF6

Power management (dual transistors)
ROHM

EMF7

Power management (dual transistors)
ROHM

EMF8

Power management (dual transistors)
ROHM

EMF8_1

Power management (dual transistors)
ROHM

EMF9

Power management (dual transistors)
ROHM

EMF9T2R

Small Signal Field-Effect Transistor, 0.1A I(D), 30V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, EMT6, 6 PIN
ROHM

EMF9_08

Power management (dual transistors)
ROHM

EMG050J60N

Dual Mode PFC, 60 A
VISHAY

EMG1

General purpose (dual digital transistors)
ROHM

EMG10-OE-12DC

The illustration shows version EMG 10-OE, with DC voltage output, max.100mA
PHOENIX

EMG10-OE-24DC

The illustration shows version EMG 10-OE, with DC voltage output, max.100mA
PHOENIX

EMG10-REL/KSR-G24/21-LC

Power/Signal Relay
PHOENIX