KX122-1037 [ROHM]

Analog Circuit, 1 Func, PBGA12, 2 X 2 MM, 0.90 MM HEIGHT, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, LGA-12;
KX122-1037
型号: KX122-1037
厂家: ROHM    ROHM
描述:

Analog Circuit, 1 Func, PBGA12, 2 X 2 MM, 0.90 MM HEIGHT, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, LGA-12

文件: 总76页 (文件大小:2010K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Product Description  
The KX122-1037 is a tri-axis +/-2g, +/-4g or +/-8g silicon  
micromachined accelerometer with integrated 2048 byte buffer,  
orientation, tap/double tap, activity detecting, and Free fall algorithms.  
The sense element is fabricated using Kionix’s proprietary plasma  
micromachining process technology. Acceleration sensing is based  
on the principle of a differential capacitance arising from acceleration-  
induced motion of the sense element, which further utilizes common  
mode cancellation to decrease errors from process variation,  
temperature, and environmental stress. The sense element is  
hermetically sealed at the wafer level by bonding a second silicon lid  
wafer to the device using a glass frit. A separate ASIC device  
packaged with the sense element provides signal conditioning, and  
intelligent user-programmable application algorithms. The accelerometer is delivered in a 2 x 2 x 0.9  
mm LGA plastic package operating from a 1.8 3.6V DC supply. Voltage regulators are used to  
maintain constant internal operating voltages over the range of input supply voltages. This results in  
stable operating characteristics over the range of input supply voltages. I2C or SPI digital protocol is  
used to communicate with the chip to configure and check for updates to the orientation, Directional  
TapTM detection, Free fall detection and activity monitoring algorithms.  
Features  
2 x 2 x 0.9 mm LGA  
User-selectable g Range up to +/- 8g  
User-selectable Output Data Rate up to 25600Hz  
User-selectable low power or high resolution mode  
Digital High-Pass Filter Outputs  
Extra large embedded 2048 byte FIFO/FILO buffer  
Low Power Consumption with FlexSet™ Performance Optimization  
Internal voltage regulator  
Enhanced integrated Free fall, Directional Tap/Double-TapTM, and Device-orientation Algorithms  
User-configurable wake-up function  
Digital I2C up to 3.4MHz  
Digital SPI up to 10MHz  
Lead-free Solderability  
Excellent Temperature Performance  
High Shock Survivability  
Factory Programmed Offset and Sensitivity  
Self-test Function  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 1 of 76  
 
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Table of Contents  
PRODUCT DESCRIPTION....................................................................................................................................................................1  
FEATURES .........................................................................................................................................................................................1  
TABLE OF CONTENTS.........................................................................................................................................................................2  
FUNCTIONAL DIAGRAM ....................................................................................................................................................................5  
PRODUCT SPECIFICATIONS................................................................................................................................................................6  
MECHANICAL............................................................................................................................................................................................ 6  
ELECTRICAL............................................................................................................................................................................................... 7  
Start Up Time Profile ........................................................................................................................................................................ 8  
Current Profile .................................................................................................................................................................................. 8  
Power-On Procedure......................................................................................................................................................................... 9  
ENVIRONMENTAL..................................................................................................................................................................................... 10  
TERMINOLOGY ........................................................................................................................................................................................ 11  
g...................................................................................................................................................................................................... 11  
Sensitivity........................................................................................................................................................................................ 11  
Zero-g offset ................................................................................................................................................................................... 11  
Self-test........................................................................................................................................................................................... 11  
FUNCTIONALITY....................................................................................................................................................................................... 12  
Sense element................................................................................................................................................................................. 12  
ASIC interface ................................................................................................................................................................................. 12  
Factory calibration.......................................................................................................................................................................... 12  
APPLICATION SCHEMATIC .......................................................................................................................................................................... 13  
PIN DESCRIPTIONS ................................................................................................................................................................................... 13  
TEST SPECIFICATIONS................................................................................................................................................................................ 14  
PACKAGE DIMENSIONS AND ORIENTATION ................................................................................................................................................... 15  
Dimensions ..................................................................................................................................................................................... 15  
Orientation ..................................................................................................................................................................................... 16  
DIGITAL INTERFACE.........................................................................................................................................................................18  
I2C SERIAL INTERFACE............................................................................................................................................................................... 18  
I2C OPERATION ....................................................................................................................................................................................... 19  
WRITING TO A KX122 8-BIT REGISTER ........................................................................................................................................................ 20  
READING FROM A KX122 8-BIT REGISTER .................................................................................................................................................... 20  
DATA TRANSFER SEQUENCES ..................................................................................................................................................................... 21  
HS-MODE .............................................................................................................................................................................................. 22  
I2C TIMING DIAGRAM............................................................................................................................................................................... 23  
SPI COMMUNICATIONS............................................................................................................................................................................. 24  
4-WIRE SPI INTERFACE............................................................................................................................................................................. 24  
4-WIRE SPI TIMING DIAGRAM................................................................................................................................................................... 25  
READ AND WRITE REGISTERS ..................................................................................................................................................................... 26  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 2 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
3-WIRE SPI INTERFACE............................................................................................................................................................................. 27  
3-WIRE SPI TIMING DIAGRAM................................................................................................................................................................... 28  
READ AND WRITE REGISTERS ..................................................................................................................................................................... 29  
EMBEDDED REGISTERS....................................................................................................................................................................30  
ACCELEROMETER OUTPUTS........................................................................................................................................................................ 31  
XHP_L.................................................................................................................................................................................................. 32  
XHP_H ................................................................................................................................................................................................. 32  
YHP_L .................................................................................................................................................................................................. 32  
YHP_H ................................................................................................................................................................................................. 32  
ZHP_L .................................................................................................................................................................................................. 33  
ZHP_H ................................................................................................................................................................................................. 33  
XOUT_L ............................................................................................................................................................................................... 33  
XOUT_H............................................................................................................................................................................................... 33  
YOUT_L ............................................................................................................................................................................................... 34  
YOUT_H............................................................................................................................................................................................... 34  
ZOUT_L................................................................................................................................................................................................ 34  
ZOUT_H............................................................................................................................................................................................... 34  
COTR ................................................................................................................................................................................................... 35  
WHO_AM_I......................................................................................................................................................................................... 35  
TSCP .................................................................................................................................................................................................... 35  
TSPP .................................................................................................................................................................................................... 36  
INS1..................................................................................................................................................................................................... 36  
INS2..................................................................................................................................................................................................... 37  
INS3..................................................................................................................................................................................................... 38  
STATUS_REG ....................................................................................................................................................................................... 39  
INT_REL............................................................................................................................................................................................... 39  
CNTL1.................................................................................................................................................................................................. 39  
CNTL2.................................................................................................................................................................................................. 40  
CNTL3.................................................................................................................................................................................................. 41  
ODCNTL............................................................................................................................................................................................... 43  
INC1 .................................................................................................................................................................................................... 44  
INC2 .................................................................................................................................................................................................... 45  
INC3 .................................................................................................................................................................................................... 45  
INC4 .................................................................................................................................................................................................... 46  
INC5 .................................................................................................................................................................................................... 46  
INC6 .................................................................................................................................................................................................... 47  
TILT_TIMER ......................................................................................................................................................................................... 48  
WUFC .................................................................................................................................................................................................. 48  
TDTRC.................................................................................................................................................................................................. 48  
TDTC.................................................................................................................................................................................................... 49  
TTH...................................................................................................................................................................................................... 49  
TTL....................................................................................................................................................................................................... 50  
FTD...................................................................................................................................................................................................... 50  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 3 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
STD...................................................................................................................................................................................................... 50  
TLT....................................................................................................................................................................................................... 51  
TWS..................................................................................................................................................................................................... 51  
FFTH .................................................................................................................................................................................................... 52  
FFC ...................................................................................................................................................................................................... 52  
FFCNTL ................................................................................................................................................................................................ 52  
ATH ..................................................................................................................................................................................................... 53  
TILT_ANGLE_LL ................................................................................................................................................................................... 53  
TILT_ANGLE_HL................................................................................................................................................................................... 54  
HYST_SET ............................................................................................................................................................................................ 54  
LP_CNTL .............................................................................................................................................................................................. 54  
BUF_CNTL1 ......................................................................................................................................................................................... 55  
BUF_CNTL2 ......................................................................................................................................................................................... 56  
BUF_STATUS_1 ................................................................................................................................................................................... 57  
BUF_STATUS_2 ................................................................................................................................................................................... 57  
BUF_CLEAR ......................................................................................................................................................................................... 57  
BUF_READ........................................................................................................................................................................................... 57  
SELF_TEST ........................................................................................................................................................................................... 58  
EMBEDDED APPLICATIONS .............................................................................................................................................................59  
ORIENTATION DETECTION FEATURE............................................................................................................................................................. 59  
Hysteresis........................................................................................................................................................................................ 59  
Device Orientation Angle (aka Tilt Angle)....................................................................................................................................... 60  
MOTION INTERRUPT FEATURE DESCRIPTION ................................................................................................................................................. 62  
DIRECTIONAL TAP DETECTION FEATURE DESCRIPTION..................................................................................................................................... 64  
Performance Index.......................................................................................................................................................................... 64  
Single Tap Detection....................................................................................................................................................................... 65  
Double Tap Detection ..................................................................................................................................................................... 66  
FREE FALL DETECT.................................................................................................................................................................................... 67  
SAMPLE BUFFER FEATURE DESCRIPTION....................................................................................................................................................... 69  
FIFO Mode ...................................................................................................................................................................................... 69  
Stream Mode.................................................................................................................................................................................. 69  
Trigger Mode .................................................................................................................................................................................. 70  
FILO Mode ...................................................................................................................................................................................... 70  
Buffer Operation............................................................................................................................................................................. 70  
REVISION HISTORY..........................................................................................................................................................................76  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 4 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Functional Diagram  
X
Accel  
Y
Accel  
ADC  
Amplifier  
Z
Accel  
DSP  
FIFO buffer  
I2  
C/SPI Interface  
Power  
TRIG  
INT1  
INT2  
SDA SCL  
Vdd GND  
nCS SDO  
ADDR  
IO Vdd  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 5 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Product Specifications  
Mechanical  
(specifications are for operation at 2.5V and T = 25C unless stated otherwise)  
Parameters  
Operating Temperature Range  
Zero-g Offset  
Units  
ºC  
Min  
Typical  
Max  
85  
-40  
-
mg  
±25  
±90  
Zero-g Offset Variation from RT over Temp.  
mg/ºC  
counts/g  
counts/g  
%/ºC  
0.2  
GSEL1=0, GSEL0=0 (± 2g)  
15401  
7700  
3850  
60  
16384  
8192  
4096  
64  
17367  
8684  
4342  
68  
Sensitivity1  
GSEL1=0, GSEL0=1 (± 4g)  
GSEL1=1, GSEL0=0 (± 8g)  
GSEL1=0, GSEL0=0 (± 2g)  
GSEL1=0, GSEL0=1 (± 4g)  
GSEL1=1, GSEL0=0 (± 8g)  
Sensitivity  
30  
32  
34  
(Buffer 8-bit mode)1,2  
15  
16  
17  
Sensitivity Variation from RT over Temp.  
0.01  
0.25(xy)  
0.20(z)  
Positive Self Test Output change on Activation  
Mechanical Resonance (-3dB)3  
g
0.5  
0.75  
3500 (xy)  
1800 (z)  
0.6  
Hz  
Non-Linearity  
% of FS  
%
Cross Axis Sensitivity  
Noise (RMS at 50Hz with low-pass filter = ODR/9)4  
2
mg  
0.75  
Table 1. Mechanical Specifications  
Notes:  
1. Resolution and acceleration ranges are user selectable via I2C or SPI.  
2. Sensitivity is proportional to BRES in BUF_CNTRL2.  
3. Resonance as defined by the dampened mechanical sensor.  
4. Noise varies with Output Data Rate (ODR) and Current Consumption settings. Contact  
Kionix Engineering for additional details on FlexSet™ Performance Optimization.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 6 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Electrical  
(specifications are for operation at 2.5V and T = 25C unless stated otherwise)  
Parameters  
Supply Voltage (Vdd) Operating  
I/O Pads Supply Voltage (VIO)  
Units  
Min  
1.71  
1.7  
Typical  
Max  
V
V
2.5  
3.6  
Vdd  
High Resolution Mode (RES = 1)  
145  
Current Consumption Low Power Mode1 (RES = 0)  
10  
A  
Standby  
0.9  
Output Low Voltage (Vio < 2V)2  
Output Low Voltage (Vio > 2V)2  
Output High Voltage  
V
V
-
-
-
0.2 * Vio  
-
0.4  
V
0.8 * Vio  
-
-
-
Input Low Voltage  
V
-
0.2 * Vio  
-
Input High Voltage  
V
0.8 * Vio  
-
Input Pull-down Current  
Start Up Time3  
0
A  
ms  
ms  
MHz  
MHz  
Hz  
Hz  
Hz  
2.0  
1300  
50  
Power Up Time4  
20  
I2C Communication Rate  
SPI Communication Rate  
Output Data Rate (ODR)5  
3.4  
10  
0.781  
50  
800  
25600  
RES = 0  
Bandwidth (-3dB)6  
RES = 1  
ODR/2  
Table 2. Electrical Specifications  
Notes:  
1. Current varies with Output Data Rate (ODR) as shown the chart below, and with Noise  
level settings. Contact Kionix Engineering for additional details on FlexSet™  
Performance Optimization.  
2. For I2C communication, this assumes a minimum 1.5kpull-up resistor on SCL and  
SDA pins.  
3. Start up time is from PC1 set to valid outputs. Time varies with Output Data Rate  
(ODR); see chart below  
4. Power up time is from Vdd valid to device boot completion.  
5. User selectable through I2C or SPI.  
6. User selectable and dependent on ODR and RES.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 7 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Start Up Time Profile  
Startup Time over ODR setting  
1400.0  
Powermode depends on RES setting  
Full powermode  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.0  
0.781 1.563 3.125 6.25 12.5  
25  
50  
100  
2.0  
200  
2.0  
7.0  
400  
4.5  
800 1600 3200 6400 12800 25600  
3.3 2.6 2.3 2.2 2.1 2.0  
VDD=2.5,RES=0  
VDD=2.5,RES=1  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
1287.0 644.5 323.2 162.7 82.3 42.1 22.1 12.0  
Current Profile  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 8 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Power-On Procedure  
Proper functioning of power-on reset (POR) is dependent on the specific VDD, VDDLow, TVDD (rise  
time), and TVdd_Off profile of individual applications. It is recommended to minimize VDDLow, and TVDD  
,
and maximize TVdd_Off. It is also advised that the Vdd ramp up time TVdd be monotonic. To assure  
proper POR in all environmental conditions the application should be evaluated over the range of VDD,  
VDDLow, TVDD , TVdd_Off and temperature as POR performance can vary depending on these  
parameters. In order to guarantee proper reset regardless of the VDDLow, TVDD (rise time), and TVdd_Off  
parameters, a software reset can be issued via the I2C protocol. Please refer to Technical Note TN004  
KX112, KX122, KX123 Accelerometer Power-On Procedure to ensure proper POR function in your  
application.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 9 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Environmental  
Parameters  
Units  
V
Min  
-0.5  
-40  
Typical  
Max  
3.60  
Supply Voltage (Vdd) Absolute Limits  
Operating Temperature Range  
Storage Temperature Range  
-
-
-
ºC  
85  
ºC  
-55  
150  
5000 for 0.5ms  
10000 for 0.2ms  
2000  
Mech. Shock (powered and unpowered)  
g
-
-
-
-
ESD  
HBM  
V
Table 3. Environmental Specifications  
Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling  
can cause permanent damage to the device.  
This product conforms to Directive 2002/95/EC of the European Parliament and of the  
Council of the European Union (RoHS). Specifically, this product does not contain lead,  
mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), or  
polybrominated diphenyl ethers (PBDE) above the maximum concentration values (MCV) by  
weight in any of its homogenous materials. Homogenous materials are "of uniform  
composition throughout."  
This product is halogen-free per IEC 61249-2-21. Specifically, the materials used in this  
HF product contain a maximum total halogen content of 1500 ppm with less than 900-ppm  
bromine and less than 900-ppm chlorine.  
Soldering  
Soldering recommendations are available upon request or from www.kionix.com.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 10 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Terminology  
g
A unit of acceleration equal to the acceleration of gravity at the earth's surface.  
m
1g 9.8  
2
s
One thousandth of a g (0.0098 m/ s2) is referred to as 1 milli-g (1 mg).  
Sensitivity  
The sensitivity of an accelerometer is the change in output per unit of input acceleration at nominal Vdd  
and temperature. The term is essentially the gain of the sensor expressed in counts per g (counts/g) or  
LSB’s per g (LSB/g). Occasionally, sensitivity is expressed as a resolution, i.e. milli-g per LSB  
(mg/LSB) or milli-g per count (mg/count). Sensitivity for a given axis is determined by measurements of  
the formula:  
Output@1g Output@1g  
Sensitivity   
2g  
The sensitivity tolerance describes the range of sensitivities that can be expected from a large  
population of sensors at room temperature and over life. When the temperature deviates from room  
temperature (25ºC), the sensitivity will vary by the amount shown in Table 1.  
Zero-g offset  
Zero-g offset or 0-g offset describes the actual output of the accelerometer when no acceleration is  
applied. Ideally, the output would always be in the middle of the dynamic range of the sensor (content  
of the OUTX, OUTY, OUTZ registers = 00h, expressed as a 2’s complement number). However,  
because of mismatches in the sensor, calibration errors, and mechanical stress, the output can deviate  
from 00h. This deviation from the ideal value is called 0-g offset. The zero-g offset tolerance describes  
the range of 0-g offsets of a population of sensors over the operating temperature range.  
Self-test  
Self-test allows a functional test of the sensor without applying a physical acceleration to it. When  
activated, an electrostatic force is applied to the sensor, simulating an input acceleration. The sensor  
outputs respond accordingly. If the output signals change within the amplitude specified in Table 1,  
then the sensor is working properly and the parameters of the interface chip are within the defined  
specifications.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 11 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Functionality  
Sense element  
The sense element is fabricated using Kionix’s proprietary plasma micromachining process technology.  
This process technology allows Kionix to create mechanical silicon structures which are essentially  
mass-spring systems that move in the direction of the applied acceleration. Acceleration sensing is  
based on the principle of a differential capacitance arising from the acceleration-induced motion.  
Capacitive plates on the moving mass move relative to fixed capacitive plates anchored to the  
substrate. The sense element is hermetically sealed at the wafer level by bonding a second silicon lid  
wafer to the device using a glass frit.  
ASIC interface  
A separate ASIC device packaged with the sense element provides all of the signal conditioning and  
communication with the sensor. The complete measurement chain is composed by a low-noise  
capacitance to voltage amplifier which converts the differential capacitance of the MEMS sensor into  
an analog voltage that is sent through an analog-to-digital converter. The acceleration data may be  
accessed through the I2C digital communications provided by the ASIC. In addition, the ASIC contains  
all of the logic to allow the user to choose data rates, g-ranges, filter settings, and interrupt logic. Plus,  
there are two programmable state machines which allow the user to create unique embedded functions  
based on changes in acceleration.  
Factory calibration  
Kionix trims the offset and sensitivity of each accelerometer by adjusting gain (sensitivity) and 0-g  
offset trim codes stored in non volatile memory (OTP). Additionally, all functional register default  
values are also programmed into the non volatile memory. Every time the device is turned on or a  
software reset command is issued, the trimming parameters and default register values are  
downloaded into the volatile registers to be used during active operation. This allows the device to  
function without further calibration.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 12 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Application Schematic  
SCL  
1
2
3
4
12 11 10  
nCS  
SDO/ADDR  
GND  
9
8
SDI/SDA  
IO_VDD  
TRIG  
C1  
VDD  
5
6
7
C2  
INT1  
INT2  
Pin Descriptions  
Pin  
1
Name  
Description  
SDO/ADDR Serial Data Out pin during 4 wire SPI communication and part of the device address during I2C communication.  
2
SDI/SDA  
IO Vdd  
TRIG  
SPI Data input / I2C Serial Data  
3
The power supply input for the digital communication bus. Optionally decouple this pin to ground with a 0.1uF ceramic capacitor.  
4
Trigger pin for FIFO buffer control Connect to GND when not using external trigger option  
5
INT1  
Physical Interrupt 1  
6
INT2  
Physical Interrupt 2  
7
VDD  
The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor.  
8
GND  
Ground  
Ground  
9
GND  
10  
11  
12  
nCS  
SPI enable / I2C mode select (0 = SPI enabled, I2C communication disabled / 1 = SPI disabled, I2C communication enabled)  
Not Internally Connected  
SPI and I2C Serial Clock  
NC  
SCLK/SCL  
Table 4. KX122 Pin Description  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 13 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Test Specifications  
!
Special Characteristics:  
These characteristics have been identified as being critical to the customer. Every part is tested to  
verify its conformance to specification prior to shipment.  
Parameter  
Specification  
Test Conditions  
Zero-g Offset @ RT (2g range) 0 +/- 1475 counts  
25C, Vdd = 2.5 V  
Sensitivity @ RT  
(2g range) 16384 +/- 983 counts/g 25C, Vdd = 2.5 V  
Table 5. Test Specifications  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 14 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Package Dimensions and Orientation  
Dimensions  
2 x 2 x 0.9 mm LGA  
All dimensions and tolerances conform to ASME Y14.5M-1994  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 15 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Orientation  
+X  
Pin 1  
+Y  
+Z  
When device is accelerated in +X, +Y or +Z direction, the corresponding output will increase.  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=0, GSEL0=0 (± 2g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution (bits)  
X (counts)  
16  
8
16  
0
8
0
16  
8
16  
0
8
0
16  
0
0
8
0
0
16  
0
0
8
0
0
16384 64  
-16384 -64  
0
0
0
0
-16384 -64  
0
0
0
0
16384 64  
Y (counts)  
Z (counts)  
0
0
0
0
16384 64 -16384  
-64  
+
0
0
0
-
0
-
0
0
0
+
0
0
0
+
0
0
-
X-Polarity  
Y-Polarity  
Z-Polarity  
(1g)  
Earth’s Surface  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 16 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=0, GSEL0=1 (± 4g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution (bits)  
X (counts)  
16  
8192 32  
0
0
8
16  
0
8
0
16  
8
16  
0
8
0
16  
0
0
8
0
0
16  
0
0
8
0
0
-8192 -32  
0
0
-8192 -32  
0
0
8192 32  
Y (counts)  
Z (counts)  
0
0
0
0
0
0
8192 32 -8192 -32  
+
0
0
0
-
0
-
0
0
0
+
0
0
0
+
0
0
-
X-Polarity  
Y-Polarity  
Z-Polarity  
(1g)  
Earth’s Surface  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=1, GSEL0=0 (± 8g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution (bits)  
X (counts)  
16  
4096 16  
0
0
8
16  
0
8
0
16  
8
16  
0
8
0
16  
0
0
8
0
0
16  
0
0
8
0
0
-4096 -16  
0
0
-4096 -16  
0
0
0
0
4096 16  
0
Y (counts)  
Z (counts)  
0
0
0
4096 16 -4096 -16  
+
0
0
0
-
0
-
0
0
0
+
0
0
0
+
0
0
-
X-Polarity  
Y-Polarity  
Z-Polarity  
(1g)  
Earth’s Surface  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 17 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Digital Interface  
The Kionix KX122 digital accelerometer has the ability to communicate via the I2C and SPI digital serial  
interface protocols. This allows for easy system integration by eliminating analog-to-digital converter  
requirements and by providing direct communication with system micro-controllers.  
The serial interface terms and descriptions as indicated in Table 6 below will be observed throughout this  
document.  
Term  
Transmitter  
Receiver  
Master  
Description  
The device that transmits data to the bus.  
The device that receives data from the bus.  
The device that initiates a transfer, generates clock signals, and terminates a transfer.  
The device addressed by the Master.  
Slave  
Table 6. Serial Interface Terminologies  
I2C Serial Interface  
As previously mentioned, the KX122 has the ability to communicate on an I2C bus. I2C is primarily used for  
synchronous serial communication between a Master device and one or more Slave devices. The Master,  
typically a micro controller, provides the serial clock signal and addresses Slave devices on the bus. The  
KX122 always operates as a Slave device during standard Master-Slave I2C operation.  
I2C is a two-wire serial interface that contains a Serial Clock (SCL) line and a Serial Data (SDA) line. SCL is a  
serial clock that is provided by the Master, but can be held low by any Slave device, putting the Master into a  
wait condition. SDA is a bi-directional line used to transmit and receive data to and from the interface. Data is  
transmitted MSB (Most Significant Bit) first in 8-bit per byte format, and the number of bytes transmitted per  
transfer is unlimited. The I2C bus is considered free when both lines are high.  
The I2C interface is compliant with high-speed mode, fast mode and standard mode I2C protocols.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 18 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
IO_VDD  
MCU  
SDA  
KX122  
SCL  
ADDR  
KX122  
SCL  
ADDR  
VSS  
Figure 1. Multiple KX122 I2C Connection  
I2C Address  
7 bit  
Address Address <7> <6> <5> <4> <3> <2> <1> <0>  
Address  
Pad  
Description  
I2C Wr  
IO_VDD  
IO_VDD  
VSS  
1Fh  
1Fh  
1Eh  
1Eh  
3Eh  
3Fh  
3Ch  
3Dh  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
0
1
I2C Rd  
I2C Wr  
I2C Rd  
VSS  
I2C Operation  
Transactions on the I2C bus begin after the Master transmits a start condition (S), which is defined as a high-  
to-low transition on the data line while the SCL line is held high. The bus is considered busy after this  
condition. The next byte of data transmitted after the start condition contains the Slave Address (SAD) in the  
seven MSBs (Most Significant Bits), and the LSB (Least Significant Bit) tells whether the Master will be  
receiving data ‘1’ from the Slave or transmitting data ‘0’ to the Slave. When a Slave Address is sent, each  
device on the bus compares the seven MSBs with its internally stored address. If they match, the device  
considers itself addressed by the Master. The KX122’s Slave Address is comprised of a programmable part  
and a fixed part, which allows for connection of multiple KX122’s to the same I2C bus. The Slave Address  
associated with the KX122 is 001111X, where the programmable bit, X, is determined by the assignment of  
ADDR (pin 1) to GND or IO_Vdd. Figure 1 above shows how two KX122’s would be implemented on an I2C  
bus.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 19 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
It is mandatory that receiving devices acknowledge (ACK) each transaction. Therefore, the transmitter must  
release the SDA line during this ACK pulse. The receiver then pulls the data line low so that it remains stable  
low during the high period of the ACK clock pulse. A receiver that has been addressed, whether it is Master or  
Slave, is obliged to generate an ACK after each byte of data has been received. To conclude a transaction,  
the Master must transmit a stop condition (P) by transitioning the SDA line from low to high while SCL is high.  
The I2C bus is now free. Note that if the KX122 is accessed through I2C protocol before the startup is finished  
a NACK signal is sent.  
Writing to a KX122 8-bit Register  
Upon power up, the Master must write to the KX122’s control registers to set its operational mode. Therefore,  
when writing to a control register on the I2C bus, as shown Sequence 1 on the following page, the following  
protocol must be observed: After a start condition, SAD+W transmission, and the KX122 ACK has been  
returned, an 8-bit Register Address (RA) command is transmitted by the Master. This command is telling the  
KX122 to which 8-bit register the Master will be writing the data. Since this is I2C mode, the MSB of the RA  
command should always be zero (0). The KX122 acknowledges the RA and the Master transmits the data to  
be stored in the 8-bit register. The KX122 acknowledges that it has received the data and the Master  
transmits a stop condition (P) to end the data transfer. The data sent to the KX122 is now stored in the  
appropriate register. The KX122 automatically increments the received RA commands and, therefore, multiple  
bytes of data can be written to sequential registers after each Slave ACK as shown in Sequence 2 on the  
following page.  
Reading from a KX122 8-bit Register  
When reading data from a KX122 8-bit register on the I2C bus, as shown in Sequence 3 on the next page, the  
following protocol must be observed: The Master first transmits a start condition (S) and the appropriate Slave  
Address (SAD) with the LSB set at ‘0’ to write. The KX122 acknowledges and the Master transmits the 8-bit  
RA of the register it wants to read. The KX122 again acknowledges, and the Master transmits a repeated start  
condition (Sr). After the repeated start condition, the Master addresses the KX122 with a ‘1’ in the LSB  
(SAD+R) to read from the previously selected register. The Slave then acknowledges and transmits the data  
from the requested register. The Master does not acknowledge (NACK) it received the transmitted data, but  
transmits a stop condition to end the data transfer. Note that the KX122 automatically increments through its  
sequential registers, allowing data to be read from multiple registers following a single SAD+R command as  
shown below in Sequence 4 on the following page. Reading data from a buffer read register is a special case  
because if register address (RA) is set to buffer read register (BUF_READ) in Sequence 4, the register auto-  
increment feature is automatically disabled. Instead, the Read Pointer will increment to the next data in the  
buffer, thus allowing reading multiple bytes of data from the buffer using a single SAD+R command.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 20 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Data Transfer Sequences  
The following information clearly illustrates the variety of data transfers that can occur on the I2C bus and how  
the Master and Slave interact during these transfers. Table 7 defines the I2C terms used during the data  
transfers.  
Term  
S
Definition  
Start Condition  
Sr  
SAD  
W
Repeated Start Condition  
Slave Address  
Write Bit  
R
Read Bit  
ACK  
NACK  
RA  
Data  
P
Acknowledge  
Not Acknowledge  
Register Address  
Transmitted/Received Data  
Stop Condition  
Table 7. I2C Terms  
Sequence 1. The Master is writing one byte to the Slave.  
Master  
Slave  
S
SAD + W  
RA  
DATA  
P
ACK  
ACK  
ACK  
Sequence 2. The Master is writing multiple bytes to the Slave.  
Master  
Slave  
S
SAD + W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
Sequence 3. The Master is receiving one byte of data from the Slave.  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
NACK  
P
ACK  
ACK  
ACK DATA  
Sequence 4. The Master is receiving multiple bytes of data from the Slave.  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
ACK  
NACK  
P
ACK  
ACK  
ACK DATA  
DATA  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 21 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
HS-mode  
To enter the 3.4MHz high speed mode of communication, the device must receive the following sequence of  
conditions from the master: a Start condition followed by a Master code (00001XXX) and a Master Non-  
acknowledge. Once recognized, the device switches to HS-mode communication. Read/write data transfers  
then proceed as described in the sequences above. Devices return to the FS-mode after a STOP occurrence  
on the bus.  
Sequence 5. HS-mode data transfer of the Master writing multiple bytes to the Slave.  
Speed  
Master  
Slave  
FS-mode  
M-code NACK Sr SAD + W  
HS-mode  
RA  
FS-mode  
S
DATA  
P
ACK  
ACK  
ACK  
n bytes + ack.  
Sequence 6. HS-mode data transfer of the Master receiving multiple bytes of data from the Slave.  
Speed  
Master  
Slave  
FS-mode  
M-code NACK Sr SAD + W  
HS-mode  
S
RA  
ACK  
ACK  
P
Speed  
Master Sr SAD + R  
Slave  
HS-mode  
FS-mode  
NACK  
ACK DATA ACK DATA  
(n-1) bytes +  
ack.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 22 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
I2C Timing Diagram  
Table 8. I2C Timing (Fast Mode)  
Number  
Description  
SDA low to SCL low transition (Start event)  
SDA low to first SCL rising edge  
SCL pulse width: high  
SCL pulse width: low  
SCL high before SDA falling edge (Start Repeated)  
SCL pulse width: high during a S/Sr/P event  
SCL high before SDA rising edge (Stop)  
SDA pulse width: high  
SDA valid to SCL rising edge  
SCL rising edge to SDA invalid  
MIN  
50  
100  
100  
100  
50  
100  
50  
25  
50  
50  
-
0
MAX Units  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
-
-
-
-
-
-
-
-
t9  
-
SCL falling edge to SDA valid (when slave is transmitting)  
SCL falling edge to SDA invalid (when slave is transmitting)  
Recommended I2C CLK  
t10  
t11  
Note  
100  
-
-
2.5  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 23 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
SPI Communications  
4-Wire SPI Interface  
The KX122 also utilizes an integrated 4-Wire Serial Peripheral Interface (SPI) for digital communication. The  
SPI interface is primarily used for synchronous serial communication between one Master device and one or  
more Slave devices. The Master, typically a micro controller, provides the SPI clock signal (SCLK) and  
determines the state of Chip Select (nCS). The KX122 always operates as a Slave device during standard  
Master-Slave SPI operation.  
4-wire SPI is a synchronous serial interface that uses two control and two data lines. With respect to the  
Master, the Serial Clock output (SCLK), the Data Output (SDI or MOSI) and the Data Input (SDO or MISO) are  
shared among the Slave devices. The Master generates an independent Chip Select (nCS) for each Slave  
device that goes low at the start of transmission and goes back high at the end. The Slave Data Output (SDO)  
line, remains in a high-impedance (hi-z) state when the device is not selected, so it does not interfere with any  
active devices. This allows multiple Slave devices to share a master SPI port as shown in Figure 2 below.  
Figure 2. KX122 4-wire SPI Connections  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 24 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
4-Wire SPI Timing Diagram  
t3  
t1  
t2  
t4  
nCS  
CLK  
bit 7  
bit 6  
bit 1  
bit 0  
bit 7  
bit 7  
bit 6  
bit 6  
bit 1  
bit 1  
bit 0  
bit 0  
SDI  
SDO  
t5  
t7  
t6  
Table 9. 4-Wire SPI Timing  
Number  
Description  
MIN MAX Units  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
CLK pulse width: high  
CLK pulse width: low  
nCS low to first CLK rising edge  
nCS low after the final CLK rising edge  
SDI valid to CLK rising edge  
40  
40  
20  
30  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK rising edge to SDI invalid  
CLK falling edge to SDO valid  
35  
Notes  
1. t7 is only present during reads.  
2. Timings are for Vdd of 1.8V to 3.6V with 1Kpull-up resistor and maximum 20pF load capacitor  
on SDO.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 25 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Read and Write Registers  
The registers embedded in the KX122 have 8-bit addresses. Upon power up, the Master must write to the  
accelerometer’s control registers to set its operational mode. On the falling edge of nC, a 2-byte command is  
written to the appropriate control register. The first byte initiates the write to the appropriate register, and is  
followed by the user-defined, data byte. The MSB (Most Significant Bit) of the register address byte will  
indicate “0” when writing to the register and “1” when reading from the register. This operation occurs over 16  
clock cycles. All commands are sent MSB first, and the host must return nCS high for at least one clock cycle  
before the next data request. Figure 3 below shows the timing diagram for carrying out an 8-bit register write  
operation.  
Write Address  
First 8 bits  
Second 8 bits  
Last 8 bits  
CLK  
SDI  
SDO  
CS  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5  
D2 D1 D0  
A7 A6 A5 A4 A3 A2 A1 A0  
HI-Z  
HI-Z  
Figure 3. Timing Diagram for 8-Bit Register Write Operation  
In order to read an 8-bit register, an 8-bit register address must be written to the accelerometer to initiate the  
read. The MSB of this register address byte will indicate “0” when writing to the register and “1” when reading  
from the register. Upon receiving the address, the accelerometer returns the 8-bit data stored in the  
addressed register. This operation also occurs over 16 clock cycles. All returned data is sent MSB first, and  
the host must return nCS high for at least one clock cycle before the next data request. Figure 4 shows the  
timing diagram for an 8-bit register read operation.  
Read Address  
First 8 bits  
Second 8 bits  
Last 8 bits  
CLK  
SDI  
SDO  
CS  
A7 A6 A5 A4 A3 A2 A1 A0  
HI-Z  
HI-Z  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5  
D3 D2 D1 D0  
Figure 4. Timing Diagram for 8-Bit Register Read Operation  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 26 of 76  
 
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
3-Wire SPI Interface  
The KX122 also utilizes an integrated 3-Wire Serial Peripheral Interface (SPI) for digital communication. 3-  
wire SPI is a synchronous serial interface that uses two control lines and one data line. With respect to the  
Master, the Serial Clock output (SCLK), the Data Output/Input (SDI) are shared among the Slave devices.  
The Master generates an independent Chip Select (nCS) for each Slave device that goes low at the start of  
transmission and goes back high at the end. This allows multiple Slave devices to share a master SPI port as  
shown in Figure 5 below.  
Figure 5. KX122 3-wire SPI Connections  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 27 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
3-Wire SPI Timing Diagram  
t3  
t1  
t2  
t4  
nCS  
CLK  
bit 7  
bit 6  
bit 1  
bit 0  
bit 7  
bit 1  
bit 0  
SDI  
t5  
t7  
t8  
t6  
Table 10. 3-Wire SPI Timing  
Number  
Description  
CLK pulse width: high  
CLK pulse width: low  
nCS low to first CLK rising edge  
nCS low after the final CLK falling edge  
SDI valid to CLK rising edge  
CLK rising edge to SDI input invalid  
CLK extra clock cycle rising edge to SDI output  
CLK falling edge to SDI output becomes valid  
MIN  
40  
40  
20  
20  
10  
10  
tbd  
-
MAX Units  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
35  
Notes  
1. t7 and t8 are only present during reads.  
2. Timings are for Vdd of 1.8V to 3.6V with 1Kpull-up resistor and maximum 20pF  
load capacitor on SDI.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 28 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Read and Write Registers  
The registers embedded in the KX122 have 8-bit addresses. Upon power up, the Master must write to the  
accelerometer’s control registers to set its operational mode. On the falling edge of nC, a 2-byte command is  
written to the appropriate control register. The first byte initiates the write to the appropriate register, and is  
followed by the user-defined, data byte. The MSB (Most Significant Bit) of the register address byte will  
indicate “0” when writing to the register and “1” when reading from the register. A read operation occurs over  
17 clock cycles and a write operation occurs over 16 clock cycles. All commands are sent MSB first, and the  
host must return nCS high for at least one clock cycle before the next address transmission. Figure 6 below  
shows the timing diagram for carrying out an 8-bit register write operation.  
NOTE** If a STOP condition is sent on the least significant bit of write data or the following master  
acknowledge cycle, the last write operation is not guaranteed and it may cause unexpected  
SCLK  
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDI  
(MSB)  
(MSB)  
CS  
Figure 6. Timing Diagram for 8-Bit Register Write Operation  
In order to read an 8-bit register, an 8-bit register address must be written to the accelerometer to initiate the  
read. The MSB of this register address byte will indicate “0” when writing to the register and “1” when reading  
from the register. Upon receiving the address, the accelerometer returns the 8-bit data stored in the  
addressed register. For 3-wire read operations, one extra clock cycle between the address byte and the data  
output byte is required. Therefore, this operation occurs over 17 clock cycles. All returned data is sent MSB  
first, and the host must return nCS high for at least one clock cycle before the next data request. Figure 7  
shows the timing diagram for an 8-bit register read operation.  
SCLK  
HI-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
A7 A6 A5 A4 A3 A2 A1 A0  
(MSB)  
SDI  
(MSB)  
CS  
Figure 7. Timing Diagram for 8-Bit Register Read Operation  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 29 of 76  
 
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Embedded Registers  
The KX122 has 57 embedded 8-bit registers that are accessible by the user. This section contains the  
addresses for all embedded registers and also describes bit functions of each register. Table 11 below  
provides a listing of the accessible 8-bit registers and their addresses.  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
Register Name  
XHPL  
R/W  
R
R
R
R
R
R
R
R
R
R
R
R
Address  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
60h  
Register Name  
INC6*  
TILT_TIMER*  
WUFC*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
XHPH  
YHPL  
YHPH  
ZHPL  
TDTRC*  
TDTC*  
TTH*  
TTL*  
FTD*  
STD*  
TLT*  
TWS*  
ZHPH  
XOUTL  
XOUTH  
YOUTL  
YOUTH  
ZOUTL  
ZOUTH  
COTR  
FFTH*  
FFC*  
FFCNTL*  
Kionix Reserved  
ATH*  
R
Kionix Reserved  
Kionix Reserved  
Who_AM_I  
TSCP  
R/W  
R
R
R
R
Kionix Reserved  
TILT_ANGLE_LL*  
TILT_ANGLE_HL*  
HYST_SET*  
LP_CNTL*  
Kionix Reserved  
Kionix Reserved  
Kionix Reserved  
Kionix Reserved  
BUF_CNTL1*  
BUF_CNTL2*  
BUF_STATUS_1  
BUF_STATUS_2  
BUF_CLEAR  
BUF_READ  
SELF_TEST  
TSPP  
INS1  
INS2  
INS3  
R
R
STAT  
Kionix Reserved  
INT_REL  
CNTL1*  
CNTL2*  
CNTL3*  
ODCNTL*  
INC1*  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
W
INC2*  
INC3*  
INC4*  
INC5*  
R
R/W  
* Note: - When changing the contents of these registers, the PC1 bit in CTRL_REG1 must first be set to “0”.  
- Reserved registers should not be written.  
Table 11. KX122 Register Map  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 30 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Register Descriptions  
Accelerometer Outputs  
These registers contain up to 16-bits of valid acceleration data for each axis. Depending on the setting  
of the RES bit in CTRL_REG1, the user may choose to read only the 8 MSB thus reading an effective  
8-bit resolution . When BRES = 0 in BUF_CNTL2 the 8 MSB is the only data recorded in the buffer.  
The data is updated every user-defined ODR period, is protected from overwrite during each read, and  
can be converted from digital counts to acceleration (g) per Table 12 below. The register acceleration  
output binary data is represented in 2’s complement format. For example, if N = 16 bits, then the  
Counts range is from -32768 to 32767, and if N = 8 bits, then the Counts range is from -128 to 127.  
16-bit  
Register Data  
(2’s complement)  
Equivalent  
Counts in  
decimal  
Range = +/-2g  
+1.99994g  
+1.99988g  
Range = +/-4g  
+3.99988g  
+3.99976g  
Range = +/-8g  
+7.99976g  
+7.99951g  
0111 1111 1111 1111  
0111 1111 1111 1110  
32767  
32766  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1
+0.00006g  
0.00000g  
-0.00006g  
+0.00012g  
0.00000g  
-0.00012g  
+0.00024g  
0.00000g  
-0.00024g  
0
-1  
1000 0000 0000 0001  
1000 0000 0000 0000  
-32767  
-32768  
-1.99994g  
-2.00000g  
-3.99988g  
-4.00000g  
-7.99976g  
-8.00000g  
8-bit  
Register Data  
(2’s complement)  
Equivalent  
Counts in  
decimal  
Range = +/-2g  
+1.9844g  
+1.9688g  
Range = +/-4g  
+3.9688g  
+3.9375g  
Range = +/-8g  
+7.9375g  
+7.8750g  
127  
126  
0111 1111  
0111 1110  
0000 0001  
1
+0.0156g  
0.0000g  
-0.0156g  
+0.0313g  
0.0000g  
-0.0313g  
+0.0625g  
0.0000g  
-0.0625g  
0
0000 0000  
1111 1111  
-1  
1000 0001  
-127  
-128  
-1.9844g  
-2.000g  
-3.9688g  
-4.000g  
-7.9375g  
-8.000g  
1000 0000  
Table 12. Acceleration (g) Calculation  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 31 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
XHP_L  
X-axis high pass filter accelerometer output least significant byte. Data is updated at the ODR  
frequency determined by OWUF in CNTL3.  
R
R
R
R
R
R
R
R
XHPD7  
Bit7  
XHPD6  
Bit6  
XHPD5  
Bit5  
XHPD4  
Bit4  
XHPD3  
Bit3  
XHPD2  
Bit2  
XHPD1  
Bit1  
XHPD0  
Bit0  
I2C Address: 0x00h  
XHP_H  
X-axis high pass filter accelerometer output most significant byte. Data is updated at the ODR  
frequency determined by OWUF in CNTL3.  
R
R
R
R
R
R
R
R
XHPD15 XHPD14 XHPD13 XHPD12 XHPD11 XHPD10  
XHPD9  
Bit1  
XHPD8  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
I2C Address: 0x01h  
YHP_L  
Y-axis high pass filter accelerometer output least significant byte. Data is updated at the ODR  
frequency determined by OWUF in CNTL3.  
R
R
R
R
R
R
R
R
YHPD7  
Bit7  
YHPD6  
Bit6  
YHPD5  
Bit5  
YHPD4  
Bit4  
YHPD3  
Bit3  
YHPD2  
Bit2  
YHPD1  
Bit1  
YHPD0  
Bit0  
I2C Address: 0x02h  
YHP_H  
Y-axis high pass filter accelerometer output most significant byte. Data is updated at the ODR  
frequency determined by OWUF in CNTL3.  
R
R
R
R
R
R
R
R
YHPD15 YHPD14 YHPD13 YHPD12 YHPD11 YHPD10  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2  
YHPD9  
Bit1  
YHPD8  
Bit0  
I2C Address: 0x03h  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 32 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
ZHP_L  
Z-axis high pass filter accelerometer output least significant byte. Data is updated at the ODR  
frequency determined by OWUF in CNTL3  
R
R
R
R
R
R
R
R
ZHPD7  
Bit7  
ZHPD6  
Bit6  
ZHPD5  
Bit5  
ZHPD4  
Bit4  
ZHPD3  
Bit3  
ZHPD2  
Bit2  
ZHPD1  
Bit1  
ZHPD0  
Bit0  
I2C Address: 0x04h  
ZHP_H  
Z-axis high pass filter accelerometer output most significant byte. Data is updated at the ODR  
frequency determined by OWUF in CNTL3.  
R
R
R
R
R
R
R
R
ZHPD15 ZHPD14 ZHPD13 ZHPD12 ZHPD11 ZHPD10  
ZHPD9  
Bit1  
ZHPD8  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
I2C Address: 0x05h  
XOUT_L  
X-axis accelerometer output least significant byte. Data is updated at the ODR frequency determined  
by OSA in ODCNTL.  
R
R
R
R
R
R
R
R
XOUTD7 XOUTD6 XOUTD5 XOUTD4 XOUTD3 XOUTD2 XOUTD1 XOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x06h  
XOUT_H  
X-axis accelerometer output most significant byte. Data is updated at the ODR frequency determined  
by OSA in ODCNTL.  
R
R
R
R
R
R
R
R
XOUTD15 XOUTD14 XOUTD13 XOUTD12 XOUTD11 XOUTD10 XOUTD9 XOUTD8  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x07h  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 33 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
YOUT_L  
Y-axis accelerometer output least significant byte. Data is updated at the ODR frequency determined  
by OSA in ODCNTL.  
R
R
R
R
R
R
R
R
YOUTD7 YOUTD6 YOUTD5 YOUTD4 YOUTD3 YOUTD2 YOUTD1 YOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x08h  
YOUT_H  
Y-axis accelerometer output most significant byte. Data is updated at the ODR frequency determined  
by OSA in ODCNTL.  
R
R
R
R
R
R
R
R
YOUTD15 YOUTD14 YOUTD13 YOUTD12 YOUTD11 YOUTD10 YOUTD9 YOUTD8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x09h  
ZOUT_L  
Z-axis accelerometer output least significant byte. Data is updated at the ODR frequency determined  
by OSA in ODCNTL.  
R
R
R
R
R
R
R
R
ZOUTD7 ZOUTD6 ZOUTD5 ZOUTD4 ZOUTD3 ZOUTD2 ZOUTD1 ZOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x0Ah  
ZOUT_H  
Z-axis accelerometer output most significant byte. Data is updated at the ODR frequency determined  
by OSA in ODCNTL.  
R
R
R
R
R
R
R
R
YOUTD15 YOUTD14 YOUTD13 YOUTD12 YOUTD11 YOUTD10 YOUTD9 YOUTD8  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x0Bh  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 34 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
COTR  
This register can be used to verify proper integrated circuit functionality. It always has a byte value of  
0x55h unless the COTC bit in CNTL2 is set. At that point this value is set to 0xAAh. The byte value is  
returned to 0x55h after reading this register and the COTC bit in CNTL2 is cleared.  
R
R
R
R
R
R
R
R
DCSTR7 DCSTR6 DCSTR5 DCSTR4 DCSTR3 DCSTR2 DCSTR1 DCSTR0  
Reset Value  
01010101  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x0Ch  
WHO_AM_I  
This register can be used for supplier recognition, as it can be factory written to a known byte value.  
The default value is 0x1Bh.  
R
R
R
R
R
R
R
R
WIA7  
Bit7  
WIA6  
Bit6  
WIA5  
Bit5  
WIA4  
Bit4  
WIA3  
Bit3  
WIA2  
Bit2  
WIA1  
Bit1  
WIA0  
Bit0  
Reset Value  
00011011  
I2C Address: 0x0Fh  
Tilt Position Registers  
These two registers report previous and current position data that is updated at the user-defined ODR  
frequency and is protected during register read. Table 13 describes the reported position for each bit  
value.  
TSCP  
Current Tilt Position Register.  
R
0
R
0
R
R
RI  
R
R
R
R
LE  
DO  
Bit3  
UP  
Bit2  
FD  
Bit1  
FU  
Bit0  
Reset Value  
00100000  
Bit7  
Bit6  
Bit5  
Bit4  
I2C Address: 0x10h  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 35 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
TSPP  
Previous Tilt Positon Register.  
R
0
R
0
R
R
RI  
R
R
R
R
LE  
DO  
Bit3  
UP  
Bit2  
FD  
Bit1  
FU  
Bit0  
Reset Value  
00100000  
Bit7  
Bit6  
Bit5  
Bit4  
I2C Address: 0x11h  
Bit  
LE  
RI  
DO  
UP  
FD  
FU  
Description  
Left State (X-)  
Right State (X+)  
Down State (Y-)  
Up State (Y+)  
Face-Down State (Z-)  
Face-Up State (Z+)  
Table 13. KX122 Tilt Position  
Interrupt Source Registers  
These three registers report interrupt state changes. This data is updated when a new interrupt event  
occurs and each application’s result is latched until the interrupt release register is read.  
INS1  
This register indicates the triggering axis when a tap/double tap interrupt occurs. Data is updated at  
the ODR settings determined by OTDT<2:0> in CNTL3.  
R
0
R
0
R
R
R
R
R
R
TLE  
Bit5  
TRI  
Bit4  
TDO  
Bit3  
TUP  
Bit2  
TFD  
Bit1  
TFU  
Bit0  
Bit7  
Bit6  
I2C Address: 0x12h  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 36 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Bit  
TLE  
TRI  
TDO  
TUP  
TFD  
TFU  
Description  
X Negative (X-) Reported  
X Positive (X+) Reported  
Y Negative (Y-) Reported  
Y Positive (Y+) Reported  
Z Negative (Z-) Reported  
Z Positive (Z+) Reported  
Table 14. KX122 Directional TapTM Reporting  
INS2  
This register tells witch function caused an interrupt.  
R
R
R
R
R
R
R
R
FFS  
Bit7  
BFI  
Bit6  
WMI  
Bit5  
DRDY  
Bit4  
TDTS1  
Bit3  
TDTS0  
Bit2  
WUFS  
Bit1  
TPS  
Bit0  
I2C Address: 0x13h  
FFS Free fall. This bit is cleared when the interrupt latch release register (INL) is read..  
FFS = 0 No Free fall  
FFS = 1 Free fall has activated the interrupt  
BFI indicates buffer full interrupt. Automatically cleared when buffer is read.  
BFI = 0 Buffer is not full  
BFI = 1 Buffer is full  
WMI Watermark interrupt, bit is set to one when FIFO has filled up to the value stored in the  
sample bits. This bit is automatically cleared when FIFO/FILO is read and the content  
returns to a value below the value stored in the sample bits.  
WMI = 0 Buffer watermark has not been exceeded  
WMI = 1 Buffer watermark has been exceeded  
DRDY indicates that new acceleration data (0x06h to 0x0Bh) is available. This bit is cleared  
when acceleration data is read or the interrupt release register INT_REL is read.  
DRDY = 0 - new acceleration data not available  
DRDY = 1 - new acceleration data available  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 37 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
TDTS(1,0) status of tap/double tap, bit is released when interrupt release register INT_REL is  
read.  
TDTS1 TDTS0  
Event  
0
0
1
1
0
1
0
1
No Tap  
Single Tap  
Double Tap  
Do not exist  
WUFS Status of Wake up. This bit is cleared when the interrupt release register INT_REL is  
read.  
WUFS = 1 Motion has activated the interrupt  
WUFS = 0 No motion  
TPS Tilt Position status. This bit is cleared when the interrupt release register INT_REL is  
read.  
TPS = 0 Position not changed  
TPS = 1 Position changed  
INS3  
This register reports the axis and direction of detected motion.  
R
0
R
0
R
R
R
R
R
R
XNWU  
Bit5  
XPWU  
Bit4  
YNWU  
Bit3  
YPWU  
Bit2  
ZNWU  
Bit1  
ZPWU  
Bit0  
Bit7  
Bit6  
I2C Address: 0x14h  
Bit  
Description  
XNWU  
XPWU  
YNWU  
YPWU  
ZNWU  
ZPWU  
X Negative (X-) Reported  
X Positive (X+) Reported  
Y Negative (Y-) Reported  
Y Positive (Y+) Reported  
Z Negative (Z-) Reported  
Z Positive (Z+) Reported  
Table 15. KX122 Motion DetectionTM Reporting  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 38 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
STATUS_REG  
This register reports the status of the interrupt.  
R
0
R
0
R
0
R
R
0
R
0
R
0
R
0
INT  
Bit4  
Bit7  
Bit6  
Bit5  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x15h  
INT reports the combined (OR) interrupt information of all features. When BFI and WMI in  
INS2 are 0, the INT bit is released to 0 when INT_REL is read. If WMI or BFI is 1, INT  
bit remains at 1 until they are cleared by FIFO/FILO buffer read.  
0 = no interrupt event  
1 = interrupt event has occurred  
INT_REL  
Latched interrupt source information (INS1,INS2, INS3 except WMI/BFI and INT when WMI/BFI is  
zero) is cleared and physical interrupt latched pin is changed to its inactive state when this register is  
read. Read value is dummy.  
R
X
R
R
R
R
R
R
R
X
X
X
X
X
X
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x17h  
CNTL1  
Read/write control register that controls the main feature set.  
R/W  
PC1  
Bit7  
R/W  
RES  
Bit6  
R/W  
DRDYE  
Bit5  
R/W  
GSEL1  
Bit4  
R/W  
GSEL0  
Bit3  
R/W  
TDTE  
Bit2  
R/W  
WUFE  
Bit1  
R/W  
TPE  
Bit0  
Reset Value  
00000000  
I2C Address: 0x18h  
PC1 controls the operating mode of the KX122.  
0 = stand-by mode  
1 = operating mode  
RES determines the performance mode of the KX122. The noise varies with ODR, RES and  
different LP_CNTL settings possibly reducing the effective resolution. Note that to  
change the value of this bit, the PC1 bit must first be set to “0”.  
0 = low current.  
1 = high resolution.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 39 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
DRDYE enables the reporting of the availability of new acceleration data as an interrupt. Note  
that to change the value of this bit, the PC1 bit must first be set to “0”.  
0 = availability of new acceleration data is not reflected as an interrupt  
1 = availability of new acceleration data is reflected as an interrupt  
GSEL1, GSEL0 selects the acceleration range of the accelerometer outputs per Table 16.  
Note that to change the value of this bit, the PC1 bit must first be set to “0”.  
GSEL1 GSEL0  
Range  
+/-2g  
+/-4g  
+/-8g  
0
0
1
0
1
0
Table 16. Selected Acceleration Range  
TDTE enables the Directional TapTM function that will detect single and double tap events.  
Note that to change the value of this bit, the PC1 bit must first be set to “0”.  
TDTE = 0 disable  
TDTE = 1 - enable  
WUFE enables the Wake Up (motion detect) function. 0= disabled, 1= enabled. Note that to  
change the value of this bit, the PC1 bit must first be set to “0”.  
0 = Wake Up function disabled  
1 = Wake Up function enabled  
TPE enables the Tilt Position function that will detect changes in device orientation. Note that  
to change the value of this bit, the PC1 bit must first be set to “0”.  
TPE = 0 disable  
TPE = 1 - enable  
CNTL2  
Read/write control register that provides more feature set control. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
SRST  
Bit7  
R/W  
COTC  
Bit6  
R/W  
LEM  
Bit5  
R/W  
RIM  
Bit4  
R/W  
DOM  
Bit3  
R/W  
UPM  
Bit2  
R/W  
FDM  
Bit1  
R/W  
FUM  
Bit0  
Reset Value  
00111111  
I2C Address: 0x19h  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 40 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
SRST initiates software reset, which performs the RAM reboot routine. This bit will remain 1  
until the RAM reboot routine is finished.  
SRST = 0 no action  
SRST = 1 start RAM reboot routine  
COTC Command test control.  
COTC = 0 no action  
COTC = 1 sets STR register to 0xAAh and when STR is read, sets this bit to 0 and  
sets STR to 0x55h  
LEM, RIM, DOM, UPM, FDM, FUM these bits control the tilt axis mask. Per Table 17, if a  
direction’s bit is set to one (1), tilt in that direction will generate an interrupt. If it is set  
to zero (0), tilt in that direction will not generate an interrupt. Note that to properly  
change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
Bit  
LEM  
RIM  
DOM  
UPM  
FDM  
FUM  
Description  
X Negative (X-)  
X Positive (X+)  
Y Negative (Y-)  
Y Positive (Y+)  
Z Negative (Z-)  
Z Positive (Z+)  
Table 17. Tilt DirectionTM Axis Mask  
CNTL3  
Read/write control register that provides more feature set control. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
OTP1  
Bit7  
R/W  
OTP0  
Bit6  
R/W  
OTDT2  
Bit5  
R/W  
OTDT1  
Bit4  
R/W  
OTDT0  
Bit3  
R/W  
OWUF2 OWUF1  
Bit2 Bit1  
R/W  
R/W  
OWUF0  
Bit0  
Reset Value  
10011000  
I2C Address: 0x1Ah  
OTP1, OTP0 sets the output data rate for the Tilt Position function per Table 18. The default  
Tilt Position ODR is 12.5Hz.  
OTP1  
OTP0 Output Data Rate  
0
0
1
1
0
1
0
1
1.563Hz  
6.25Hz  
12.5Hz  
50Hz  
Table 18. Tilt Position Function Output Data Rate  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 41 of 76  
 
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
OTDT2, OTDT1, OTDT0 sets the output data rate for the Directional TapTM function per Table  
19. The default Directional TapTM ODR is 400Hz.  
OTDT2 OTDT1 OTDT0 Output Data Rate  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
50Hz  
100Hz  
200Hz  
400Hz  
12.5Hz  
25Hz  
800Hz  
1600Hz  
Table 19. Directional TapTM Function Output Data Rate  
OWUF2, OWUF1, OWUF0 sets the output data rate for the general motion detection function  
and the high-pass filtered outputs per Table 20. The default Motion Wake Up ODR is  
0.781Hz.  
OWUF2 OWUF1 OWUF0 Output Data Rate  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.781Hz  
1.563Hz  
3.125Hz  
6.250Hz  
12.5Hz  
25Hz  
50Hz  
100Hz  
Table 20. Motion Wake Up Function Output Data Rate  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 42 of 76  
 
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
ODCNTL  
This register is responsible for configuring ODR (output data rate) and filter settings. Note that to  
properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
IIR_BYPASS LPRO RESERVED RESERVED OSA3  
Bit7 Bit6 Bit5 Bit4 Bit3  
R/W  
R/W  
R/W  
R/W  
R/W  
OSA2  
Bit2  
R/W  
OSA1  
Bit1  
R/W  
OSA0  
Bit0  
Reset Value  
00000010  
I2C Address: 0x1Bh  
IIR_BYPASS filter bypass mode  
IIR_BYPASS = 0 filtering applied  
IIR_BYPASS = 1 filter bypassed  
LPRO low-pass filter roll off control  
LPRO = 0 filter corner frequency set to ODR/9  
LPRO = 1 filter corner frequency set to ODR/2  
OSA3, OSA2, OSA1, OSA0 acceleration output data rate. The default ODR is 50Hz.  
OSA3 OSA2 OSA1 OSA0  
Output Data Rate  
12.5Hz*  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
25Hz*  
50Hz*  
100Hz*  
200Hz*  
400Hz***  
800Hz  
1600Hz  
0.781Hz*  
1.563Hz*  
3.125Hz*  
6.25Hz*  
3200Hz**  
6400Hz**  
12800Hz**  
25600Hz**  
Table 21. Accelerometer Output Data Rates (ODR)  
* Low power mode available, all other data rates will default to high resolution mode  
** If the interrupt pin is enabled and set to pulse mode, the pulse width is about 10us over 1600Hz  
ODR. And when ODR is up to 1600Hz, the pulse width is about 50us.  
*** 400Hz high resolution mode only (will not output in low power mode)  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 43 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
INC1  
This register controls the settings for the physical interrupt pin INT1. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
PWSEL11 PWSEL10  
Bit7 Bit6  
R/W  
R/W  
IEN1  
Bit5  
R/W  
IEA1  
Bit4  
R/W  
IEL1  
Bit3  
R/W  
Reserved STPOL  
Bit2 Bit1  
R/W  
R/W  
SPI3E  
Bit0  
Reset Value  
00010000  
I2C Address: 0x1Ch  
PWSEL1<1:0> Pulse interrupt 1 width configuration  
00 = 50us (10us if OSA > 1600Hz)  
01 = 1 * OSA period  
10 = 2 * OSA periods  
11 = 4 * OSA periods  
When PWSEL1 > 0, Interrupt source auto-clearing (ACLR1=1) should be set to keep  
consistency between the internal status and the physical interrupt.  
IEN1 enables/disables the physical interrupt pin  
IEN = 0 physical interrupt pin is disabled  
IEN = 1 physical interrupt pin is enabled  
IEA1 sets the polarity of the physical interrupt pin  
IEA = 0 polarity of the physical interrupt pin is active low  
IEA = 1 polarity of the physical interrupt pin is active high  
IEL1 sets the response of the physical interrupt pin  
IEL = 0 the physical interrupt pin latches until it is cleared by reading INT_REL  
IEL = 1 the physical interrupt pin will transmit one pulse configurable by PWSEL1  
STPOL sets the polarity of Self Test  
STPOL = 0 Negative  
STPOL = 1 Positive  
SPI3E sets the 3-wire SPI interface  
SPI3E = 0 disabled  
SPI3E = 1 enabled  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 44 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
INC2  
This register controls which axis and direction of detected motion can cause an interrupt. Note that to  
properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
R/W  
AOI  
Bit6  
R/W  
XNWUE XPWUE YNWUE YPWUE ZNWUE ZPWUE  
Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x1Dh  
R/W  
R/W  
R/W  
R/W  
R/W  
0
Reset Value  
00111111  
Bit7  
AOI AND-OR configuration on motion detection  
0 OR combination between selected directions  
1 AND combination between selected axes  
Ex. If All directions are enabled,  
Active state in OR configuration = (XN || XP || YN || TP || ZN || ZP)  
Active state in AND configuration = (XN || XP) && (YN || YP) && (ZN || ZP)  
XNWU x negative (x-): 0 = disabled, 1 = enabled  
XPWU x positive (x+): 0 = disabled, 1 = enabled  
YNWU y negative (y-): 0 = disabled, 1 = enabled  
YPWU y positive (y+): 0 = disabled, 1 = enabled  
ZNWU z negative (z-): 0 = disabled, 1 = enabled  
ZPWU z positive (z+): 0 = disabled, 1 = enabled  
INC3  
This register controls which axis and direction of tap/double tap can cause an interrupt. Note that to  
properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
0
R/W  
0
R/W  
TLEM  
Bit5  
R/W  
TRIM  
Bit4  
R/W  
TDOM  
Bit3  
R/W  
TUPM  
Bit2  
R/W  
TFDM  
Bit1  
R/W  
TFUM  
Bit0  
Reset Value  
00111111  
Bit7  
Bit6  
I2C Address: 0x1Eh  
TLEM x negative (x-): 0 = disabled, 1 = enabled  
TRIM x positive (x+): 0 = disabled, 1 = enabled  
TDOM y negative (y-): 0 = disabled, 1 = enabled  
TUPM y positive (y+): 0 = disabled, 1 = enabled  
TFDM z negative (z-): 0 = disabled, 1 = enabled  
TFUM z positive (z+): 0 = disabled, 1 = enabled  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 45 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
INC4  
This register controls routing of an interrupt reporting to physical interrupt pin INT1. Note that to  
properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
R/W  
BFI1  
Bit6  
R/W  
WMI1  
Bit5  
R/W  
DRDYI1 Reserved  
Bit4 Bit3  
R/W  
R/W  
TDTI1  
Bit2  
R/W  
WUFI1  
Bit1  
R/W  
TPI1  
Bit0  
FFI1  
Bit7  
Reset Value  
00000000  
I2C Address: 0x1Fh  
FFI1 Free fall interrupt reported on physical interrupt INT1  
BFI1 Buffer full interrupt reported on physical interrupt pin INT1  
WMI1 - Watermark interrupt reported on physical interrupt pin INT1  
DRDYI1 Data ready interrupt reported on physical interrupt pin INT1  
TDTI1 - Tap/Double Tap interrupt reported on physical interrupt pin INT1  
WUFI1 Wake-Up (motion detect) interrupt reported on physical interrupt pin INT1  
TPI1 Tilt position interrupt reported on physical interrupt pin INT1  
INC5  
This register controls the settings for the physical interrupt pin INT2. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
PWSEL21 PWSEL20  
Bit7 Bit6  
R/W  
R/W  
IEN2  
Bit5  
R/W  
IEA2  
Bit4  
R/W  
IEL2  
Bit3  
R/W  
Reserved ACLR2  
Bit2 Bit1  
R/W  
R/W  
ACLR1  
Bit0  
Reset Value  
00010000  
I2C Address: 0x20h  
PWSEL2<1:0> Pulse interrupt 2 width configuration  
00 = 50us (10us if OSA > 1600Hz)  
01 = 1 * OSA period  
10 = 2 * OSA periods  
11 = 4 * OSA periods  
When PWSEL2 > 0, Interrupt source auto-clearing (ACLR2=1) is strongly recommended  
to keep consistency between the internal status and the physical interrupt.  
IEN2 enables/disables the physical interrupt pin  
IEN2 = 0 physical interrupt pin is disabled  
IEN2 = 1 physical interrupt pin is enabled  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 46 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
IEA2 sets the polarity of the physical interrupt pin  
IEA2 = 0 polarity of the physical interrupt pin is active low  
IEA2 = 1 polarity of the physical interrupt pin is active high  
IEL2 sets the response of the physical interrupt pin  
IEL2 = 0 the physical interrupt pin latches until it is cleared by reading INT_REL  
IEL2 = 1 the physical interrupt pin will transmit one pulse configurable by PWSEL2  
ACLR2 Interrupt source automatic clear at pulse interrupt 2 trailing edge  
ACLR2 = 0 disable  
ACLR2 = 1 enable  
ACLR1 Interrupt source automatic clear at pulse interrupt 1 trailing edge  
ACLR1 = 0 disable  
ACLR1 = 1 enable  
INC6  
This register controls routing of interrupt reporting to physical interrupt pin INT2. Note that to properly  
change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
R/W  
BFI2  
Bit6  
R/W  
WMI2  
Bit5  
R/W  
DRDYI2 Reserved  
Bit4 Bit3  
R/W  
R/W  
TDTI2  
Bit2  
R/W  
WUFI2  
Bit1  
R/W  
TPI2  
Bit0  
FFI2  
Bit7  
Reset Value  
00000000  
I2C Address: 0x21h  
FFI2 Free fall interrupt reported on physical interrupt INT2  
BFI2 Buffer full interrupt reported on physical interrupt pin INT2  
WMI2 - Watermark interrupt reported on physical interrupt pin INT2  
DRDYI2 Data ready interrupt reported on physical interrupt pin INT2  
TDTI2 - Tap/Double Tap interrupt reported on physical interrupt pin INT2  
WUFI2 Wake-Up (motion detect) interrupt reported on physical interrupt pin INT2  
TPI2 Tilt position interrupt reported on physical interrupt pin INT2  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 47 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
TILT_TIMER  
This register is the initial count register for the tilt position state timer (0 to 255 counts). Every count is  
calculated as 1/ODR delay period, where the ODR is user-defined per Table 18. A new state must be  
valid as many measurement periods before the change is accepted. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
TSC7  
Bit7  
R/W  
TSC6  
Bit6  
R/W  
TSC5  
Bit5  
R/W  
TSC4  
Bit4  
R/W  
TSC3  
Bit3  
R/W  
TSC2  
Bit2  
R/W  
TSC1  
Bit1  
R/W  
TSC0  
Bit0  
Reset Value  
00000000  
I2C Address: 0x22h  
WUFC  
This register is the initial count register for the motion detection timer (0 to 255 counts). Every count is  
calculated as 1/ODR delay period, where the ODR is user-defined per Table 20. A new state must be  
valid as many measurement periods before the change is accepted. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
WUFC7  
Bit7  
R/W  
WUFC6  
Bit6  
R/W  
WUFC5 WUFC4 WUFC3  
Bit5 Bit4 Bit3  
R/W  
R/W  
R/W  
WUFC2  
Bit2  
R/W  
WUFC1  
Bit1  
R/W  
WUFC0  
Bit0  
Reset Value  
00000000  
I2C Address: 0x23h  
TDTRC  
This register is responsible for enabling/disabling reporting of Tap/Double Tap. Note that to properly  
change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
DTRE  
Bit1  
R/W  
STRE  
Bit0  
Reset Value  
00000011  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
I2C Address: 0x24h  
DTRE enables/disables the double tap interrupt  
DTRE = 0 do not update/trigger interrupts on double tap events  
DTRE = 1 update interrupts on double tap events  
STRE enables/disables single tap interrupt  
STRE = 0 do not update/trigger interrupts on single tap events  
STRE = 1 update interrupts on single tap events  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 48 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
TDTC  
This register contains counter information for the detection of a double tap event. When the Directional  
TapTM ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the Directional  
TapTM ODR is 800Hz, every count is calculated as 2/ODR delay period. When the Directional TapTM  
ODR is 1600Hz, every count is calculated as 4/ODR delay period. The Directional TapTM ODR is  
user-defined per Table 19. The TDTC counts starts at the beginning of the first tap and it represents  
the minimum time separation between the first tap and the second tap in a double tap event. More  
specifically, the second tap event must end outside of the TDTC. The Kionix recommended default  
value is 0.3 seconds (0x78h). Note that to properly change the value of this register, the PC1 bit in  
CTRL_REG1 must first be set to “0”.  
R/W  
TDTC7  
Bit7  
R/W  
TDTC6  
Bit6  
R/W  
TDTC5  
Bit5  
R/W  
TDTC4  
Bit4  
R/W  
TDTC3  
Bit3  
R/W  
TDTC2  
Bit2  
R/W  
TDTC1  
Bit1  
R/W  
TDTC0  
Bit0  
Reset Value  
01111000  
I2C Address: 0x25h  
TTH  
This register represents the 8-bit jerk high threshold to determine if a tap is detected. Though this is an  
8-bit register, the register value is internally multiplied by two in order to set the high threshold. This  
multiplication results in a range of 0d to 510d with a resolution of two counts. The Performance Index  
(PI) is the jerk signal that is expected to be less than this threshold, but greater than the TTL threshold  
during single and double tap events. Note that to properly change the value of this register, the PC1 bit  
in CTRL_REG1 must first be set to “0”. The Kionix recommended default value is 203 (0xCBh) and the  
Performance Index is calculated as:  
X’ = X(current) X(previous)  
Y’ = Y(current) – Y(previous)  
Z’ = Z(current) – Z(previous)  
PI = |X’| + |Y’| + |Z’|  
Equation 1 Performance Index  
R/W  
TTH7  
Bit7  
R/W  
TTH6  
Bit6  
R/W  
TTH5  
Bit5  
R/W  
TTH4  
Bit4  
R/W  
TTH3  
Bit3  
R/W  
TTH2  
Bit2  
R/W  
TTH1  
Bit1  
R/W  
TTH0  
Bit0  
Reset Value  
11001011  
I2C Address: 0x26h  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 49 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
TTL  
This register represents the 8-bit (0d255d) jerk low threshold to determine if a tap is detected. The  
Performance Index (PI) is the jerk signal that is expected to be greater than this threshold and less  
than the TTH threshold during single and double tap events. The Kionix recommended default value is  
26 (0x1Ah). Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must  
first be set to “0”.  
R/W  
R/W  
TTL6  
Bit6  
R/W  
TTL5  
Bit5  
R/W  
TTL4  
Bit4  
R/W  
TTL3  
Bit3  
R/W  
TTL2  
Bit2  
R/W  
TTL1  
Bit1  
R/W  
TTL0  
Bit0  
TTL7  
Bit7  
Reset Value  
00011010  
I2C Address: 0x27h  
FTD  
This register contains counter information for the detection of any tap event. When the Directional  
TapTM ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the Directional  
TapTM ODR is 800Hz, every count is calculated as 2/ODR delay period. When the Directional TapTM  
ODR is 1600Hz, every count is calculated as 4/ODR delay period. The Directional TapTM ODR is  
user-defined per Table 19. In order to ensure that only tap events are detected, these time limits are  
used. A tap event must be above the performance index threshold for at least the low limit (FTDL0 –  
FTDL2) and no more than the high limit (FTDH0 FTDH4). The Kionix recommended default value for  
the high limit is 0.05 seconds and for the low limit is 0.005 seconds (0xA2h). Note that to properly  
change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
FTDH4  
Bit7  
R/W  
FTDH3  
Bit6  
R/W  
FTDH2  
Bit5  
R/W  
FTDH1  
Bit4  
R/W  
FTDH0  
Bit3  
R/W  
FTDL2  
Bit2  
R/W  
FTDL1  
Bit1  
R/W  
FTDL0  
Bit0  
Reset Value  
10100010  
I2C Address: 0x28h  
STD  
This register contains counter information for the detection of a double tap event. When the Directional  
TapTM ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the Directional  
TapTM ODR is 800Hz, every count is calculated as 2/ODR delay period. When the Directional TapTM  
ODR is 1600Hz, every count is calculated as 4/ODR delay period. The Directional TapTM ODR is user-  
defined per Table 19. In order to ensure that only tap events are detected, this time limit is used. This  
register sets the total amount of time that the two taps in a double tap event can be above the PI  
threshold (TTL). The Kionix recommended default value for STD is 0.09 seconds (0x24h). Note that to  
properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 50 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
R/W  
STD7  
Bit7  
R/W  
STD6  
Bit6  
R/W  
STD5  
Bit5  
R/W  
STD4  
Bit4  
R/W  
STD3  
Bit3  
R/W  
STD2  
Bit2  
R/W  
STD1  
Bit1  
R/W  
STD0  
Bit0  
Reset Value  
00100100  
I2C Address: 0x29h  
TLT  
This register contains counter information for the detection of a tap event. When the Directional TapTM  
ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the Directional TapTM  
ODR is 800Hz, every count is calculated as 2/ODR delay period. When the Directional TapTM ODR is  
1600Hz, every count is calculated as 4/ODR delay period. The Directional TapTM ODR is user-defined  
per Table 19. In order to ensure that only tap events are detected, this time limit is used. This register  
sets the total amount of time that the tap algorithm will count samples that are above the PI threshold  
(TTL) during a potential tap event. It is used during both single and double tap events. However,  
reporting of single taps on the physical interrupt pin INT1 or INT2 will occur at the end of the TWS. The  
Kionix recommended default value for TLT is 0.1 seconds (0x28h). Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
R/W  
TLT6  
Bit6  
R/W  
TLT5  
Bit5  
R/W  
TLT4  
Bit4  
R/W  
TLT3  
Bit3  
R/W  
TLT2  
Bit2  
R/W  
TLT1  
Bit1  
R/W  
TLT0  
Bit0  
TLT7  
Bit7  
Reset Value  
00101000  
I2C Address: 0x2Ah  
TWS  
This register contains counter information for the detection of single and double taps. When the  
Directional TapTM ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the  
Directional TapTM ODR is 800Hz, every count is calculated as 2/ODR delay period. When the  
Directional TapTM ODR is 1600Hz, every count is calculated as 4/ODR delay period. The Directional  
TapTM ODR is user-defined per Table 19. It defines the time window for the entire tap event, single or  
double, to occur. Reporting of single taps on the physical interrupt pin INT1 or INT2 will occur at the  
end of this tap window. The Kionix recommended default value for TWS is 0.4 seconds (0xA0h). Note  
that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
TWS7  
Bit7  
R/W  
TWS6  
Bit6  
R/W  
TWS5  
Bit5  
R/W  
TWS4  
Bit4  
R/W  
TWS3  
Bit3  
R/W  
TWS2  
Bit2  
R/W  
TWS1  
Bit1  
R/W  
TWS0  
Bit0  
Reset Value  
10100000  
I2C Address: 0x2Bh  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 51 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
FFTH  
Free Fall Threshold: This register contains the threshold of the Free fall detection. This value is  
compared to the top 8 bits of the accelerometer 8g output. Note that to properly change the value of this  
register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
FFTH7  
Bit7  
R/W  
FFTH6  
Bit6  
R/W  
FFTH5  
Bit5  
R/W  
FFTH4  
Bit4  
R/W  
FFTH3  
Bit3  
R/W  
FFTH2  
Bit2  
R/W  
FFTH1  
Bit1  
R/W  
FFTH0  
Bit0  
Reset Value  
00000000  
I2C Address: 0x2Ch  
FFC  
Free Fall Counter: This register contains the counter setting of the Free fall detection. Every count is  
calculated as 1/ODR delay period. Note that to properly change the value of this register, the PC1 bit in  
CTRL_REG1 must first be set to “0”.  
R/W  
R/W  
FFC6  
Bit6  
R/W  
FFC5  
Bit5  
R/W  
FFC4  
Bit4  
R/W  
FFC3  
Bit3  
R/W  
FFC2  
Bit2  
R/W  
FFC1  
Bit1  
R/W  
FFC0  
Bit0  
FFC7  
Bit7  
Reset Value  
00000000  
I2C Address: 0x2Dh  
FFCNTL  
Free Fall Control: This register contains the counter setting of the Free fall detection. Every count is  
calculated as 1/ODR delay period. Note that to properly change the value of this register, the PC1 bit in  
CTRL_REG1 must first be set to “0”.  
R/W  
FFIE  
Bit7  
R/W  
ULMODE  
Bit6  
R/W  
R/W  
R/W  
DCRM  
Bit3  
R/W  
OFFI2  
Bit2  
R/W  
OFFI1  
Bit1  
R/W  
OFFI0  
Bit0  
0
0
Reset Value  
00000000  
Bit5  
Bit4  
I2C Address: 0x2Eh  
FFIE Free fall engine enable  
FFIE = 0 disable  
FFIE = 1 enable  
ULMODE Free fall interrupt latch/un-latch control  
ULMODE = 0 latched  
ULMODE = 1 unlatched  
DCRM Debounce methodology control  
DCRM = 0 count up/down  
DCRM = 1 count up/reset  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 52 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
OFFI<2:0>: Output Data Rate at which the Free fall engine performs its function.  
The default Free fall ODR is 12.5Hz.  
OFFI  
000  
001  
010  
011  
100  
101  
110  
111  
Output Data Rate (Hz)  
12.5  
25  
50  
100  
200  
400  
800  
1600  
ATH  
This register sets the threshold for wake-up (motion detect) interrupt is set. The KX122 will ship from  
the factory with this value set to correspond to a change in acceleration of 0.5g. Note that to properly  
change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
R/W  
ATH6  
Bit6  
R/W  
ATH5  
Bit5  
R/W  
ATH4  
Bit4  
R/W  
ATH3  
Bit3  
R/W  
ATH2  
Bit2  
R/W  
ATH1  
Bit1  
R/W  
ATH0  
Bit0  
ATH7  
Bit7  
Reset Value  
00001000  
I2C Address: 0x30h  
TILT_ANGLE_LL  
This register sets the low level threshold for tilt angle detection. The KX122 ships from the factory with  
tilt angle set to a low threshold of 22° from horizontal. A different default tilt angle can be requested  
from the factory. Note that the minimum suggested tilt angle is 10°. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
TA7  
Bit7  
R/W  
TA6  
Bit6  
R/W  
TA5  
Bit5  
R/W  
TA4  
Bit4  
R/W  
TA3  
Bit3  
R/W  
TA2  
Bit2  
R/W  
TA1  
Bit1  
R/W  
TA0  
Bit0  
Reset Value  
00001100  
I2C Address: 0x32h  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 53 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
TILT_ANGLE_HL  
This register sets the high level threshold for tilt angle detection. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
HL7  
Bit7  
R/W  
HL6  
Bit6  
R/W  
HL5  
Bit5  
R/W  
HL4  
Bit4  
R/W  
HL3  
Bit3  
R/W  
HL2  
Bit2  
R/W  
HL1  
Bit1  
R/W  
HL0  
Bit0  
Reset Value  
00101010  
I2C Address: 0x33h  
HYST_SET  
This register sets the Hysteresis that is placed in between the Screen Rotation states. The KX122  
ships from the factory with HYST_SET set to +/-15° of hysteresis. A different default hysteresis can be  
requested from the factory. Note that when writing a new value to this register the current values of  
RES0 and RES1 must be preserved. These values are set at the factory and must not change. Note  
that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
RES1  
Bit7  
R/W  
RES0  
Bit6  
R/W  
HYST5  
Bit5  
R/W  
HYST4  
Bit4  
R/W  
HYST3  
Bit3  
R/W  
HYST2  
Bit2  
R/W  
HYST1  
Bit1  
R/W  
HYST0  
Bit0  
Reset Value  
00010100  
I2C Address: 0x34h  
LP_CNTL  
Low Power Control sets the number of samples of accelerometer output to be averaged. Note that to  
properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
Reserved  
Bit7  
R/W  
AVC2  
Bit6  
R/W  
AVC1  
Bit5  
R/W  
AVC0  
Bit4  
R/W  
R/W  
R/W  
R/W  
Reset Value  
01001011  
Reserved Reserved Reserved Reserved  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x35h  
AVC<2:0> Averaging Filter Control, the default setting is 16 samples averaged  
000 = No Averaging  
001 = 2 Samples Averaged  
010 = 4 Samples Averaged  
011 = 8 Samples Averaged  
100 = 16 Samples Averaged (default)  
101 = 32 Samples Averaged  
110 = 64 Samples Averaged  
111 = 128 Samples Averaged  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 54 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
BUF_CNTL1  
Read/write control register that controls the buffer sample threshold. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
SMP7  
Bit7  
R/W  
SMP6  
Bit6  
R/W  
SMP5  
Bit5  
R/W  
SMP4  
Bit4  
R/W  
SMP3  
Bit3  
R/W  
SMP2  
Bit2  
R/W  
SMP1  
Bit1  
R/W  
SMP0  
Bit0  
Reset Value  
00000000  
I2C Address: 0x3Ah  
SMP_TH[9:0] Sample Threshold; determines the number of samples that will trigger a  
watermark interrupt or will be saved prior to a trigger event. When BUF_RES=1, the  
maximum number of samples is 339; when BUF_RES=0, the maximum number of  
samples is 681.  
Buffer Model  
Sample Function  
Bypass  
None  
Specifies how many buffer sample are needed  
to trigger a watermark interrupt.  
Specifies how many buffer samples are needed  
to trigger a watermark interrupt.  
Specifies how many buffer samples before the  
trigger event are retained in the buffer.  
Specifies how many buffer samples are needed  
to trigger a watermark interrupt.  
FIFO  
Stream  
Trigger  
FILO  
Table 22. Sample Threshold Operation by Buffer Mode  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 55 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
BUF_CNTL2  
Read/write control register that controls sample buffer operation. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
BUFE  
Bit7  
R/W  
BRES  
Bit6  
R/W  
BFIE  
Bit5  
R/W  
0
R/W  
SMP9  
Bit3  
R/W  
SMP8  
Bit2  
R/W  
BUF_M1 BUF_M0  
Bit1 Bit0  
I2C Address: 0x3Bh  
R/W  
Reset Value  
00000000  
Bit4  
BUFE controls activation of the sample buffer.  
BUFE = 0 sample buffer inactive  
BUFE = 1 sample buffer active  
BRES determines the resolution of the acceleration data samples collected by the sample  
buffer.  
BUF_RES = 0 8-bit samples are accumulated in the buffer  
BUF_RES = 1 16-bit samples are accumulated in the buffer  
BFIE buffer full interrupt enable bit  
BFIE = 0 buffer full interrupt disabled  
BFIE = 1 buffer full interrupt updated in INS2  
BUF_M1, BUF_M0 selects the operating mode of the sample buffer per Table 23.  
BUF_M1 BUF_M0  
Mode  
Description  
The buffer collects 681 sets of 8-bit low resolution values or 339  
sets of 16-bit high resolution values and then stops collecting  
data, collecting new data only when the buffer is not full.  
The buffer holds the last 681 sets of 8-bit low resolution values  
or 339 sets of 16-bit high resolution values. Once the buffer is  
full, the oldest data is discarded to make room for newer data.  
When a trigger event occurs, the buffer holds the last data set of  
SMP[9:0] samples before the trigger event and then continues  
to collect data until full. New data is collected only when the  
buffer is not full.  
The buffer holds the last 681 sets of 8-bit low resolution values  
or 339 sets of 16-bit high resolution values. Once the buffer is  
full, the oldest data is discarded to make room for newer data.  
Reading from the buffer in this mode will return the most recent  
data first.  
0
0
0
1
FIFO  
Stream  
Trigger  
1
1
0
1
FILO  
Table 23. Selected Buffer Mode  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 56 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
BUF_STATUS_1  
This register reports the status of the sample buffer.  
R/W  
SMP_LEV7SMP_LEV6 SMP_LEV5SMP_LEV4SMP_LEV3 SMP_LEV2SMP_LEV1SMP_LEV0  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x3Ch  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SMP_LEV[10:0] Sample Level; reports the number of data bytes that have been stored in  
the sample buffer. When BUF_RES=1, this count will increase by 6 for each 3-axis  
sample in the buffer; when BUF_RES=0, the count will increase by 3 for each 3-axis  
sample. If this register reads 0, no data has been stored in the buffer.  
BUF_STATUS_2  
This register reports the status of the sample buffer trigger function.  
R/W  
BUF_TRIG  
Bit7  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
SMP_LEV10 SMP_LEV9 SMP_LEV8  
Bit2 Bit1 Bit0  
I2C Address: 0x3Dh  
R/W  
R/W  
Bit6  
Bit5  
Bit4  
Bit3  
BUF_TRIG reports the status of the buffer’s trigger function if this mode has been selected.  
When using trigger mode, a buffer read should only be performed after a trigger event.  
BUF_CLEAR  
Latched buffer status information and the entire sample buffer are cleared when any data is written to  
this register.  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x3Eh  
BUF_READ  
Buffer output register  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x3Fh  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 57 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
SELF_TEST  
When 0xCA is written to this register, the MEMS self-test function is enabled. Electrostatic-actuation of  
the accelerometer, results in a DC shift of the X, Y and Z axis outputs. Writing 0x00 to this register will return  
the accelerometer to normal operation.  
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x60h  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 58 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Embedded Applications  
Orientation Detection Feature  
The orientation detection feature of the KX122 will report changes in face up, face down, +/- vertical and +/-  
horizontal orientation. This intelligent embedded algorithm considers very important factors that provide  
accurate orientation detection from low cost tri-axis accelerometers. Factors such as: hysteresis, device  
orientation angle and delay time are described below as these techniques are utilized inside the KX122  
Hysteresis  
A 45° tilt angle threshold seems like a good choice because it is halfway between 0° and 90°. However,  
a problem arises when the user holds the device near 45°. Slight vibrations, noise and inherent sensor  
error will cause the acceleration to go above and below the threshold rapidly and randomly, so the  
screen will quickly flip back and forth between the 0° and the 90° orientations. This problem is avoided  
in the KX122 by choosing a 30° threshold angle. With a 30° threshold, the screen will not rotate from 0°  
to 90° until the device is tilted to 60° (30° from 90°). To rotate back to 0°, the user must tilt back to 30°,  
thus avoiding the screen flipping problem. This example essentially applies +/- 15° of hysteresis in  
between the four screen rotation states. Table 24 shows the acceleration limits implemented for  
T  
=30°.  
Orientation X Acceleration (g) Y Acceleration (g)  
0°/360°  
90°  
180°  
270°  
-0.5 < ax < 0.5  
ax > 0.866  
-0.5 < ax < 0.5  
ax < -0.866  
ay > 0.866  
-0.5 < ay < 0.5  
ay < -0.866  
-0.5 < ay < 0.5  
Table 24. Acceleration at the four orientations with +/- 15° of hysteresis  
The KX122 allows the user to change the amount of hysteresis in between the four screen rotation  
states. By simply writing to the HYST_SET register, the user can adjust the amount of hysteresis up to  
+/- 45°. The plot in Figure 8 shows the typical amount of hysteresis applied for a given digital count  
value of HYST_SET.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 59 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
HYST_SET vs Hysteresis  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Hysteresis  
0
0
5
10  
15  
20  
25  
30  
HYST_SET Value (Counts)  
Figure 8. HYST_SET vs Hysteresis  
Device Orientation Angle (aka Tilt Angle)  
To ensure that horizontal and vertical device orientation changes are detected, even when it isn’t in the  
ideal vertical orientation – where the angle θ in Figure 9 is 90°, the KX122 considers device orientation  
angle in its algorithm.  
Figure 9. Device Orientation Angle  
As the angle in Figure 9 is decreased, the maximum gravitational acceleration on the X-axis or Y-axis will also  
decrease. Therefore, when the angle becomes small enough, the user will not be able to make the screen  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 60 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
orientation change. When the device orientation angle approaches 0° (device is flat on a desk or table), ax =  
ay = 0g, az = +1g, and there is no way to determine which way the screen should be oriented, the internal  
algorithm determines that the device is in either the face-up or face-down orientation, depending on the sign of  
the z-axis. The KX122 will only change the screen orientation when the orientation angle is above the factory-  
defaulted/user-defined threshold set in the TILT_ANGLE_LL register. Equation 2 can be used to determine  
what value to write to the TILT_ANGLE_LL register to set the device orientation angle. The value for  
TILT_ANGLE_HL is preset at the factory but can be adjusted in special cases (e.g. to reduce the effect of  
transient g-variation such as when device is being moved rather than just being rotated).  
TILT_ANGLE_LL (counts) = sin θ * (32 (counts/g))  
Equation 2 Tilt Angle Threshold  
Tilt Timer  
The 8-bit register, TILT_TIMER can be used to qualify changes in orientation. The KX122 does this by  
incrementing a counter with a size that is specified by the value in TILT_TIMER for each set of acceleration  
samples to verify that a change to a new orientation state is maintained. A user defined output data rate  
(ODR) determines the time period for each sample. Equation 3 shows how to calculate the TILT_TIMER  
register value for a desired delay time.  
TILT_TIMER (counts) = Delay Time (sec) x ODR (Hz)  
Equation 3 Tilt Position Delay Time  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 61 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Motion Interrupt Feature Description  
The Motion interrupt feature of the KX122 reports qualified changes in the high-pass filtered acceleration  
based on the Wake Up (ATH) threshold. If the high-pass filtered acceleration on any axis is greater than the  
user-defined wake up threshold (ATH), the device has transitioned from an inactive state to an active state.  
Equation 4 shows how to calculate the ATH register value for a desired wake up threshold.  
ATH (counts) = Wake Up Threshold (g) x 16 (counts/g)  
Equation 4 Wake Up Threshold  
An 8-bit raw unsigned value represents a counter that permits the user to qualify each active/inactive state  
change. Note that each WUFC Timer count qualifies 1 (one) user-defined ODR period (OWUF). Equation 5  
shows how to calculate the WUFC register value for a desired wake up delay time.  
WUFC (counts) = Wake Up Delay Time (sec) x OWUF (Hz)  
Equation 5 Wake Up Delay Time  
The latched motion interrupt response algorithm works as following: while the part is in inactive state, the  
algorithm evaluates differential measurement between each new acceleration data point with the preceding  
one and evaluates it against the ATH threshold. When the differential measurement is greater than ATH  
threshold, the wakeup counter starts the count. Differential measurements are now calculated based on the  
difference between the current acceleration and the acceleration when the counter started. The part will report  
that motion has occurred at the end of the count assuming each differential measurement has remained above  
the threshold. If at any moment during the count the differential measurement falls below the threshold, the  
counter will stop the count and the part will remain in inactive state.  
To illustrate how the algorithm works, consider the Figure 10 below that shows the latched response of the  
motion detection algorithm with WUF Timer (WUFC) set to 10 counts. Note how the difference between the  
acceleration sample marked in red and the one marked in green resulted in a differential measurements  
represented with orange bar being above the WUF threshold. At this point, the counter begins to count number  
of counts stored in WUFC register and the wakeup algorithm will evaluate the difference between each new  
acceleration measurement and the measurement marked in green that will remain a reference measurement  
for the duration of the counter count. At the end of the count, assuming all differential measurements were  
larger than WUF threshold, as is the case in the example showed in Figure 10 a motion event will be reported.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 62 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Figure 10. Latched Motion Interrupt Response  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 63 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Directional Tap Detection Feature Description  
The Directional Tap Detection feature of the KX122 recognizes single and double tap inputs and reports the  
acceleration axis and direction that each tap occurred. Eight performance parameters, as well as a user-  
selectable ODR are used to configure the KX122 for a desired tap detection response.  
Performance Index  
The Directional TapTM detection algorithm uses low and high thresholds to help determine when a tap event  
has occurred. A tap event is detected when the previously described jerk summation exceeds the low  
threshold (TTL) for more than the tap detection low limit, but less than the tap detection high limit as contained  
in FTD. Samples that exceed the high limit (TTH) will be ignored. Figure 11 shows an example of a single tap  
event meeting the performance index criteria.  
Calculated Performance Index  
PI  
180  
: Sampled Data  
160  
140  
120  
100  
80  
60  
40  
TTL  
20  
0
3.14  
3.15  
3.16  
3.17  
3.18  
3.19  
3.2  
3.21  
time(sec)  
Figure 11. Jerk Summation vs Threshold  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 64 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Single Tap Detection  
The latency timer (TLT) sets the time period that a tap event will only be characterized as a single tap.  
A second tap has to occur outside of the latency timer. If a second tap occurs inside the latency time, it  
will be ignored as it occurred too quickly. The single tap will be reported at the end of the TWS. Figure  
12 shows a single tap event meeting the PI, latency and window requirements.  
Calculated Performance Index  
160  
PI  
140  
TWS  
120  
100  
TLT  
80  
60  
40  
TTL  
20  
0
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3.1  
time(sec)  
Figure 12. Single Directional TapTM Timing  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 65 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Double Tap Detection  
An event can be characterized as a double tap if the second tap crosses the performance index (TTL)  
inside the TWS period and ends outside the TDTC. This means that the TDTC determines the  
minimum time separation that must exist between the two taps of a double tap event. Similar to the  
single tap, the first tap event must exceed the performance index for the time limit contained in FTD.  
Also, the duration when the first and second events combined exceed the performance index should  
not exceed STD. The double tap will be reported at the end of the second TLT. Figure 13 shows a  
double tap event meeting the PI, latency and window requirements.  
Figure 13. Double Directional TapTM Timing  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 66 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Free fall Detect  
The KX122 features a Free fall interrupt that sends a flag through INT1 or INT2 when the accelerometer  
senses a Free fall event. A Free fall event is evident when all three accelerometer axes simultaneously fall  
below a certain acceleration threshold for a set amount of time. The KX122 gives the user the option to define  
the acceleration threshold value through the FFTH 8-bit register where 256 counts cover the g range of the  
accelerometer. This value is compared to the top 8 buts of the accelerometer 8g output.  
Through the Free Fall Counter (FFC), the user can set the amount of time all three accelerometer axes must  
simultaneously remain below the FFTH acceleration threshold before the Free fall interrupt flag is sent through  
INT1 or INT2. This delay/debounce time is defined by the available 0 to 255 counts, which represent  
accelerometer samples taken at the rate defined by OFFI<2:0>. Every count is calculated as 1/ODR delay  
period.  
When the Free fall interrupt is enabled the part must not be in a physical state that would trigger the Free fall  
interrupt or the delay will not be correct for the present Free fall.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 67 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Typical Freefall Interrupt Example (nonLatching)  
255  
216  
Pos. Motion limit  
148  
Pos. Freefall limit  
128  
0g  
108  
Neg. Freefall limit  
40  
Neg. Motion limit  
0
Freefall debounce timer 10  
Set to 10 counts.  
FF/MOT Interrupt  
Figure 14. Typical Free fall Interrupt Example (FFC ULMODE = 1)  
Typical Freefall Interrupt Example (Latching)  
255  
216  
Pos. Motion limit  
148  
Pos. Freefall limit  
128  
0g  
108  
Neg. Freefall limit  
40  
Neg. Motion limit  
0
Freefall debounce timer 10  
Set to 10 counts.  
FF/MOT Interrupt  
Figure 15. Typical Free fall Interrupt Example (FFC ULMODE = 0)  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 68 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Sample Buffer Feature Description  
The sample buffer feature of the KX122 accumulates and outputs acceleration data based on how it is  
configured. There are 4 buffer modes available, and samples can be accumulated at either low (8-bit) or high  
(16-bit) resolution. Acceleration data is collected at the ODR specified by OSAA:OSAD in the Output Data  
Control Register. Each buffer mode accumulates data, reports data, and interacts with status indicators in a  
slightly different way.  
FIFO Mode  
Data Accumulation  
Sample collection stops when the buffer is full.  
Data Reporting  
Data is reported with the oldest byte of the oldest sample first (X_L or X based  
on resolution).  
Status Indicators  
A watermark interrupt occurs when the number of samples in the buffer reaches  
the Sample Threshold. The watermark interrupt stays active until the buffer  
contains less than this number of samples. This can be accomplished through  
clearing the buffer or explicitly reading greater than SMPX samples (calculated  
with Equation 6).  
BUF_RES=0:  
SMPX = SMP_LEV[10:0] /3 SMP_TH[9:0]  
BUF_RES=1:  
SMPX = SMP_LEV[10:0] /6 SMP_TH[9:0]  
Equation 6 Samples Above Sample Threshold  
Stream Mode  
Data Accumulation  
Sample collection continues when the buffer is full; older data is discarded to  
make room for newer data.  
Data Reporting  
Data is reported with the oldest sample first (uses FIFO read pointer).  
Status Indicators  
A watermark interrupt occurs when the number of samples in the buffer reaches  
the Sample Threshold. The watermark interrupt stays active until the buffer  
contains less than this number of samples. This can be accomplished through  
clearing the buffer or explicitly reading greater than SMPX samples (calculated  
with Equation 6).  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 69 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Trigger Mode  
Data Accumulation  
When a physical interrupt is caused by one of the digital engines, the trigger  
event is asserted and SMP[9:0] samples prior to the event are retained. Sample  
collection continues until the buffer is full.  
Data Reporting  
Data is reported with the oldest sample first (uses FIFO read pointer).  
Status Indicators  
When a physical interrupt occurs and there are at least SMP[9:0] samples in the  
buffer, BUF_TRIG in BUF_STATUS_REG2 is asserted.  
FILO Mode  
Data Accumulation  
Sample collection continues when the buffer is full; older data is discarded to  
make room for newer data.  
Data Reporting  
Data is reported with the newest byte of the newest sample first (Z_H or Z based  
on resolution).  
Status Indicators  
A watermark interrupt occurs when the number of samples in the buffer reaches  
the Sample Threshold. The watermark interrupt stays active until the buffer  
contains less than this number of samples. This can be accomplished through  
clearing the buffer or explicitly reading greater than SMPX samples (calculated  
with Equation 6).  
Buffer Operation  
The following diagrams illustrate the operation of the buffer conceptually. Actual physical  
implementation has been abstracted to offer a simplified explanation of how the different buffer  
modes operate. Figure 16 represents a high-resolution 3-axis sample within the buffer. Figure  
17 Figure 25 represent a 10-sample version of the buffer (for simplicity), with Sample  
Threshold set to 8.  
Regardless of the selected mode, the buffer fills sequentially, one byte at a time. Figure 16  
shows one 6-byte data sample. Note the location of the FILO read pointer versus that of the  
FIFO read pointer.  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 70 of 76  
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Index  
Byte  
X_L  
X_H  
Y_L  
Y_H  
Z_L  
Z_H  
0
1
2
3
4
5
6
-- FIFO read pointer  
-- FILO read pointer  
buffer write pointer --  
Figure 16. One Buffer Sample  
Regardless of the selected mode, the buffer fills sequentially, one sample at a time. Note in  
Figure 17 the location of the FILO read pointer versus that of the FIFO read pointer. The buffer  
write pointer shows where the next sample will be written to the buffer.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data0  
Data1  
Data2  
FIFO read pointer  
FILO read pointer  
buffer write pointer →  
Sample Threshold  
Figure 17. Buffer Filling  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 71 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
The buffer continues to fill sequentially until the Sample Threshold is reached. Note in Figure  
18 the location of the FILO read pointer versus that of the FIFO read pointer.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
FIFO read pointer  
FILO read pointer  
Sample Threshold  
buffer write pointer →  
Figure 18. Buffer Approaching Sample Threshold  
In FIFO, Stream, and FILO modes, a watermark interrupt is issued when the number of  
samples in the buffer reaches the Sample Threshold. In trigger mode, this is the point where  
the oldest data in the buffer is discarded to make room for newer data.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
FIFO read pointer  
Sample Threshold/FILO read pointer  
buffer write pointer →  
Figure 19. Buffer at Sample Threshold  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 72 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
In trigger mode, data is accumulated in the buffer sequentially until the Sample Threshold is  
reached. Once the Sample Threshold is reached, the oldest samples are discarded when new  
samples are collected. Note in Figure 20 how Data0 was thrown out to make room for Data8.  
Index  
Sample  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
0
1
2
3
4
5
6
7
8
9
Trigger read pointer  
Trigger write pointer →  
Sample Threshold  
Figure 20. Additional Data Prior to Trigger Event  
After a trigger event occurs, the buffer no longer discards the oldest samples, and instead  
begins accumulating samples sequentially until full. The buffer then stops collecting samples,  
as seen in Figure 21. This results in the buffer holding SMP_TH[9:0] samples prior to the  
trigger event, and SMPX samples after the trigger event.  
Index Sample  
0
Data1  
Trigger read pointer  
1
2
3
4
5
Data2  
Data3  
Data4  
Data5  
Data6  
6
7
Data7  
Data8  
Sample Threshold  
8
9
Data9  
Data10  
Figure 21. Additional Data After Trigger Event  
In FIFO, Stream, FILO, and Trigger (after a trigger event has occurred) modes, the buffer  
continues filling sequentially after the Sample Threshold is reached. Sample accumulation after  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 73 of 76  
 
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
the buffer is full depends on the selected operation mode. FIFO and Trigger modes stop  
accumulating samples when the buffer is full, and Stream and FILO modes begin discarding the  
oldest data when new samples are accumulated.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
Data9  
FIFO read pointer  
Sample Threshold  
FILO read pointer  
Figure 22. Buffer Full  
After the buffer has been filled in FILO or Stream mode, the oldest samples are discarded when  
new samples are collected. Note in  
Figure 23 how Data0 was thrown out to make room for Data10.  
Index Sample  
0
Data1  
FIFO read pointer  
1
2
3
4
5
Data2  
Data3  
Data4  
Data5  
Data6  
6
Data7  
7
8
9
Data8  
Data9  
Data10  
Sample Threshold  
FILO read pointer  
Figure 23. Buffer Full – Additional Sample Accumulation in Stream or FILO Mode  
36 Thornwood Dr. Ithaca, NY 14850  
© 2015 Kionix All Rights Reserved  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
Page 74 of 76  
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
In FIFO, Stream, or Trigger mode, reading one sample from the buffer will remove the oldest  
sample and effectively shift the entire buffer contents up, as seen in  
Figure 24.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
Data9  
FIFO read pointer  
Sample Threshold  
FILO read pointer  
buffer write pointer →  
Figure 24. FIFO Read from Full Buffer  
In FILO mode, reading one sample from the buffer will remove the newest sample and leave the  
older samples untouched, as seen in  
Figure 25.  
Index Sample  
0
Data0  
FIFO read pointer  
1
2
3
4
5
Data1  
Data2  
Data3  
Data4  
Data5  
6
7
8
9
Data6  
Data7  
Data8  
Sample Threshold  
FILO read pointer  
buffer write pointer →  
Figure 25. FILO Read from Full Buffer  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 75 of 76  
 
 
PART NUMBER:  
KX122-1037  
Rev. 4.0  
July 16, 2015  
± 2g / 4g / 8g Tri-axis Digital  
Accelerometer Specifications  
Revision History  
REVISION DESCRIPTION  
DATE  
1.0  
Initial Release  
27-Feb-2015  
Updated Package dimensions drawing  
2.0  
Updated Figure 10 and the description of the Motion Interrupt feature  
Updated Table 12. Acceleration (g) Calculation  
Updated Power-On Procedure section. Note was added to check relevant  
Technical Note for information related to Power-On Procedure. Tables  
numbering has been updated to reflect the change.  
Removed negative self test requirement.  
Updated I2C Writing/Reading to/from KX122 section  
Updated I2C Timing Diagram  
Update title for Power-On Procedure Technical Note  
Updated Wake-up Threshold Equation  
01-Apr-2015  
15-May-2015  
3.0  
4.0  
16-July-2015  
Updated Product Features  
"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or otherwise  
under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not assume  
responsibility for its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior notice. This  
publication supersedes and replaces all information previously supplied.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2015 Kionix All Rights Reserved  
Page 76 of 76  

相关型号:

KX14

Board Stacking Connector, Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020K14D3E

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020K2E1E

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020K5D1-VIE

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020K5ETE

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020K8DE

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020K8E1E

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020N14DE

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020N14EE

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020N2.85D-1E

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020N2.85E-1E

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE

KX14-020N2D1E

Board Stacking Connector, 20 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
JAE