LM324F [ROHM]

Ground Sense Operational Amplifiers;
LM324F
型号: LM324F
厂家: ROHM    ROHM
描述:

Ground Sense Operational Amplifiers

放大器
文件: 总48页 (文件大小:1413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Ground Sense Operational Amplifiers  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
General Description  
Key Specifications  
LM358xxx and LM2904xxx series are dual ground  
sense operational amplifiers. LM324xxx and  
LM2902xxx series are quad. These have features of  
low current consumption and wide operating voltage  
range from 3V to 32V (single power supply).  
Operating Supply Voltage (Single Supply):  
3.0V to 32.0V  
Operating Temperature Range:  
LM358xxx:  
LM324xxx:  
LM2904xxx:  
LM2902xxx:  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
4.5mV (Max)  
Features  
Input Offset Voltage:  
Input Bias Current:  
Operable with a Single Power Supply  
Wide Operating Supply Voltage Range  
Input/output Ground Sense  
High Large Signal Voltage Gain  
20nA (Typ)  
Packages  
SOP8  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.35mm  
3.00mm x 6.40mm x 1.20mm  
3.00mm x 4.90mm x 1.10mm  
2.90mm x 4.00mm x 0.90mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.35mm  
5.00mm x 6.40mm x 1.20mm  
Applications  
SOP-J8  
Current Sense Application  
Buffer Application Amplifier  
Active Filter  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
Consumer Electronics  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
Pin Configuration  
LM358F, LM2904F  
LM358FJ, LM2904FJ  
LM358FV, LM2904FV  
: SOP8  
: SOP-J8  
: SSOP-B8  
LM358FVT, LM2904FVT : TSSOP-B8  
LM358FVJ, LM2904FVJ : TSSOP-B8J  
LM358FVM, LM2904FVM : MSOP8  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
1
2
3
4
8
7
6
5
OUT1  
VCC  
OUT2  
-IN2  
+IN1  
VEE  
+IN2  
-IN2  
CH1  
-IN1  
-
+
CH2  
+IN1  
-
+
+IN2  
VEE  
OUT2  
VCC  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
1/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
LM324F, LM2902F  
LM324FJ, LM2902FJ  
LM324FV, LM2902FV  
: SOP14  
: SOP-J14  
: SSOP-B14  
LM324FVJ, LM2902FVJ : TSSOP-B14J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
OUT1  
1
2
3
4
5
6
7
14  
13  
12  
11  
OUT4  
-IN4  
3
+IN1  
VCC  
-IN1  
+IN1  
VCC  
+IN2  
-IN2  
CH1  
CH4  
4
-
-
+
+
+IN4  
VEE  
5
+IN2  
-IN2  
6
7
OUT2  
OUT3  
-IN3  
10 +IN3  
8
-
-
+
+
CH2  
CH3  
9
9
8
-IN3  
10  
11  
12  
13  
14  
+IN3  
VEE  
OUT2  
OUT3  
+IN4  
-IN4  
OUT4  
Absolute Maximum Ratings (TA=25°C)  
Parameter  
Rating  
Symbol  
Unit  
LM358xxx  
LM324xxx LM2904xxx LM2902xxx  
Supply Voltage  
VCC-VEE  
36  
V
0.68(Note 1,9)  
-
0.68(Note 1,9)  
SOP8  
-
0.67(Note 2,9)  
0.62(Note 3,9)  
-
0.67(Note 2,9)  
0.62(Note 3,9)  
-
SOP-J8  
SSOP-B8  
-
-
0.62(Note 3,9)  
0.58(Note 4,9)  
0.58(Note 4,9)  
-
0.62(Note 3,9)  
0.58(Note 4,9)  
0.58(Note 4,9)  
-
TSSOP-B8  
TSSOP-B8J  
MSOP8  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
VID  
-
-
Power Dissipation  
PD  
W
-
-
-
-
-
-
0.56(Note 5,9)  
1.02(Note 6,9)  
0.87(Note 7,9)  
0.85(Note 8,9)  
-
-
-
-
0.56(Note 5,9)  
1.02 (Note 6,9)  
0.87(Note 7,9)  
0.85(Note 8,9)  
Differential Input Voltage (Note 10)  
Input Common-mode Voltage Range  
Input Current(Note 11)  
36  
V
V
VICM  
(VEE-0.3) to (VEE+36)  
±10  
II  
mA  
Vopr  
Operating Supply Voltage  
3.0 to 32.0  
V
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Topr  
-40 to +85  
-40 to +125  
°C  
°C  
°C  
Tstg  
-55 to +150  
150  
Tjmax  
(Note 1) Reduce by 5.5mW per 1°C above 25C.  
(Note 2) Reduce by 5.4mW per 1°C above 25°C.  
(Note 3) Reduce by 5.0mW per 1°C above 25°C.  
(Note 4) Reduce by 4.7mW per 1°C above 25°C.  
(Note 5) Reduce by 4.5mW per 1°C above 25°C.  
(Note 6) Reduce by 8.2mW per 1°C above 25°C.  
(Note 7) Reduce by 7.0mW per 1°C above 25°C.  
(Note 8) Reduce by 6.8mW per 1°C above 25°C.  
(Note 9) Mounted on an FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 10) Differential Input Voltage is the voltage difference between the inverting and non-inverting inputs.  
The input pin voltage is set to more than VEE  
.
(Note 11) An excessive input current will flow when input voltages of less than VEE-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
2/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Electrical Characteristics  
LM358xxx, LM2904xxx (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Temperature  
Parameter  
Symbol  
Unit  
mV  
Condition  
Range  
Min  
Typ  
Max  
4.5  
5
25°C  
-
-
1
-
VOUT=1.4V  
VCC=5 to 30V, VOUT=1.4V  
Input Offset Voltage(Note 12,13)  
Input Offset Voltage Drift(Note 12)  
Input Offset Current(Note 12,13)  
VIO  
VIO/T  
IIO  
Full Range  
-
-
6
-
μV/°C VOUT=1.4V  
25°C  
Full Range  
25°C  
-
-
2
-
50  
200  
250  
300  
1.2  
1.5  
-
nA  
nA  
V
OUT=1.4V  
OUT=1.4V  
-
20  
-
Input Bias Current(Note 12,13)  
Supply Current(Note 13)  
IB  
V
Full Range  
25°C  
-
-
0.6  
-
ICC  
mA RL=, All Op-Amps  
Full Range  
25°C  
-
3.5  
27  
-
-
RL=2kΩ  
Maximum Output Voltage (High)(Note 13)  
Maximum Output Voltage (Low)(Note 13)  
Large Signal Voltage Gain  
VOH  
VOL  
AV  
V
Full Range  
Full Range  
28  
5
-
VCC=30V, RL=10kΩ  
20  
-
mV RL=∞  
25  
88  
0
100  
100  
-
V/mV  
RL2k, VCC=15V  
25°C  
25°C  
VOUT=1.4 to 11.4V  
dB  
-
VICM=VEE to (VCC-1.5V)  
VOUT=1.4V  
Input Common-mode Voltage Range  
VICM  
3.5  
V
Input Common-mode Voltage Range  
(VEE side) (Note 14)  
VICM  
Full Range  
25°C  
-
0.1  
80  
100  
30  
-
-
-
-
-
-
-
-
-
-
-
V
VOUT=1.4V  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
70  
65  
20  
10  
20  
5
dB VOUT=1.4V  
25°C  
dB VCC=5 to 30V  
25°C  
V
+IN=1V, V-IN=0V  
Output Source Current(Note 13,15)  
ISOURCE  
mA  
VOUT=0V, Short Current  
Full Range  
25°C  
27  
-
V+IN=0V, V-IN=1V  
mA  
VOUT=5V, Short Current  
Output Sink Current(Note 13,15)  
ISINK  
Full Range  
25°C  
V+IN=0V, V-IN=1V  
VOUT=200mV  
20  
-
50  
120  
0.3  
μA  
Channel Separation  
Slew Rate  
CS  
SR  
GBW  
θ
25°C  
dB f=1kHz, Input Referred  
VCC=15V, Av=0dB  
V/μs  
25°C  
-
RL=2k, CL=100pF  
VCC=15V, VEE=-15V  
RL=2k, CL=100pF  
Gain Bandwidth  
Phase Margin  
25°C  
25°C  
25°C  
-
-
-
0.8  
80  
40  
-
-
-
MHz  
deg Av=40dB  
VCC=15V, VEE=-15V  
RS=100, VIN=0V, f=1kHz  
Input Referred Noise Voltage  
VN  
nV/ Hz  
(Note 12) Absolute value  
(Note 13) LM358xxx Full Range: TA=-40C to +85C, LM2904xxx Full Range: TA=-40C to +125C  
(Note 14) LM2904xxx only.  
(Note 15) Consider the power dissipation of the IC under high temperature when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
3/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Electrical Characteristics - continued  
LM324xxx, LM2902xxx (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Temperature  
Parameter  
Symbol  
Unit  
mV  
Condition  
Range  
Min  
Typ  
Max  
4.5  
5
25°C  
-
-
1
-
VOUT=1.4V  
VCC=5 to 30V, VOUT=1.4V  
Input Offset Voltage(Note 16,17)  
Input Offset Voltage Drift(Note 17)  
Input Offset Current(Note 16,17)  
VIO  
VIO/T  
IIO  
Full Range  
-
-
6
-
μV/°C VOUT=1.4V  
25°C  
Full Range  
25°C  
-
-
2
-
50  
200  
250  
300  
2
nA  
nA  
V
V
OUT=1.4V  
OUT=1.4V  
-
20  
-
Input Bias Current(Note 16,17)  
Supply Current(Note 17)  
IB  
Full Range  
25°C  
-
-
1
ICC  
mA RL=, All Op-Amps  
Full Range  
25°C  
-
-
2.5  
-
3.5  
27  
-
-
RL=2kΩ  
Maximum Output Voltage (High)(Note 17)  
Maximum Output Voltage (Low)(Note 17)  
Large Signal Voltage Gain  
VOH  
VOL  
AV  
V
Full Range  
Full Range  
28  
5
-
VCC=30V, RL=10kΩ  
20  
-
mV RL=∞  
25  
88  
0
100  
100  
-
V/mV  
RL2k, VCC=15V  
25°C  
25°C  
VOUT=1.4 to 11.4V  
dB  
-
VICM=VEE to (VCC-1.5V)  
VOUT=1.4V  
Input Common-mode Voltage Range  
VICM  
3.5  
V
Input Common-mode Voltage Range  
(VEE side) (Note 18)  
VICM  
Full Range  
25°C  
-
0.1  
80  
100  
30  
-
-
-
-
-
-
-
-
-
-
-
V
VOUT=1.4V  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
70  
65  
20  
10  
20  
5
dB VOUT=1.4V  
25°C  
dB VCC=5 to 30V  
25°C  
V
+IN=1V, V-IN=0V  
Output Source Current(Note 17,19)  
ISOURCE  
mA  
VOUT=0V, Short Current  
Full Range  
25°C  
27  
-
V+IN=0V, V-IN=1V  
mA  
VOUT=5V, Short Current  
Output Sink Current(Note 17,19)  
ISINK  
Full Range  
25°C  
V+IN=0V, V-IN=1V  
VOUT=200mV  
20  
-
50  
120  
0.3  
μA  
Channel Separation  
Slew Rate  
CS  
SR  
GBW  
θ
25°C  
dB f=1kHz, Input Referred  
VCC=15V, Av=0dB  
V/μs  
25°C  
-
RL=2k, CL=100pF  
VCC=15V, VEE=-15V  
RL=2k, CL=100pF  
Gain Bandwidth  
Phase Margin  
25°C  
25°C  
25°C  
-
-
-
0.8  
80  
40  
-
-
-
MHz  
deg Av=40dB  
VCC=15V, VEE=-15V  
RS=100, VIN=0V, f=1kHz  
Input Referred Noise Voltage  
VN  
nV/ Hz  
(Note 16) Absolute value  
(Note 17) LM324xxx Full Range: TA=-40C to +85C, LM2902xxx Full Range: TA=-40C to +125C  
(Note 18) LM2902xxx only.  
(Note 19) Consider the power dissipation of the IC under high temperature when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
4/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Description of Electrical Characteristics  
Below are the descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also shown.  
Note that item names, symbols, and their meanings may differ from those of another manufacturer’s document or general  
document.  
1. Absolute Maximum Ratings  
Absolute maximum rating items indicate the conditions which must not be exceeded. Application of voltage in excess of the  
absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of  
electrical characteristics.  
(1) Supply Voltage (VCC/VEE  
)
Indicates the maximum voltage that can be applied between the VCC pin and VEE pin without deterioration of  
characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between the non-inverting and inverting pins without damaging  
the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting pins without deterioration or  
destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25°C  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical Characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting pin and inverting pin. It can be translated to the input voltage  
difference required for setting the output voltage to 0V.  
(2) Input Offset Voltage Drift (VIO/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
(3) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting pins.  
(4) Input Bias Current (IB)  
Indicates the current that flows into or out of the input pin. It is defined by the average of input bias currents at the  
non-inverting and inverting pins.  
(5) Supply Current (ICC  
)
Indicates the current that flows within the IC under specified no-load conditions.  
(6) Maximum Output Voltage (High) / Maximum Output Voltage (Low) (VOH/VOL  
)
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage high and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
(7) Large Signal Voltage Gain (AV)  
Indicates the amplification rate (gain) of output voltage against the voltage difference between non-inverting pin and  
inverting pin. It is normally the amplification rate (gain) with reference to DC voltage.  
Av = (Output Voltage) / (Differential Input Voltage)  
(8) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range at which IC normally operates.  
(9) Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common-mode voltage is changed. It is normally  
the fluctuation of DC.  
CMRR = (Change of Input Common-mode Voltage)/(Input Offset Fluctuation)  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
5/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
(10) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR= (Change of Power Supply Voltage)/( Input Offset Fluctuation)  
(11) Output Source Current/ Output Sink Current (ISOURCE / ISINK  
)
The maximum current that the IC can output under specific output conditions. The output source current indicates the  
current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
(12) Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
(13) Slew Rate (SR)  
Indicates the rate of the change of the output voltage with time when a step input signal is applied.  
(14) Gain Bandwidth (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
(15) Phase Margin (θ)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
(16) Input Referred Noise Voltage (VN)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input pin.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
6/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves  
LM358xxx, LM2904xxx  
1.6  
1.2  
0.8  
0.4  
0.0  
1.6  
1.2  
0.8  
0.4  
0.0  
25°C  
36V  
5V  
85°C  
-40°C  
3V  
125°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
SupplyVoltage [V]  
30  
40  
AmbientTemperature [°C]  
Figure 2. Supply Current vs Ambient  
Temperature  
Figure 1. Supply Current vs Supply Voltage  
5
40  
30  
20  
10  
0
85°C  
4
3
2
1
0
25°C  
-40°C  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
SupplyVoltage [V]  
AmbientTemperature [°C]  
Figure 3. Maximum Output Voltage (High) vs  
Figure 4. Maximum Output Voltage (High) vs  
Supply Voltage (RL=10k)  
Ambient Temperature (VCC=5V, RL=10k)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM358xxx: -40°C to +85°C  
LM2904xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
7/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM358xxx, LM2904xxx  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
-40°C  
25°C  
85°C  
125°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
1
2
3
4
5
Output Voltage [V]  
AmbientTemperature [°C]  
Figure 5. Maximum Output Voltage (High) vs  
Ambient Temperature (VCC=5V, RL=2k)  
Figure 6. Output Source Current vs  
Output Voltage (VCC=5V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
25°C  
85°C  
5V  
125°C  
36V  
3V  
-40°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
1
2
3
4
5
AmbientTemperature [°C]  
Output Voltage [V]  
Figure 7. Output Source Current vs  
Ambient Temperature (VOUT=0V)  
Figure 8. Output Sink Current vs  
Output Voltage (VCC=5V)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM358xxx: -40°C to +85°C  
LM2904xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
8/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM358xxx, LM2904xxx  
102  
50  
40  
30  
20  
10  
0
100  
36V  
101  
10  
125°C  
100  
1
5V  
85°C  
25°C  
10-1  
0
3V  
-40°C  
10-2  
0
10-3  
0
-50 -25  
0
25  
50  
75 100 125 150  
0
0.5  
1
1.5  
2
AmbientTemperature [°C]  
Output Voltage [V]  
Figure 9. Output Sink Current vs Ambient  
Figure 10. Low Level Sink Current vs  
Output Voltage (VCC=5V)  
Temperature (VOUT=VCC  
)
100  
1
80  
60  
40  
20  
0
36V  
125°C  
85°C  
5V  
3V  
25°C  
10-1  
0
-40°C  
10-2  
0
0
0.25  
0.5  
0.75  
1
-50 -25  
0
25  
50  
75 100 125 150  
Output Voltage [V]  
AmbientTemperature [°C]  
Figure 12. Low Level Sink Current vs Ambient  
Temperature (VOUT=200mV)  
Figure 11. Low Level Sink Current vs  
Output Voltage (Enlarged view)  
(VCC=5V)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM358xxx: -40°C to +85°C  
LM2904xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
9/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM358xxx, LM2904xxx  
4
3
4
3
2
2
1
1
125°C  
85°C  
25°C  
36V  
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
5V  
3V  
-40°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
SupplyVoltage [V]  
30  
40  
AmbientTemperature [°C]  
Figure 13. Input Offset Voltage vs Supply  
Voltage (VICM=VCC/2, EK=-VCC/2)  
Figure 14. Input Offset Voltage vs Ambient  
Temperature (VICM=VCC/2, EK=-VCC/2)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-40°C  
25°C  
3V  
5V  
85°C  
36V  
125°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AmbientTemperature [°C]  
Supply Voltage [V]  
Figure 16. Input Bias Current vs Ambient  
Temperature (VICM=VCC/2, EK=-VCC/2)  
Figure 15. Input Bias Current vs Supply  
Voltage (VICM=VCC/2, EK=-VCC/2)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM358xxx: -40°C to +85°C  
LM2904xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
10/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM358xxx, LM2904xxx  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3
2
1
125°C  
85°C  
0
-1  
-2  
-3  
-4  
25°C  
-40°C  
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
AmbientTemperature [°C]  
Common-mode InputVoltage [V]  
Figure 18. Input Offset Voltage vs  
Common-mode Input Voltage (VCC=5V)  
Figure 17. Input Bias Current vs Ambient  
Temperature (VCC=30V, VICM=28V, EK=-1.4V)  
10  
8
10  
8
6
6
4
4
-40°C  
85°C  
125°C  
2
2
5V  
36V  
0
0
3V  
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
25°C  
0
10  
20  
SupplyVoltage [V]  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
AmbientTemperature [°C]  
Figure 20. Input Offset Current vs Ambient  
Temperature (VICM=VCC/2, EK=-VCC/2)  
Figure 19. Input Offset Current vs Supply  
Voltage (VICM=VCC/2, EK=-VCC/2)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM358xxx: -40°C to +85°C  
LM2904xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
11/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM358xxx, LM2904xxx  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
125°C  
125°C  
85°C  
85°C  
25°C  
-40°C  
25°C  
-40°C  
0
10  
20  
SupplyVoltage [V]  
30  
40  
0
10  
20  
SupplyVoltage [V]  
30  
40  
Figure 21. Slew Rate Rise vs Supply Voltage  
Figure 22. Slew Rate Fall vs Supply Voltage  
(RL=2k, Low to High)  
(RL=2k, High to Low)  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
240  
180  
120  
60  
Phase  
Gain  
0
108  
101  
102  
103  
104  
102  
103  
104  
105  
106  
107  
Frequency [Hz]  
Frequency[Hz]  
Figure 23. Input Referred Noise Voltage vs  
Frequency (VCC=5V)  
Figure 24. Voltage Gain, Phase vs Frequency  
(VCC=30V, RL=2k, CL=100pF)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM358xxx: -40°C to +85°C  
LM2904xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
12/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM358xxx, LM2904xxx  
140  
120  
100  
80  
140  
120  
100  
80  
36V  
85°C  
25°C  
5V  
125°C  
3V  
-40°C  
60  
60  
0
10  
20  
SupplyVoltage [V]  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
AmbientTemperature [°C]  
Figure 25. Large Signal Voltage Gain vs  
Figure 26. Large Signal Voltage Gain vs  
Supply Voltage (RL=2k)  
Ambient Temperature (RL=2k)  
120  
100  
80  
120  
100  
80  
36V  
-40°C  
25°C  
85°C  
5V  
3V  
125°C  
60  
60  
40  
40  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
AmbientTemperature [°C]  
Figure 27. Common-mode Rejection Ratio vs  
Supply Voltage  
Figure 28. Common-mode Rejection Ratio vs  
Ambient Temperature  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM358xxx: -40°C to +85°C  
LM2904xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
13/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM358xxx, LM2904xxx  
140  
120  
100  
80  
60  
-50 -25  
0
25  
50  
75 100 125 150  
AmbientTemperature [°C]  
Figure 29. Power Supply Rejection Ratio vs  
Ambient Temperature  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM358xxx: -40°C to +85°C  
LM2904xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
14/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM324xxx, LM2902xxx  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
36V  
25°C  
85°C  
5V  
-40°C  
3V  
125°C  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
SupplyVoltage [V]  
30  
40  
AmbientTemperature [°C]  
Figure 31. Supply Current vs Ambient  
Temperature  
Figure 30. 回路電流-電源電圧特性  
5
40  
125°C  
85°C  
4
3
2
1
0
30  
20  
10  
0
25℃  
-40°C  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
AmbientTemperature [°C]  
Figure 33. Maximum Output Voltage (High) vs  
Figure 32. Maximum Output Voltage (High) vs  
Ambient Temperature (VCC=5V, RL=10k)  
Supply Voltage (RL=10k)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM324xxx: -40°C to +85°C  
LM2902xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
15/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM324xxx, LM2902xxx  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
-40°C  
25°C  
85°C  
125°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
1
2
3
4
5
AmbientTemperature [°C]  
Output Voltage [V]  
Figure 34. Maximum Output Voltage (High) vs  
Figure 35. Output Source Current vs Output  
Voltage (VCC=5V)  
Ambient Temperature (VCC=5V, RL=2k)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
25°C  
85°C  
5V  
125°C  
36V  
3V  
-40°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
1
2
3
4
5
AmbientTemperature [°C]  
Output Voltage [V]  
Figure 36. Output Source Current vs Ambient  
Temperature (VOUT=0V)  
Figure 37. Output Sink Current vs Output  
Voltage (VCC=5V)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM324xxx: -40°C to +85°C  
LM2902xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
16/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM324xxx, LM2902xxx  
102  
50  
40  
30  
20  
10  
0
100  
36V  
101  
10  
125°C  
85°C  
100  
1
5V  
25°C  
10-1  
0
3V  
-40°C  
10-2  
0
10-3  
0
-50 -25  
0
25  
50  
75 100 125 150  
0
0.5  
1
1.5  
2
AmbientTemperature [°C]  
Output Voltage [V]  
Figure 38. Output Sink Current vs Ambient  
Figure 39. Low Level Sink Current vs  
Output Voltage (VCC=5V)  
Temperature (VOUT=VCC  
)
0
1
10  
80  
60  
40  
20  
0
36V  
125°C  
85°C  
5V  
3V  
25°C  
10-1  
0
-40°C  
10-2  
0
0
0.25  
0.5  
0.75  
1
-50 -25  
0
25  
50  
75 100 125 150  
Output Voltage [V]  
AmbientTemperature [°C]  
Figure 40. Low Level Sink Current vs  
Output Voltage (Enlarged view)  
(VCC=5V)  
Figure 41. Low Level Sink Current vs Ambient  
Temperature (VOUT=200mV)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM324xxx: -40°C to +85°C  
LM2902xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
17/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM324xxx, LM2902xxx  
4
3
4
3
2
2
1
1
36V  
125°C  
85°C  
25°C  
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
3V  
5V  
-40°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
SupplyVoltage [V]  
30  
40  
AmbientTemperature [°C]  
Figure 42. Input Offset Voltage vs Supply  
Voltage (VICM=VCC/2, EK=-VCC/2)  
Figure 43. Input Offset Voltage vs Ambient  
Temperature (VICM=VCC/2, EK=-VCC/2)  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
3V  
5V  
85°C  
36V  
125°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AmbientTemperature [°C]  
Supply Voltage [V]  
Figure 45. Input Bias Current vs Ambient  
Temperature (VICM=VCC/2, EK=-VCC/2)  
Figure 44. Input Bias Current vs Supply  
Voltage (VICM=VCC/2, EK=-VCC/2)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM324xxx: -40°C to +85°C  
LM2902xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
18/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM324xxx, LM2902xxx  
4
3
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1
125°C  
85°C  
0
-1  
-2  
-3  
-4  
25°C  
-40°C  
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
AmbientTemperature [°C]  
Common-mode InputVoltage [V]  
Figure 47. Input Offset Voltage vs  
Common-mode Input Voltage (VCC=5V)  
Figure 46. Input Bias Current vs Ambient  
Temperature (VCC=30V, VICM=28V, EK=-1.4V)  
10  
8
10  
8
6
6
4
4
-40°C  
85°C  
125°C  
2
2
5V  
36V  
0
0
3V  
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
25°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
Supply Voltage [V]  
30  
40  
AmbientTemperature [°C]  
Figure 49. Input Offset Current vs Ambient  
Temperature (VICM=VCC/2, EK=-VCC/2)  
Figure 48. Input Offset Current vs Supply  
Voltage (VICM=VCC/2, EK=-VCC/2)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM324xxx: -40°C to +85°C  
LM2902xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
19/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM324xxx, LM2902xxx  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
125°C  
85°C  
125°C  
85°C  
25°C  
-40°C  
25°C  
-40°C  
0
10  
20  
Supply Voltage [V]  
30  
40  
0
10  
20  
SupplyVoltage [V]  
30  
40  
Figure 50. Slew Rate Rise vs Supply Voltage  
Figure 51. Slew Rate Fall vs Supply Voltage  
(RL=2k, Low to High)  
(RL=2k, High to Low)  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
240  
180  
120  
60  
Phase  
Gain  
0
108  
101  
102  
103  
104  
102  
103  
104  
105  
106  
107  
Frequency[Hz]  
Frequency[Hz]  
Figure 52. Input Referred Noise Voltage vs  
Frequency (VCC=5V)  
Figure 53. Voltage Gain, Phase vs Frequency  
(VCC=30V, RL=2k, CL=100pF)  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM324xxx: -40°C to +85°C  
LM2902xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
20/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM324xxx, LM2902xxx  
140  
120  
100  
80  
140  
120  
100  
80  
36V  
85°C  
25°C  
5V  
125°C  
3V  
-40°C  
60  
60  
0
10  
20  
SupplyVoltage [V]  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
AmbientTemperature [°C]  
Figure 54. Large Signal Voltage Gain vs  
Figure 55. Large Signal Voltage Gain vs  
Supply Voltage (RL=2k)  
Ambient Temperature (RL=2k)  
120  
100  
80  
120  
100  
80  
36V  
-40°C  
25°C  
85°C  
5V  
3V  
125°C  
60  
60  
40  
40  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
AmbientTemperature [°C]  
Figure 57. Common-mode Rejection Ratio vs  
Ambient Temperature  
Figure 56. Common-mode Rejection Ratio vs  
Supply Voltage  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM324xxx: -40°C to +85°C  
LM2902xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
21/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Typical Performance Curves - continued  
LM324xxx, LM2902xxx  
140  
120  
100  
80  
60  
-50 -25  
0
25  
50  
75 100 125 150  
AmbientTemperature [°C]  
Figure 58. Power Supply Rejection Ratio vs  
Ambient Temperature  
(*) The above data are measurement value of typical sample, they are not guaranteed.  
LM324xxx: -40°C to +85°C  
LM2902xxx: -40°C to 125°C  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
22/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Application Information  
NULL method condition for Test Circuit 1  
VCC, VEE, EK, VICM Unit: V  
Parameter  
Input Offset Voltage  
VF  
VF1  
VF2  
VF3  
VF4  
VF5  
VF6  
VF7  
VF8  
VF9  
VF10  
SW1  
ON  
SW2  
ON  
SW3  
VCC  
VEE  
0
EK  
VICM Calculation  
OFF 5 to 30  
-1.4  
-1.4  
0
0
1
2
Input Offset Current  
Input Bias Current  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OFF  
5
5
0
0
0
0
0
-1.4  
0
0
3
4
5
6
OFF  
-1.4  
Large Signal Voltage Gain  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
15  
5
-11.4  
0
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
-1.4  
-1.4  
3.5  
5
Power Supply Rejection Ratio  
0
30  
- Calculation -  
|VF1|  
1. Input Offset Voltage (VIO)  
VIO  
=
[V]  
1 + RF/RS  
|VF2 - VF1|  
2. Input Offset Current (IIO)  
3. Input Bias Current (IB)  
IIO  
=
[A]  
RI x (1 + RF/RS)  
|VF4 - VF3|  
IB =  
[A]  
2 x RI x (1 + RF/RS)  
EK × (1+RF/RS)  
4. Large Signal Voltage Gain (AV)  
[dB]  
Av = 20Log  
|VF6 - VF5|  
VICM × (1+RF/RS)  
5. Common-mode Rejection Ratio (CMRR)  
[dB]  
CMRR = 20Log  
PSRR = 20Log  
|VF8 - VF7|  
VCC × (1+ RF/RS)  
6. Power Supply Rejection Ratio (PSRR)  
[dB]  
|VF10 - VF9|  
0.1μF  
RF=50kΩ  
500kΩ  
SW1  
0.1μF  
VCC  
15V  
EK  
RS=50Ω  
RI=10kΩ  
VOUT  
500kΩ  
DUT  
SW3  
NULL  
-15V  
1000pF  
RI=10kΩ  
RS=50Ω  
RL  
VICM  
V VF  
50kΩ  
SW2  
VEE  
Figure 59. Test Circuit 1 (One Channel Only)  
23/44  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Application Information – continued  
Switch Condition for Test Circuit 2  
Parameter  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13  
Supply Current  
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Output Source Current  
Output Sink Current  
Slew Rate  
Gain Bandwidth Product  
Input Referred Noise Voltage  
OFF  
ON  
ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF  
OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF  
SW4  
R2  
SW5  
VCC  
SW1  
RS  
SW2  
SW3  
SW9 SW10 SW11 SW12 SW13  
SW6  
SW7  
SW8  
R1  
C
VEE  
RL  
CL  
V-IN  
V+IN  
VOUT  
Figure 60. Test Circuit 2 (Each Op-Amp)  
Output Voltage  
Input Voltage  
SR=V/t  
VH  
VH  
90%  
V  
10%  
VL  
VL  
t
t
t  
Input Wave  
Output Wave  
Figure 61. Slew Rate Input and Output Wave  
VCC  
VCC  
R1//R2  
R1//R2  
VEE  
VEE  
R1  
R2  
VOUT1  
R1  
R2  
V
VOUT2  
V
VIN  
= 1VRMS  
100 × VOUT1  
VOUT2  
=
CS 20 × log  
Figure 62. Test Circuit 3 (Channel Separation)  
(R1=1k,R2=100k)  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
24/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Application Information – continued  
VCC  
1.  
2.  
Unused Circuits  
It is recommended to apply the connection (see Figure 63) and set the  
non-inverting input pin at a potential within the Input Common-mode  
Voltage Range (VICM) for any unused circuit.  
Keep this potential  
VICM  
in VICM  
Input Voltage  
Regardless of the supply voltage, applying VEE+36V to the input pin is  
possible without causing deterioration of the electrical characteristics or  
destruction. However, this does not ensure normal circuit operation.  
Please note that the circuit operates normally only when the input  
voltage is within the common mode input voltage range of the electric  
characteristics.  
VEE  
Figure 63. The Example of Application  
Circuit for Unused Op-amp  
3.  
4.  
5.  
Power Supply (Single/Dual)  
The operational amplifiers operate when the voltage supplied is between VCC pin and VEE pin. Therefore, the single  
supply operational amplifiers can be used as dual supply operational amplifiers as well.  
IC Handling  
When pressure is applied to the IC through warp on the printed circuit board, the characteristics may fluctuate due to  
the piezo effect. Be careful with the warp on the printed circuit board.  
The IC Destruction Caused by Capacitive Load  
The IC may be damaged when VCC pin and VEE pin is shorted with the charged output pin capacitor. When IC is used  
as an operational amplifier or as an application circuit where oscillation is not activated by an output capacitor, output  
capacitor must be kept below 0.1µF in order to prevent the damage mentioned above.  
I/O Equivalent Circuit  
Symbol  
Pin No.  
Equivalent Circuit  
LM358xxx, LM2904xxx: 2,3,5,6  
LM324xxx, LM2902xxx:  
2,3,5,6,9,10,12,13  
+IN  
-IN  
VCC  
LM358xxx, LM2904xxx: 1,7  
LM324xxx, LM2902xxx: 1,7,8,14  
OUT  
OUT  
VEE  
VCC  
LM358xxx, LM2904xxx: 8  
LM324xxx, LM2902xxx: 4  
VCC  
VEE  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
25/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Examples of Circuit  
Voltage Follower  
Voltage gain is 0dB.  
VCC  
Using this circuit, the output voltage (VOUT) is configured  
to be equal to the input voltage (VIN). This circuit also  
stabilizes the output voltage (VOUT) due to high input  
impedance and low output impedance. Computation for  
output voltage (VOUT) is shown below.  
VOUT  
VIN  
VOUT=VIN  
VEE  
Figure 64. Voltage Follower Circuit  
Inverting Amplifier  
R2  
For inverting amplifier, input voltage (VIN) is amplified by  
a voltage gain and depends on the ratio of R1 and R2.  
The out-of-phase output voltage is shown in the next  
expression  
VCC  
R1  
VIN  
VOUT  
VOUT=-(R2/R1)VIN  
This circuit has input impedance equal to R1.  
R1//R2  
VEE  
Figure 65. Inverting Amplifier Circuit  
Non-inverting Amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (VIN) is  
amplified by a voltage gain, which depends on the ratio  
of R1 and R2. The output voltage (VOUT) is in-phase with  
the input voltage (VIN) and is shown in the next  
expression.  
VCC  
VOUT=(1 + R2/R1)VIN  
VOUT  
VIN  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational amplifier.  
VEE  
Figure 66. Non-inverting Amplifier Circuit  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
26/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to rise above the ambient temperature. The allowable temperature that  
the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the thermal  
resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 67(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (Tjmax), and power dissipation  
(PD).  
θJA  
=
(TjmaxTA) / PD  
°C/W  
The Derating Curve in Figure 67(b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal resistance  
(θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition, wind velocity,  
etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Figures 67(c) to (f) show the examples of derating curves for LM358xxx, LM2904xxx,  
LM324xxx, and LM2902xxx respectively.  
Power Dissipation of LSI [W]  
PDmax  
P2  
θJA=(Tjmax-TA)/ PD °C/W  
θJA2 < θJA1  
Ambient Temperature, TA [ °C ]  
θJA2  
P1  
Tjmax  
θJA1  
150  
0
25  
50  
75  
100  
125  
Chip Surface Temperature, TJ [ °C ]  
Ambient Temperature, TA [ °C ]  
(b) Derating Curve  
(a) Thermal Resistance  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
LM358F (Note 20)  
LM358FJ (Note 21)  
LM2904FVT (Note 22)  
LM2904FV (Note 22)  
LM358FVT (Note 22)  
LM358FV (Note 22)  
LM2904F (Note 20)  
LM2904FJ (Note 21)  
LM358FVJ (Note 23)  
LM358FVM (Note 23)  
LM2904FVJ(Note 23)  
LM2904FVM (Note 23)  
85  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
AmbientTemperature [°C]  
(c) LM358xxx  
AmbientTemperature [°C]  
(d) LM2904xxx  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
27/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
LM324FJ (Note 25)  
LM2902FJ (Note 25)  
LM324FV (Note 26)  
LM324FVJ (Note 27)  
LM2902FV (Note 26)  
LM2902FVJ (Note 27)  
LM324F (Note 24)  
LM2902F (Note 24)  
85  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
AmbientTemperature [°C]  
(e) LM324xxx  
AmbientTemperature [°C]  
(f) LM2902xxx  
Note 20  
5.5  
Note 21  
5.4  
Note 22  
5.0  
Note 23  
4.7  
Note 24  
4.5  
Note 25  
8.2  
Note 26  
7.0  
Note 27  
6.8  
Unit  
mW/°C  
When using the unit above TA=25°C, subtract the value above per Celsius degree.  
Power dissipation is the value when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area below 3%) is mounted.  
Figure 67. Thermal Resistance and Derating Curve  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
28/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the PD rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
In-rush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
29/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Operational Notes – continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Figure 68. Example of monolithic IC structure  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
30/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
31/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
SOP-J8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
32/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
SSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
33/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
TSSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
34/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
TSSOP-B8J  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
35/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
MSOP8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
36/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
SOP14  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
37/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
SOP-J14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
38/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
SSOP-B14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
39/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Physical Dimensions, Tape and Reel Information – continued  
Package Name  
TSSOP-B14J  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
40/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Ordering Information  
L M  
x
x
x
x
x
x
-
x
x
Part Number  
LM358F  
LM358FJ  
LM358FV  
LM358FVT  
LM358FVJ  
LM358FVM  
LM324F  
Package  
F
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP-J8/SSOP-B8/  
TSSOP-B8/ SOP14/SOP-J14/  
SSOP-B14/TSSOP-B14J)  
TR: Embossed tape and reel  
(MSOP8)  
: SOP8  
: SOP14  
: SOP-J8  
: SOP-J14  
: SSOP-B8  
: SSOP-B14  
: TSSOP-B8  
: TSSOP-B8J  
FJ  
FV  
FVT  
FVJ  
LM324FJ  
LM324FV  
LM324FVJ  
LM2904F  
: TSSOP-B14J  
: MSOP8  
FVM  
LM2904FJ  
LM2904FV  
LM2904FVT  
LM2904FVJ  
LM2904FVM  
LM2902F  
LM2902FJ  
LM2902FV  
LM2902FVJ  
Line-up  
Operating Temperature Range  
Channel  
Package  
Orderable Part Number  
SOP8  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
LM358F-E2  
SOP-J8  
LM358FJ-E2  
LM358FV-E2  
LM358FVT-E2  
LM358FVJ-E2  
LM358FVM-TR  
LM324F-E2  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
2ch  
-40°C to +85°C  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
SOP8  
LM324FJ-E2  
LM324FV-E2  
LM324FVJ-E2  
LM2904F-E2  
LM2904FJ-E2  
LM2904FV-E2  
LM2904FVT-E2  
LM2904FVJ-E2  
LM2904FVM-TR  
LM2902F-E2  
LM2902FJ-E2  
LM2902FV-E2  
LM2902FVJ-E2  
4ch  
2ch  
4ch  
SOP-J8  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
-40°C to +125°C  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
41/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Marking Diagram  
SOP8(TOP VIEW)  
SOP-J8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8(TOP VIEW)  
SSOP-B8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP14(TOP VIEW)  
SOP-J14(TOP VIEW)  
SSOP-B14(TOP VIEW)  
TSSOP-B8J(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B14J (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
42/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Marking Diagram – continued  
Product Name  
Package Type  
Marking  
358L  
F
FJ  
SOP8  
SOP-J8  
FV  
FVT  
FVJ  
FVM  
F
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
LM358  
SOP14  
LM324F  
FJ  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
SOP8  
LM324FJ  
LM324  
LM2904  
LM2902  
FV  
FVJ  
F
324L  
2904L  
04L  
FJ  
SOP-J8  
FV  
FVT  
FVJ  
FVM  
F
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
2904L  
SOP14  
LM2902F  
FJ  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
LM2902FJ  
FV  
FVJ  
2902L  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
43/44  
Datasheet  
LM358xxx LM324xxx LM2904xxx LM2902xxx  
Revision History  
Date  
Revision  
001  
Changes  
10.Jul.2015  
09.Oct.2015  
10.Feb.2016  
06.Jun.2016  
New Release  
002  
LM358FJ, LM358FV, LM358FVT, and LM324F are added  
003  
LM2904xxx (F, FJ, FV, FVT, FVM, FVJ), and LM358xxx (FVM, FVJ) are added  
LM324xxx (FJ, FV, FVJ), and LM2902xxx (F, FJ, FV, FVJ) are added  
004  
Correction of erroneous description (P.4 Icc Full Range 1.52.5mA)  
Delete Land Pattern Data(P.44)  
01.Aug.2016  
005  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0GMG0G200190-1-2  
01.Aug.2016 Rev.005  
44/44  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
LM2904F - Web Page  
Part Number  
Package  
LM2904F  
SOP8  
Unit Quantity  
2500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2500  
Taping  
inquiry  
Yes  

相关型号:

LM324F-A

Operational Amplifier, 4 Func, 9000uV Offset-Max, BIPolar, CDIP14
PHILIPS

LM324F-B

Operational Amplifier, 4 Func, 9000uV Offset-Max, BIPolar, CDIP14
PHILIPS

LM324F-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, SOP-14
ROHM

LM324FJ

Ground Sense Operational Amplifiers
ROHM

LM324FJ-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, SOP-14
ROHM

LM324FSIIA

Operational Amplifier, 4 Func, 9000uV Offset-Max, BIPolar, CDIP14
PHILIPS

LM324FV

Ground Sense Operational Amplifiers
ROHM

LM324FV-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, SSOP-14
ROHM

LM324FVJ

Ground Sense Operational Amplifiers
ROHM

LM324FVJ-E2

Ground Sense Operational Amplifiers
ROHM

LM324G-D14-T

QUAD OPERATIONAL AMPLIFIERS
UTC

LM324G-P14-R

QUAD OPERATIONAL AMPLIFIERS
UTC