LMR342FJ-E2 [ROHM]

Low Supply Current Output Full Swing CMOS Operational Amplifiers;
LMR342FJ-E2
型号: LMR342FJ-E2
厂家: ROHM    ROHM
描述:

Low Supply Current Output Full Swing CMOS Operational Amplifiers

文件: 总54页 (文件大小:4594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Low Supply Current Output Full Swing  
CMOS Operational Amplifiers  
LMR341G LMR342xxx LMR344xxx  
Key Specifications  
Operating Supply Voltage (Single Supply):  
+2.7V to +5.5V  
General Description  
The LMR341G, LMR342xxx and LMR344xxx are input  
ground sense, output full swing operational amplifiers.  
They have the features of low operating supply voltage,  
low supply current and low input bias current. These are  
suitable for sensor amplifier, battery-powered electronic  
equipment, battery monitoring and audio pre-amps for  
voice. Shutdown function is applied to LMR341G.  
Supply Current (VDD=2.7V, TA=25°C):  
LMR341G(Single)  
80µA(Typ)  
200µA(Typ)  
400µA(Typ)  
103dB(Typ)  
-40°C to +85°C  
4mV(Max)  
LMR342xxx(Dual)  
LMR344xxx(Quad)  
Voltage Gain (RL=2k):  
Temperature Range:  
Input Offset Voltage (TA=25°C):  
Input Bias Current (TA=25°C):  
Turn on time from shutdown:  
1pA(Typ)  
2µS(Typ)  
Features  
Low Operating Supply Voltage  
Low Input Bias Current  
Low Supply Current  
Low Input Offset Voltage  
Package s  
SSOP6  
SOP8  
SOP-J8  
SSOP-B8  
TSSOP-B8  
MSOP8  
TSSOP-B8J  
SOP14  
W(Typ) xD(Typ) xH(Max)  
Applications  
Sensor Amplifier  
Battery Monitoring  
Battery-Powered Electronic Equipment  
Audio Pre-Amps for Voice  
Active Filter  
2.90mm x 2.80mm x 1.25mm  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.35mm  
3.00mm x 6.40mm x 1.20mm  
2.90mm x 4.00mm x 0.90mm  
3.00mm x 4.90mm x 1.10mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.20mm  
Buffer  
Consumer Electronics  
SOP-J14  
TSSOP-B14J  
Pin Configuration  
LMR341G : SSOP6  
+IN  
1
2
3
6 VDD  
Pin No.  
Pin Name  
+
-
VSS  
-IN  
5 SHDN  
1
2
3
4
5
6
+IN  
VSS  
-IN  
OUT  
4
OUT  
——————  
SHDN  
VDD  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
1/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
LMR342F  
LMR342FJ  
LMR342FV  
: SOP8  
: SOP-J8  
: SSOP-B8  
LMR342FVT : TSSOP-B8  
LMR342FVM : MSOP8  
LMR342FVJ : TSSOP-B8J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
1
2
3
4
8
7
6
5
VDD  
OUT2  
-IN2  
CH1  
+IN1  
-
+
VSS  
+IN1  
CH2  
+IN2  
-
+
-IN2  
+IN2  
VSS  
OUT2  
VDD  
LMR344F  
: SOP14  
LMR344FJ  
: SOP-J14  
LMR344FVJ : TSSOP-B14J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
OUT1  
1
2
3
4
5
6
7
14  
OUT4  
-IN4  
13  
12  
11  
10  
9
-IN1  
+IN1  
VDD  
+IN2  
-IN2  
CH1  
CH4  
3
+IN1  
VDD  
-
-
+
+
4
+IN4  
VSS  
+IN3  
-IN3  
5
+IN2  
-IN2  
6
7
OUT2  
OUT3  
-IN3  
-
-
+
+
8
CH2  
CH3  
9
8
OUT3  
OUT2  
10  
11  
12  
13  
14  
+IN3  
VSS  
+IN4  
-IN4  
OUT4  
Package  
SOP-J8  
SSOP6  
SOP8  
LMR342F  
SSOP-B8  
TSSOP-B8  
LMR341G  
LMR342FJ  
Package  
SOP14  
LMR342FV  
LMR342FVT  
MSOP8  
TSSOP-B8J  
LMR342FVJ  
SOP-J14  
TSSOP-B14J  
LMR344FVJ  
LMR342FVM  
LMR344F  
LMR344FJ  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
2/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Ordering Information  
L
M R  
3
4
x
x
x
x
-
x
x
Part Number  
LMR341G  
LMR342xxx  
LMR344xxx  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP-J8/SSOP-B8/TSSOP-B8/TSSOP-B8J/  
SOP14)  
G
F
:
SSOP6  
: SOP8  
: SOP14  
FJ : SOP-J8  
TR: Embossed tape and reel  
(SSOP6/MSOP8)  
: SOP-J14  
FV : SSOP-B8  
FVT : TSSOP-B8  
FVM : MSOP8  
FVJ : TSSOP-B8J  
: TSSOP-B14J  
Line-up  
Operation Temperature Range  
Channels  
Package  
Orderable Part Number  
LMR341G-TR  
1ch  
SSOP6  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
SOP8  
LMR342F-E2  
SOP-J8  
LMR342FJ-E2  
LMR342FV-E2  
LMR342FVT-E2  
LMR342FVM-TR  
LMR342FVJ-E2  
LMR344F-E2  
SSOP-B8  
TSSOP-B8  
MSOP8  
2ch  
4ch  
-40°C to +85°C  
TSSOP-B8J  
SOP14  
SOP-J14  
TSSOP-B14J  
LMR344FJ-E2  
LMR344FVJ-E2  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
3/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Absolute Maximum Ratings (TA=25°C)  
Ratings  
LMR342xxx  
+7.0  
Parameter  
Supply Voltage  
Symbol  
Unit  
LMR341G  
LMR344xxx  
VDD - VSS  
SSOP6  
V
0.67 (Note 1,9)  
-
-
SOP8  
SOP-J8  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
SOP14  
SOP-J14  
TSSOP-B14J  
VID  
-
-
-
-
-
-
-
-
-
0.68 (Note 2,9)  
0.67 (Note 3,9)  
0.62 (Note 4,9)  
0.62 (Note 4,9)  
0.58 (Note 5,9)  
0.58 (Note 5,9)  
-
-
-
-
-
Power Dissipation  
PD  
W
-
-
0.56 (Note 6,9)  
1.02 (Note 7,9)  
0.84 (Note 8,9)  
-
-
Differential Input Voltage (Note 8)  
Input Common-Mode Voltage Range  
Input Current (Note 9)  
VDD - VSS  
V
V
VICM  
(VSS-0.3) to (VDD+0.3)  
±10  
II  
mA  
V
Operating Supply Voltage  
Operating Temperature  
Vopr  
+2.7 to +5.5  
- 40 to +85  
- 55 to +150  
+150  
Topr  
°C  
°C  
°C  
Storage Temperature  
Tstg  
Maximum Junction Temperature  
TJmax  
(Note 1) To use at temperature above TA=25°C reduce 5.4mW/°C.  
(Note 2) To use at temperature above TA=25°C reduce 5.5mW/°C.  
(Note 3) To use at temperature above TA=25°C reduce 5.4mW/°C.  
(Note 4) To use at temperature above TA=25°C reduce 5.0mW/°C.  
(Note 5) To use at temperature above TA=25°C reduce 4.7mW/°C.  
(Note 6) To use at temperature above TA=25C reduce 4.5mW/°C.  
(Note 7) To use at temperature above TA=25C reduce 8.2mW/°C.  
(Note 8) To use at temperature above TA=25C reduce 6.8mW/°C.  
(Note 9) Mounted on 1-layer glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 10) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
The input pin voltage is set to more than VSS.  
(Note 11) An excessive input current will flow when input voltages of more than VDD+0.6V or less than VSS-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open  
circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case  
the IC is operated over the absolute maximum ratings.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
4/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Electrical Characteristics:  
——————  
LMR341G (Unless otherwise specified VDD=+2.7V, VSS=0V, SHDN=VDD)  
Limits  
Typ  
Temperature  
Range  
Parameter  
Symbol  
VIO  
Unit  
Condition  
Min  
Max  
25°C  
Full Range  
-
-
0.25  
-
4
4.5  
Input Offset Voltage (Note 12,13)  
mV  
μV/°C  
pA  
-
-
-
-
Input Offset Voltage Drift  
VIO/T Full Range  
-
-
-
1.7  
1
-
-
(Note 12,13)  
Input Offset Current (Note 12)  
Input Bias Current (Note 12)  
Supply Current(Note 13)  
IIO  
IB  
25°C  
25°C  
1
200  
pA  
25°C  
Full Range  
-
-
80  
-
170  
230  
RL=,  
AV=0dB, +IN=VDD/2  
IDD  
μA  
_______________  
Shutdown Current  
IDD_SD  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
-
0.2  
1000  
nA  
SHDN=GND  
VDD-0.06 VDD-0.03  
VDD-0.03 VDD-0.01  
-
RL=2kΩ to VDD/2  
RL=10to VDD/2  
RL=2kΩ to VDD/2  
RL=10to VDD/2  
RL=10kΩ to VDD/2  
RL=2to VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
V
-
0.06  
0.03  
-
-
-
78  
72  
0.03  
0.01  
113  
V
AV  
dB  
103  
-
Input Common-Mode  
Voltage Range  
VICM  
0
56  
65  
20  
30  
-
-
1.7  
V
-
Common-Mode Rejection Ratio CMRR  
80  
82  
32  
45  
1.0  
2.0  
1.2  
50  
4.5  
-
-
-
-
-
-
-
-
-
dB  
VICM=VDD/2  
VDD=2.7V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 14)  
Output Sink Current (Note 14)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
OUT=0V, short current  
OUT=2.7V  
short current  
RL=10, +IN=1.2VP-P  
CL=200pF, RL=100kΩ  
AV=40dB, f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
CL=200pF, RL=100kΩ  
AV =40dB, gain=0dB  
Unit Gain Frequency  
Phase Margin  
-
CL=20pF, RL=100kΩ  
AV=40dB  
θM  
-
CL=20pF, RL=100kΩ  
AV=40dB  
f=1kHz, AV=40dB  
Gain Margin  
GM  
-
dB  
-
-
40  
3
-
-
nV/ Hz  
Input Referred Noise Voltage  
VN  
µVrms AV=40dB, DIN-AUDIO  
RL=600Ω, AV=0dB  
OUT=1VP-P, f=1kHz  
DIN-AUDIO  
Total Harmonic Distortion  
+ Noise  
THD+N  
25°C  
-
0.017  
-
%
Turn On Time From Shutdown  
Turn On Voltage High  
TON  
25°C  
25°C  
25°C  
-
-
-
2
-
-
-
μs  
V
-
-
-
VSHDN_H  
VSHDN_L  
1.8  
1.1  
Turn On Voltage Low  
V
(Note 12) Absolute value.  
(Note 13) Full Range: TA=-40°C to +85°C  
(Note 14) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
5/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Electrical Characteristics - continued  
——————  
LMR341G (Unless otherwise specified VDD=+5.0V, VSS=0V, SHDN=VDD)  
Limits  
Typ  
Temperature  
Range  
Parameter  
Symbol  
VIO  
Unit  
Condition  
Min  
Max  
25°C  
Full Range  
-
-
0.25  
-
4
4.5  
Input Offset Voltage (Note 15,16)  
mV  
μV/°C  
pA  
-
-
-
-
Input Offset Voltage Drift  
VIO/T Full Range  
-
-
-
1.9  
1
-
-
-
(Note 15,16)  
Input Offset Current (Note 15)  
Input Bias Current (Note 15)  
Supply Current (Note 16)  
IIO  
IB  
25°C  
25°C  
1
pA  
25°C  
Full Range  
-
-
80  
-
200  
260  
RL=,  
AV=0dB, +IN=VDD/2  
IDD  
μA  
_______________  
Shutdown Current  
IDD_SD  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
-
0.5  
1000  
nA  
SHDN=GND  
VDD-0.06 VDD-0.04  
VDD-0.03 VDD-0.01  
-
RL=2kΩ to VDD/2  
RL=10to VDD/2  
RL=2kΩ to VDD/2  
RL=10to VDD/2  
RL=10kΩ to VDD/2  
RL=2to VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
V
-
0.06  
0.03  
-
-
-
78  
72  
0.04  
0.01  
116  
V
AV  
dB  
107  
-
Input Common-Mode  
Voltage Range  
VICM  
0
56  
65  
85  
80  
-
-
4
-
-
-
-
-
-
-
-
-
V
-
Common-Mode Rejection Ratio CMRR  
86  
dB  
VICM= VDD/2  
VDD=2.7V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 17)  
Output Sink Current (Note 17)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
82  
dB  
113  
115  
1.0  
2.0  
1.2  
50  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
OUT=0V, short current  
OUT=5V, short current  
RL=10, +IN=2VP-P  
CL=200pF, RL=10kΩ  
AV=40dB, f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
CL=200pF, RL=10kΩ  
AV=40dB, gain=0dB  
Unit Gain Frequency  
Phase Margin  
-
CL=20pF, RL=100kΩ  
AV=40dB  
θM  
-
CL=20pF, RL=100kΩ  
AV=40dB  
f=1kHz, AV=40dB  
Gain Margin  
GM  
-
4.5  
dB  
-
-
40  
3
-
-
nV/ Hz  
Input Referred Noise Voltage  
VN  
µVrms AV=40dB, DIN-AUDIO  
RL=600Ω, AV=0dB  
OUT=1VP-P, f=1kHz  
DIN-AUDIO  
Total Harmonic Distortion  
+ Noise  
THD+N  
25°C  
-
0.012  
-
%
Turn On Time From Shutdown  
Turn On Voltage High  
TON  
25°C  
25°C  
25°C  
-
-
-
2
-
-
-
μs  
V
-
-
-
VSHDN_H  
VSHDN_L  
3.0  
2.0  
Turn On Voltage Low  
V
(Note 15) Absolute value  
(Note 16) Full Range: TA=-40°C to +85°C  
(Note 17) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
6/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Electrical Characteristics - continued  
LMR342xxx (Unless otherwise specified VDD=+2.7V, VSS=0V, TA=25°C)  
Limit  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
25°C  
Full Range  
-
-
0.25  
-
4
4.5  
Input Offset Voltage (Note 18,19)  
Input Offset Voltage Drift (Note 18,19)  
Input Offset Current (Note 18)  
Input Bias Current (Note 18)  
VIO  
VIO/T  
IIO  
mV  
μV/°C  
pA  
pA  
μA  
V
-
-
-
-
Full Range  
25°C  
-
-
-
1.7  
1
-
-
IB  
25°C  
1
200  
25°C  
Full Range  
-
-
200  
-
340  
460  
-
-
0.06  
0.03  
-
RL=, All Op-Amps  
AV=0dB, +IN=VDD/2  
RL=2, VRL=VDD/2  
RL=10, VRL=VDD/2  
RL=2, VRL=VDD/2  
RL=10, VRL=VDD/2  
RL=10, VRL=VDD/2  
RL=2, VRL=VDD/2  
Supply Current (Note 19)  
IDD  
VDD-0.06 VDD-0.03  
VDD-0.03 VDD-0.01  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Large Single Voltage Gain  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
-
-
78  
72  
0.03  
0.01  
113  
V
AV  
dB  
V
103  
-
Input Common-Mode Voltage  
Range  
VICM  
CMRR  
PSRR  
ISOURCE  
ISINK  
SR  
0
56  
65  
20  
15  
-
-
1.7  
-
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 20)  
Output Sink Current (Note 20)  
Slew Rate  
80  
82  
32  
24  
1.0  
2
-
-
-
-
-
-
-
-
-
dB VICM=VDD/2  
VDD=2.7V to 5.0V  
VICM=VDD/2  
dB  
mA  
mA  
OUT=0V  
Short Circuit Current  
OUT=2.7V  
Short Circuit Current  
V/μs RL=10kΩ, +IN=1.2VP-P  
CL=200pF, RL=100kΩ  
MHz  
Gain Bandwidth  
GBW  
fT  
-
AV=40dB, f=100kHz  
CL=200pF, RL=100kΩ  
Unity Gain Frequency  
Phase Margin  
-
1.2  
50  
4.5  
MHz  
AV=40dB  
CL=20pF, RL=100kΩ  
θM  
-
deg  
AV=40dB  
CL=20pF, RL=100kΩ  
Gain Margin  
GM  
-
dB  
AV=40dB  
f=1kHz, Av=40dB  
AV=40dB, DIN-AUDIO  
-
-
40  
3
-
-
nV/ Hz  
Input Referred Noise Voltage  
VN  
µVrms  
RL=600Ω, AV=0dB  
OUT=1VP-P, f=1kHz  
DIN-AUDIO  
AV=40dB, f=1kHz  
OUT=0.8Vrms  
Total Harmonic Distortion + Noise THD+N  
25°C  
25°C  
-
-
0.017  
100  
-
-
%
Channel Separation  
CS  
dB  
(Note 18) Absolute value.  
(Note 19) Full Range: TA=-40°C to +85°C  
(Note 20) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
7/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Electrical Characteristics - continued  
LMR342xxx (Unless otherwise specified VDD=+5.0V, VSS=0V, TA=25°C)  
Limit  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
25°C  
Full Range  
-
-
0.25  
-
4
4.5  
Input Offset Voltage (Note 21,22)  
Input Offset Voltage Drift (Note 21,22)  
Input Offset Current (Note 21)  
Input Bias Current (Note 21)  
VIO  
VIO/T  
IIO  
mV  
μV/°C  
pA  
pA  
μA  
V
-
-
-
-
Full Range  
25°C  
-
-
-
1.9  
1
-
-
IB  
25°C  
1
200  
25°C  
Full Range  
-
-
214  
-
400  
520  
-
-
0.06  
0.03  
-
RL=, All Op-Amps  
AV=0dB, +IN=VDD/2  
RL=2kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=2kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=2kΩ, VRL=VDD/2  
Supply Current (Note 22)  
IDD  
VDD-0.06 VDD-0.04  
VDD-0.03 VDD-0.01  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Large Single Voltage Gain  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
-
-
78  
72  
0.04  
0.01  
116  
V
AV  
dB  
V
107  
-
Input Common-Mode Voltage  
Range  
VICM  
CMRR  
PSRR  
ISOURCE  
ISINK  
SR  
0
56  
65  
85  
50  
-
-
4.0  
-
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 23)  
Output Sink Current (Note 23)  
Slew Rate  
86  
85  
113  
75  
1.0  
2
-
-
-
-
-
-
-
-
-
dB VICM=VDD/2  
VDD=2.7V to 5.0V  
VICM=VDD/2  
dB  
mA  
mA  
OUT=0V  
Short Circuit Current  
OUT=5.0V  
Short Circuit Current  
V/μs RL=10kΩ, +IN=2.0VP-P  
CL=200pF, RL=100kΩ  
MHz  
Gain Bandwidth  
GBW  
fT  
-
AV=40dB, f=100kHz  
CL=200pF, RL=100kΩ  
Unity Gain Frequency  
Phase Margin  
-
1.2  
50  
4.5  
MHz  
AV=40dB  
CL=20pF, RL=100kΩ  
θM  
-
deg  
AV=40dB  
CL=20pF, RL=100kΩ  
Gain Margin  
GM  
-
dB  
AV=40dB  
f=1kHz, Av=40dB  
-
-
39  
3
-
-
nV/ Hz  
Input Referred Noise Voltage  
VN  
AV=40dB, DIN-AUDIO  
RL=600Ω, AV=0dB  
OUT=1VP-P, f=1kHz  
DIN-AUDIO  
AV=40dB, f=1kHz  
OUT=0.8Vrms  
µVrms  
Total Harmonic Distortion + Noise THD+N  
25°C  
25°C  
-
-
0.012  
100  
-
-
%
Channel Separation  
CS  
dB  
(Note 21) Absolute value.  
(Note 22) Full Range: TA=-40°C to +85°C  
(Note 23) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
8/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Electrical Characteristics - continued  
LMR344xxx (Unless otherwise specified VDD=+2.7V, VSS=0V, TA=25°C)  
Limit  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
25°C  
Full Range  
-
-
0.25  
-
4
4.5  
Input Offset Voltage (Note 24,25)  
Input Offset Voltage Drift (Note 24,25)  
Input Offset Current (Note 24)  
Input Bias Current (Note 24)  
VIO  
VIO/T  
IIO  
mV  
μV/°C  
pA  
pA  
μA  
V
-
-
-
-
Full Range  
25°C  
-
-
-
1.7  
1
-
-
IB  
25°C  
1
200  
25°C  
Full Range  
-
-
400  
-
680  
920  
-
-
0.06  
0.03  
-
RL=, All Op-Amps  
AV=0dB, +IN=VDD/2  
RL=2kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=2kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=2kΩ, VRL=VDD/2  
Supply Current (Note 25)  
IDD  
VDD-0.06 VDD-0.03  
VDD-0.03 VDD-0.01  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Large Single Voltage Gain  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
-
-
78  
72  
0.03  
0.01  
113  
V
AV  
dB  
V
103  
-
Input Common-Mode Voltage  
Range  
VICM  
CMRR  
PSRR  
ISOURCE  
ISINK  
SR  
0
56  
65  
20  
15  
-
-
1.7  
-
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 26)  
Output Sink Current (Note 26)  
Slew Rate  
80  
82  
32  
24  
1.0  
2
-
-
-
-
-
-
-
-
-
dB VICM=VDD/2  
VDD=2.7V to 5.0V  
VICM=VDD/2  
dB  
mA  
mA  
OUT=0V  
Short Circuit Current  
OUT=2.7V  
Short Circuit Current  
V/μs RL=10kΩ, +IN=1.2 VP-P  
CL=200pF, RL=100kΩ  
MHz  
Gain Bandwidth  
GBW  
fT  
-
AV=40dB, f=100kHz  
CL=200pF, RL=100kΩ  
Unity Gain Frequency  
Phase Margin  
-
1.2  
50  
4.5  
MHz  
AV=40dB  
CL=20pF, RL=100kΩ  
θM  
-
deg  
AV=40dB  
CL=20pF, RL=100kΩ  
Gain Margin  
GM  
-
dB  
AV=40dB  
f=1kHz, Av=40dB  
AV=40dB, DIN-AUDIO  
-
-
40  
3
-
-
nV/ Hz  
Input Referred Noise Voltage  
VN  
µVrms  
RL=600Ω, AV=0dB  
OUT=1VP-P, f=1kHz  
DIN-AUDIO  
AV=40dB, f=1kHz  
OUT=0.8Vrms  
Total Harmonic Distortion + Noise THD+N  
25°C  
25°C  
-
-
0.017  
100  
-
-
%
Channel Separation  
CS  
dB  
(Note 24) Absolute value.  
(Note 25) Full Range: TA=-40°C to +85°C  
(Note 26) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
9/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Electrical Characteristics - continued  
LMR344xxx (Unless otherwise specified VDD=+5.0V, VSS=0V, TA=25°C)  
Limit  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
25°C  
Full Range  
-
-
0.25  
-
4
4.5  
Input Offset Voltage (Note 27,28)  
Input Offset Voltage Drift (Note 27,28)  
Input Offset Current (Note 27)  
Input Bias Current (Note 27)  
VIO  
VIO/T  
IIO  
mV  
μV/°C  
pA  
pA  
μA  
V
-
-
-
-
Full Range  
25°C  
-
-
-
1.9  
1
-
-
IB  
25°C  
1
200  
25°C  
Full Range  
-
-
428  
-
800  
1040  
-
-
0.06  
0.03  
-
RL=, All Op-Amps  
AV=0dB, +IN=VDD/2  
RL=2kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=2kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=10kΩ, VRL=VDD/2  
RL=2kΩ, VRL=VDD/2  
Supply Current (Note 28)  
IDD  
VDD-0.06 VDD-0.04  
VDD-0.03 VDD-0.01  
Maximum Output Voltage (High)  
Maximum Output Voltage (Low)  
Large Single Voltage Gain  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
-
-
78  
72  
0.04  
0.01  
116  
V
AV  
dB  
V
107  
-
Input Common-Mode Voltage  
Range  
VICM  
CMRR  
PSRR  
ISOURCE  
ISINK  
SR  
0
56  
65  
85  
50  
-
-
4.0  
-
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 29)  
Output Sink Current (Note 29)  
Slew Rate  
86  
85  
113  
75  
1.0  
2
-
-
-
-
-
-
-
-
-
dB VICM=VDD/2  
VDD=2.7V to 5.0V  
VICM=VDD/2  
dB  
mA  
mA  
OUT=0V  
Short Circuit Current  
OUT=5V  
Short Circuit Current  
V/μs RL=10kΩ, +IN=2.0VP-P  
CL=200pF, RL=100kΩ  
MHz  
Gain Bandwidth  
GBW  
fT  
-
AV=40dB, f=100kHz  
CL=200pF, RL=100kΩ  
Unity Gain Frequency  
Phase Margin  
-
1.2  
50  
4.5  
MHz  
AV=40dB  
CL=20pF, RL=100kΩ  
θM  
-
deg  
AV=40dB  
CL=20pF, RL=100kΩ  
Gain Margin  
GM  
-
dB  
AV=40dB  
f=1kHz, Av=40dB  
AV=40dB, DIN-AUDIO  
-
-
39  
3
-
-
nV/ Hz  
Input Referred Noise Voltage  
VN  
µVrms  
RL=600Ω, AV=0dB  
OUT=1VP-P, f=1kHz  
DIN-AUDIO  
AV=40dB, f=1kHz  
OUT=0.8Vrms  
Total Harmonic Distortion + Noise THD+N  
25°C  
25°C  
-
-
0.012  
100  
-
-
%
Channel Separation  
CS  
dB  
(Note 27) Absolute value.  
(Note 28) Full Range: TA=-40°C to +85°C  
(Note 29) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
10/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (VDD/VSS)  
Indicates the maximum voltage that can be applied between the VDD terminal and VSS terminal without  
deterioration or destruction of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
(3) Input Common-Mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25°C  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
(2) Input Offset Voltage drift (VIO/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
(3) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
(4) Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
(5) Supply Current (IDD  
)
Indicates the current that flows within the IC under specified no-load conditions.  
(6) Shutdown current (IDD_SD)  
Indicates the current when the circuit is shutdown.  
(7) Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL  
)
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage high and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
(8) Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
AV = (Output voltage) / (Differential Input voltage)  
(9) Input Common-Mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(10) Common-Mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
(11) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR = (Change of power supply voltage)/(Input offset fluctuation)  
(12) Output Source Current/ Output Sink Current (ISOURCE / ISINK  
)
The maximum current that can be output from the IC under specific output conditions. The output source current  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
(13) Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
(14) Unity Gain Frequency (fT)  
Indicates a frequency where the voltage gain of operational amplifier is 1.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
11/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
(15) Gain Bandwidth (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
(16) Phase Margin (θ) (θM)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
(17) Gain Margin (GM)  
Indicates the difference between 0dB and the gain where operational amplifier has 180 degree phase delay.  
(18) Input Referred Noise Voltage (VN)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
(19) Total Harmonic Distortion + Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
(20) Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
(21) Turn On Time From Shutdown (Ton)  
Indicates the time from applying the voltage to shutdown terminal until the IC is active.  
(22) Turn On Voltage / Turn Off Voltage (VSHDN_H/ VSHDN_L)  
The IC is active if the shutdown terminal is applied more than Turn On Voltage (VSHDN_H).  
The IC is shutdown if the shutdown terminal is applied less than Turn Off Voltage (VSHDN_L).  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
12/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves  
LMR341G  
1.0  
100  
90  
80  
70  
60  
50  
0.8  
85°C  
LMR341G  
25°C  
0.6  
0.4  
0.2  
0.0  
-40°C  
1
2
3
4
5
6
0
25  
50  
75  
100  
125  
150  
SupplyVoltage [V]  
Ambient Temperature [°C]  
Figure 1. Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Figure 2. Supply Current vs Supply Voltage  
100  
90  
80  
70  
60  
50  
6
5
4
3
2
1
0
85°C  
25°C  
5.0V  
2.7V  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
Ambient Temperature [°C]  
SupplyVoltage [V]  
Figure 3. Supply Current vs Ambient Temperature  
Figure 4. Maximum Output Voltage High  
vs Supply Voltage  
(RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
13/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR341G  
6
30  
25  
20  
15  
10  
5
5
5V  
4
3
85°C  
25°C  
2.7V  
2
-40°C  
1
0
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 5. Maximum Output Voltage (High)  
vs Ambient Temperature  
(RL=2kΩ)  
Figure 6. Maximum Output Voltage (Low)  
vs Supply Voltage  
(RL=2kΩ)  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
-40°C  
5V  
25°C  
85°C  
2.7V  
0
-50  
-25  
0
25  
50  
75  
100 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 7. Maximum Output Voltage (Low)  
vs Ambient Temperature  
(RL=2kΩ)  
Figure 8. Output Source Current vs Output Voltage  
(VDD=2.7V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
14/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR341G  
150  
80  
60  
40  
20  
0
120  
-40°C  
5V  
25°C  
90  
60  
2.7V  
30  
85°C  
0
-50  
-25  
0
25  
50  
75  
100 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 9. Output Source Current  
vs Ambient Temperature  
(OUT=0V)  
Figure 10. Output Sink Current vs Output Voltage  
(VDD=2.7V)  
150  
4
3
2
5V  
120  
90  
60  
30  
0
1
25°C  
-40°C  
0
2.7V  
85°C  
-1  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 12. Input Offset Voltage vs Supply Voltage  
(VICM=VDD/2, EK=-VDD/2)  
Figure 11. Output Sink Current  
vs Ambient Temperature  
(OUT=VDD)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
15/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR341G  
4
3
2
4
3
85°C  
25°C  
2
1
1
-40°C  
2.7V  
0
0
-1  
-1  
-2  
-3  
-4  
5.0V  
-2  
-3  
-4  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
-50  
-25  
0
25  
50  
75  
100 125  
Input Voltage [V]  
Ambient Temperature [°C]  
Figure 13. Input Offset Voltage  
vs Ambient Temperature  
Figure 14. Input Offset Voltage vs Input Voltage  
(VDD=2.7V, EK=-VDD/2)  
(VICM=VDD/2, EK=-VDD/2)  
120  
110  
100  
90  
120  
110  
100  
90  
5V  
25°C  
85°C  
2.7V  
-40°C  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 15. Large Signal Voltage Gain  
vs Supply Voltage  
Figure 16. Large Signal Voltage Gain  
vs Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
16/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR341G  
120  
110  
100  
90  
120  
110  
25°C  
85°C  
5V  
100  
90  
-40°C  
2.7V  
80  
80  
70  
70  
60  
60  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 17. Common-Mode Rejection Ratio  
vs Supply Voltage  
Figure 18. Common-Mode Rejection Ratio  
vs Ambient Temperature  
(VDD=2.7V)  
1.3  
1.2  
1.1  
1.0  
0.9  
120  
110  
100  
90  
5V  
2.7V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 19. Power Supply Rejection Ratio  
vs Ambient Temperature  
Figure 20. Slew Rate L-H vs Ambient Temperature  
(RL=10kΩ)  
(VDD=2.7V to 5.0V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
17/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR341G  
1.5  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
Phase  
1.4  
5V  
1.3  
2.7V  
Gain  
1.2  
1.1  
1
40  
0
102  
105  
106  
107  
103  
104
108  
-50  
-25  
0
25  
50  
75  
100 125  
Frequency [Hz]  
Ambient Temperature [°C]  
Figure 21. Slew Rate H-L vs Ambient Temperature  
Figure 22. Voltage GainPhase vs Frequency  
(C=20pF)  
(RL=10kΩ)  
2
1.5  
1
4
3
2
1
0
VSHDN_L  
VSHDN_H  
VSHDN_L  
VSHDN_H  
0.5  
0
1
2
3
4
5
0
1
2
3
Shutdown Voltage [V]  
Shutdown Voltage [V]  
Figure 23. Shutdown Voltage vs Output Voltage  
(VDD=2.7V, Av=0dB, VIN=1.35V)  
Figure 24. Shutdown Voltage vs Output Voltage  
(VDD=5V, Av=0dB, VIN=2.5V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
18/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR342xxx  
1.0  
350  
300  
250  
200  
150  
100  
0.8  
LMR342F  
LMR342FJ  
LMR342FV  
LMR342FVT  
0.6  
85°C  
LMR342FVJ  
LMR342FVM  
0.4  
0.2  
0.0  
25°C  
-40°C  
0
25  
50  
75  
100  
125  
150  
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 26. Supply Current vs Supply Voltage  
Figure 25. Power Dissipation vs Ambient Temperature  
(Derating Curve)  
6
5
4
3
2
1
0
350  
85°C  
300  
250  
200  
150  
100  
-40°C  
25°C  
2.7V  
5V  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 27. Supply Current vs Ambient Temperature  
Figure 28. Maximum Output Voltage (High)  
vs Supply Voltage  
(RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
19/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR342xxx  
6
30  
25  
20  
15  
10  
5
5
85°C  
5V  
4
25°C  
3
-40°C  
2.7V  
2
1
0
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 30. Maximum Output Voltage (Low)  
vs Supply Voltage  
Figure 29. Maximum Output Voltage (High)  
vs Ambient Temperature  
(RL=2kΩ)  
(RL=2kΩ)  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
-40°C  
5V  
25°C  
85°C  
2.7V  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100 125  
Output Voltage [V]  
Ambient Temperature [°C]  
Figure 31. Maximum Output Voltage (Low)  
vs Ambient Temperature  
(RL=2kΩ)  
Figure 32. Output Source Current vs Output Voltage  
(VDD=2.7V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
20/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR342xxx  
150  
60  
50  
40  
30  
20  
10  
0
120  
-40°C  
5V  
25°C  
85°C  
90  
60  
2.7V  
30  
0
-50  
-25  
0
25  
50  
75  
100 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 33. Output Source Current  
vs Ambient Temperature  
(OUT=0V)  
Figure 34. Output Sink Current  
vs Output Voltage  
(VDD=2.7V)  
150  
120  
90  
60  
30  
0
4
3
2
5V  
1
25°C  
-40°C  
85°C  
0
-1  
-2  
-3  
-4  
2.7V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 36. Input Offset Voltage vs Supply Voltage  
(VICM=VDD/2, EK=-VDD/2)  
Figure 35. Output Sink Current  
vs Ambient Temperature  
(OUT=2.7V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
21/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR342xxx  
4
3
5
4
3
2
2
1
-40°C  
1
2.7V  
25°C  
0
0
5.0V  
-1  
85°C  
-1  
-2  
-3  
-4  
-2  
-3  
-4  
-5  
-50  
-25  
0
25  
50  
75  
100 125  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 37. Input Offset Voltage  
vs Ambient Temperature  
Figure 38. Input Offset Voltage  
vs Input Voltage  
(VICM=VDD/2, EK=-VDD/2)  
(VDD=2.7V, EK=-VDD/2)  
120  
110  
100  
90  
120  
110  
100  
90  
-40°C  
25°C  
2.7V  
85°C  
5V  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 40. Large Signal Voltage Gain  
vs Ambient Temperature  
Figure 39. Large Signal Voltage Gain  
vs Supply Voltage  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
22/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR342xxx  
120  
120  
110  
100  
90  
5V  
110  
-40°C  
85°C  
2.7V  
100  
25°C  
90  
80  
70  
60  
80  
70  
60  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 41. Common-Mode Rejection Ratio  
vs Supply Voltage  
Figure 42. Common-Mode Rejection Ratio  
vs Ambient Temperature  
(VDD=2.7V)  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
120  
110  
100  
90  
5V  
2.7V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 43. Power Supply Rejection Ratio  
vs Ambient Temperature  
Figure 44. Slew Rate L-H vs Ambient Temperature  
(RL=10kΩ)  
(VDD=2.7V to 5.0V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
23/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR342xxx  
1.5  
1.4  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
Phase  
5V  
1.3  
2.7V  
Gain  
1.2  
40  
1.1  
1
0
2
3
4
10  
5
10  
6
10  
7
8
10
10  
10  
10  
-50  
-25  
0
25  
50  
75  
100 125  
Frequency [Hz]  
Ambient Temperature [°C]  
Figure 45. Slew Rate H-L vs Ambient Temperature  
Figure 46. Voltage GainPhase vs Frequency  
(RL=10kΩ)  
(C=20pF)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
24/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR344xxx  
700  
600  
500  
400  
300  
200  
1.0  
LMR344FVJ  
LMR344FJ  
0.8  
85°C  
25°C  
0.5  
-40°C  
0.3  
LMR344F  
0.0  
85  
0
25  
50  
75  
100  
125  
150  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 47. Power Dissipation vs Ambient Temperature  
(Derating Curve)  
Figure 48. Supply Current vs Supply Voltage  
6
5
4
3
2
1
0
700  
600  
500  
400  
300  
200  
85°C  
-40°C  
25°C  
2.7V  
5V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 49. Supply Current vs Ambient Temperature  
Figure 50. Maximum Output Voltage (High)  
vs Supply Voltage  
(RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
25/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR344xxx  
6
30  
25  
20  
15  
10  
5
5
5V  
85°C  
25°C  
4
3
2.7V  
-40°C  
2
1
0
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 51. Maximum Output Voltage (High)  
vs Ambient Temperature  
(RL=2kΩ)  
Figure 52. Maximum Output Voltage (Low)  
vs Supply Voltage  
(RL=2kΩ)  
25  
40  
30  
20  
10  
0
-40°C  
20  
15  
10  
5
2.7  
25°C  
85°C  
5V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 53. Maximum Output Voltage (Low)  
vs Ambient Temperature  
(RL=2kΩ)  
Figure 54. Output Source Current  
vs Output Voltage  
(VDD=2.7V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
26/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR344xxx  
150  
60  
50  
40  
30  
20  
10  
0
-40°C  
120  
5V  
25°C  
85°C  
90  
60  
2.7V  
30  
0
-50  
-25  
0
25  
50  
75  
100 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 55. Output Source Current  
vs Ambient Temperature  
(OUT=0V)  
Figure 56. Output Sink Current  
vs Output Voltage  
(VDD=2.7V)  
4
3
2
1
0
150  
120  
90  
60  
30  
0
5V  
-40°C  
25°C  
85°C  
-1  
2.7V  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
125  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 57. Output Sink Current  
vs Ambient Temperature  
(OUT=2.7V)  
Figure 58. Input Offset Voltage  
vs Supply Voltage  
(VICM=VDD/2, EK=-VDD/2)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
27/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR344xxx  
4
3
5
4
3
2
2
1
-40°C  
1
25°C  
2.7V  
0
0
5.0V  
85°C  
-1  
-1  
-2  
-3  
-4  
-2  
-3  
-4  
-5  
-50  
-25  
0
25  
50  
75  
100 125  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
Input Voltage [V]  
Ambient Temperature [°C]  
Figure 59. Input Offset Voltage  
vs Ambient Temperature  
Figure 60. Input Offset Voltage vs Input Voltage  
(VDD=2.7V, EK=-VDD/2)  
(VICM=VDD/2, EK=-VDD/2)  
120  
110  
100  
90  
120  
110  
100  
90  
-40°C  
25°C  
2.7V  
85°C  
5V  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 61. Large Signal Voltage Gain  
vs Supply Voltage  
Figure 62. Large Signal Voltage Gain  
vs Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
28/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR344xxx  
120  
120  
110  
100  
90  
5V  
110  
-40°C  
85°C  
2.7V  
100  
25°C  
90  
80  
70  
60  
80  
70  
60  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 63. Common-Mode Rejection Ratio  
vs Supply Voltage  
Figure 64. Common-Mode Rejection Ratio  
vs Ambient Temperature  
(VDD=2.7V)  
1.5  
120  
110  
100  
90  
5V  
1.4  
1.3  
1.2  
1.1  
1.0  
2.7V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 65. Power Supply Rejection Ratio  
vs Ambient Temperature  
Figure 66. Slew Rate L-H vs Ambient Temperature  
(RL=10kΩ)  
(VDD=2.7V to 5.0V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
29/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Typical Performance Curves continued  
LMR344xxx  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
1.5  
1.4  
Phase  
5V  
1.3  
2.7V  
Gain  
1.2  
40  
1.1  
1
0
2
3
4
5
6
7
8
10
10  
10  
10
10  
10
10  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency [Hz]  
Ambient Temperature [°C]  
Figure 68. Voltage GainPhase vs Frequency  
Figure 67. Slew Rate H-L vs Ambient Temperature  
(C=20pF)  
(RL=10kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
©2013 ROHM Co., Ltd. All rights reserved.  
30/50  
TSZ2211115001  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Application Information  
NULL method condition for Test Circuit 1  
VDD, VSS, EK, VICM Unit: V  
Parameter  
Input Offset Voltage  
VF  
SW1 SW2 SW3 VDD VSS  
EK  
VICM Calculation  
VF1  
VF2  
VF3  
VF4  
VF5  
VF6  
VF7  
ON  
ON  
ON OFF  
ON ON  
5
5
0
0
-2.5  
-0.5  
-2.5  
2.5  
1.5  
1
2
Large Signal Voltage Gain  
0
3
Common-Mode Rejection Ratio  
(Input Common-Mode Voltage Range)  
ON  
ON  
ON OFF  
ON OFF  
5
0
0
-1.5  
-1.2  
3
4
2.7  
5
Power Supply Rejection Ratio  
0
- Calculation -  
|VF1|  
1 + RF/RS  
[V]  
1. Input Offset Voltage (VIO)  
VIO =  
EK × (1+RF/RS)  
[dB]  
Av = 20Log  
2. Large Signal Voltage Gain (AV)  
|VF3 - VF2|  
VICM × (1+RF/RS)  
[dB]  
[dB]  
CMRR = 20Log  
PSRR = 20Log  
3. Common-Mode Rejection Ration (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
|VF5 - VF4|  
VDD × (1+ RF/RS)  
|VF7 - VF6|  
0.1μF  
RF=50kΩ  
500kΩ  
SW1  
VDD  
0.01μF  
15V  
EK  
RS=50Ω  
RI=1MΩ  
Vo  
500kΩ  
0.015μF  
DUT  
0.015μF  
SW3  
NULL  
-15V  
1000pF  
RI=1MΩ  
RS=50Ω  
RL  
VRL  
VICM  
V VF  
50kΩ  
SW2  
VSS  
Figure 69. Test Circuit 1 (one channel only)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
31/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Application Information continued  
Switch Condition for Test Circuit 2  
SW SW SW SW SW SW SW SW SW SW SW  
10 11  
SW No.  
1
2
3
4
5
6
7
8
9
Supply Current  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF  
OFF ON OFF OFF ON OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF ON OFF ON OFF OFF ON  
ON OFF OFF ON ON OFF OFF ON OFF OFF ON  
Maximum Output Voltage (RL=10kΩ)  
Output Current  
Slew Rate  
Unity Gain Frequency  
SW3  
SW4  
R2=100kΩ  
VDD  
SW1  
SW2  
SW7 SW8  
SW9  
SW10 SW11  
SW5  
SW6  
R1=1kΩ  
VSS  
RL  
CL  
IN-  
IN+  
VDD/2  
Vo  
Figure 70. Test Circuit 2 (each channel)  
Output voltage  
Input voltage  
SR=V/t  
90%  
V  
10%  
t
t
t  
Input wave  
Output wave  
Figure 71. Slew Rate Input and Output Wave  
R2=100kΩ  
R2=100kΩ  
VDD  
VDD  
R1=1kΩ  
R1=1kΩ  
OUT1  
=0.8Vrms  
OUT2  
IN  
VSS  
VSS  
100 × OUT1  
OUT2  
CS = 20Log  
Figure 72. Test Circuit 3 (Channel Separation)  
32/50  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Examples of Circuit  
Voltage Follower  
Voltage gain is 0dB.  
VDD  
Using this circuit, the output voltage (OUT) is configured  
to be equal to the input voltage (IN). This circuit also  
stabilizes the output voltage (OUT) due to high input  
impedance and low output impedance. Computation for  
output voltage (OUT) is shown below.  
OUT  
IN  
OUT=IN  
VSS  
Figure 73. Voltage Follower Circuit  
Inverting Amplifier  
R2  
VDD  
For inverting amplifier, input voltage (IN) is amplified by  
a voltage gain and depends on the ratio of R1 and R2.  
The out-of-phase output voltage is shown in the next  
expression  
R1  
IN  
OUT  
OUT=-(R2/R1)IN  
This circuit has input impedance equal to R1.  
VSS  
Figure 74. Inverting Amplifier Circuit  
Non-inverting Amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (IN) is amplified  
by a voltage gain, which depends on the ratio of R1 and  
R2. The output voltage (OUT) is in-phase with the input  
voltage (IN) and is shown in the next expression.  
VDD  
OUT=(1 + R2/R1)IN  
OUT  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational  
amplifier.  
IN  
VSS  
Figure 75. Non-inverting Amplifier Circuit  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
33/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 76(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation  
(PD).  
θJA  
=
(TJmaxTA) / PD  
°C/W  
The derating curve in Figure 76(b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 76(c), (d), (e) shows an example of the derating curve for  
LMR341G, LMR342xxx, and LMR344xxx.  
Power dissipation of LSI [W]  
PDmax  
θJA=(TJmax-TA)/ PD °C/W  
P2  
θJA2 < θJA1  
Ambient temperature TA [ °C ]  
θJA2  
P1  
TJmax  
θJA1  
Chip surface temperature TJ [ °C ]  
150  
0
25  
50  
75  
100  
125  
(a) Thermal Resistance  
Ambient temperature TA [ °C ]  
(b) Derating Curve  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
LMR341G (Note 30)  
LMR342F (Note 31)  
LMR342FJ (Note 32)  
LMR342FV (Note 33)  
LMR342FVT (Note 34)  
LMR342FVJ (Note 34)  
LMR342FVM (Note 34)  
85  
85  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature []  
Ambient Temperature [°C]  
(c) LMR341G  
(d) LMR342xxx  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
34/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
LMR344FVJ (Note 37)  
1.0  
LMR344FJ (Note 36)  
0.8  
0.5  
LMR344F (Note 35)  
0.3  
0.0  
85  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
(e) LMR344xxx  
Figure 76. Thermal Resistance and Derating Curve  
(Note 30)  
5.4  
(Note 31)  
5.5  
(Note 32)  
5.4  
(Note 33)  
5.0  
(Note 34)  
4.7  
(Note 35)  
4.5  
(Note 36)  
8.2  
(Note 37)  
6.8  
Unit  
mW/°C  
When using the unit above TA =25°C, subtract the value above per Celsius degree.  
Power dissipation is the value when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area less than 3%) is mounted.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
35/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the PD rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
36/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Operational Notes continued  
12. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The  
operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical  
damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an  
input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when  
no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins  
have voltages within the values specified in the electrical characteristics of this IC.  
VDD  
13. Unused Circuits  
When there are unused op-amps, it is recommended that they are  
connected as in Figure 77, setting the non-inverting input terminal to a  
potential within the input common-mode voltage range (VICM).  
Keep this potential  
VICM  
in VICM  
14. Input Voltage  
Applying VDD+0.3V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction. However,  
this does not ensure normal circuit operation. Please note that the circuit  
operates normally only when the input voltage is within the common  
mode input voltage range of the electric characteristics.  
VSS  
Figure 77. Example of Application Circuit  
for Unused Op-amp  
15. Power Supply(single/dual)  
The operational amplifiers operate when the voltage supplied is between VDD and VSS. Therefore, the single supply  
operational amplifiers can be used as dual supply operational amplifiers as well.  
16. Output Capacitor  
If a large capacitor is connected between the output pin and VSS pin, current from the charged capacitor will flow into  
the output pin and may destroy the IC when the VDD pin is shorted to ground or pulled down to 0V. Use a capacitor  
smaller than 0.1µF between output pin and VSS pin.  
17. Oscillation by Output Capacitor  
Please pay attention to the oscillation by output capacitor and in designing an application of negative feedback loop  
circuit with these ICs.  
18. Latch Up  
Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up and  
protect the IC from abnormaly noise.  
19. Shutdown Terminal  
The shutdown terminal can’t be left unconnected. In case shutdown operation is not needed, the shutdown pin should  
be connected to VDD when the IC is used. Leaving the shutdown pin floating will result in an undefined operation  
mode, either shutdown or active, or even oscillating between the two modes.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
37/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP6  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
38/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information - continued.  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
39/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP-J8  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
40/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SSOP-B8  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
41/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B8  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
42/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B8J  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
43/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
MSOP8  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
44/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimensions Tape and Reel Information continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR)  
(UNIT  
mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
45/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP-J14  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
46/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B14J  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
47/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Marking Diagram  
SSOP6 (TOP VIEW)  
LOT Number  
SOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
1PIN MARK  
Part Number Marking  
SOP-J8(TOP VIEW)  
Part Number Marking  
SSOP-B8(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8(TOP VIEW)  
Part Number Marking  
TSSOP-B8J(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
MSOP8(TOP VIEW)  
Part Number Marking  
SOP14(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B14J (TOP VIEW)  
Part Number Marking  
SOP-J14(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
48/50  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Marking Diagram - Continued  
Product Name  
LMR341  
Package Type  
Marking  
G
F
SSOP6  
BD  
R342  
SOP8  
FJ  
SOP-J8  
R342  
FV  
FVT  
FVJ  
FVM  
F
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
R342  
LMR342  
LMR344  
R342  
R342  
R342  
SOP14  
R344  
FJ  
SOP-J14  
TSSOP-B14J  
LMR344FJ  
R344  
FVJ  
Land Pattern Data  
All dimensions in mm  
Land length  
Land pitch  
e
Land space  
MIE  
Land width  
b2  
Package  
SSOP6  
≧ℓ 2  
0.95  
1.27  
2.4  
1.0  
0.6  
SOP8  
SOP14  
4.60  
1.10  
0.76  
SOP-J8  
SOP-J14  
1.27  
0.65  
0.65  
3.9  
1.35  
1.20  
1.20  
0.76  
0.35  
0.35  
SSOP-B8  
4.60  
4.60  
TSSOP-B8  
TSSOP-B14J  
MSOP8  
0.65  
0.65  
2.62  
3.20  
0.99  
1.15  
0.35  
0.35  
TSSOP-B8J  
SSOP6  
SOP8, SOP-J8, SSOP-B8, MSOP8, TSSOP-B8, TSSOP-B8J,  
SOP14, SOP-J14, TSSOP-B14J  
0.95  
0.95  
MIE  
0.6  
2  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
49/50  
16.Jun.2015 Rev.007  
Datasheet  
LMR341G LMR342xxx LMR344xxx  
Revision History  
Date  
Revision  
001  
Changes  
03.Jul.2013  
09.Oct.2013  
7.Jan.2014  
11.Jun.2014  
New Release  
002  
LMR344F Added  
LMR341G Added  
003  
004  
Added LMR342F, LMR342FJ, LMR342FV, LMR342FVT, LMR342FVM  
Correction of Marking. ( LMR341G : AX to BD)  
08.Jul.2014  
005  
Correction of Figure 76. ([mW] to [W])  
Correction of Operating Supply Voltage to +5.5V from +5.0V.(Page 1,4)  
16.Jan.2015  
16.Jun.2015  
006  
007  
Added LMR344FJ, LMR344FVJ  
Correction of Product Name.(LMR344F-G to LMR344F)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200670-1-2  
16.Jun.2015 Rev.007  
50/50  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
LMR341G - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
LMR341G  
SSOP6  
3000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
3000  
Taping  
inquiry  
Yes  

相关型号:

LMR342FV

LMR342FV是输入接地检测、输出全振幅的CMOS运算放大器。具有低电压工作、低消耗电流的特点,是适用于传感器放大器、电池驱动设备、电池监视、语音用音频前置放大器用途的运算放大器。
ROHM

LMR342FV-E2

Low Supply Current Output Full Swing CMOS Operational Amplifiers
ROHM

LMR342FVJ

Low Supply Current Ground Sense CMOS Operational Amplifier
ROHM

LMR342FVJ-E2

Low Supply Current Output Full Swing CMOS Operational Amplifiers
ROHM

LMR342FVM

LMR342FVM是输入接地检测、输出全振幅的CMOS运算放大器。具有低电压工作、低消耗电流的特点,是适用于传感器放大器、电池驱动设备、电池监视、语音用音频前置放大器用途的运算放大器。
ROHM

LMR342FVM-TR

Low Supply Current Output Full Swing CMOS Operational Amplifiers
ROHM

LMR342FVT

LMR342FVT是输入接地检测、输出全振幅的CMOS运算放大器。具有低电压工作、低消耗电流的特点,是适用于传感器放大器、电池驱动设备、电池监视、语音用音频前置放大器用途的运算放大器。
ROHM

LMR342FVT-E2

Low Supply Current Output Full Swing CMOS Operational Amplifiers
ROHM

LMR344F

LMR344F是输入接地检测、输出全振幅的CMOS运算放大器。具有低电压工作、低消耗电流的特点,是适用于传感器放大器、电池驱动设备、电池监视、语音用音频前置放大器用途的运算放大器。
ROHM

LMR344F-E2

Low Supply Current Output Full Swing CMOS Operational Amplifiers
ROHM

LMR344FJ

LMR344FJ是输入接地检测、输出全振幅的CMOS运算放大器。LMR341G/LMR342xxx/LMR344xxx具有低电压工作、低消耗电流的特点,是适用于传感器放大器、电池驱动设备、电池监视、语音用音频前置放大器用途的运算放大器。LMR341G带关断功能。
ROHM

LMR344FJ-E2

Low Supply Current Output Full Swing CMOS Operational Amplifiers
ROHM