LMR822F-E2 [ROHM]

Low Supply Current Output Full Swing Operational Amplifiers;
LMR822F-E2
型号: LMR822F-E2
厂家: ROHM    ROHM
描述:

Low Supply Current Output Full Swing Operational Amplifiers

文件: 总53页 (文件大小:5250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Low Supply Current  
Output Full Swing Operational Amplifiers  
LMR821G LMR822xxx LMR824xxx  
General Description  
Key Specifications  
LMR821G, LMR822xxx, and LMR824xxx are  
Operating Supply Voltage (Single Supply):  
low-voltage  
low-current  
full-swing  
operational  
+2.5V to +5.5V  
amplifiers. These products exhibit high voltage gain  
and high slew rate, making them suitable for mobile  
equipment, low voltage application and active filters.  
Voltage Gain (RL=600Ω):  
Temperature Range:  
Slew Rate:  
105dB (Typ)  
-40°C to +85°C  
2.0V/μs (Typ)  
Input Offset Voltage:  
LMR821G  
LMR822xxx  
LMR824xxx  
Input Bias Current:  
3.5mV (Max)  
5mV (Max)  
5mV (Max)  
30nA (Typ)  
Features  
Low Operating Supply Voltage  
Output Full Swing  
High Large Signal Voltage Gain  
High Slew Rate  
Packages  
W(Typ) x D(Typ) x H(Max)  
2.90mm x 2.80mm x 1.25mm  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.35mm  
3.00mm x 6.40mm x 1.20mm  
2.90mm x 4.00mm x 0.90mm  
3.00mm x 4.90mm x 1.10mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.20mm  
Low Supply Current  
SSOP5  
SOP8  
SOP-J8  
SSOP-B8  
TSSOP-B8  
MSOP8  
TSSOP-B8J  
SOP14  
Applications  
Mobile Equipment  
Low Voltage Application  
Active Filter  
Buffer  
Consumer Electronics  
SOP-J14  
TSSOP-B14J  
Pin Configuration  
LMR821G  
: SSOP5  
1
Pin No.  
Pin Name  
+IN  
+IN  
VSS  
-IN  
5
4
VDD  
OUT  
1
2
3
4
5
VSS  
+
2
-
-IN  
OUT  
VDD  
3
LMR822F  
LMR822FJ  
LMR822FV  
LMR822FVT  
LMR822FVM  
LMR822FVJ  
: SOP8  
: SOP-J8  
: SSOP-B8  
: TSSOP-B8  
: MSOP8  
: TSSOP-B8J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
3
4
5
6
7
8
OUT1 1  
8
7
6
5
VDD  
+IN1  
-IN1  
2
3
OUT2  
-IN2  
CH1  
-
+
VSS  
+IN1  
+IN2  
CH2  
-
+
-IN2  
VSS 4  
+IN2  
OUT2  
VDD  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
1/49  
TSZ2211114001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
LMR824F  
: SOP14  
LMR824FJ  
LMR824FVJ  
: SOP-J14  
: TSSOP-B14J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
3
+IN1  
VDD  
OUT1  
1
2
3
4
5
6
7
14 OUT4  
13  
4
-IN1  
+IN1  
VDD  
+IN2  
-IN2  
-IN4  
12 +IN4  
11  
CH1  
CH4  
5
+IN2  
-IN2  
-
-
+
+
6
7
OUT2  
OUT3  
-IN3  
VSS  
10 +IN3  
8
9
-
-
+
+
10  
11  
12  
13  
14  
+IN3  
VSS  
CH2  
CH3  
9
8
-IN3  
OUT2  
OUT3  
+IN4  
-IN4  
OUT4  
Ordering Information  
L M R 8  
2
x
x
x
x
-
x
x
Part Number  
LMR821G  
LMR822F  
LMR822FJ  
LMR822FV  
LMR822FVT  
LMR822FVM  
LMR822FVJ  
LMR824F  
Package  
G
F
Packaging and forming specification  
TR: Embossed tape and reel  
(SSOP5/MSOP8)  
: SSOP5  
: SOP8  
: SOP14  
: SOP-J8  
: SOP-J14  
: SSOP-B8  
: TSSOP-B8  
: MSOP8  
: TSSOP-B8J  
: TSSOP-B14J  
E2: Embossed tape and reel  
FJ  
(SOP8/SOP-J8/SSOP-B8/TSSOP-B8/  
TSSOP-B8J/SOP14/SOP-J14/TSSOP-B14J)  
FV  
FVT  
FVM  
FVJ  
LMR824FJ  
LMR824FVJ  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
2/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Line-up  
Orderable Part  
Topr  
Channels  
1ch  
Package  
Reel of 3000  
Number  
LMR821G-TR  
LMR822F-E2  
SSOP5  
SOP8  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
SOP-J8  
LMR822FJ-E2  
LMR822FV-E2  
LMR822FVT-E2  
LMR822FVM-TR  
LMR822FVJ-E2  
LMR824F-E2  
SSOP-B8  
TSSOP-B8  
MSOP8  
2ch  
4ch  
-40°C to +85°C  
TSSOP-B8J  
SOP14  
SOP-J14  
TSSOP-B14J  
LMR824FJ-E2  
LMR824FVJ-E2  
Absolute Maximum Ratings (TA=25°C)  
Ratings  
LMR822xxx  
+7  
Parameter  
Symbol  
Unit  
V
LMR821G  
LMR824xxx  
Supply Voltage  
VDD-VSS  
SSOP5  
0.67 (Note 1,8)  
-
-
SOP8  
SOP-J8  
-
-
-
-
-
-
-
-
-
0.68 (Note 2,8)  
0.67 (Note 1,8)  
0.62 (Note 3,8)  
0.62 (Note 3,8)  
0.58 (Note 4,8)  
0.58 (Note 4,8)  
-
-
-
SSOP-B8  
TSSOP-B8  
MSOP8  
-
-
Power Dissipation  
Pd  
W
-
TSSOP-B8J  
SOP14  
-
0.56 (Note 5,8)  
1.02 (Note 6,8)  
0.84 (Note 7,8)  
SOP-J14  
TSSOP-B14J  
VID  
-
-
Differential Input Voltage (Note 9)  
VDD VSS  
V
V
Input Common-mode  
Voltage Range  
VICM  
(VSS - 0.3) to (VDD + 0.3)  
Input Current (Note 10)  
II  
Vopr  
Topr  
Tstg  
±10  
mA  
V
Operating Supply Voltage  
Operating Temperature  
Storage Temperature  
+2.5 to +5.5  
- 40 to +85  
- 55 to +150  
°C  
°C  
Maximum  
Junction Temperature  
Tjmax  
+150  
°C  
(Note 1) Pd is reduced by 5.4mW/°C above TA= 25°C.  
(Note 2) Pd is reduced by 5.5mW/°C above TA= 25°C.  
(Note 3) Pd is reduced by 5.0mW/°C above TA= 25°C.  
(Note 4) Pd is reduced by 4.7mW/°C above TA= 25°C.  
(Note 5) Pd is reduced by 4.5mW/°C above TA= 25°C.  
(Note 6) Pd is reduced by 8.2mW/°C above TA= 25°C.  
(Note 7) Pd is reduced by 6.8mW/°C above TA= 25°C.  
(Note 8) Mounted on an FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 9) Differential Input Voltage is the voltage difference between the inverting and non-inverting inputs.  
The input pin voltage is set to more than VSS  
.
(Note 10) An excessive input current will flow when input voltages of more than VDD+0.6V or less than VSS-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
3/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Electrical Characteristics  
LMR821G (Unless otherwise specified VDD=+2.5V, VSS=0V)  
Limits  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Conditions  
Range  
Min  
Typ  
Max  
3.5  
4
25°C  
-
-
1
-
Input Offset Voltage (Note 11)  
VDD=2.5V to 5.5V  
Full Range  
2.30  
2.37  
2.46  
130  
80  
-
RL=600Ω (Note 12)  
RL=2(Note 12)  
RL=600Ω (Note 12)  
RL=2(Note 12)  
Maximum Output Voltage(High)  
VOH  
25°C  
25°C  
V
2.40  
-
-
-
200  
120  
Maximum Output Voltage(Low)  
VOL  
mV  
(Note 11) Absolute value  
(Note 12) Output load resistance connects to a half of VDD  
.
LMR821G (Unless otherwise specified VDD=+2.7V, VSS=0V)  
Limits  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Conditions  
Range  
Min  
Typ  
Max  
3.5  
4
25°C  
-
-
1
-
Input Offset Voltage (Note 13,14)  
VDD=2.5V to 5.5V  
Full Range  
Input Offset Voltage Drift  
Input Offset Current (Note 13)  
Input Bias Current (Note 13)  
ΔVIO/ΔT  
25°C  
25°C  
25°C  
-
-
-
1
-
μV/°C  
nA  
-
-
-
IIO  
IB  
0.5  
30  
30  
90  
nA  
25°C  
-
-
280  
-
340  
500  
Supply Current (Note 14)  
IDD  
μA  
AV=0dB, V+IN=1.35V  
Full Range  
2.50  
2.58  
-
RL=600Ω (Note 16)  
Maximum Output Voltage(High)  
VOH  
25°C  
V
2.60  
2.66  
130  
80  
-
200  
120  
-
RL=2(Note 16)  
RL=600Ω (Note 16)  
RL=2(Note 16)  
RL=600Ω (Note 16)  
RL=2(Note 16)  
-
-
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOL  
AV  
25°C  
25°C  
mV  
dB  
-
100  
100  
95  
-
Input Common-mode  
Voltage Range  
VICM  
25°C  
25°C  
25°C  
25°C  
0
-
1.8  
V
VSS to (VDD-0.9V)  
-
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 15)  
Output Sink Current (Note 15)  
Slew Rate  
CMRR  
PSRR  
ISOURCE  
70  
75  
12  
85  
85  
16  
-
-
-
dB  
dB  
mA  
VDD=2.7V to 5.5V  
VICM=1V  
VOUT=0V  
Short Circuit Current  
VOUT=2.7V  
ISINK  
SR  
25°C  
25°C  
25°C  
12  
-
26  
2.0  
5.0  
-
-
-
mA  
V/μs  
MHz  
Short Circuit Current  
CL=25pF  
CL=25pF, AV=40dB  
f=1MHz  
Gain Bandwidth  
GBW  
-
Phase Margin  
θ
25°C  
25°C  
25°C  
-
-
-
50  
4.5  
30  
-
-
-
deg  
dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
Gain Margin  
GM  
VN  
Input Referred Noise Voltage  
nV/ Hz f=1kHz  
VOUT=2.2VP-P, f=1kHz  
Total Harmonic Distortion  
+ Noise  
THD+N  
25°C  
-
0.01  
-
%
RL=10kΩ  
AV=0dB, DIN-AUDIO  
(Note 13) Absolute value  
(Note 14) Full Range: TA=-40°C to +85°C  
(Note 15) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
(Note 16) Output load resistance connects to a half of VDD  
.
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
4/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Electrical Characteristics - continued  
LMR821G (Unless otherwise specified VDD=+5.0V, VSS=0V)  
Limits  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Conditions  
Range  
Min  
Typ  
Max  
3.5  
4
25°C  
-
-
1
-
Input Offset Voltage (Note 17,18)  
VDD=2.5V to 5.5V  
Full Range  
Input Offset Voltage Drift  
Input Offset Current (Note 17)  
Input Bias Current (Note 17)  
ΔVIO/ΔT  
25°C  
25°C  
25°C  
-
-
-
1
-
μV/°C  
nA  
-
-
-
IIO  
IB  
0.5  
40  
30  
100  
nA  
25°C  
-
-
325  
-
425  
600  
Supply Current (Note 18)  
IDD  
μA  
AV=0dB, V+IN=2.5V  
Full Range  
4.75  
4.84  
4.90  
170  
100  
105  
105  
-
RL=600Ω (Note 20)  
RL=2(Note 20)  
RL=600Ω (Note 20)  
RL=2(Note 20)  
RL=600Ω (Note 20)  
RL=2(Note 20)  
Maximum Output Voltage(High)  
VOH  
25°C  
25°C  
25°C  
V
4.85  
-
250  
150  
-
-
-
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOL  
mV  
-
AV  
dB  
V
95  
-
Input Common-mode  
Voltage Range  
VICM  
25°C  
25°C  
25°C  
0
-
4.1  
VSS to (VDD-0.9V)  
-
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 19)  
Output Sink Current (Note 19)  
Slew Rate  
CMRR  
PSRR  
72  
75  
90  
85  
-
-
VDD=2.7V to 5.5V  
VICM=1V  
VOUT=0V  
Short Circuit Current  
VOUT=5V  
dB  
ISOURCE  
ISINK  
25°C  
25°C  
25°C  
20  
20  
-
45  
40  
-
-
-
mA  
mA  
Short Circuit Current  
SR  
2.0  
V/μs  
CL=25pF  
CL=25pF, AV=40dB  
f=1MHz  
Gain Bandwidth  
GBW  
θ
25°C  
25°C  
25°C  
25°C  
-
-
-
-
5.5  
50  
-
-
-
-
MHz  
deg  
dB  
Phase Margin  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
Gain Margin  
GM  
VN  
4.5  
30  
Input Referred Noise Voltage  
nV/ Hz f=1kHz  
VOUT=4.1VP-P, f=1kHz  
Total Harmonic Distortion  
+ Noise  
THD+N  
25°C  
-
0.01  
-
%
RL=10kΩ  
AV=0dB, DIN-AUDIO  
(Note 17) Absolute value  
(Note 18) Full Range: TA=-40°C to +85°C  
(Note 19) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
(Note 20) Output load resistance connects to a half of VDD  
.
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
5/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Electrical Characteristics - continued  
LMR822xxx (Unless otherwise specified VDD=+2.5V, VSS=0V)  
Limits  
Typ  
1
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
V
Conditions  
Range  
Min  
Max  
25°C  
-
5
5
Input Offset Voltage (Note 21)  
Maximum Output Voltage(High)  
VDD=2.5V to 5.5V  
Full Range  
-
2.30  
2.40  
-
-
2.37  
2.46  
130  
80  
-
RL=600Ω (Note 22)  
RL=2(Note 22)  
RL=600Ω (Note 22)  
RL=2(Note 22)  
VOH  
25°C  
25°C  
-
200  
120  
Maximum Output Voltage(Low)  
VOL  
mV  
-
(Note 21) Absolute value  
(Note 22) Output load resistance connects to a half of VDD  
.
LMR822xxx (Unless otherwise specified VDD=+2.7V, VSS=0V)  
Limits  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Conditions  
Range  
Min  
Typ  
Max  
5
25°C  
-
-
1
-
Input Offset Voltage (Note 23,24)  
VDD=2.5V to 5.5V  
Full Range  
5
Input Offset Voltage Drift  
Input Offset Current (Note 23)  
Input Bias Current (Note 23)  
ΔVIO/ΔT  
25°C  
25°C  
25°C  
-
-
-
1
-
μV/°C  
nA  
-
-
-
IIO  
IB  
0.5  
30  
30  
90  
nA  
25°C  
-
-
560  
-
680  
1000  
-
Supply Current (Note 24)  
IDD  
μA  
AV=0dB, V+IN=1.35V  
Full Range  
2.50  
2.60  
-
2.58  
2.66  
130  
RL=600Ω (Note 26)  
RL=2(Note 26)  
RL=600Ω (Note 26)  
RL=2(Note 26)  
RL=600Ω (Note 26)  
RL=2(Note 26)  
Maximum Output Voltage(High)  
VOH  
25°C  
25°C  
25°C  
V
-
200  
Maximum Output Voltage(Low)  
VOL  
AV  
mV  
dB  
-
-
80  
120  
100  
100  
-
-
Large Signal Voltage Gain  
95  
Input Common-mode  
Voltage Range  
VICM  
25°C  
25°C  
25°C  
0
-
1.8  
V
VSS to (VDD-0.9V)  
-
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 25)  
CMRR  
PSRR  
70  
75  
85  
85  
-
-
dB  
dB  
VDD=2.7V to 5.5V  
VICM=1V  
VOUT=0V  
ISOURCE  
25°C  
12  
16  
-
mA  
Short Circuit Current  
VOUT=2.7V  
Short Circuit Current  
Output Sink Current (Note 25)  
Slew Rate  
ISINK  
SR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
12  
-
26  
2.0  
5.0  
50  
-
-
-
-
-
-
mA  
V/μs  
MHz  
deg  
dB  
CL=25pF  
CL=25pF, AV=40dB  
f=1MHz  
Gain Bandwidth  
GBW  
θ
-
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
Gain Margin  
GM  
VN  
-
4.5  
30  
Input Referred Noise Voltage  
-
nV/ Hz f=1kHz  
VOUT=2.2VP-P, f=1kHz  
Total Harmonic Distortion  
+ Noise  
THD+N  
CS  
25°C  
25°C  
-
-
0.01  
100  
-
-
%
RL=10kΩ  
AV=0dB, DIN-AUDIO  
Channel Separation  
dB  
AV=40dB, VOUT=0.5Vrms  
(Note 23) Absolute value  
(Note 24) Full Range: TA=-40°C to +85°C  
(Note 25) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
(Note 26) Output load resistance connects to a half of VDD  
.
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
6/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Electrical Characteristics - continued  
LMR822xxx (Unless otherwise specified VDD=+5.0V, VSS=0V)  
Limits  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Conditions  
Range  
Min  
Typ  
Max  
5
25°C  
-
-
1
-
Input Offset Voltage (Note 27,28)  
VDD=2.5V to 5.5V  
Full Range  
5
Input Offset Voltage Drift  
Input Offset Current (Note 27)  
Input Bias Current (Note 27)  
ΔVIO/ΔT  
25°C  
25°C  
25°C  
-
-
-
1
-
μV/°C  
nA  
-
-
-
IIO  
IB  
0.5  
40  
30  
100  
nA  
25°C  
-
650  
-
850  
1200  
-
Supply Current (Note 28)  
IDD  
μA  
AV=0dB, V+IN=2.5V  
Full Range  
-
4.75  
4.84  
4.90  
170  
100  
105  
RL=600Ω (Note 30)  
RL=2(Note 30)  
RL=600Ω (Note 30)  
RL=2(Note 30)  
RL=600Ω (Note 30)  
RL=2(Note 30)  
Maximum Output Voltage(High)  
VOH  
25°C  
25°C  
25°C  
V
4.85  
-
-
-
-
250  
150  
-
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOL  
AV  
mV  
dB  
95  
0
105  
-
-
Input Common-mode  
Voltage Range  
VICM  
CMRR  
PSRR  
ISOURCE  
ISINK  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
4.1  
V
dB  
VSS to (VDD-0.9V)  
-
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Source Current (Note 29)  
Output Sink Current (Note 29)  
Slew Rate  
72  
75  
20  
20  
-
90  
85  
45  
40  
2.0  
-
-
-
-
-
VDD=2.7V to 5.5V  
VICM=1V  
dB  
VOUT=0V  
Short Circuit Current  
mA  
mA  
V/μs  
VOUT=5V  
Short Circuit Current  
SR  
CL=25pF  
CL=25pF, AV=40dB  
f=1MHz  
Gain Bandwidth  
GBW  
θ
25°C  
25°C  
25°C  
25°C  
-
-
-
-
5.5  
50  
-
-
-
-
MHz  
deg  
dB  
Phase Margin  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
Gain Margin  
GM  
VN  
4.5  
30  
Input Referred Noise Voltage  
nV/ Hz f=1kHz  
VOUT=4.1VP-P, f=1kHz  
Total Harmonic Distortion  
+ Noise  
THD+N  
CS  
25°C  
25°C  
-
-
0.01  
100  
-
-
%
RL=10kΩ  
AV=0dB, DIN-AUDIO  
Channel Separation  
dB  
AV=40dB, VOUT=0.5Vrms  
(Note 27) Absolute value  
(Note 28) Full Range: TA=-40°C to +85°C  
(Note 29) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
(Note 30) Output load resistance connects to a half of VDD  
.
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
7/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Electrical Characteristics - continued  
LMR824xxx (Unless otherwise specified VDD=+2.5V, VSS=0V)  
Limits  
Typ.  
1
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
V
Condition  
Range  
Min.  
Max.  
25°C  
-
5
5
Input Offset Voltage (Note 31)  
Maximum Output Voltage(High)  
VDD=2.5V to 5.5V  
Full Range  
-
2.30  
2.40  
-
-
2.37  
2.46  
130  
80  
-
RL=600Ω (Note 32)  
RL=2(Note 32)  
RL=600Ω (Note 32)  
RL=2(Note 32)  
VOH  
25°C  
25°C  
-
200  
120  
Maximum Output Voltage(Low)  
VOL  
mV  
-
(Note 31) Absolute value  
(Note 32) Output load resistance connects to a half of VDD  
.
LMR824xxx (Unless otherwise specified VDD=+2.7V, VSS=0V)  
Limits  
Typ.  
1
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Condition  
Range  
Min.  
Max.  
25°C  
Full Range  
25°C  
-
5
Input Offset Voltage (Note 33,34)  
VDD=2.5V to 5.5V  
-
-
5
Input Offset Voltage Drift  
Input Offset Current (Note 33)  
Input Bias Current (Note 33)  
ΔVIO/ΔT  
-
1
-
30  
90  
1360  
2000  
-
μV/°C  
nA  
-
-
-
IIO  
IB  
25°C  
-
0.5  
30  
25°C  
-
nA  
25°C  
-
-
1120  
-
Supply Current (Note 34)  
IDD  
μA  
V
AV=0dB, V+IN=1.35V  
Full Range  
2.50  
2.60  
-
2.58  
2.66  
130  
80  
RL=600Ω (Note 36)  
RL=2(Note 36)  
RL=600Ω (Note 36)  
RL=2(Note 36)  
RL=600Ω (Note 36)  
RL=2(Note 36)  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOH  
25°C  
25°C  
25°C  
25°C  
25°C  
-
200  
120  
-
VOL  
mV  
dB  
V
-
90  
95  
100  
100  
AV  
-
Input Common-mode  
Voltage Range  
VICM  
CMRR  
0
-
1.8  
-
VSS to (VDD-0.9V)  
Common-mode Rejection Ratio  
70  
85  
dB  
-
VDD=2.7V to 5.5V  
VICM=1V  
PSRR  
25°C  
25°C  
75  
12  
85  
16  
-
-
dB  
Power Supply Rejection Ratio  
Output Source Current (Note 35)  
VOUT=0V  
Short Circuit Current  
ISOURCE  
mA  
VOUT=2.7V  
Short Circuit Current  
Output Sink Current (Note 35)  
Slew Rate  
ISINK  
SR  
25°C  
25°C  
25°C  
12  
-
26  
2.0  
5.0  
-
-
-
mA  
V/μs  
MHz  
CL=25pF  
CL=25pF, AV=40dB  
f=1MHz  
Gain Bandwidth  
GBW  
-
Phase Margin  
θ
25°C  
25°C  
25°C  
-
-
-
50  
4.5  
30  
-
-
-
deg  
dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
Gain Margin  
GM  
VN  
Input Referred Noise Voltage  
nV/ Hz f=1kHz  
VOUT=2.2VP-P, f=1kHz  
RL=10kΩ  
Total Harmonic Distortion  
+ Noise  
THD+N  
CS  
25°C  
25°C  
-
-
0.01  
100  
-
-
%
AV=0dB, DIN-AUDIO  
Channel Separation  
dB  
AV=40dB, VOUT=0.5Vrms  
(Note 33) Absolute value  
(Note 34) Full Range: TA=-40°C to +85°C  
(Note 35) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
(Note 36) Output load resistance connects to a half of VDD  
.
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
8/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Electrical Characteristics - continued  
LMR824xxx (Unless otherwise specified VDD=+5V, VSS=0V)  
Limits  
Typ.  
1
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
Condition  
Range  
Min.  
Max.  
25°C  
Full Range  
25°C  
-
5
Input Offset Voltage (Note 37,38)  
VDD=2.5V to 5.5V  
-
-
5
Input Offset Voltage Drift  
Input Offset Current (Note 37)  
Input Bias Current (Note 37)  
ΔVIO/ΔT  
-
1
-
30  
100  
1700  
2400  
-
μV/°C  
nA  
-
-
-
IIO  
IB  
25°C  
-
0.5  
40  
25°C  
-
nA  
25°C  
-
1130  
-
Supply Current (Note 38)  
IDD  
μA  
V
AV=0dB, V+IN=2.5V  
Full Range  
-
4.75  
4.84  
4.90  
170  
100  
105  
105  
RL=600Ω (Note 40)  
RL=2(Note 40)  
RL=600Ω (Note 40)  
RL=2(Note 40)  
RL=600Ω (Note 40)  
RL=2(Note 40)  
Maximum Output  
Voltage(High)  
VOH  
25°C  
25°C  
25°C  
25°C  
25°C  
4.85  
-
-
-
250  
150  
-
Maximum Output  
Voltage(Low)  
VOL  
mV  
dB  
V
-
Large Signal Voltage Gain  
AV  
95  
-
Input Common-mode  
Voltage Range  
VICM  
CMRR  
0
-
4.1  
-
VSS to (VDD-0.9V)  
Common-mode Rejection  
Ratio  
72  
90  
dB  
-
VDD=2.7V to 5.5V  
VICM=1V  
PSRR  
25°C  
25°C  
75  
20  
85  
45  
-
-
dB  
Power Supply Rejection Ratio  
Output Source Current (Note 39)  
VOUT=0V  
Short Circuit Current  
ISOURCE  
mA  
VOUT=5V  
Short Circuit Current  
Output Sink Current (Note 39)  
Slew Rate  
ISINK  
SR  
25°C  
25°C  
25°C  
20  
1.4  
-
40  
2.0  
5.5  
-
-
-
mA  
V/μs  
MHz  
CL=25pF  
CL=25pF, AV=40dB  
f=1MHz  
Gain Bandwidth  
GBW  
Phase Margin  
θ
25°C  
25°C  
25°C  
-
-
-
50  
4.5  
30  
-
-
-
deg  
dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
Gain Margin  
GM  
VN  
Input Referred Noise Voltage  
nV/ Hz f=1kHz  
VOUT=4.1VP-P, f=1kHz  
RL=10kΩ  
Total Harmonic Distortion  
+ Noise  
THD+N  
CS  
25°C  
25°C  
-
-
0.01  
100  
-
-
%
AV=0dB, DIN-AUDIO  
Channel Separation  
dB  
AV=40dB, VOUT=0.5Vrms  
(Note 37) Absolute value  
(Note 38) Full Range: TA=-40°C to +85°C  
(Note 39) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
(Note 40) Output load resistance connects to a half of VDD  
.
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
9/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Description of Electrical Characteristics  
Described below are the relevant electrical terms used in this datasheet. Items and symbols used are also shown. Note that  
the item names, symbols, and their meanings may differ from those of another manufacturer’s document or a general  
document.  
1. Absolute Maximum Ratings  
Absolute maximum rating items indicate the conditions which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (VDD/VSS  
)
Indicates the maximum voltage that can be applied between the VDD terminal and VSS terminal without deterioration  
of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between the non-inverting terminal and inverting terminal without  
damaging the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration of  
electrical characteristics. The input common-mode voltage range of the maximum ratings does not assure normal  
operation of IC. For normal operation, use the IC within the input common-mode voltage range.  
(4) Power Dissipation (Pd)  
Indicates the power that can be consumed by the IC when mounted on a specific board at ambient temperature (normal  
temperature), 25°C. As for the packaged product, Pd is determined by the temperature that can be permitted by the IC  
in the package (maximum junction temperature) and thermal resistance of the package.  
2. Electrical Characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between the non-inverting terminal and inverting terminal. It can be translated to the  
input voltage difference required for setting the output voltage to 0 V.  
(2) Input Offset Voltage Drift (VIO/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
(3) Input Offset Current (IIO)  
Indicates the difference of input bias current between non-inverting and inverting terminals.  
(4) Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at the  
non-inverting and inverting terminals.  
(5) Supply Current (IDD  
Indicates the current that that is consumed by the IC under specified no-load conditions.  
(6) Maximum Output Voltage (High) / Maximum Output Voltage (Low) (VOH/VOL  
)
)
Indicates the output voltage range under a specified load condition. It can be differentiated to maximum output voltage  
high and low. Maximum output voltage high indicates the upper limit of the output voltage, and maximum output  
voltage low indicates the lower limit.  
(7) Large Signal Voltage Gain (AV)  
Indicates the amplification rate (gain) of output voltage against the voltage difference between the non-inverting and  
inverting terminal. It is normally the amplification rate (gain) in reference to DC voltage.  
AV = (Output voltage) / (Differential Input voltage)  
(8) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range at which the IC operates normally.  
(9) Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage to the change of common-mode input voltage.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
(10) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage to the change in supply voltage.  
PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
(11) Output Source Current/ Output Sink Current (ISOURCE / ISINK  
)
The maximum current that the IC can output under specific conditions. The output source current indicates the current  
flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
(12) Slew Rate (SR)  
Indicates the rate of the change in output voltage with time when a step input signal is applied.  
(13) Gain Band Width (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases by 6dB/octave.  
(14) Phase Margin (θ)  
Indicates the margin of phase from 180° phase lag at unity gain frequency.  
(15) :Gain Margin (GM)  
Indicates the difference between 0dB and gain where the operational amplifier has 180° phase delay.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
10/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
(16) Total Harmonic Distortion + Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
(17) Input Referred Noise Voltage (VN)  
Indicates the noise voltage generated inside the operational amplifier equivalent to an ideal voltage source connected  
in series with input terminal.  
(18) Channel Separation (CS)  
Indicates the fluctuation of the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
11/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves  
LMR821G  
0.8  
400  
350  
300  
250  
200  
0.6  
LMR821G  
85°C  
0.4  
0.2  
25°C  
-40°C  
0.0  
85  
2
3
4
5
6
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 2. Supply Current vs Supply Voltage  
Figure 1. Power Dissipation vs Ambient  
Temperature (Derating Curve)  
6
5
4
3
2
1
0
400  
350  
300  
250  
200  
85°C  
25°C  
5.0V  
2.7V  
-40°C  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 4. Maximum Output Voltage (High) vs  
Figure 3. Supply Current vs Ambient  
Temperature  
Supply Voltage (RL=2kΩ)  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
12/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR821G  
6
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
5.0V  
4
3
85°C  
25°C  
-40°C  
2.7V  
2
1
0
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 5. Maximum Output Voltage (High) vs  
Figure 6. Maximum Output Voltage (Low) vs  
Ambient Temperature (RL=2kΩ)  
Supply Voltage (RL=2kΩ)  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.0V  
-40°C  
25°C  
2.7V  
85°C  
0
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
Output Voltage [V]  
Ambient Temperature [°C]  
Figure 8. Output Source Current vs Output  
Voltage (VDD=2.7V)  
Figure 7. Maximum Output Voltage (Low) vs  
Ambient Temperature (RL=2kΩ)  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
13/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR821G  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
25°C  
5.0V  
85°C  
60  
50  
40  
-40°C  
30  
2.7V  
20  
10  
0
0
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
Output Voltage [V]  
Ambient Temperature [°C]  
Figure 9. Output Source Current vs Ambient  
Temperature  
Figure 10. Output Sink Current vs Output  
Voltage (VDD=2.7V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3
2
1
85°C  
25°C  
0
5.0V  
-40°C  
-1  
-2  
-3  
-4  
2.7V  
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 11. Output Sink Current vs Ambient  
Temperature  
Figure 12. Input Offset Voltage vs Supply  
Voltage (VICM=VDD/2, EK=-VDD/2)  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
14/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR821G  
4
3
2
4
3
2
1
1
85°C  
25°C  
5.0V  
0
0
2.7V  
-40°C  
-1  
-1  
-2  
-3  
-4  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
-1  
0
1
2
3
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 13. Input Offset Voltage vs Ambient  
Temperature (VICM=VDD/2, EK=-VDD/2)  
Figure 14. Input Offset Voltage vs Input  
Voltage (VDD=2.7V)  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
5.0V  
2.7V  
85°C  
-40°C  
25°C  
80  
80  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 15. Large Signal Voltage Gain vs  
Supply Voltage  
Figure 16. Large Signal Voltage Gain vs  
Ambient Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
15/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR821G  
140  
130  
120  
140  
130  
120  
110  
100  
90  
-40°C  
25°C  
5.0V  
2.7V  
110  
85°C  
100  
90  
80  
80  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 17. Common-mode Rejection Ratio vs  
Supply Voltage (VDD=2.7V)  
Figure 18. Common-mode Rejection Ratio vs  
Ambient Temperature  
140  
130  
120  
110  
100  
90  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0V  
2.7V  
80  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 19. Power Supply Rejection Ratio vs  
Ambient Temperature (VDD=2.7V to 5.0V)  
Figure 20. Slew Rate L-H vs Ambient  
Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
16/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR821G  
3.0  
100  
80  
60  
40  
20  
0
200  
Phase  
5.0V  
2.5  
150  
100  
50  
2.0  
2.7V  
1.5  
Gain  
1.0  
0.5  
0.0  
0
3
4
5
6
7
8
10  
-50  
-25  
0
25  
50  
75  
100  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05  
10  
10  
10  
10  
10  
Frequency [Hz]  
Ambient Temperature [°C]  
Figure 22. Voltage GainPhase vs Frequency  
Figure 21. Slew Rate H-L vs Ambient  
Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
17/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR822xxx  
0.8  
800  
750  
700  
650  
600  
550  
500  
450  
400  
LMR822F  
LMR822FJ  
0.6  
LMR822FV  
LMR822FVT  
25°C  
LMR822FVM  
LMR822FVJ  
85°C  
0.4  
0.2  
-40°C  
0.0  
85  
2
3
4
5
6
0
25  
50  
75  
100  
125  
150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 23. Power Dissipation vs Ambient  
Temperature (Derating Curve)  
Figure 24. Supply Current vs Supply Voltage  
800  
700  
600  
500  
400  
6
5
4
3
2
85°C  
5.0V  
2.7V  
25°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 25.  
Figure 26. Maximum Output Voltage (High) vs  
Supply Current vs Ambient Temperature  
Supply Voltage (RL=2kΩ)  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
18/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR822xxx  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
5.0V  
85°C  
25°C  
-40°C  
4
3
2.7V  
2
1
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 27. Maximum Output Voltage (High) vs  
Figure 28. Maximum Output Voltage (Low) vs  
Ambient Temperature (RL=2kΩ)  
Supply Voltage (RL=2kΩ)  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.0V  
-40°C  
25°C  
2.7V  
85°C  
0
0
1
2
3
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 29. Maximum Output Voltage (Low) vs  
Figure 30. Output Source Current vs Output  
Voltage (VDD=2.7V)  
Ambient Temperature (RL=2kΩ)  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
19/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR822xxx  
100  
90  
40  
35  
30  
25  
20  
15  
10  
5
80  
85°C 25°C  
70  
5.0V  
60  
50  
40  
-40°C  
30  
2.7V  
20  
10  
0
0
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 31. Output Source Current vs Ambient  
Temperature  
Figure 32. Output Sink Current vs Output  
Voltage (VDD=2.7V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3
2
1
85°C  
5.0V  
2.7V  
0
25°C  
-40°C  
-1  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 34. Input Offset Voltage vs Supply  
Voltage (VICM=VDD/2, EK=-VDD/2)  
Figure 33. Output Sink Current vs Ambient  
Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
20/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR822xxx  
4
3
2
1
4
3
2
1
5.0V  
2.7V  
85°C  
25°C  
0
-1  
-2  
-3  
-4  
0
-40°C  
-1  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
-1  
0
1
2
3
Input Voltage [V]  
Ambient Temperature [°C]  
Figure 36. Input Offset Voltage vs Input  
Voltage (VDD=2.7V)  
Figure 35. Input Offset Voltage vs Ambient  
Temperature (VICM=VDD/2, EK=-VDD/2)  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
85°C  
5.0V  
25°C  
-40°C  
2.7V  
80  
80  
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 37. Large Signal Voltage Gain vs  
Supply Voltage  
Figure 38. Large Signal Voltage Gain vs  
Ambient Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
21/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR822xxx  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
85°C  
5.0V  
2.7V  
100  
-40°C  
25°C  
90  
80  
80  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 39. Common-mode Rejection Ratio vs  
Supply Voltage (VDD=2.7V)  
Figure 40. Common-mode Rejection Ratio vs  
Ambient Temperature  
140  
130  
120  
110  
100  
90  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0V  
2.7V  
80  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 41. Power Supply Rejection Ratio vs  
Ambient Temperature (VDD=2.7V to 5.0V)  
Figure 42. Slew Rate L-H vs Ambient  
Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
22/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR822xxx  
3.0  
100  
80  
60  
40  
20  
0
200  
Phase  
2.5  
5.0V  
150  
100  
50  
2.0  
2.7V  
1.5  
1.0  
0.5  
0.0  
Gain  
0
1.E+00 1.E+401 1.E+02 1.E+03 1.E+04 1.E+05  
3
5
6
7
8
-50  
-25  
0
25  
50  
75  
100  
10  
10  
10  
10  
10  
10  
Ambient Temperature [°C]  
Frequency [Hz]  
Figure 44. Voltage GainPhase vs Frequency  
Figure 43. Slew Rate H-L vs Ambient  
Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
23/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR824xxx  
1.2  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
LMR824FJ  
LMR824FVJ  
0.8  
85°C  
25°C  
0.4  
-40°C  
LMR824F  
800  
0.0  
85  
2
3
4
5
6
0
25  
50  
75  
100  
125  
150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 46. Supply Current vs Supply Voltage  
Figure 45. Power Dissipation vs Ambient  
Temperature (Derating Curve)  
6
5.5  
5
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
-40°C  
4.5  
4
25°C  
85°C  
5.0V  
3.5  
3
2.7V  
2.5  
2
800  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 47. Supply Current vs Ambient  
Temperature  
Figure 48. Maximum Output Voltage (High) vs  
Supply Voltage (RL=2kΩ)  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
24/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR824xxx  
100  
80  
60  
40  
20  
0
6
5
5.0V  
85°C  
25°C  
4
3
-40°C  
2.7V  
2
1
0
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 49. Maximum Output Voltage (High) vs  
Figure 50. Maximum Output Voltage (Low) vs  
Ambient Temperature (RL=2kΩ)  
Supply Voltage (RL=2kΩ)  
120  
100  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
-40°C  
25°C  
85°C  
5.0V  
2.7V  
0
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 51. Maximum Output Voltage (Low) vs  
Figure 52. Output Source Current vs Output  
Voltage (VDD=2.7V)  
Ambient Temperature (RL=2kΩ)  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
25/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR824xxx  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
85°C  
80  
5.0V  
25°C  
70  
60  
50  
40  
-40°C  
30  
2.7V  
20  
10  
0
0
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 53. Output Source Current vs Ambient  
Temperature  
Figure 54. Output Sink Current vs Output  
Voltage (VDD=2.7V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3
2
1
85°C  
5.0V  
0
25°C  
-40°C  
-1  
-2  
-3  
-4  
2.7V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 55. Output Sink Current vs Ambient  
Temperature  
Figure 56. Input Offset Voltage vs Supply  
Voltage (VICM=VDD/2, EK=-VDD/2)  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
26/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR824xxx  
4
3
2
1
4
3
2
1
85°C  
5.0V  
2.7V  
0
-1  
-2  
-3  
-4  
0
-40°C  
25°C  
-1  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
-1  
0
1
2
3
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 58. Input Offset Voltage vs Input  
Voltage (VDD=2.7V)  
Figure 57. Input Offset Voltage vs Ambient  
Temperature (VICM=VDD/2, EK=-VDD/2)  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
2.7V  
85°C  
25°C  
5.0V  
-40°C  
80  
80  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 59. Large Signal Voltage Gain vs  
Supply Voltage  
Figure 60. Large Signal Voltage Gain vs  
Ambient Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
27/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR824xxx  
140  
130  
120  
110  
100  
90  
140  
130  
120  
85°C  
5.0V  
110  
25°C  
100  
2.7V  
-40°C  
90  
80  
80  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 61. Common-mode Rejection Ratio vs  
Supply Voltage (VDD=2.7V)  
Figure 62. Common-mode Rejection Ratio vs  
Ambient Temperature  
200  
180  
160  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0V  
2.7V  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 63. Power Supply Rejection Ratio vs  
Ambient Temperature (VDD=2.7V to 5.0V)  
Figure 64. Slew Rate L-H vs Ambient  
Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
28/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Typical Performance Curves continued  
LMR824xxx  
3.0  
2.5  
2.0  
100  
80  
60  
40  
20  
0
200  
Phase  
150  
100  
50  
5.0V  
2.7V  
1.5  
1.0  
0.5  
0.0  
Gain  
0
103  
104  
105  
106  
107  
108  
-50  
-25  
0
25  
50  
75  
100  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05  
Frequency [Hz]  
Ambient Temperature [°C]  
Figure 66. Voltage GainPhase vs Frequency  
Figure 65. Slew Rate H-L vs Ambient  
Temperature  
(*)The data above are measurement values of a typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
©2013 ROHM Co., Ltd. All rights reserved.  
29/49  
TSZ2211115001  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Application Information  
NULL method condition for Test Circuit 1  
VDD, VSS, EK, VICM Unit:V  
Parameter  
Calculation  
VF  
S1  
S2  
S3  
VDD  
5
VSS  
0
EK  
VICM  
2.5  
Input Offset Voltage  
VF1  
VF2  
VF3  
VF4  
VF5  
VF6  
VF7  
ON  
ON  
OFF  
-2.5  
-0.5  
-2.1  
1
Large Signal Voltage Gain  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
2.7  
2.7  
0
0
0
1.35  
2
3
4
0
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
-1.35  
-1.2  
1.8  
2.5  
5.0  
Power Supply Rejection Ratio  
0
Calculation-  
|VF1|  
1+RF/RS  
VIO  
1. Input Offset Voltage (VIO)  
=
[V]  
ΔEK × (1+RF/RS)  
2. Large Signal Voltage Gain (AV)  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
Av  
=20Log  
[dB]  
|VF2-VF3|  
ΔVICM × (1+RF/RS)  
CMRR  
=20Log  
[dB]  
|VF4 - VF5|  
ΔVDD × (1+ RF/RS)  
PSRR  
=20Log  
[dB]  
|VF6 - VF7|  
0.1µF  
RF=50kΩ  
500kΩ  
0.01µF  
SW1  
VDD  
EK  
15V  
RS=50Ω  
RI=10kΩ  
Vout  
500kΩ  
0.1µF  
DUT  
0.1µF  
NULL  
-15V  
SW3  
RL  
VRL  
RI=10kΩ  
1000pF  
RS=50Ω  
50kΩ  
VF  
VICM  
SW2  
VSS  
Figure 67. Test Circuit1  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
30/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Application Information - continued  
Switch Condition for Test Circuit 2  
SW No.  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12  
Supply Current  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON  
ON OFF OFF ON ON OFF OFF OFF ON OFF OFF ON  
Maximum Output Voltage RL=10kΩ  
Output Current  
Slew Rate  
Unity Gain Frequency  
Input Voltage  
VH  
SW3  
R2=100kΩ  
SW4  
VDD=3V  
VL  
t
Input Wave  
SW1  
Output Voltage  
SW2  
SW8 SW9  
SW10 SW11 SW12  
SW5  
SW6  
SW7  
SR=ΔV/Δt  
90%  
VH  
R1=  
1kΩ  
VSS  
ΔV  
10%  
RL  
CL  
-IN  
+IN  
Vo  
VL  
Δt  
t
Output Wave  
Figure 68. Test Circuit 2  
Figure 69. Slew Rate Input and Output Wave  
R2=100kΩ  
R2=100kΩ  
VDD  
VDD  
R1=1kΩ  
R1=1kΩ  
OUT1=0.5Vrms  
OUT2  
R1//R2  
R1//R2  
IN  
VSS  
VSS  
100×OUT1  
CS=20Log  
OUT2  
Figure 70. Test Circuit 3 (Channel Separation)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
31/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Application Example  
Voltage Follower  
Voltage gain is 0dB.  
VDD  
Using this circuit, the output voltage (VOUT) is configured  
to be equal to the input voltage (VIN). This circuit also  
stabilizes the output voltage (VOUT) due to high input  
impedance and low output impedance. Computation for  
output voltage (VOUT) is shown below.  
VOUT  
VIN  
VOUT=VIN  
VSS  
Figure 71. Voltage Follower  
Inverting Amplifier  
R2  
VDD  
For inverting amplifier, input voltage (VIN) is amplified by  
a voltage gain and depends on the ratio of R1 and R2.  
The out-of-phase output voltage is shown in the next  
expression  
R1  
VIN  
VOUT  
VOUT=-(R2/R1)VIN  
This circuit has input impedance equal to R1.  
R1// R2  
VSS  
Figure 72. Inverting Amplifier Circuit  
Non-inverting Amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (IN) is amplified  
by a voltage gain, which depends on the ratio of R1 and  
R2. The output voltage (OUT) is in-phase with the input  
voltage (IN) and is shown in the expression below:  
VDD  
VOUT=(1 + R2/R1)VIN  
VOUT  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational amplifier.  
VIN  
VSS  
Figure 73. Non-invertinmplifier Circuit  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
32/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to rise above the ambient temperature. There is an allowable  
temperature that the IC can handle, and this depends on the circuit configuration, manufacturing process, and consumable  
power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the thermal  
resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 74(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation  
(Pd).  
θJA  
=
(TJmaxTA) / Pd  
°C/W  
The derating curve in Figure 74(b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by thermal resistance  
JA), which depends on the chip size, power consumption, package, ambient temperature, package condition, wind velocity,  
etc. This may also vary even when the same package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Figures 74(c), 74(d), and 74(e) show the example of the derating curves for LMR821G,  
LMR822xxx, and LMR824xxx.  
Power Dissipation of LSI [W]  
Pdmax  
θJA=(Tjmax-TA)/ Pd °C/W  
P2  
θJA2 < θJA1  
Ambient Temperature, TA [ °C ]  
θJA2  
P1  
TJmax  
θJA1  
Chip Surface Temperature, TJ [ °C ]  
150  
0
25  
125  
50  
75  
100  
Ambient Temperature, TA [ °C ]  
(b) Derating Curve  
(a) Thermal Resistance  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
LMR822F (Note 42)  
LMR822FJ (Note 41)  
LMR821G (Note 41)  
LMR822FV (Note 43)  
LMR822FVT (Note 43)  
LMR822FVM (Note 44)  
LMR822FVJ (Note 44)  
85  
85  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
(c) LMR821G  
Ambient Temperature [°C]  
(d) LMR822xxx  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
33/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
1.2  
LMR824FVJ (Note 47)  
0.8  
0.4  
LMR824FJ (Note 46)  
LMR824F (Note 45)  
0.0  
85  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
(e) LMR824xxx  
Figure 74. Thermal Resistance and Derating Curve  
(Note 41)  
5.4  
(Note 42)  
5.5  
(Note 43)  
5.0  
(Note 44)  
4.7  
(Note 45)  
4.5  
(Note 46)  
8.2  
(Note 47)  
6.8  
Unit  
When  
using  
mW/°C  
the unit above TA=25°C, subtract the value above per °C. Power dissipation is the value  
when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area below 3%) is mounted.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
34/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power supply  
pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
A rise in temperature that causes the chip to exceed its power dissipation rating may result in deterioration of the  
properties of the chip. The absolute maximum rating of the PD stated in this specification is when the IC is mounted on  
a 70mm x 70mm x 1.6mm glass epoxy board. In case the absolute maximum rating is exceeded, increase the board  
size and copper area to prevent exceeding the PD rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
In-rush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result to  
IC damage. Avoid adjacent pins from being shorted to each other, especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in a very humid environment),  
and unintentional solder bridge deposited in between pins during assembly.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
35/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Operational Notes continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When VSS > Pin A and VSS > Pin B, the P-N junction operates as a parasitic diode.  
When VSS > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the VSS voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 75. Example of Monolithic IC Structure  
VDD  
12. Unused Circuits  
When there are unused op-amps, it is recommended that they are  
connected as in Figure 76, setting the non-inverting input terminal to a  
potential within the IN phase input voltage range (VICM).  
Keep this potential  
in VICM  
VICM  
13. Input Voltage  
Applying VSS-0.3V to VDD+0.3V to the input terminal is possible without  
causing deterioration of the electrical characteristics or destruction.  
However, this does not ensure normal circuit operation. Please note that  
the circuit operates normally only when the input voltage is within the  
common mode input voltage range of the electric characteristics.  
VSS  
Figure 76. Example of Application  
Circuit for Unused Op-Amp  
14. Power Supply (Single/Dual)  
The operational amplifiers operate as long as voltage is supplied between VDD and VSS. Therefore, the single supply  
operational amplifiers can be used as dual supply operational amplifiers as well.  
15. Output Capacitor  
If a large capacitor is connected between the output pin and VSS pin, current from the charged capacitor will flow into  
the output pin and may destroy the IC when the VCC pin is shorted to ground or pulled down to 0V. Use a capacitor  
smaller than 0.1µF between output pin and VSS pin.  
16. Oscillation by Output Capacitor  
Pay attention to the oscillation by caused by the output capacitor and in designing an application of negative feedback  
loop circuit with these ICs.  
17. Latch-up  
Be careful not to set the input voltage higher than VDD or lower than VSS because a peculiar latch-up state in CMOS  
device might occur. In addition, protect the IC from any abormal noise.  
18. Decoupling Capacitor  
Insert a decoupling capacitor between VDD and VSS.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
36/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP5  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
37/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
38/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP-J8  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
39/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SSOP-B8  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
40/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B8  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
41/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
MSOP8  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
42/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B8J  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
43/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP14  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
44/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP-J14  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
45/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B14J  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
46/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Marking Diagram  
SSOP5(TOP VIEW)  
SOP8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
1PIN MARK  
LOT Number  
SSOP-B8(TOP VIEW)  
SOP-J8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8(TOP VIEW)  
Part Number Marking  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8J(TOP VIEW)  
SOP14(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP-J14(TOP VIEW)  
TSSOP-B14J (TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
47/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Marking Diagram - continued  
Product Name  
LMR821  
Package Type  
Marking  
G
F
SSOP5  
SOP8  
L3  
L822  
FJ  
SOP-J8  
R822  
FV  
FVT  
FVM  
FVJ  
F
SSOP-B8  
TSSOP-B8  
MSOP8  
R822  
LMR822  
R822  
R822  
TSSOP-B8J  
SOP14  
R822  
LMR824F  
LMR824FJ  
R824  
LMR824  
FJ  
SOP-J14  
TSSOP-B14J  
FVJ  
Land Pattern Data  
All dimensions in mm  
Land pitch  
Land space  
MIE  
Land length  
Land width  
b2  
PKG  
e
≥ℓ 2  
SSOP5  
0.95  
2.4  
1.0  
0.6  
SOP8  
SOP14  
1.27  
1.27  
4.60  
1.10  
1.35  
0.76  
SOP-J8  
SOP-J14  
3.90  
4.60  
0.76  
0.35  
SSOP-B8  
TSSOP-B8  
TSSOP-B14J  
0.65  
1.20  
MSOP8  
0.65  
0.65  
2.62  
3.20  
0.99  
1.15  
0.35  
0.35  
TSSOP-B8J  
SOP8, SOP-J8, SSOP-B8, MSOP8, TSSOP-B8, TSSOP-B8J,  
SOP14, SOP-J14, TSSOP-B14J  
SSOP5  
e
e
MIE  
b2  
2  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
48/49  
LMR821G LMR822xxx LMR824xxx  
Datasheet  
Revision History  
Date  
Revision  
Changes  
18.Jan.2013  
2.Aug.2013  
15.Oct.2013  
3.Dec.2013  
10.Oct.2014  
11.May.2015  
001  
002  
003  
004  
005  
006  
New Release  
LMR822F is added.  
The Limit value change of LMR822F (MAX value change in Input Offset Voltage.)  
LMR822FJ, LMR822FV, LMR822FVT, LMR822FVM, and LMR822FVJ added  
LMR824F is added.  
LMR824FJ, and LMR824FVJ are added.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200490-1-2  
11.May.2015 Rev.006  
49/49  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
LMR821G - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
LMR821G  
SSOP5  
3000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
3000  
Taping  
inquiry  
Yes  

相关型号:

LMR822FJ

LMR822FJ是输出全振幅运算放大器。具有低电压工作、低消耗电流、高电压增益、高转换速率的特点,是适用于移动设备、低电压工作设备、有源滤波器等的运算放大器。
ROHM

LMR822FJ-E2

Low Supply Current Output Full Swing Operational Amplifiers
ROHM

LMR822FJ-GE2

IC OP AMP FULL SWING SOP8J
ROHM

LMR822FV

LMR822FV是输出全振幅运算放大器。具有低电压工作、低消耗电流、高电压增益、高转换速率的特点,是适用于移动设备、低电压工作设备、有源滤波器等的运算放大器。
ROHM

LMR822FV-E2

Low Supply Current Output Full Swing Operational Amplifiers
ROHM

LMR822FV-GE2

IC OP AMP FULL SWING 8SSOP
ROHM

LMR822FVJ

LMR822FVJ是输出全振幅运算放大器。具有低电压工作、低消耗电流、高电压增益、高转换速率的特点,是适用于移动设备、低电压工作设备、有源滤波器等的运算放大器。
ROHM

LMR822FVJ-E2

Low Supply Current Output Full Swing Operational Amplifiers
ROHM

LMR822FVM

LMR822FVM是输出全振幅运算放大器。具有低电压工作、低消耗电流、高电压增益、高转换速率的特点,是适用于移动设备、低电压工作设备、有源滤波器等的运算放大器。
ROHM

LMR822FVM-TR

Low Supply Current Output Full Swing Operational Amplifiers
ROHM

LMR822FVT

LMR822FVT是输出全振幅运算放大器。具有低电压工作、低消耗电流、高电压增益、高转换速率的特点,是适用于移动设备、低电压工作设备、有源滤波器等的运算放大器。
ROHM

LMR822FVT-E2

Low Supply Current Output Full Swing Operational Amplifiers
ROHM