MR7930 (新产品) [ROHM]

RFID LSI is a wireless LSI that operates in the UHF band frequency of 860MHz to 960MHz. RFID LSIs are used in fields such as identification tags, taking advantage of the fact that they do not require batteries. LAPIS Technology's RFID LSI is equipped with a sensor function.Ideal for short range battery-less sensor solutions.The frequency that can be used differs for each country. Please adjust the antenna according to the area to be used.;
MR7930 (新产品)
型号: MR7930 (新产品)
厂家: ROHM    ROHM
描述:

RFID LSI is a wireless LSI that operates in the UHF band frequency of 860MHz to 960MHz. RFID LSIs are used in fields such as identification tags, taking advantage of the fact that they do not require batteries. LAPIS Technology's RFID LSI is equipped with a sensor function.Ideal for short range battery-less sensor solutions.The frequency that can be used differs for each country. Please adjust the antenna according to the area to be used.

文件: 总18页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDM7930-01  
Issue Date: Jan. 16, 2023  
MR7930/MR793200  
UHF band RFID Sensor LSI  
OVERVIEW  
MR7930/MR793200 is a passive UHF band RFID Sensor LSI for the battery-less short-range IoT devices.  
The MR7930/MR793200 is equipped with sensor function to measure electrostatic capacitance.  
It is possible to control sensor function by the mandatory command (READ, WRITE) from Reader/Writer (RW ;  
interrogator) that is compliant with the international standard EPC global Generation2-Ver.2.0.1 (EPC standard or EPC  
Gen2). MR7930 is bump wafer product for inlay tag. MR793200 is package product that has SPI slave interface.  
FEATURES  
RF communication  
- Carrier frequency  
- Data transfer speed  
RW => Tag  
: 860 to 960 MHz (UHF band)  
: 26.7 to 128 kbps (when the values of data-0 and data-1 are the same)  
: 40 to 640 kbps  
Tag => RW  
- Modulation  
: DSB-ASK, SSB-ASK, PR-ASK  
- Option command  
: ACCESS and BLOCK WRITE (data length is one or two words)  
RF communication characteristics  
- Receiver sensitivity (passive)  
READ  
: -9.5 dBm (LSI end)  
: -8.5 dBm (LSI end)  
: -8.5 dBm (LSI end)  
: 0.7 (ASK transmission)  
WRITE  
READ/WRITE(Sensor)  
- Reflection coefficient  
Memory  
- EPC  
- USER  
- NVM rewrite time  
- NVM write endurance  
- NVM data retention  
: 96 bits  
: 144 bits  
: 8ms (16 bits)  
: 10,000 cycles  
: 10 years  
Capacitive sensor  
- Mesurement function  
- Comparison function  
- Contorol command  
: Range  
Max. 100pF  
: Threshold  
Max. ±1.0pF (Low Range Mode only)  
: Mandatory command (READ, WRITE)  
1/18  
FEDM7930-01  
Issue Date: Jan. 16, 2023  
MR7930/MR793200  
UHF band RFID Sensor LSI  
SPI interface (SPI Slave)  
- Operating frequency  
- SPI type  
: Max. 5 MHz  
: 0 or 3  
Interrupt function  
: It is possible to receive the interrupt notification such as a read request and a write  
completion from RW to host MCU.  
Arbitration fuction  
Shipment  
: It is possible to avoid the collision of access from RW and MCU.  
Product name  
MR7930DVWF  
MR793200GDZ05BX  
Shipment  
Bump wafer  
24pin plastic WQFN  
MCU interface  
Remark  
Passive  
Passive/Semi-passive  
SPI  
Guaranteed operation range  
- Operating temperature (ambient) : Ta = -40 to 65   
- Operating voltage : VDD = 1.8 to 3.6 V  
2/18  
FEDM7930-01  
MR7930/MR793200  
BLOCK DIAGRAM  
VDD  
MR7930/MR793200  
Capacitive  
Sensor  
Control  
Block  
CMP  
CMN  
ANTP  
ANTN  
EPC  
Control  
Block  
RF  
Control  
Block  
SPI Interface Block  
SCK CSN SO  
SI IRQN  
PSEL  
GND  
Figure 1 Block Diagram  
PIN DESCRIPTION (MR7930)  
The MR7930 has the 4pads with bumps.  
ANTP  
ANTN  
CMP  
CMN  
Figure 2 Inlay Image  
Table 1 Pin List  
Pin name  
ANTP  
ANTN  
CMP  
Description  
Antenna pin  
Antenna pin  
Capacitive measurement pin  
Capacitive measurement pin  
CMN  
3/18  
FEDM7930-01  
MR7930/MR793200  
PIN ASSIGNMENT (MR793200)  
Figure 3 24pin WQFN  
4/18  
FEDM7930-01  
MR7930/MR793200  
PIN DESCRIPTION (MR793200)  
Table 2 Pin List (MR793200)  
Terminal connection  
Initial state (VDD = on)  
Pin  
No.  
Pin name  
I/O  
Description  
Clock input  
Active level  
SPI not used  
SPI used  
PSEL = L  
PSEL = H  
(Passive)  
1
2
3
4
5
6
7
SCK  
CSN  
VDD  
I
I
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Host IF  
Host IF  
VDD  
I-Disable  
I-Disable  
I-Z  
I-Z  
L
Chip select input  
External power supply  
Ground  
PI  
PI  
IO  
I
L
GND  
SO  
GND  
Data output  
Host IF  
Host IF  
Host IF  
O-Z  
O-L  
I-Z  
SI  
Data input  
I-Disable  
O-H  
IRQN  
O
Interrupt output  
O-H  
External power supply  
select input  
(“L” level  
RF reception power supply,  
“H” level:  
8
PSEL  
I
Open  
Host IF  
I
I
H
External power supply)  
9
N.C.  
CMN  
N.C.  
CMP  
A
Open  
Open  
connection  
Open  
Open  
connection  
Open  
O-L  
O-L  
I-A  
Capacitive measurement  
pin  
10  
11  
12  
A
Open  
Capacitive measurement  
pin  
connection  
connection  
O-L  
O-L  
I-A  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
N.C.  
N.C.  
A
Open  
Open  
Open  
Open  
Open  
I-A  
I-A  
I-A  
I-A  
I-A  
I-A  
Open  
N.C.  
Open  
Open  
Open  
N.C.  
Open  
Open  
Open  
N.C.  
Open  
Open  
Open  
N.C.  
Open  
Open  
Open  
N.C.  
Open  
Open  
Open  
ANTP  
ANTN  
N.C.  
Antenna pin  
Antenna pin  
Open  
Antenna +  
Antenna -  
Open  
Antenna +  
Antenna -  
Open  
A
N.C.  
Open  
Open  
Open  
N.C.  
Open  
Open  
Open  
Die Pad  
Backside ground  
Open  
GND  
I: Input pin, O: Output pin, IO: Input/output pin, A: Analog pin, PI: Power Input, Open: Be sure to keep it open.  
O-Z: High-impedance output, O-H: CMOS-H output, O-L: CMOS-L output, I-Disable: Input OFF,  
I-ZHigh impedance input, I-AAnalog input  
5/18  
FEDM7930-01  
MR7930/MR793200  
ELECTRILCAL CHARACTERISTICS  
Absolute Maximum Ratings  
Item  
Antenna Input Voltage  
Digital Input Current  
Digital Output Current  
Antenna Input Power  
Storage Temperature  
Symbol  
Vmax  
IDI  
IDO  
PAB  
Tstg  
Condition  
ANTP, ANTN  
Rating  
+2.0  
-1 +1  
-1 +1  
+10  
-40 +125  
Unit  
V
mA  
mA  
dBm  
Absolute Maximum Ratings (MR793200)  
Item  
Symbol  
VDD  
Condition  
Rating  
-0.3 +4.6  
Unit  
V
Supply Voltage  
Input Voltage  
Output Voltage  
VDD Pin  
VDIN  
VDO  
-0.3 VDD+0.3  
-0.3 VDD+0.3  
V
V
Recommended Operating Conditions  
Item  
Symbol  
Ta  
Condition  
Min.  
-40  
Typ.  
+25  
Max.  
+65  
Unit  
Operating Temperature  
According to the radio  
law of each country  
Operating Frequency  
FRF  
860  
80  
26.7  
1
90  
960  
100  
MHz  
%
Modulation Depth  
Reception Bit Rate  
(A-B) / A  
Frx  
When the value of data-0  
and data-1 are same  
128  
kbps  
μs  
RF  
Power-up Rise Time  
Power-up Stabilizing  
Time  
Tr  
500  
Ts  
1,500  
500  
μs  
Power-down Fall Time  
Tf  
1
μs  
Recommended Operating Conditions (MR793200)  
Item  
Supply Voltage  
Symbol  
VDD  
Condition  
Min.  
1.8  
Typ.  
3.0  
Max.  
3.6  
Unit  
V
SPI  
NVM Characteristics  
Ta = 25℃  
Unit  
Item  
Write Endurance  
Data Retention  
Write Time  
Symbol  
CYCew  
Trtn  
Condition  
Min.  
Typ.  
10,000  
10  
Max.  
Cyc  
Year  
ms  
Tew  
1 word = 16 bit  
7.0  
8.0  
6/18  
FEDM7930-01  
MR7930/MR793200  
RF Communication Characteristics  
Item Symbol  
Ta = 25℃  
Condition  
Tari = 25μs,  
PW = 0.4Tari,  
Min.  
Typ.  
-9.5  
Max.  
Unit  
READ  
Command  
PR_R  
PR_W  
PR_S  
dBm  
RTcal = 3Tari,  
TRcal = 2.6RTcal,  
DR = 8, Miller4,  
BLF = 41kbps,  
DSB-ASK,  
Modulation depth = 90%,  
PSEL = open or L  
at LSI end  
Passive  
Sensitivity  
WRITE  
Command  
-8.5  
-8.5  
dBm  
dBm  
SENSOR  
Command  
Tari = 25μs,  
READ  
Command  
PW = 0.4Tari,  
RTcal = 3Tari,  
TRcal = 2.6RTcal,  
DR = 8, Miller4,  
BLF = 41kbps,  
DSB-ASK,  
Modulation depth = 90%,  
PSEL = H,  
VDD = 3.0V  
PRS_R  
PRS_W  
PRS_S  
-20  
-20  
-20  
dBm  
dBm  
dBm  
Semi-passive  
Sensitivity  
WRITE  
Command  
SENSOR  
Command  
at LSI end  
Maximum Input Power Supply  
Antenna Input Impedance  
PMAX  
Cp  
5
2
dBm  
pF  
Input power = -10dBm  
Input frequency = 920MHz  
at LSI end on wafer  
Rp  
LF  
1
kΩ  
Tag => RW  
Link Frequency  
Tag => RW  
Link Frequency Tolerance  
40  
640  
kHz  
FT  
0
±22  
%
Capacitive Sensor Characteristics  
Item Symbol  
Low Range Mode  
Ta = 25℃  
Unit  
Condition  
Min.  
5
Typ.  
Max.  
25  
Range  
pF  
Resolution  
Accuracy  
Range  
0.01  
pF  
%
5
5
15  
0.02  
100  
0.20  
pF  
pF  
%
High Range Mode  
Resolution  
Accuracy  
Comparison Function: Threshold  
(Low Range Mode Only)  
±1.0  
pF  
7/18  
FEDM7930-01  
MR7930/MR793200  
DC Characteristics (MR793200)  
Item  
Symbol  
VIH  
Condition  
Min.  
VDD  
× 0.7  
Typ.  
Max.  
VDD  
Unit  
V
High Level Input Voltage  
(CSN, SCK, SI, PSEL)  
Low Level Low Voltage  
(CSN, SCK, SI, PSEL)  
High Level Output  
VDD  
× 0.2  
VIL  
VOH  
VOL  
0
VDD-0.6  
V
V
IOH = -1mA  
IOL = 1mA  
0.4  
1.0  
Voltage (SO, IRQN)  
Low Level Output  
V
Voltage (SO, IRQN)  
High Level Leakage  
(CSN, SCK, SI, SO)  
Low Level Leakage  
(CSN, SCK, SI, SO)  
IIH  
IOZH  
IIL  
VIH = VDD or VOH = VDD  
VIL = GND or VOL = GND  
μA  
μA  
-1.0  
IOZL  
CIN  
CO  
Input pin  
Output pin  
5
5
pF  
pF  
Pin Capacitance  
Current Consumption  
Ta = 25℃  
Unit  
Item  
Stand-by 1 (VDD  
Stand-by 2 (VDD  
Symbol  
IDS1  
IDS2  
Condition  
PSEL = L, VDD = 3.0V, RF off  
PSEL = H, VDD = 3.0V, RF off  
Min.  
Typ.  
0.05  
14  
Max.  
)
)
μA  
μA  
PSEL = H, VDD = 3.0V, RF off,  
SPI Slave 5.0MHz  
Operation (VDD  
)
IDO  
52  
μA  
8/18  
FEDM7930-01  
MR7930/MR793200  
AC Characteristics (SPI Slave Interface, MR793200)  
VDD = 1.8 ~ 3.6V, Load capacity = 10 pF  
Item  
Symbol  
fSCK  
Condition  
Min.  
0.39  
80  
Typ.  
Max.  
5.0  
Unit  
MHz  
ns  
SCK Frequency  
SCK High Time  
SCK Low Time  
CSN High Time  
tSCKWH  
tSCKWL  
tCS  
80  
600  
200  
200  
50  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSN Setup Time  
CSN Setup Time  
SI Setup Time  
tCSS  
tCSH  
tDIS  
SI Hold Time  
tDIH  
50  
SO Output Delay Time  
SO Output Hold Time  
tPD1  
tOH  
0
tCS  
tCSS  
CSN  
tCSH  
tSCKWH  
tSCKWL  
SCK  
SI  
tDIH  
tDIS  
tPD1  
tOH  
SO  
Rise point VDD x 0.7, Fall point VDD x 0.3  
Figure 4 Input / Output and Setup / Hold timing  
9/18  
FEDM7930-01  
MR7930/MR793200  
External Power Supply Control: When Power-on (SPI Slave Interface, MR793200)  
Item  
VDD Power Rise time※  
VDD-PSEL Setup Time  
Symbol  
TVS  
TPVS  
Condition  
VDD = 1.8V  
Min.  
0.05  
0
Typ.  
Max.  
200  
Unit  
ms  
ns  
VDD-PSEL Hold Time  
TPVH  
0
ns  
PSEL-CSN Setup Time  
TWLG  
2
ms  
TPVS  
TPVH  
VDD  
GND  
TVS  
PSEL  
CSN  
TWLG  
Figure 5 Power-on Sequence  
Set VDD to 1.8V or higher starting from GND ( = 0V) level. For other provisions, refer to the user’s manual.  
10/18  
FEDM7930-01  
MR7930/MR793200  
MEMOERY MAP  
In compliance with the EPC standard, the MR7930/MR793200’s Memory consists of four banks: Reserved, EPC, TID, and  
USER. The USER bank consists of a non-volatile memory “NVM” and a volatile memory “RAM”. It is possible to control  
the capacitive sensor functions by accessing “Capacitor monitor1” and “Capacitor monitor2” with READ or WRITE  
command.  
Also, the MR793200 has the SPI slave interface. It is possible to communicate between the host MCU and RW. However,  
RF (EPC) and SPI have different addresses, so be careful.  
The address of RF communication from RW assigns by the EPC column of Table 3.  
The address of SPI communication from the host MCU assigns by the SPI column of Table 3.  
In addition, the MR793200 has a status register for access from the host MCU. For details, refer to the user's manual.  
Table 3 Memory map  
EPC  
SPI  
Addr Addr *1  
h00 h4_00  
h01 h4_02  
h02 h4_04  
h03 h4_06  
h00 h0_0E  
h01 h4_08  
h02 h4_0A  
h03 h4_0C  
h04 h4_0E  
h05 h4_10  
h06 h4_12  
h07 h4_14  
h00 h4_16  
Access  
Size  
(bit)  
Description  
Initial  
*2  
MemBank  
R/W  
R/W  
R/W  
R/W  
R
Kill Password[3116]  
Kill Password[150]  
Access Password[3116]  
Access Password[150]  
StoredCRC[150]  
h0000  
h0000  
h0000  
h0000  
32  
32  
00 Reserved  
16  
16  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
StoredPC[150]  
h3400 *3  
01  
EPC  
96  
EPC  
*4  
Class ID[70] Mask designer ID [114]  
hE283  
Mask  
designer  
MR7930  
h3805  
h01 h4_18  
R
Model Number[110]  
MR793200 h3806  
h2000  
ID[30]  
10  
TID  
96  
h02 h4_1A  
h03 h4_1C  
h04 h4_1E  
R
R
R
R
XTID[150]  
ID[4732]  
ID[3116]  
ID[150]  
*5  
h05 h4_20  
h00 h4_22  
R/W  
144  
32  
USER memory  
h0000  
USER  
(NVM)  
h08 h4_32  
h09 h4_34  
h0A h4_36  
R/W  
Sensor mode setting  
h0000_0000  
h3C h6_22  
h42 h6_2E  
R/W  
R/W  
R/W  
16  
16  
16  
RAM0 FLAG  
RAM1 FLAG  
h0000  
h0000  
11  
USER  
(RAM)  
h43 h6_30  
Capacitor monitor1  
h43 ~ h46: h0000  
h47 ~ h78: hFFFF  
h79 ~ h7B: h0000  
h44 h6_32  
R
-
Capacitor monitor2  
h7B h6_A0  
*1  
*2:  
*3:  
In the case of read access from SPI to an undefined address, read value is not fixed.  
R (Read only) , R/W (Read/Write) .  
The initial value of StoredPC[15:0] is b0011_0100_0000_0000.  
UMI (StoredPC[10]) is fixed to 1. XI (StoredPC[9]) is fixed to 0.  
At shipping test, a value as same as TID data is written in EPC data area.  
ID[47:0] is Serial Number.  
*4:  
*5:  
11/18  
FEDM7930-01  
MR7930/MR793200  
FUNCTION DESCRIPTIONS  
The MR7930/MR793200 is equipped with sensor function to measure electrostatic capacitance. Also, the  
MR793200 has the SPI slave interface. It is possible to communicate between host MCU and RW.  
In this session, there are “Supported Command for RF communication”, “Capacitive Sensor Functions (Measurement and  
Comparison)”, “SPI Slave Interface”, and “Arbitration Function”.  
Supported Commands for RF communication  
The MR7930/MR793200 supports all mandatory EPC standard commands and some of optional commands as shown in  
Table 4. It is possible to control sensor function by the mandatory command (READ, WRITE) from RW.  
Table 4 Command list  
Classification  
Mandatory  
Command  
QUERYREP  
Code (binary)  
b00  
b01  
ACK  
QUERY  
QUERYAJUST  
SELECT  
NAK  
REQ_RN  
READ  
b1000  
b1001  
b1010  
b1100_0000  
b1100_0001  
b1100_0010  
b1100_0011  
b1100_0100  
b1100_0101  
b1100_0110  
b1100_0111  
WRITE  
KILL  
LOCK  
ACCESS  
BLOCKWRITE  
Optional  
Capacitive Mesurement Function  
The MR7930/MR793200 can measure the electrostatic capacitance of the object connected to CMP pin and CMN pin.  
Capacitive measurement function has two modes. There are “Low Range” and “High Range” as shown in Table 5.  
It is possible to switch two modes by setting “Sensor mode setting” in the USER bank.  
Table 5 Capacitive Measurement Mode  
Measurement time  
(RF communication)  
Mode  
Resolution  
Upper limit  
Comparison function  
Low Range  
High Range  
10 fF  
25 pF  
support  
90 ms  
(BLF = 41kbps)  
20 200 fF  
100 pF  
no support  
Also, it is possible to control the Capacitive Measurement function by accessing “Capacitor monitor2” with READ  
command. The result of Capacitive Measurement is a 12bits binary data. The calculation formula is different for the two  
modes.  
Measurement time is the reference value between READ command and sensor data response. (BLF = 41 kbps/Miller4)  
For details, refer to the user's manual.  
Capacitive Comparison Function  
The MR7930/MR793200 can compare the current capacitance value with the reference value. And it can detect increases  
and decreases. This function is Low range mode only.  
The reference value and Threshold value (increase or decrease) are stored in “Sensor mode setting”.  
Also, it is possible to control the Capacitive Comparison function by accessing “Capacitor monitor2” with READ  
command.  
The result of Capacitive Comparison function is an 1bit binary data. For details, refer to the user's manual.  
12/18  
FEDM7930-01  
MR7930/MR793200  
SPI Slave Interface  
When PSEL is “H” (Semi-passive mode), the MR793200 can use SPI Slave Interface to communicate with the host MCU.  
As shown in Figure 6, connect the SPI pin (SCK, CSN, SO, SI, IRQN, PSEL) of the MR793200 to the host MCU pin  
(Host IF). It is possible to communicate between host MCU and RW by using USER bank (USER memory, RAM0 FLAG,  
RAM1 FLAG).  
Also, the host MCU can read and write status register of the MR793200. For details, refer to the user's manual.  
ANTENNA  
C2  
CMP  
ANTP  
CMN  
L1  
MR793200  
ANTN  
Die Pad  
C1  
PSEL  
IRQN  
VDD  
C3  
Host IF  
Figure 6 Connection example with the host MCU Interface  
13/18  
FEDM7930-01  
MR7930/MR793200  
Communication Function Usage Conditions  
As shown in Table 6, each setting (PSEL, VDD, MCU connection) determines which communication functions are  
available. For details on the sequence of each communication functions and interrupt factors, refer to the user's manual.  
Table 6 Communication function usage conditions  
Usage conditions  
Communication Function  
Product  
name  
MCU  
Mode  
PSEL  
Open  
VDD  
Status  
EPC  
SPI  
Interrupt  
connection  
None  
None  
None  
No battery  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
MR7930  
Open  
or  
No battery  
or  
None  
Disabled  
passive  
“L” level  
Low battery etc.  
Waiting for  
an interrupt  
MR793200  
“L” level  
“H” level  
Supported  
Supported  
Supported  
Supported  
Enabled  
Enabled  
Disabled  
Enabled  
Enabled  
Enabled  
Semi-  
passive  
SPI communication  
available  
Arbitration Function  
The MR793200 has Arbitration function. It is possible to avoid the collision of access from RW and the host MCU.  
As shown in Table 7, SPI_EXCL setting constrains the MR793200 Memory Bank’s access. SPI_EXCL is a register bit in  
SPI_STAT (SPI Status Register), and initial value is “0”. Also, MR793200’s Registers can be set only from the host MCU.  
In passive mode, the MR7930/MR793200 responds only to RF communication from RW. SPI_EXCL is “0”.  
In semi-passive mode, the MR793200 responds to RF communication from RW and SPI communication from the host  
MCU.  
When SPI_EXCL is set to “0”, it is possible to access memory except for writing to NVM area form the host MCU.  
If RW and the host MCU access the MR793200 at the same time, RF communication will be executed first.  
When SPI_EXCL is set to “1”, it is possible to access memory by only SPI communication from the host MCU.  
Therefore, the MR793200 does not accept access from RW. For details, refer to the user's manual.  
Table 7 Arbitration function  
Memory access  
Command  
input  
SPI_EXCL  
(register)  
Mode  
VDD  
NVM area  
RAM area  
Read  
Write  
Read  
Write  
Passive  
None  
RW (EPC)  
RW (EPC)  
0
0
1
0
1
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Non-response Non-response Non-response Non-response  
Semi-passive Supported  
Enabled  
Enabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
MCU (SPI)  
14/18  
FEDM7930-01  
MR7930/MR793200  
PAKAGE DIMENSIONS  
Figure 7 Package  
15/18  
FEDM7930-01  
MR7930/MR793200  
ABBREVIATED TERMS  
Item  
BLF  
Comment  
Backscatter-Link Frequency  
Divide Ratio  
DR  
DSB-ASK  
EPC  
Double Side Band Amplitude Shift Keying  
Electronic Product Code  
EPC standard,  
EPC Gen2  
EPCglobal Class1 Generation2 Ver.2.0.1)  
IoT  
MCU  
N.C.  
Internet of Things  
Micro Controller Unit  
Non-Connect  
NVM  
PR-ASK  
RAM  
RFID  
RW  
Non-Volatile Memory  
Phase Reversal Amplitude Shift Keying  
Random Access Memory  
Radio Frequency IDentification  
Reader-Writer (interrogator)  
SPI  
SSB-ASK  
Tari  
Serial Peripheral Interface  
Single Side Band Amplitude Shift Keying  
Type A Reference Interval  
Tag ID  
TID  
UHF  
Ultra High Frequency  
16/18  
FEDM7930-01  
MR7930/MR793200  
REVISION HISTORY  
Page  
Previous  
Document No.  
FEDM7930-01  
Date  
Description  
Current  
Edition  
Edition  
Jan. 16, 2023  
1st Edition  
17/18  
FEDM7930-01  
MR7930/MR793200  
Notes  
1) The information contained herein is subject to change without notice.  
2) When using LAPIS Technology Products, refer to the latest product information (data sheets, user’s manuals, application  
notes, etc.), and ensure that usage conditions (absolute maximum ratings, recommended operating conditions, etc.) are within  
the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out  
of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without  
observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and  
malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down  
or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the  
derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.  
You are responsible for evaluating the safety of the final products or systems manufactured by you.  
3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard  
operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other  
use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be  
taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any  
losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related  
information.  
4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology  
or any third party with respect to LAPIS Technology Products or the information contained in this document (including but  
not limited to, the Product data, drawings, charts, programs, algorithms, and application examplesetc.). Therefore LAPIS  
Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising  
out of the use of such technical information.  
5) The Products are intended for use in general electronic equipment (AV/OA devices, communication, consumer systems,  
gaming/entertainment sets, etc.) as well as the applications indicated in this document. For use of our Products in applications  
requiring a high degree of reliability (as exemplified below), please be sure to contact a LAPIS Technology representative  
and must obtain written agreement: transportation equipment (cars, ships, trains, etc.), primary communication equipment,  
traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems,  
etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by  
using the Product for purposes not intended by us. Do not use our Products in applications requiring extremely high reliability,  
such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc.  
6) The Products specified in this document are not designed to be radiation tolerant.  
7) LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document. However,  
LAPIS Technology does not warrant that such information is error-free and LAPIS Technology shall have no responsibility  
for any damages arising from any inaccuracy or misprint of such information.  
8) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive.  
LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws  
or regulations.  
9) When providing our Products and technologies contained in this document to other countries, you must abide by the  
procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export  
Administration Regulations and the Foreign Exchange and Foreign Trade Act..  
10) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS  
Technology's Products.  
11) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.  
(Note) “LAPIS Technology” as used in this document means LAPIS Technology Co., Ltd.  
Copyright 2023 LAPIS Technology Co., Ltd.  
2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan  
https://www.lapis-tech.com/en/  
18/18  

相关型号:

MR793200 (新产品)

RFID LSI is a wireless LSI that operates in the UHF band frequency of 860MHz to 960MHz. RFID LSIs are used in fields such as identification tags, taking advantage of the fact that they do not require batteries. LAPIS Technology's RFID LSI is equipped with a sensor function.Ideal for short range battery-less sensor solutions.The frequency that can be used differs for each country. Please adjust the antenna according to the area to be used.
ROHM

MR7A5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7B5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7C5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7D5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7E5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7F5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7G5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7H5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7K5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR7M5

SILICON FAST RECOVERY 6.0 AMP DIODES
EDAL

MR80188-6B

16-Bit Microprocessor
ETC