SCT3060ARHR (新产品) [ROHM]

AEC-Q101 qualified automotive grade product. SCT3060ARHR is an SiC (Silicon Carbide) trench MOSFET. Features include high voltage resistance, low ON resistance, and fast switching speed.;
SCT3060ARHR (新产品)
型号: SCT3060ARHR (新产品)
厂家: ROHM    ROHM
描述:

AEC-Q101 qualified automotive grade product. SCT3060ARHR is an SiC (Silicon Carbide) trench MOSFET. Features include high voltage resistance, low ON resistance, and fast switching speed.

文件: 总17页 (文件大小:1386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SCT3060ARHR  
Automotive Grade N-channel SiC power MOSFET  
Datasheet  
lOutline  
TO-247-4L  
VDSS  
650V  
60mΩ  
39A  
RDS(on) (Typ.)  
*1  
ID  
PD  
165W  
(1) (2)(3)(4)  
lInner circuit  
lFeatures  
1) Qualified to AEC-Q101  
2) Low on-resistance  
3) Fast switching speed  
4) Fast reverse recovery  
5) Easy to parallel  
Please note Driver Source and Power Source are  
not exchangeable. Their exchange might lead to  
malfunction.  
6) Simple to drive  
7) Pb-free lead plating ; RoHS compliant  
lPackaging specifications  
Tube  
Packing  
lApplication  
Automobile  
Reel size (mm)  
Tape width (mm)  
Basic ordering unit (pcs)  
Taping code  
-
Switch mode power supplies  
-
30  
Type  
C15  
SCT3060AR  
Marking  
lAbsolute maximum ratings (Tvj = 25°C unless otherwise specified)  
Parameter  
Drain - Source Voltage  
Symbol  
VDSS  
Value  
650  
Unit  
V
*1  
Tc = 25°C  
39  
A
ID  
Continuous Drain current  
*1  
Tc = 100°C  
27  
A
ID  
*2  
Pulsed Drain current (Tc = 25°C)  
Gate - Source voltage (DC)  
97  
A
ID,pulse  
VGSS  
-4 to +22  
-4 to +26  
0 / +18  
175  
V
*3  
Gate - Source surge voltage (tsurge < 300ns)  
Recommended drive voltage  
V
VGSS_surge  
*4  
V
VGS_op  
Tvj  
Virtual Junction temperature  
°C  
Tstg  
Range of storage temperature  
-55 to +175  
°C  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
1/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristics (Tvj = 25°C unless otherwise specified)  
Values  
Typ.  
Parameter  
Symbol  
Conditions  
Unit  
V
Min.  
Max.  
VGS = 0V, ID = 1mA  
Drain - Source breakdown  
voltage  
V(BR)DSS Tvj = 25°C  
Tvj = -55°C  
650  
650  
-
-
-
-
VGS = 0V, VDS  
IDSS Tvj = 25°C  
Tvj = 150°C  
=650V  
Zero Gate voltage  
Drain current  
-
-
1
2
10  
-
μA  
Gate - Source  
leakage current  
IGSS+ VGS  
IGSS- VGS  
=
=
VDS = 0V  
VDS = 0V  
+22V,  
-4V,  
-
-
100  
nA  
Gate - Source  
leakage current  
-
-
-
-100  
5.6  
nA  
V
VGS (th) VDS = 10V, I =  
Gate threshold voltage  
6.67mA  
13A  
2.7  
D
VGS = 18V, I =  
D
Static Drain - Source  
on - state resistance  
*5  
Tvj = 25°C  
RDS(on)  
-
-
-
60  
86  
12  
78  
-
mΩ  
Ω
Tvj = 150°C  
RG  
Gate input resistance  
f = 1MHz, open drain  
-
lThermal resistance  
Values  
Typ.  
Parameter  
Symbol  
RthJC  
Unit  
K/W  
Min.  
-
Max.  
0.91  
Thermal resistance, junction - case  
0.70  
lTypical Transient Thermal Characteristics  
Symbol  
Rth1  
Value  
Unit  
Symbol  
Value  
Unit  
8.52×10 -2  
4.15×10 -1  
2.06×10 -1  
1.22×10 -3  
6.20×10 -3  
3.49×10 -2  
Cth1  
Cth2  
Cth3  
Rth2  
K/W  
Ws/K  
Rth3  
Rth,n  
Rth1  
Tj  
Tc  
PD  
Cth1  
Cth2  
Cth,n  
Ta  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
2/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristics (Tvj = 25°C unless otherwise specified)  
Values  
Typ.  
4.9  
Parameter  
Symbol  
Conditions  
VDS = 10V, I =  
Unit  
S
Min.  
Max.  
*5  
Transconductance  
13A  
-
-
-
-
-
-
-
-
gfs  
D
Ciss VGS = 0V  
Coss VDS  
Input capacitance  
852  
55  
=
Output capacitance  
Reverse transfer capacitance  
500V  
pF  
pF  
Crss  
f = 1MHz  
VGS = 0V  
24  
Effective output capacitance,  
energy related  
Co(er)  
-
126  
-
VDS  
VDS  
=
=
0V to 300V  
*5  
300V  
13A  
Total Gate charge  
Gate - Source charge  
Gate - Drain charge  
Turn - on delay time  
Rise time  
-
-
-
-
-
-
-
-
-
58  
11  
31  
5
-
-
-
-
-
-
-
-
-
Qg  
ID =  
*5  
nC  
Qgs  
VGS = 18V  
See Fig. 1-1.  
*5  
Qgd  
VDS  
=
400V  
*5  
td(on)  
ID =  
20A  
*5  
15  
16  
14  
88  
28  
tr  
VGS  
=
0V/+18V  
0Ω, L = 750μH  
ns  
RG =  
*5  
Turn - off delay time  
Fall time  
td(off)  
Lσ = 50nH, Cσ = 10pF  
See Fig. 2-1, 2-2, 2-3.  
*5  
tf  
Eon includes diode  
reverse recovery.  
*5  
Turn - on switching loss  
Turn - off switching loss  
Eon  
μJ  
*5  
Eoff  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
3/15  
SCT3060ARHR  
Datasheet  
lBody diode electrical characteristics (Source-Drain) (Tvj = 25°C unless otherwise specified)  
Values  
Parameter  
Symbol  
Conditions  
Unit  
A
Min.  
-
Typ.  
-
Max.  
39  
Body diode continuous,  
forward current  
*1  
IS  
Tc = 25°C  
Body diode direct current,  
pulsed  
*2  
-
-
-
-
97  
-
A
V
ISM  
*5  
VGS = 0V, IS  
Forward voltage  
= 13A  
3.2  
18  
VSD  
IF =  
*5  
13A  
Reverse recovery time  
-
ns  
trr  
VR =  
400V  
*5  
Reverse recovery charge  
-
-
294  
27  
-
-
nC  
A
Qrr  
di/dt = 2500A/μs  
Lσ = 50nH, Cσ = 10pF  
See Fig. 3-1, 3-2.  
*5  
Peak reverse recovery current  
Irrm  
*1 Limited by maximum Tvj and for Max. RthJC  
.
*2 PW 10μs, Duty cycle 1%  
*3 Example of acceptable VGS waveform  
Please note especially when using driver source that VGSS_surge must be in the range of  
absolute maximum rating.  
*4 Please be advised not to use SiC-MOSFETs with VGS below 13V as doing so may cause  
thermal runaway.  
*5 Pulsed  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
4/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristic curves  
Fig.2 Maximum Safe Operating Area  
Fig.1 Power Dissipation Derating Curve  
180  
160  
140  
120  
100  
80  
1000  
Operation in this area is limited by RDS(on)  
100  
PW = 1μs*  
10  
PW = 10μs*  
PW = 100μs  
60  
PW = 1ms  
1
40  
PW = 10ms  
Tc = 25ºC  
Single Pulse  
20  
*Calculation(PW10μs)  
0.1  
0
25  
75  
125  
175  
0.1  
1
10  
100  
1000  
Case Temperature : TC [°C]  
Drain - Source Voltage : VDS [V]  
Fig.3 Typical Transient Thermal  
Impedance vs. Pulse Width  
1
0.1  
0.01  
Tc = 25ºC  
Single Pulse  
0.001  
0.000001  
0.0001  
0.01  
1
100  
Pulse Width : PW [s]  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
5/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristic curves  
Fig.4 Typical Output Characteristics(I)  
Fig.5 Typical Output Characteristics(II)  
20  
40  
20V  
Tvj = 25ºC  
Pulsed  
20V  
18V  
18V  
16V  
14V  
14V  
15  
10  
5
30  
16V  
Tvj = 25ºC  
Pulsed  
12V  
20  
10  
0
12V  
10V  
10V  
VGS= 8V  
VGS= 8V  
0
0
1
2
3
4
5
0
2
4
6
8
10  
Drain - Source Voltage : VDS [V]  
Drain - Source Voltage : VDS [V]  
Fig.6 Tvj = 25ºC 3rd Quadrant Characteristics  
0
Tvj = 25ºC  
Pulsed  
VGS = -4V  
VGS = -2V  
-10  
VGS = 0V  
VGS = 18V  
-20  
-30  
-40  
-10  
-8  
-6  
-4  
-2  
0
Drain - Source Voltage : VDS [V]  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
6/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristic curves  
Fig.7 Tvj = 150ºC Typical Output  
Characteristics(I)  
Fig.8 Tvj = 150ºC Typical Output  
Characteristics(II)  
40  
20  
20V  
20V  
14V  
18V  
16V  
14V  
12V  
18V  
16V  
30  
15  
10  
5
Tvj = 150ºC  
10V  
12V  
10V  
20  
10  
0
VGS= 8V  
VGS= 8V  
Tvj = 150ºC  
Pulsed  
0
0
2
4
6
8
10  
0
1
2
3
4
5
Drain - Source Voltage : VDS [V]  
Drain - Source Voltage : VDS [V]  
Fig.10 Body Diode Forward Voltage  
ꢀꢀꢀ vs. Gate - Source Voltage  
Fig.9 Tvj = 150ºC 3rd Quadrant Characteristics  
0
6
Tvj = 150ºC  
Pulsed  
ID=13A  
5
4
3
2
1
0
VGS = -4V  
-10  
VGS = -2V  
VGS = 0V  
VGS = 18V  
-20  
-30  
-40  
Tvj= 150ºC  
Tvj= 25ºC  
-4  
0
4
8
12  
16  
20  
-10  
-8  
-6  
-4  
-2  
0
Drain - Source Voltage : VDS [V]  
Gate - Source Voltage : VGS [V]  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
7/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristic curves  
Fig.11 Typical Transfer Characteristics (I)  
100  
Fig.12 Typical Transfer Characteristics (II)  
40  
30  
20  
10  
0
VDS = 10V  
Pulsed  
VDS = 10V  
Pulsed  
10  
Tvj= 150ºC  
Tvj= 75ºC  
Tvj= 25ºC  
Tvj= -25ºC  
Tvj= 150ºC  
Tvj= 75ºC  
1
Tvj= 25ºC  
Tvj= -25ºC  
0.1  
0.01  
0
2
4
6
8 10 12 14 16 18 20  
0
2
4
6
8 10 12 14 16 18 20  
Gate - Source Voltage : VGS [V]  
Gate - Source Voltage : VGS [V]  
Fig.13 Gate Threshold Voltage  
vs. Virtual Junction Temperature  
Fig.14 Transconductance vs. Drain Current  
10  
6
VDS = 10V  
ID = 6.67mA  
VDS = 10V  
Pulsed  
5
4
3
2
1
0
1
Tvj = 150ºC  
Tvj = 75ºC  
Tvj = 25ºC  
Tvj = -25ºC  
0.1  
0.1  
1
10  
-50  
0
50  
100  
150  
200  
Virtual Junction Temperature : Tvj [ºC]  
Drain Current : ID [A]  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
8/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristic curves  
Fig.15 Static Drain - Source On - State  
Resistance vs. Gate - Source Voltage  
Fig.16 Static Drain - Source On - State  
Resistance vs. Virtual Junction Temperature  
0.12  
0.08  
0.04  
0.00  
0.24  
VGS = 18V  
Pulsed  
Tvj = 25ºC  
Pulsed  
0.20  
ID= 26A  
ID= 26A  
ID= 13A  
0.16  
ID= 13A  
0.12  
0.08  
0.04  
0.00  
ID= -13A  
ID= -13A  
-50  
0
50  
100  
150  
200  
8
10 12 14 16 18 20 22  
Gate - Source Voltage : VGS [V]  
Virtual Junction Temperature : Tvj [ºC]  
Fig.17 Static Drain - Source On - State  
Resistance vs. Drain Current  
Fig.18 Normalized Drain - Source Breakdown  
Voltage vs. Virtual Junction Temperature  
1
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.1  
Tvj = 150ºC  
Tvj = 125ºC  
Tvj = 75ºC  
Tvj = 25ºC  
VGS = 18V  
Pulsed  
Tvj = -25ºC  
0.01  
1
10  
100  
-50  
0
50  
100  
150  
200  
Drain Current : ID [A]  
Virtual Junction Temperature : Tvj [ºC]  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
9/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristic curves  
Fig.19 Typical Capacitance  
ꢀꢀꢀꢀꢀvs. Drain - Source Voltage  
Fig.20 Coss Stored Energy  
10000  
10  
Tvj = 25ºC  
Ciss  
1000  
Coss  
100  
5
0
Crss  
10  
Tvj = 25ºC  
f = 1MHz  
VGS = 0V  
1
0.1  
1
10  
100  
1000  
0
100  
200  
300  
400  
Drain - Source Voltage : VDS [V]  
Drain - Source Voltage : VDS [V]  
Fig.21 Dynamic Input Characteristics  
20  
*Gate Charge Waveform  
Tvj = 25ºC  
VDD = 300V  
ID = 13A  
15  
10  
5
Pulsed  
0
0
20  
40  
60  
Total Gate Charge : Qg [nC]  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
10/15  
SCT3060ARHR  
Datasheet  
lElectrical characteristic curves  
Fig.22 Typical Switching Time  
Fig.23 Typical Switching Loss  
ꢀꢀꢀꢀꢀvs. External Gate Resistance  
ꢀꢀꢀꢀꢀvs. Drain - Source Voltage  
100  
100  
Tvj = 25°C  
ID = 20A  
VGS= +18V/0V  
RG = 0Ω  
Tvj = 25°C  
VDD= 400V  
80  
80  
Eon  
VGS= +18V/0V  
ID = 20A  
tr  
L = 750μH  
L = 750μH  
tf  
60  
40  
20  
60  
40  
20  
0
td(off)  
Eoff  
td(on)  
20  
0
100  
200  
300  
400  
500  
0
10  
30  
External Gate Resistance : RG [Ω]  
Drain - Source Voltage : VDS [V]  
Fig.24 Typical Switching Loss  
Fig.25 Typical Switching Loss  
ꢀꢀꢀꢀꢀvs. Drain Current  
ꢀꢀꢀꢀꢀvs. External Gate Resistance  
600  
600  
Tvj = 25°C  
VDD= 400V  
VGS= +18V/0V  
RG = 0Ω  
Tvj = 25°C  
ID = 20A  
VDD= 400V  
VGS= +18V/0V  
400  
400  
200  
0
L = 750μH  
L = 750μH  
Eon  
200  
Eoff  
Eon  
Eoff  
0
0
5
10  
15  
20  
25  
30  
0
10  
20  
30  
40  
Drain Current : ID [A]  
External Gate Resistance : RG [Ω]  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
11/15  
SCT3060ARHR  
Datasheet  
lMeasurement circuits and waveforms  
Fig.1-1 Gate Charge Measurement Circuit  
Fig.2-1 Switching Characteristics Measurement Circuit  
Fig.2-2 Waveforms for Switching Time  
Fig.2-3 Waveforms for Switching Energy Loss  
Eon  
=
I VDS dt  
Eoff  
=
ID VDS dt  
׬
׬
D
Vsurge  
Irr  
VDS  
ID  
Fig.3-1 Reverse Recovery Time Measurement Circuit  
Fig.3-2 Reverse Recovery Waveform  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
12/15  
SCT3060ARHR  
Datasheet  
lPackage Dimensions  
Unit: mm  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
13/15  
SCT3060ARHR  
Datasheet  
Unit: mm  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
14/15  
SCT3060ARHR  
Datasheet  
lDie Bonding Layout  
: Die position  
Front view of the packaging.  
Dimensions are design values.  
If the heat sink is to be installed, it should be in contact with the die bonding point.  
Unit: mm  
www.rohm.com  
©2022 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT3060ARHR  
9.Nov.2022 - Rev.002  
15/15  
Notice  
N o t e s  
1) The information contained herein is subject to change without notice.  
2) Before you use our Products, please contact our sales representative and verify the latest specifica-  
tions.  
3) Although ROHM is continuously working to improve product reliability and quality, semicon-  
ductors can break down and malfunction due to various factors.  
Therefore, in order to prevent personal injury or fire arising from failure, please take safety  
measures such as complying with the derating characteristics, implementing redundant and  
fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no  
responsibility for any damages arising out of the use of our Poducts beyond the rating specified by  
ROHM.  
4) Examples of application circuits, circuit constants and any other information contained herein are  
provided only to illustrate the standard usage and operations of the Products. The peripheral  
conditions must be taken into account when designing circuits for mass production.  
5) The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly,  
any license to use or exercise intellectual property or other rights held by ROHM or any other  
parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of  
such technical information.  
6) The Products specified in this document are not designed to be radiation tolerant.  
7) For use of our Products in applications requiring a high degree of reliability (as exemplified  
below), please contact and consult with a ROHM representative : transportation equipment (i.e.  
cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety  
equipment, medical systems, and power transmission systems.  
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace  
equipment, nuclear power control systems, and submarine repeaters.  
9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with  
the recommended usage conditions and specifications contained herein.  
10) ROHM has used reasonable care to ensure the accuracy of the information contained in this  
document. However, ROHM does not warrants that such information is error-free, and ROHM  
shall have no responsibility for any damages arising from any inaccuracy or misprint of such  
information.  
11) Please use the Products in accordance with any applicable environmental laws and regulations,  
such as the RoHS Directive. For more details, including RoHS compatibility, please contact a  
ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting  
non-compliance with any applicable laws or regulations.  
12) When providing our Products and technologies contained in this document to other countries,  
you must abide by the procedures and provisions stipulated in all applicable export laws and  
regulations, including without limitation the US Export Administration Regulations and the Foreign  
Exchange and Foreign Trade Act.  
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of  
ROHM.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
R1107  
S
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SCT3060AW7

SCT3060AW7是650V 38A的Nch SiC功率MOSFET。采用沟槽结构,降低了导通电阻。 SiC支持页面评估板、文件 应用实例介绍罗姆制SiC元器件 何谓SiC功率元器件?电子小知识
ROHM

SCT3080AL

SCT3060AL是650V 30A的Nch SiC功率MOSFET。
ROHM

SCT3080ALGC11

Power Field-Effect Transistor, 30A I(D), 650V, 0.104ohm, 1-Element, N-Channel, Silicon Carbide, Metal-oxide Semiconductor FET, TO-247, TO-247N, 3 PIN
ROHM

SCT3080ALHR

沟槽栅极结构的SiC-MOSFET。平面型SiC-MOSFET相比,同一芯片尺寸的导通电阻可降低50%,这将大幅降低太阳能发电用功率调节器和工业设备用电源、工业用逆变器等所有相关设备的功率损耗。
ROHM

SCT3080ALHRC11

Power Field-Effect Transistor,
ROHM

SCT3080AR

SCT3080AR是非常适用于要求高效率的服务器用电源、太阳能逆变器及电动汽车充电站等的沟槽栅结构SiC MOSFET。采用电源源极引脚和驱动器源极引脚分离的4引脚封装,能够充分地发挥出高速开关性能。尤其是可以显著改善导通损耗。与以往的3引脚封装(TO-247N)相比,导通损耗和关断损耗合起来预计可降低约35%的损耗。
ROHM

SCT3080ARHR (新产品)

AEC-Q101 qualified automotive grade product. SCT3080ARHR is an SiC (Silicon Carbide) trench MOSFET. Features include high voltage resistance, low ON resistance, and fast switching speed.
ROHM

SCT3080AW7

SCT3080AW7是650V 29A的Nch SiC功率MOSFET。采用沟槽结构,降低了导通电阻。 SiC支持页面评估板、文件 应用实例介绍罗姆制SiC元器件 何谓SiC功率元器件?电子小知识
ROHM

SCT3080KL

SCT3080KL是1200V 31A的Nch SiC功率MOSFET。
ROHM

SCT3080KLC11

Power Field-Effect Transistor, 31A I(D), 1200V, 0.104ohm, 1-Element, N-Channel, Silicon Carbide, Metal-oxide Semiconductor FET, TO-247, TO-247N, 3 PIN
ROHM

SCT3080KLHR

沟槽栅极结构的SiC-MOSFET。平面型SiC-MOSFET相比,同一芯片尺寸的导通电阻可降低50%,这将大幅降低太阳能发电用功率调节器和工业设备用电源、工业用逆变器等所有相关设备的功率损耗。
ROHM

SCT3080KR

SCT3080KR是非常适用于要求高效率的服务器用电源、太阳能逆变器及电动汽车充电站等的沟槽栅结构SiC MOSFET。采用电源源极引脚和驱动器源极引脚分离的4引脚封装,能够充分地发挥出高速开关性能。尤其是可以显著改善导通损耗。与以往的3引脚封装(TO-247N)相比,导通损耗和关断损耗合起来预计可降低约35%的损耗。
ROHM