TLR2376YFVM-C [ROHM]

本产品是将输入/输出轨到轨高精度CMOS运算放大器以2个电路集成于1枚芯片的单片IC。由于具有低输入失调电压、低噪声和低输入偏置电流等特点,因此可用于包括引擎控制单元、EPS、ABS和传感器放大器等各类车载应用。;
TLR2376YFVM-C
型号: TLR2376YFVM-C
厂家: ROHM    ROHM
描述:

本产品是将输入/输出轨到轨高精度CMOS运算放大器以2个电路集成于1枚芯片的单片IC。由于具有低输入失调电压、低噪声和低输入偏置电流等特点,因此可用于包括引擎控制单元、EPS、ABS和传感器放大器等各类车载应用。

放大器 运算放大器 传感器
文件: 总25页 (文件大小:1312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Low Input Offset Voltage & Low Noise  
Automotive High Precision & Input/Output  
Rail-to-Rail CMOS Operational Amplifier  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
General Description  
Key Specifications  
Input Offset Voltage:  
Input-Referred Noise Voltage Density  
f = 10 Hz:  
This product is a high precision & Input/Output Rail-to-  
Rail monolithic ICs integrated single, dual or quad  
independent CMOS Op-Amps on a single chip. It features  
low input offset voltage, low noise and low input bias  
current. It is suitable for automotive requirements such as  
engine control unit, electric power steering, anti-lock  
braking system, sensor amplifier, and so on.  
1.7 μV (Typ)  
20 nV/√Hz (Typ)  
8 nV/√Hz (Typ)  
f = 1 kHz:  
Common-mode Input Voltage Range:  
VSS to VDD  
0.5 pA (Typ)  
Input Bias Current:  
Operating Supply Voltage Range  
Single Supply:  
2.5 V to 5.5 V  
Dual Supply:  
Operating Temperature Range:  
±1.25 V to ±2.75 V  
-40 °C to +125 °C  
Features  
AEC-Q100 Qualified(Note 1)  
Low input offset voltage  
Low Noise  
Packages  
SSOP5  
W (Typ) x D (Typ) x H (Max)  
2.9 mm x 2.8 mm x 1.25 mm  
2.9 mm x 4.0 mm x 0.9 mm  
4.9 mm x 6.0 mm x 1.65 mm  
5.0 mm x 6.4 mm x 1.35 mm  
Input/Output Rail-to-Rail  
(Note 1) Grade 1  
MSOP8  
SOP-J8  
SSOP-B14  
Applications  
Engine Control Unit  
Electric Power Steering (EPS)  
Anti-lock Braking System (ABS)  
Automotive Electronics  
Sensor Amplifiers  
Battery-powered Equipment  
Current Monitoring Amplifier  
ADC Front Ends, Buffer Amplifier  
Photodiode Amplifier  
Amplifiers  
Typical Application Circuit  
RF = 10 kΩ  
VDD = +2.5 V  
RIN = 100 Ω  
퐹  
푂푈푇 = −  
퐼푁  
VIN  
VOUT  
퐼푁  
VSS = -2.5 V  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
1/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Pin Configurations  
TLR376YG-C: SSOP5  
(TOP VIEW)  
Pin No.  
Pin Name  
Function  
1
2
5
OUT  
VSS  
+IN  
Output  
1
2
3
4
5
OUT  
VSS  
+IN  
VDD  
Negative power supply / Ground  
Non-inverting input  
+
-  
-IN  
Inverting input  
3
4
-IN  
VDD  
Positive power supply  
TLR2376YFVM-C: MSOP8  
TLR2376YFJ-C:  
SOP-J8  
Pin No.  
Pin Name  
Function  
(TOP VIEW)  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
Output1  
OUT1  
1
VDD  
OUT2  
-IN2  
8
7
6
5
Inverting input1  
CH1  
-IN1  
+IN1  
VSS  
+IN1  
VSS  
+IN2  
-IN2  
Non-inverting input1  
Negative power supply / Ground  
Non-inverting input2  
Inverting input2  
2
3
4
-
+
CH2  
+
-
+IN2  
OUT2  
VDD  
Output2  
Positive power supply  
TLR4376YFV-C: SSOP-B14  
Pin No.  
Pin Name  
Function  
1
2
OUT1  
-IN1  
Output1  
Inverting input1  
Non-inverting input1  
Positive power supply  
Non-inverting input2  
Inverting input2  
Output2  
(TOP VIEW)  
3
+IN1  
VDD  
+IN2  
-IN2  
OUT1  
-IN1  
OUT4  
-IN4  
1
2
3
4
14  
4
13  
12  
11  
10  
9
CH1  
CH4  
5
-
+
+
-
+IN1  
VDD  
+IN4  
VSS  
+IN3  
-IN3  
6
7
OUT2  
OUT3  
-IN3  
8
Output3  
+IN2 5  
+
CH3  
-
-
+
9
Inverting input3  
Non-inverting input3  
Negative power supply / Ground  
Non-inverting input4  
Inverting input4  
Output4  
CH2  
6
7
-IN2  
10  
11  
12  
13  
14  
+IN3  
VSS  
OUT2  
8 OUT3  
+IN4  
-IN4  
OUT4  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
2/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Block Diagram  
VDD  
Iref  
+IN  
+
OUT  
AMP  
-
-IN  
VSS  
(Note) Each channel has the same configuration.  
Description of Blocks  
1. AMP:  
This block is a full-swing output operational amplifier with class-AB output circuit and high-precision-Rail-to-Rail  
differential input stage.  
2. Iref:  
This block supplies reference current which is needed to operate AMP block.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
3/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
Supply Voltage (VDD - VSS  
)
VS  
VI  
7.0  
(VSS - 0.3) to (VDD + 0.3)  
±10  
V
V
Signal Input Pin Voltage (+IN, -IN)  
Signal Input Pin Current (+IN, -IN)  
Maximum Junction Temperature  
Storage Temperature Range  
II  
mA  
°C  
°C  
Tjmax  
Tstg  
150  
- 55 to + 150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operate over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
SSOP5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 3)  
θJA  
376.5  
40  
185.4  
30  
°C/W  
°C/W  
ΨJT  
MSOP8  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 3)  
θJA  
284.1  
21  
135.4  
11  
°C/W  
°C/W  
ΨJT  
SOP-J8  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 3)  
θJA  
149.3  
18  
76.9  
11  
°C/W  
°C/W  
ΨJT  
SSOP-B14  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 3)  
θJA  
159.6  
13  
92.8  
9
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2 mm x 74.2 mm  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
2.5  
Typ  
5.0  
Max  
5.5  
Unit  
Single Supply  
Dual Supply  
Supply Voltage (VDD - VSS  
)
VS  
V
±1.25  
-40  
±2.5  
+25  
±2.75  
+125  
Operating Temperature  
Topr  
°C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
4/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Electrical Characteristics  
(Unless otherwise specified VS = 5 V, VSS = 0 V, VICM = 2.5 V, RL = 10 kΩ to VICM, Ta = 25 °C)  
Limit  
Parameter  
Symbol  
VIO  
Unit  
μV  
Conditions  
Min  
Typ  
1.7  
-
Max  
150  
550  
-
-
No load, Absolute value  
Input Offset Voltage  
No load, Absolute value,  
Ta = -40 °C to +125 °C  
Absolute value, No load,  
Ta = -40 °C to +125 °C  
Input Offset Voltage  
Temperature Drift  
ΔVIO/ΔT  
IIO  
-
-
0.1  
0
4.0  
μV/°C  
pA  
Input Offset Current  
Input Bias Current  
-
-
Absolute value  
Absolute value  
VSS to VDD  
IB  
-
0.5  
-
pA  
Common-mode Input Voltage  
Range  
VICMR  
0
5
V
TLR376YG-C, No load,  
G = 0 dB  
TLR376YG-C, No load,  
G = 0 dB, Ta = -40 °C to +125 °C  
TLR2376Yxxx-C, No load,  
G = 0 dB  
TLR2376Yxxx-C, No load,  
G = 0 dB, Ta = -40 °C to +125 °C  
TLR4376YFV-C, No load,  
G = 0 dB  
-
-
-
-
-
645  
-
950  
1000  
1900  
2000  
3800  
1245  
-
Supply Current  
IDD  
μA  
2490  
TLR4376YFV-C, No load,  
G = 0 dB, Ta = -40 °C to +125 °C  
-
-
4.975  
-
4000  
4.925  
-
IL = 1 mA  
IL = 1 mA,  
Ta = -40 °C to +125 °C  
Output Voltage High  
Output Voltage Low  
VOH  
4.90  
-
V
4.50  
4.75  
15  
-
-
IL = 10 mA  
IL = 1 mA  
-
-
50  
IL = 1 mA,  
Ta = -40 °C to +125 °C  
VOL  
60  
mV  
-
100  
50  
50  
137  
-
250  
IL = 10 mA  
Output Source Current (Note 1)  
Output Sink Current (Note 1)  
IOH  
IOL  
25  
25  
110  
90  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mA  
mA  
VOUT = VSS, Absolute value  
VOUT = VDD, Absolute value  
-
Large Signal Voltage Gain  
AV  
dB  
Ta = -40 °C to +125 °C  
Gain Bandwidth Product  
Phase Margin  
GBW  
θ
4
MHz  
deg  
dB  
G = 40 dB  
-
50  
100  
95  
2
G = 40 dB  
Common-mode Rejection  
Ratio  
CMRR  
PSRR  
SR  
80  
75  
-
-
Power Supply Rejection Ratio  
Slew Rate  
dB  
-
V/μs  
CL = 25 pF  
f = 10 Hz  
-
20  
8
Input-Referred Noise Voltage  
Density  
Vn  
nV/√Hz  
-
f = 1 kHz  
Total Harmonic Distortion +  
Noise  
THD+N  
-
0.001  
%
VOUT = 4 Vp-p, f = 1 kHz  
Channel Separation (Note 2)  
CS  
-
100  
dB  
input referred  
(Note 1) Consider the power dissipation of the IC under high temperature environment when selecting the output current value. When the output pin is short-circuited  
continuously, the output current may decrease due to the temperature rise by the heat generation of inside the IC.  
(Note 2) TLR2376Yxxx-C, TLR4376YFV-C  
www.rohm.com  
TSZ02201-0GLG2G500060-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
5/22  
TSZ22111 • 15 • 001  
15.Jul.2021 Rev.002  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Typical Performance Curves  
VSS = 0 V  
3500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VDD = 2.5 V  
VDD = 5.0 V  
VDD = 5.5 V  
TLR376YG-C  
TLR2376Yxxx-C  
TLR4376YFV-C  
TLR376YG-C  
TLR2376Yxxx-C  
TLR4376YFV-C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
3000  
2500  
2000  
1500  
1000  
500  
0
0
-50 -25  
0
25  
50  
75 100 125 150  
2
3
4
5
6
Supply Voltage VS [V]  
Ambient Temperature Ta [°C]  
Figure 1. Supply Current vs Supply Voltage  
Figure 2. Supply Current vs Ambient Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
0
0
-50 -25  
0
25  
50  
75 100 125 150  
2
3
4
5
6
Ambient Temperature Ta [°C]  
Supply Voltage VS [V]  
Figure 3. Output Voltage High vs Supply Voltage  
(IL = 1 mA)  
Figure 4. Output Voltage High vs Ambient Temperature  
(VS = 5 V, IL = 1 mA)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
© 2021 ROHM Co., Ltd. All rights reserved.  
6/22  
TSZ22111 • 15 • 001  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Typical Performance Curves - continued  
VSS = 0 V  
30  
25  
20  
15  
10  
5
30  
25  
Ta = +125 °C  
20  
Ta = +25 °C  
15  
Ta = -40 °C  
10  
5
0
0
-50 -25  
0
25  
50  
75 100 125 150  
2
3
4
5
6
Ambient Temperature Ta [°C]  
Supply Voltage VS [V]  
Figure 5. Output Voltage Low vs Supply Voltage  
(IL = 1 mA)  
Figure 6. Output Voltage Low vs Ambient Temperature  
(VS = 5 V, IL = 1 mA)  
80  
80  
70  
70  
Ta = -40 °C  
Ta = -40 °C  
60  
50  
60  
50  
Ta = +25 °C  
Ta = +25 °C  
40  
40  
Ta = +125 °C  
30  
30  
Ta = +125 °C  
20  
10  
0
20  
10  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage VOUT V]  
Output Voltage VOUT [V]  
Figure 7. Output Source Current vs Output Voltage  
(VS = 5 V)  
Figure 8. Output Sink Current vs Output Voltage  
(VS = 5 V)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
© 2021 ROHM Co., Ltd. All rights reserved.  
7/22  
TSZ22111 • 15 • 001  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Typical Performance Curves - continued  
VSS = 0 V  
500  
400  
300  
200  
100  
0
500  
400  
300  
VS = 5.5 V  
200  
Ta = +125 °C  
VS = 5.0 V  
100  
0
-100  
-200  
-300  
-400  
-500  
-100  
Ta = +25 °C  
Ta = -40 °C  
-200  
-300  
-400  
-500  
VS = 2.5 V  
-50 -25  
0
25  
50  
75 100 125 150  
2
3
4
5
6
Supply Voltage VS [V]  
Ambient Temperature Ta [°C]  
Figure 9. Input Offset Voltage vs Supply Voltage  
Figure 10. Input Offset Voltage vs Ambient Temperature  
500  
400  
300  
200  
160  
150  
Ta = -40 °C  
140  
Ta = +125 °C  
130  
Ta = +25 °C  
100  
Ta = +125 °C  
120  
0
-100  
110  
100  
90  
Ta = +25 °C  
Ta = -40 °C  
-200  
-300  
-400  
-500  
80  
2
3
4
5
6
-1  
0
1
2
3
4
5
6
Supply Voltage VS [V]  
Input Common Mode Voltage VICM [V]  
Figure 11. Input Offset Voltage vs Input Common Mode  
Figure 12. Large Signal Voltage Gain vs Supply Voltage  
(RL = 10 kΩ)  
Voltage  
(VS = 5 V)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
© 2021 ROHM Co., Ltd. All rights reserved.  
8/22  
TSZ22111 • 15 • 001  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Typical Performance Curves - continued  
VSS = 0 V  
160  
160  
140  
120  
100  
80  
150  
VS = 5.5 V  
VS = 5.0 V  
140  
Ta = +25 °C  
Ta = -40 °C  
130  
VS = 2.5 V  
120  
110  
100  
90  
Ta = +125 °C  
60  
40  
20  
80  
0
-50 -25  
0
25  
50  
75 100 125 150  
2
3
4
5
6
Ambient Temperature Ta [°C]  
Supply Voltage VS [V]  
Figure 13. Large Signal Voltage Gain vs Ambient  
Temperature  
Figure 14. Common-mode Rejection Ratio vs Supply Voltage  
160  
140  
200  
180  
160  
140  
120  
100  
80  
120  
VS = 5.5 V  
100  
80  
VS = 5.0 V  
VS = 2.5 V  
60  
40  
20  
0
60  
40  
20  
0
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature Ta [°C]  
Ambient Temperature Ta [°C]  
Figure 15. Common-mode Rejection Ratio vs Ambient  
Temperature  
Figure 16. Power Supply Rejection Ratio vs Ambient  
Temperature  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
© 2021 ROHM Co., Ltd. All rights reserved.  
9/22  
TSZ22111 • 15 • 001  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Typical Performance Curves - continued  
VSS = 0 V  
800  
700  
600  
500  
400  
300  
200  
100  
0
40  
35  
30  
25  
20  
15  
10  
5
0
10  
100  
1000  
10000  
100000  
0
25  
50  
75  
100  
125  
150  
Frequency f [Hz]  
Ambient Temperature Ta [°C]  
Figure 17. Input Bias Current vs Ambient Temperature  
(VS = 5 V)  
Figure 18. Input-Referred Noise Voltage Density vs  
Frequency  
(VS = 5 V)  
5
5
Fall  
Fall  
4
4
3
3
Rise  
2
2
Rise  
1
0
1
0
2
3
4
5
6
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature Ta [°C]  
Supply Voltage VS [V]  
Figure 19. Slew Rate vs Supply Voltage  
Figure 20. Slew Rate vs Ambient Temperature  
(VS = 5 V)  
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
© 2021 ROHM Co., Ltd. All rights reserved.  
10/22  
TSZ22111 • 15 • 001  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Typical Performance Curves - continued  
VSS = 0 V  
6
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VS = 5.0 V  
VS = 5.5 V  
4
3
2
1
0
VS = 2.5 V  
-50 -25  
0
25  
50  
75 100 125 150  
10  
100  
1000  
Ambient Temperature Ta [°C]  
Load Capacitance CL [pF]  
Figure 21. Gain Bandwidth Product vs Ambient Temperature  
Figure 22. Phase Margin vs Load Capacitance  
(VS = 5 V, RF = 10 kΩ, G = 40 dB)  
18  
12  
6
80  
180  
135  
90  
45  
0
Phase  
CL = 600 pF  
CL = 500 pF  
60  
CL = 330 pF  
40  
0
Gain  
-6  
CL = 0 pF  
20  
0
-12  
-18  
102  
100  
103  
1000  
104  
105  
106  
107  
102  
103  
104  
105  
106  
107  
10000 100000 100000010000000  
Frequency f [Hz]  
Frequency f [Hz]  
Figure 23. Voltage Gain, Phase vs Frequency  
(VS = 5 V)  
Figure 24. Voltage Gain vs Frequency  
(VS = 5 V, G = 0 dB, VIN = 180 mVP-P  
)
(Note) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
© 2021 ROHM Co., Ltd. All rights reserved.  
11/22  
TSZ22111 • 15 • 001  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Application Examples  
○Voltage Follower  
Using this circuit, the output voltage (VOUT) is configured  
to be equal to the input voltage (VIN). This circuit also  
stabilizes the output voltage due to high input impedance  
and low output impedance. Computation for output  
voltage is shown below.  
VDD  
VOUT  
푂푈푇 = 푉  
퐼푁  
VIN  
VSS  
Figure 25. Voltage Follower Circuit  
○Inverting Amplifier  
RF  
For inverting amplifier, input voltage (VIN) is amplified by  
a voltage gain which depends on the ratio of RIN and RF,  
and then it outputs phase-inverted voltage (VOUT). The  
output voltage is shown in the next expression.  
VDD  
RIN  
VIN  
퐹  
VOUT  
푂푈푇 = −  
퐼푁  
퐼푁  
This circuit has input impedance equal to RIN.  
VSS  
Figure 26. Inverting Amplifier Circuit  
○Non-inverting Amplifier  
RIN  
RF  
For non-inverting amplifier, input voltage (VIN) is amplified  
by a voltage gain, which depends on the ratio of RIN and  
RF. The output voltage (VOUT) is in-phase with the input  
voltage and is shown in the next expression.  
VDD  
퐹  
푂푈푇 = (1 +  
) 푉  
퐼푁  
VOUT  
퐼푁  
VIN  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational amplifier.  
VSS  
Figure 27. Non-inverting Amplifier Circuit  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
12/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
I/O Equivalence Circuits  
○TLR376YG-C  
Pin No.  
Pin Name  
Pin Description  
Equivalence Circuit  
5
1
OUT  
Output  
1
2
5
3
4
+IN  
-IN  
3, 4  
Input  
2
○TLR2376Yxxx-C  
Pin No.  
Pin Name  
Pin Description  
Equivalence Circuit  
8
1
7
OUT1  
OUT2  
Output  
1, 7  
4
8
2
3
5
6
-IN1  
+IN1  
+IN2  
-IN2  
2, 3, 5, 6  
Input  
4
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
13/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
○TLR4376YFV-C  
Pin No.  
Pin Name  
Pin Description  
Equivalence Circuit  
4
1
7
8
OUT1  
OUT2  
OUT3  
OUT4  
1, 7  
8,14  
Output  
14  
11  
4
2
3
5
6
9
10  
12  
13  
-IN1  
+IN1  
+IN2  
-IN2  
-IN3  
+IN3  
+IN4  
-IN4  
2, 3, 5, 6  
9,10,12,13  
Input  
11  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
14/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
15/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 28. Example of monolithic IC structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
16/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Ordering Information  
T L R x 3 7 6 Y x x x - C x x  
Part Number  
Package  
Product Rank  
TLR376Y (Single Op-Amp)  
G
: SSOP5  
C: Automotive (Engine control unit, EPS,  
ABS, and so on)  
Packaging and forming specification  
TR: Embossed tape and reel  
(SSOP5 / MSOP8)  
TLR2376Y (Dual Op-Amp)  
TLR4376Y (Quad Op-Amp)  
FVM: MSOP8  
FJ : SOP-J8  
E2: Embossed tape and reel  
FV : SSOP-B14  
(SOP-J8 / SSOP-B14)  
Lineup  
Operating  
Temperature Range  
Operating  
Supply Voltage  
Number of  
Channels  
Package  
Orderable Part Number  
Single  
Dual  
SSOP5  
Reel of 3000  
Reel of 3000  
Reel of 2500  
Reel of 2500  
TLR376YG-CTR  
MSOP8  
TLR2376YFVM-CTR  
TLR2376YFJ-CE2  
TLR4376YFV-CE2  
-40 °C to +125 °C  
2.5 V to 5.5 V  
SOP-J8  
Quad  
SSOP-B14  
Marking Diagrams  
SSOP5 (TOP VIEW)  
MSOP8 (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
2
6
3
7
Y
Pin 1 Mark  
LOT Number  
SOP-J8 (TOP VIEW)  
SSOP-B14 (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
4376Y  
LOT Number  
2 3 7 6 Y  
Pin 1 Mark  
Pin 1 Mark  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
17/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Physical Dimension and Packing Information  
Package Name  
SSOP5  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
18/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Physical Dimension and Packing Information - continued  
Package Name  
MSOP8  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
19/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Physical Dimension and Packing Information - continued  
Package Name  
SOP-J8  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
20/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Physical Dimension and Packing Information - continued  
Package Name  
SSOP-B14  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
21/22  
TLR376YG-C TLR2376Yxxx-C TLR4376YFV-C  
Revision History  
Date  
Revision  
001  
Changes  
26.Feb.2021  
15.Jul.2021  
New Release  
Add Lineup  
002  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0GLG2G500060-1-2  
15.Jul.2021 Rev.002  
22/22  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

TLR2377YFJ-C

本产品是将输入/输出轨到轨高精度CMOS运算放大器以2个电路集成于1枚芯片的单片IC。由于具有低输入失调电压、低噪声和低输入偏置电流等特点,因此可用于包括引擎控制单元、EPS、ABS和传感器放大器等各类车载应用。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROHM

TLR2377YFVM-C

本产品是将输入/输出轨到轨高精度CMOS运算放大器以2个电路集成于1枚芯片的单片IC。由于具有低输入失调电压、低噪声和低输入偏置电流等特点,因此可用于引擎控制单元、EPS、ABS和传感器放大器等各类车载应用。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROHM

TLR250

Visible LED, SINGLE COLOR LED, RED, 4.4 mm

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TLR25NN

Dry Reed Relay, SPST, Latched, 5VDC (Coil), 0.5A (Contact), 300VDC (Contact), 30MHz, AC/DC Output, Through Hole-Straight Mount,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYNERGY3

TLR25SM

Dry Reed Relay, SPST, Latched, 5VDC (Coil), 0.5A (Contact), 300VDC (Contact), 30MHz, AC/DC Output, Through Hole-Straight Mount,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYNERGY3

TLR25SN

Dry Reed Relay, SPST, Latched, 5VDC (Coil), 0.5A (Contact), 300VDC (Contact), 30MHz, AC/DC Output, Through Hole-Straight Mount,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYNERGY3

TLR261P

Visible LED, SINGLE COLOR LED, RED, 4.9 mm

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TLR262

Visible LED, SINGLE COLOR LED, RED, 3.1 mm

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TLR263P

Visible LED, SINGLE COLOR LED, RED, 5 mm

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TLR2B10DR0005FTDG

SMD Low Ohmic – Current Sense Resistors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE

TLR2B10DR0005HTDG

SMD Low Ohmic – Current Sense Resistors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE

TLR2B10DR0005JTDG

SMD Low Ohmic – Current Sense Resistors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE