TLR344FVJ-E2 [ROHM]

Low Voltage Operation Ground Sense Operational Amplifier;
TLR344FVJ-E2
型号: TLR344FVJ-E2
厂家: ROHM    ROHM
描述:

Low Voltage Operation Ground Sense Operational Amplifier

文件: 总55页 (文件大小:4750K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Low Voltage Operation  
Ground Sense Operational Amplifier  
TLR341G TLR342xxx TLR344xxx  
Key Specifications  
Operating Supply Voltage (Single Supply):  
+1.8V to +5.5V  
General Description  
TLR341G, TLR342xxx, and TLR344xxx series are  
single, dual, and quad CMOS operational amplifier with  
low supply voltage operation and full swing output.  
These are suitable for battery-operated equipment. The  
MOSFET input stage provides low input bias current. It  
can be used for sensor applications.  
Supply Current:  
TLR341G  
75uA (Typ)  
150uA (Typ)  
300uA (Typ)  
105dB (Typ)  
-40°C to +85°C  
4mV (Max)  
TLR342xxx  
TLR344xxx  
Voltage Gain (RL=2kΩ):  
Temperature Range:  
Input Offset Voltage:  
Input Bias Current:  
Gain Bandwidth:  
Slew Rate:  
TLR341G includes shutdown function.  
Features  
1pA (Typ)  
Low Operating Supply Voltage  
Output Full Swing / Input Ground Sense  
High Large Signal Voltage Gain  
Low Input Bias Current  
Low Supply Current  
2.3MHz (Typ)  
1.2V/µs (Typ)  
1.2µs (Typ)  
Turn-on Time from Shutdown:  
Low Input Offset Voltage  
Packages  
SSOP6  
SOP8  
W(Typ) x D(Typ) x H(Max)  
2.90mm x 2.80mm x 1.25mm  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.20mm  
3.00mm x 4.90mm x 1.10mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.20mm  
Applications  
SOP-J8  
TSSOP-B8  
TSSOP-B8J  
SOP14  
SOP-J14  
Consumer Electronics  
Buffer  
Sensor Amplifier  
Mobile Equipment  
Battery-Operated Equipment  
TSSOP-B14J  
Pin Configuration  
TLR341G  
: SSOP6  
Pin No.  
Pin Name  
1
2
3
4
5
6
+IN  
VSS  
-IN  
+IN  
VSS  
-IN  
1
2
3
6 VDD  
+
-
5 SHDN  
OUT  
——————  
OUT  
4
SHDN  
VDD  
Pin  
Input condition  
State  
Shutdown  
Active  
VSS  
——————  
SHDN  
VDD  
Note: Please refer to Electrical Characteristics regarding to Shutdown Voltage Range.  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
1/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Pin Configuration continued  
TLR342F  
: SOP8  
TLR342FJ  
: SOP-J8  
TLR342FVT : TSSOP-B8  
TLR342FVJ : TSSOP-B8J  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
1
2
3
4
8
7
6
5
OUT1  
-IN1  
VDD  
OUT2  
-IN2  
+IN1  
VSS  
+IN2  
-IN2  
CH1  
-
+
+IN1  
VSS  
CH2  
-
+
+IN2  
OUT2  
VDD  
TLR344F  
: SOP14  
TLR344FJ  
: SOP-J14  
TLR344FVJ : TSSOP-B14J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
1
2
3
4
5
6
7
14  
OUT1  
OUT4  
3
+IN1  
VDD  
13  
12  
11  
10  
9
-IN1  
+IN1  
VDD  
+IN2  
-IN2  
-IN4  
CH1  
CH4  
4
-
-
+
+
5
+IN2  
-IN2  
+IN4  
VSS  
+IN3  
-IN3  
6
7
OUT2  
OUT3  
-IN3  
8
9
-
-
+
+
CH2  
CH3  
10  
11  
12  
13  
14  
+IN3  
VSS  
8
OUT2  
OUT3  
+IN4  
-IN4  
OUT4  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
2/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Absolute Maximum Ratings (TA=25°C)  
Rating  
Parameter  
Symbol  
Unit  
V
TLR341G  
TLR342xxx  
TLR344xxx  
Supply Voltage  
VDD-VSS  
+7  
0.67(Note 1,9)  
-
-
SSOP6  
-
-
-
-
-
-
-
0.68(Note 2,9)  
0.67(Note 3,9)  
0.62(Note 4,9)  
0.58(Note 5,9)  
-
SOP8  
SOP-J8  
-
-
TSSOP-B8  
TSSOP-B8J  
SOP14  
Power Dissipation  
W
PD  
-
-
-
-
0.56(Note 6,9)  
1.02(Note 7,9)  
0.84(Note 8,9)  
SOP-J14  
TSSOP-B14J  
Differential Input  
Voltage(Note 10)  
VID  
VDD - VSS  
V
V
Input Common-mode  
Voltage Range  
VICM  
(VSS-0.3) to (VDD+0.3)  
Input Current (Note 11)  
Operating Voltage  
II  
±10  
mA  
V
Vopr  
+1.8 to +5.5  
Operating  
Temperature  
Topr  
Tstg  
-40 to +85  
-55 to +150  
+150  
°C  
°C  
°C  
Storage Temperature  
Maximum Junction  
Temperature  
Tjmax  
(Note 1) Power dissipation is reduced by 5.4mW/°C above TA=25C.  
(Note 2) Power dissipation is reduced by 5.5mW/°C above TA=25C.  
(Note 3) Power dissipation is reduced by 5.4mW/°C above TA=25C.  
(Note 4) Power dissipation is reduced by 5.0mW/°C above TA=25C.  
(Note 5) Power dissipation is reduced by 4.7mW/°C above TA=25C.  
(Note 6) Power dissipation is reduced by 4.5mW/°C above TA=25C.  
(Note 7) Power dissipation is reduced by 8.2mW/°C above TA=25C.  
(Note 8) Power dissipation is reduced by 6.8mW/°C above TA=25C.  
(Note 9) Mounted on a FR4 glass epoxy PCB (70mm×70mm×1.6mm).  
(Note 10) Differential Input Voltage is the voltage difference between the inverting and non-inverting inputs.  
The input pin voltage is set to more than VSS  
.
(Note 11) An excessive input current will flow when input voltages of more than VDD+0.6V or less than VSS-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
3/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Electrical Characteristics  
TLR341G (Unless otherwise specified VDD=+1.8V, VSS=0V, V——————=VDD  
)
SHDN  
Limits  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
μV/°C  
pA  
pA  
μA  
nA  
dB  
dB  
V
Conditions  
Range  
Min  
-
-
Typ  
0.3  
-
Max  
4
4.5  
25°C  
Full Range  
Input Offset Voltage(Note 12,13)  
-
-
-
-
-
Input Offset Voltage Drift(Note 12,13) ΔVIO/ΔT  
Full Range  
25°C  
-
-
-
1.9  
1
-
Input Bias Current(Note 12)  
Input Offset Current(Note 12)  
Supply Current(Note 13)  
IB  
IIO  
200  
200  
25°C  
1
25°C  
Full Range  
-
-
70  
-
150  
200  
IDD  
——————  
Shutdown Current  
IDD_SD  
CMRR  
PSRR  
VICM  
Av  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
-
0.2  
90  
95  
-
1000  
V
=0V  
SHDN  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
65  
75  
0
-
-
VICM=0V to 0.7V  
VDD=1.8V to 5.0V  
CMRR ≥ 60 dB  
Input Common-mode  
Voltage Range  
0.8  
70  
65  
110  
100  
-
-
-
-
RL=10kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=10kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=10kΩ, VRL=0.9V  
Large Signal Voltage Gain  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Output Source Current(Note 14)  
Output Sink Current(Note 14)  
Slew Rate  
dB  
V
VDD-0.05 VDD-0.03  
VDD-0.02 VDD-0.01  
VOH  
-
-
0.022  
0.014  
0.055  
0.02  
VOL  
V
ISOURCE  
ISINK  
SR  
6
8
13  
1.2  
2.2  
1.2  
55  
7
-
mA  
mA  
VOUT=0V, Short Current  
VOUT=1.8V, Short  
Current  
10  
-
-
-
V/μs RL=10kΩ, V+IN=0.7VP-P  
MHz CL=200pF, RL=100kΩ  
MHz CL=200pF, RL=100kΩ  
Gain Bandwidth  
GBW  
fT  
-
-
Unity Gain Frequency  
Phase Margin  
-
-
-
θM  
-
deg  
dB  
CL=20pF, RL=100kΩ  
CL=20pF, RL=100kΩ  
Gain Margin  
GM  
-
-
-
Input Referred Noise Voltage  
VN  
-
33  
0.012  
1.8  
-
nV/ Hz f=1kHz  
Total Harmonic Distortion  
+ Noise  
f=1kHz, RL=600Ω  
AV=0dB, DIN-AUDIO  
THD+N  
tON  
-
-
%
μs  
V
Turn-on Time from Shutdown  
-
-
-
(Note 15)  
VSHDN_H  
VSHDN_L  
1.5  
0
1.8  
0.5  
Shutdown Voltage Range  
25°C  
(Note 16)  
-
V
(Note 12) Absolute value  
(Note 13) Full Range: TA=-40°C to +85°C  
(Note 14) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
(Note 15) This voltage range means active condition.  
(Note 16) This voltage range means shutdown condition.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
4/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Electrical Characteristics continued  
TLR341G (Unless otherwise specified VDD=+5V, VSS=0V, V——————=VDD  
)
SHDN  
Limits  
Typ  
0.3  
-
Temperature  
Parameter  
Symbol  
VIO  
Unit  
mV  
μV/°C  
pA  
Conditions  
Range  
Min  
-
-
Max  
4
4.5  
25°C  
Full Range  
Input Offset Voltage(Note 17,18)  
-
-
-
-
-
Input Offset Voltage Drift(Note 17,18) ΔVIO/ΔT  
Full Range  
25°C  
-
-
-
1.9  
1
-
Input Bias Current(Note 17)  
Input Offset Current(Note 17)  
Supply Current(Note 18)  
IB  
IIO  
200  
200  
25°C  
1
pA  
25°C  
Full Range  
-
-
75  
-
150  
200  
IDD  
μA  
——————  
Shutdown Current  
IDD_SD  
CMRR  
25°C  
25°C  
-
0.2  
90  
1000  
-
nA  
V
=0V  
SHDN  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
75  
dB  
VICM=0V to 3.9V  
PSRR  
VICM  
Av  
25°C  
25°C  
25°C  
75  
0
95  
-
-
dB  
V
VDD=1.8V to 5.0V  
Input Common-mode  
Voltage Range  
4.0  
CMRR ≥70 dB  
80  
75  
110  
105  
-
-
-
RL=10kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=10kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=10kΩ, VRL=2.5V  
Large Signal Voltage Gain  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Output Source Current(Note 19)  
Output Sink Current(Note 19)  
Slew Rate  
dB  
VDD-0.06 VDD-0.03  
VDD-0.02 VDD-0.01  
VOH  
VOL  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
V
V
-
-
-
0.04  
0.02  
0.06  
0.03  
ISOURCE  
ISINK  
SR  
60  
80  
-
100  
120  
1.2  
2.3  
1.3  
55  
-
-
-
-
-
-
-
-
mA  
mA  
VOUT=0V, Short Current  
VOUT=5V, Short Current  
V/μs RL=10kΩ, V+IN=2VP-P  
MHz CL=200pF, RL=100kΩ  
MHz CL=200pF, RL=100kΩ  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
θM  
-
deg  
dB  
CL=20pF, RL=100kΩ  
CL=20pF, RL=100kΩ  
f=1kHz  
Gain Margin  
GM  
VN  
-
7
Input Referred Noise Voltage  
-
33  
nV/ Hz  
V+IN=1VP-P, f=1kHz  
RL=600Ω,  
AV=0dB, DIN-AUDIO  
Total Harmonic Distortion  
+ Noise  
THD+N  
25°C  
25°C  
-
0.012  
-
%
-
4.5  
0
1.2  
-
Turn-on Time from Shutdown  
Shutdown Voltage Range  
tON  
μs  
V
-
(Note 20)  
VSHDN_H  
VSHDN_L  
-
-
5.0  
0.8  
25°C  
(Note 21)  
V
(Note 17) Absolute value  
(Note 18) Full Range: TA=-40°C to +85°C  
(Note 19) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
(Note 20) This voltage range means active condition.  
(Note 21) This voltage range means shutdown condition.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
5/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Electrical Characteristics continued  
TLR342xxx (Unless otherwise specified VDD=+1.8V, VSS=0V)  
Limit  
Typ  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
Conditions  
Range  
Min  
Max  
25°C  
Full Range  
-
-
0.3  
-
4
4.5  
Input Offset Voltage(Note 22,23)  
mV  
μV/°C  
pA  
-
-
-
-
-
Input Offset Voltage Drift (Note22,23) ΔVIO/ΔT  
Full Range  
25°C  
-
-
-
1.9  
1
-
Input Bias Current(Note 22)  
Input Offset Current(Note 22)  
Supply Current(Note 23)  
IB  
IIO  
200  
200  
25°C  
1
pA  
25°C  
Full Range  
-
-
150  
-
300  
400  
IDD  
μA  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
25°C  
25°C  
65  
75  
90  
95  
-
-
dB  
VICM=0V to 0.7V  
dB  
VDD=1.8V to 5.0V  
Input Common-mode  
Voltage Range  
VICM  
25°C  
0
-
0.8  
V
CMRR ≥ 60 dB  
70  
65  
110  
100  
-
-
-
-
RL=10kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=10kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=10kΩ, VRL=0.9V  
Large Signal Voltage Gain  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Output Source Current(Note 24)  
Output Sink Current(Note 24)  
Slew Rate  
Av  
VOH  
VOL  
ISOURCE  
ISINK  
SR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
V
VDD-0.05 VDD-0.03  
VDD-0.02 VDD-0.01  
-
-
0.022  
0.014  
0.055  
0.02  
V
6
10  
-
8
-
-
-
-
-
-
-
-
mA  
mA  
VOUT=0V, Short Current  
VOUT=1.8V, Short  
Current  
13  
1.2  
2.2  
1.2  
55  
7
V/μs RL=10kΩ, V+IN=0.7VP-P  
MHz CL=200pF, RL=100kΩ  
MHz CL=200pF, RL=100kΩ  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
θM  
-
deg  
dB  
CL=20pF, RL=100kΩ  
CL=20pF, RL=100kΩ  
f=1kHz  
Gain Margin  
GM  
VN  
-
Input Referred Noise Voltage  
-
33  
nV/ Hz  
Total Harmonic Distortion  
+ Noise  
f=1kHz, RL=600Ω  
AV=0dB, DIN-AUDIO  
THD+N  
CS  
25°C  
25°C  
-
-
0.012  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, VOUT=1Vrms  
(Note 22) Absolute value  
(Note 23) Full Range: TA=-40°C to +85°C  
(Note 24) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
6/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Electrical Characteristics continued  
TLR342xxx (Unless otherwise specified VDD=+5V, VSS=0V)  
Limit  
Typ  
Temperature  
Parameter  
Symbol  
VIO  
Unit  
Conditions  
Range  
Min  
Max  
25°C  
Full Range  
-
-
0.3  
-
4
4.5  
Input Offset Voltage(Note 25,26)  
mV  
μV/°C  
pA  
-
-
-
-
-
Input Offset Voltage Drift(Note 25,26) ΔVIO/ΔT  
Full Range  
25°C  
-
-
-
1.9  
1
-
Input Bias Current(Note 25)  
Input Offset Current(Note 25)  
Supply Current(Note 26)  
IB  
IIO  
200  
200  
25°C  
1
pA  
25°C  
Full Range  
-
-
150  
-
300  
400  
IDD  
μA  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
25°C  
25°C  
75  
75  
90  
95  
-
-
dB  
VICM=0V to 3.9V  
dB  
VDD=1.8V to 5.0V  
Input Common-mode  
Voltage Range  
VICM  
25°C  
0
-
4.0  
V
CMRR ≥70 dB  
80  
75  
110  
105  
-
-
-
RL=10kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=10kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=10kΩ, VRL=2.5V  
Av  
VOH  
VOL  
ISOURCE  
ISINK  
SR  
Large Signal Voltage Gain  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Output Source Current(Note 27)  
Output Sink Current(Note 27)  
Slew Rate  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
V
VDD-0.06 VDD-0.03  
VDD-0.02 VDD-0.01  
-
-
-
0.04  
0.02  
0.06  
0.03  
V
60  
80  
-
100  
120  
1.2  
2.3  
1.3  
55  
-
-
-
-
-
-
-
-
mA  
mA  
VOUT=0V, Short Current  
VOUT=5V, Short Current  
V/μs RL=10kΩ, V+IN=2VP-P  
MHz CL=200pF, RL=100kΩ  
MHz CL=200pF, RL=100kΩ  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
θM  
-
deg  
dB  
CL=20pF, RL=100kΩ  
CL=20pF, RL=100kΩ  
f=1kHz  
Gain Margin  
GM  
VN  
-
7
Input Referred Noise Voltage  
-
33  
nV/ Hz  
V+IN=1VP-P, f=1kHz  
RL=600Ω,  
AV=0dB, DIN-AUDIO  
Total Harmonic Distortion  
+ Noise  
THD+N  
CS  
25°C  
25°C  
-
-
0.012  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, VOUT=1Vrms  
(Note 25) Absolute value  
(Note 26) Full Range: TA=-40°C to +85°C  
(Note 27) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
7/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Electrical Characteristics continued  
TLR344xxx (Unless otherwise specified VDD=+1.8V, VSS=0V)  
Temperature  
Limit  
Typ  
0.3  
-
Parameter  
Symbol  
Unit  
mV  
μV/°C  
pA  
Conditions  
Range  
Min  
Max  
4
4.5  
25°C  
Full Range  
-
-
Input Offset Voltage(Note 28,29)  
VIO  
-
Input Offset Voltage Drift(Note 28,29) ΔVIO/ΔT Full Range  
-
-
-
1.9  
1
-
-
Input Bias Current(Note 28)  
Input Offset Current(Note 28)  
Supply Current(Note 29)  
IB  
IIO  
25°C  
25°C  
200  
200  
-
1
pA  
-
-
25°C  
Full Range  
-
-
280  
-
600  
800  
IDD  
μA  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
25°C  
25°C  
65  
75  
90  
95  
-
-
dB  
VICM=0V to 0.7V  
VDD=1.8V to 5.0V  
dB  
Input Common-mode  
Voltage Range  
VICM  
25°C  
0
-
0.8  
V
CMRR ≥ 60 dB  
70  
65  
110  
100  
-
-
-
-
RL=10kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=10kΩ, VRL=0.9V  
RL=2kΩ, VRL=0.9V  
RL=10kΩ, VRL=0.9V  
Large Signal Voltage Gain  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Output Source Current(Note 30)  
Output Sink Current(Note 30)  
Slew Rate  
Av  
VOH  
VOL  
ISOURCE  
ISINK  
SR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
V
VDD-0.05 VDD-0.03  
VDD-0.02 VDD-0.01  
-
-
0.022  
0.014  
0.055  
0.02  
V
6
10  
-
8
-
-
-
-
-
-
-
-
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
VOUT=0V, Short Current  
VOUT=1.8V, Short Current  
RL=10kΩ, V+IN=0.7VP-P  
CL=200pF, RL=100kΩ  
CL=200pF, RL=100kΩ  
CL=20pF, RL=100kΩ  
CL=20pF, RL=100kΩ  
f=1kHz  
13  
1.2  
2.2  
1.2  
55  
7
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
θM  
-
Gain Margin  
GM  
VN  
-
Input Referred Noise Voltage  
-
33  
nV/ Hz  
Total Harmonic Distortion  
+ Noise  
f=1kHz, RL=600Ω  
AV=0dB, DIN-AUDIO  
THD+N  
CS  
25°C  
25°C  
-
-
0.012  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, VOUT=1Vrms  
(Note 28) Absolute value  
(Note 29) Full Range: TA=-40°C to +85°C  
(Note 30) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
8/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Electrical Characteristics continued  
TLR344xxx (Unless otherwise specified VDD=+5V, VSS=0V)  
Temperature  
Limit  
Typ  
0.3  
-
Parameter  
Symbol  
Unit  
mV  
μV/°C  
pA  
Conditions  
Range  
Min  
-
-
Max  
4
4.5  
25°C  
Full Range  
Input Offset Voltage(Note 31,32)  
-
VIO  
Input Offset Voltage Drift(Note 31,32) ΔVIO/ΔT Full Range  
-
-
-
1.9  
1
-
-
Input Bias Current(Note 31)  
Input Offset Current(Note 31)  
Supply Current(Note 32)  
IB  
IIO  
25°C  
25°C  
200  
200  
-
1
pA  
-
-
25°C  
Full Range  
-
-
300  
-
600  
800  
IDD  
μA  
CMRR  
PSRR  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
25°C  
25°C  
75  
75  
90  
95  
-
-
dB  
VICM=0V to 3.9V  
VDD=1.8V to 5.0V  
dB  
Input Common-mode  
Voltage Range  
VICM  
25°C  
0
-
4.0  
V
CMRR ≥70 dB  
80  
75  
110  
105  
-
-
-
RL=10kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=10kΩ, VRL=2.5V  
RL=2kΩ, VRL=2.5V  
RL=10kΩ, VRL=2.5V  
Large Signal Voltage Gain  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Output Source Current(Note 33)  
Output Sink Current(Note 33)  
Slew Rate  
Av  
VOH  
VOL  
ISOURCE  
ISINK  
SR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
V
VDD-0.06 VDD-0.03  
VDD-0.02 VDD-0.01  
-
-
-
0.04  
0.02  
0.06  
0.03  
V
60  
80  
-
100  
120  
1.2  
2.3  
1.3  
55  
-
-
-
-
-
-
-
-
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
VOUT=0V, Short Current  
VOUT=5V, Short Current  
RL=10kΩ, V+IN=2VP-P  
CL=200pF, RL=100kΩ  
CL=200pF, RL=100kΩ  
CL=20pF, RL=100kΩ  
CL=20pF, RL=100kΩ  
f=1kHz  
GBW  
fT  
Gain Bandwidth  
-
Unity Gain Frequency  
Phase Margin  
-
θM  
-
GM  
VN  
Gain Margin  
-
7
Input Referred Noise Voltage  
-
33  
nV/ Hz  
V+IN=1VP-P, f=1kHz  
RL=600Ω,  
AV=0dB, DIN-AUDIO  
Total Harmonic Distortion  
+ Noise  
THD+N  
CS  
25°C  
25°C  
-
-
0.012  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, VOUT=1Vrms  
(Note 31) Absolute value  
(Note 32) Full Range: TA=-40°C to +85°C  
(Note 33) Consider the power dissipation of the IC under high temperature environment when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
9/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute Maximum Ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (VDD/VSS  
)
Indicates the maximum voltage that can be applied between the VDD pin and VSS pin without deterioration or  
destruction of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting pins without damaging the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting pins without deterioration or  
destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25°C  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical Characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting pin and inverting pins. It can be translated into the input  
voltage difference required for setting the output voltage at 0V.  
(2) Input Offset Voltage drift (VIO/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
(3) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting pins.  
(4) Input Bias Current (IB)  
Indicates the current that flows into or out of the input pin. It is defined by the average of input bias currents at the  
non-inverting and inverting pins.  
(5) Supply Current (IDD  
Indicates the current that flows within the IC under specified no-load conditions.  
(6) Shutdown current (IDD_SD  
)
)
Indicates the current when the circuit is shutdown.  
(7) Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL  
)
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage high and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
(8) Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting pin and  
inverting pin. It is normally the amplifying rate (gain) with reference to DC voltage.  
AV = (Output Voltage) / (Differential Input Voltage)  
(9) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(10) Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common-mode voltage is changed. It is normally  
the fluctuation of DC.  
CMRR = (Change of Input Common-mode voltage)/(Input offset fluctuation)  
(11) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR = (Change of power supply voltage)/(Input offset fluctuation)  
(12) Output Source Current/ Output Sink Current (ISOURCE / ISINK  
)
The maximum current that can be output from the IC under specific output conditions. The output source current  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
(13) Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
(14) Unity Gain Frequency (fT)  
Indicates a frequency where the voltage gain of operational amplifier is 1.  
(15) Gain Bandwidth (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
10/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Description of Electrical Characteristics - continued  
(16) Phase Margin M)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
(17) Gain Margin (GM)  
Indicates the difference between 0dB and the gain where operational amplifier has 180 degree phase delay.  
(18) Input Referred Noise Voltage (VN)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input pin.  
(19) Total Harmonic Distortion + Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
(20) Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
(21)Turn On Time From Shutdown (tON  
Indicates the time from applying the voltage to shutdown terminal until the IC is active.  
(22)Turn On Voltage / Turn Off Voltage (VSHDN_H/ VSHDN_L  
)
)
The IC is active if the shutdown terminal is applied more than Turn On Voltage (VSHDN_H).  
The IC is shutdown if the shutdown terminal is applied less than Turn Off Voltage (VSHDN_L).  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
11/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves  
TLR341G  
100  
90  
80  
70  
60  
50  
1.0  
0.8  
85°C  
25°C  
TLR341G  
0.6  
-40°C  
0.4  
0.2  
0.0  
0
25  
50  
75 85 100  
125  
150  
1
2
3
4
5
6
SupplyVoltage [V]  
AmbientTemperature [°C]  
Figure 2. Supply Current vs Supply Voltage  
Figure 1. Power Dissipation vs Ambient Temperature  
(Derating Curve)  
6
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
5.0V  
85°C  
25°C  
1.8V  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
AmbientTemperature [°C]  
Supply Voltage [V]  
Figure 4. Maximum Output Voltage High  
Figure 3. Supply Current vs Ambient Temperature  
vs Supply Voltage (RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
12/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR341G  
30  
25  
20  
15  
10  
5
6
5
5V  
4
3
2
85°C  
25°C  
-40°C  
1.8V  
1
0
0
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
AmbientTemperature [°C]  
Figure 6. Maximum Output Voltage Low  
Figure 5. Maximum Output Voltage High  
vs Supply Voltage (RL=2kΩ)  
vs Ambient Temperature (RL=2kΩ)  
25  
20  
15  
10  
5
14  
12  
10  
8
5V  
-40°C  
25°C  
6
85°C  
1.8V  
4
2
0
0
-50  
-25  
0
25  
50  
75  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Voltage [V]  
AmbientTemperature [°C]  
Figure 7. Maximum Output Voltage (Low)  
Figure 8. Output Source Current vs Output Voltage  
(VDD=1.8V)  
vs Ambient Temperature (RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
13/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR341G  
150  
120  
25  
20  
15  
10  
5
-40°C  
5V  
90  
25°C  
85°C  
60  
30  
1.8V  
0
-50  
0
-25  
0
25  
50  
75  
100  
0.0  
0.5  
1.0  
Output Voltage [V]  
1.5  
2.0  
AmbientTemperature [°C]  
Figure 9. Output Source Current  
vs Ambient Temperature (VOUT=0V)  
Figure 10. Output Sink Current vs Output Voltage  
(VDD=1.8V)  
150  
120  
4
5V  
3
2
1
90  
60  
30  
0
85°C  
0
-1  
-2  
-3  
-4  
-40°C  
25°C  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
AmbientTemperature [°C]  
Supply Voltage [V]  
Figure 12. Input Offset Voltage vs Supply  
Voltage  
Figure 11. Output Sink Current  
vs Ambient Temperature (VOUT=VDD  
)
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
14/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR341G  
4
3
2
1
4
3
2
1
5.0V  
0
0
-1  
-1  
-2  
-3  
-4  
1.8V  
85°C  
-40°C  
-2  
25°C  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
-2  
-1  
0
1
2
3
4
5
Input Voltage [V]  
AmbientTemperature [°C]  
Figure 13. Input Offset Voltage  
vs Ambient Temperature  
Figure 14. Input Offset Voltage vs Input Voltage  
(VDD=5V)  
120  
120  
110  
100  
90  
110  
100  
90  
85°C  
1.8V  
-40°C  
25°C  
5V  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
SupplyVoltage [V]  
AmbientTemperature [°C]  
Figure 15. Large Signal Voltage Gain  
Figure 16. Large Signal Voltage Gain  
vs Supply Voltage (RL=2)  
vs Ambient Temperature (RL=2)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
15/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR341G  
120  
110  
100  
90  
120  
110  
5V  
25°C  
100  
85°C  
90  
1.8V  
-40°C  
80  
70  
60  
80  
70  
60  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SupplyVoltage [V]  
AmbientTemperature [°C]  
Figure 17. Common-mode Rejection Ratio  
vs Supply Voltage (VDD=1.8V)  
Figure 18. Common-mode Rejection Ratio  
vs Ambient Temperature  
120  
110  
100  
90  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
5V  
80  
1.8V  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AmbientTemperature [°C]  
AmbientTemperature [°C]  
Figure 20. Slew Rate L-H vs Ambient Temperature  
Figure 19. Power Supply Rejection Ratio  
vs Ambient Temperature (VDD=1.8V to 5.0V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
16/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR341G  
1.6  
1.5  
100  
80  
60  
40  
20  
0
200  
Phase  
160  
120  
80  
40  
0
1.4  
5V  
1.3  
1.8V  
Gain  
1.2  
1.1  
1.0  
102  
100  
103  
104  
105  
106  
107  
108  
-50  
-25  
0
25  
AmbientTemperature [C]  
Figure 21. Slew Rate H-L vs Ambient Temperature  
50  
75  
100  
1000 10000 100000100000100000010000000000  
Frequency [Hz]  
Figure 22. Voltage Gain, Phase vs Frequency  
(VDD=1.8V, TA=25°C)  
1000  
100  
10  
1
1000  
100  
10  
25°C  
-40°C  
5V  
85°C  
1.8V  
1
0
0.1  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SupplyVoltage [V]  
AmbientTemperature [°C]  
Figure 23. Shutdown Current vs Supply  
Figure 24. Shutdown Current vs Ambient  
——————  
——————  
Voltage (V  
=0V)  
Temperature (V  
=0V)  
SHDN  
SHDN  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
17/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR341G  
4
3
4
3
2
1
0
1.8V  
2
-40°C  
85°C  
25°C  
1
0
5V  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
AmbientTemperature [°C]  
SupplyVoltage [V]  
Figure 25. Turn On Time vs Supply Voltage  
Figure 26. Turn On Time vs Ambient Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
3
2.5  
2
VSHDN_L  
VSHDN_H  
1.5  
1
VSHDN_L  
VSHDN_H  
0.5  
0
0
0.5  
1
1.5  
2
0
1
2
3
4
5
Shutdown Voltage [V]  
Shutdown Voltage [V]  
Figure 27. Output Voltage vs Shutdown Voltage  
(VDD=1.8V, AV=0dB, V+IN=0.7V, TA=25°C)  
Figure 28. Output Voltage vs Shutdown Voltage  
(VDD=5V, AV=0dB, V+IN=2.5V, TA=25°C)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
18/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR342xxx  
1.0  
200  
180  
160  
140  
120  
100  
0.8  
TLR342F  
TLR342FJ  
85°C  
0.6  
TLR342FVT  
TLR342FVJ  
25°C  
0.4  
-40°C  
0.2  
0.0  
85  
0
25  
50  
75  
100  
125  
150  
1
2
3
4
5
6
AmbientTemperature [°C]  
Supply Voltage [V]  
Figure 30. Supply Current vs Supply Voltage  
Figure 29. Power Dissipation vs Ambient Temperature  
(Derating Curve)  
200  
180  
160  
140  
120  
100  
6
5
4
3
2
1
0
85°C  
25°C  
5V  
-40°C  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
AmbientTemperature [°C]  
Figure 32. Maximum Output Voltage High  
Figure 31. Supply Current vs Ambient Temperature  
vs Supply Voltage (RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
19/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR342xxx  
30  
25  
20  
15  
10  
5
6
5
5V  
4
3
2
85°C  
-40°C  
25°C  
1.8V  
1
0
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SupplyVoltage [V]  
AmbientTemperature [°C]  
Figure 34. Maximum Output Voltage Low  
Figure 33. Maximum Output Voltage High  
vs Supply Voltage (RL=2kΩ)  
vs Ambient Temperature (RL=2kΩ)  
14  
12  
10  
8
25  
20  
15  
10  
5
5V  
-40°C  
25°C  
6
85°C  
1.8V  
4
2
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
-50  
-25  
0
25  
50  
75  
100  
AmbientTemperature [°C]  
Output Voltage [V]  
Figure 36. Output Source Current vs Output Voltage  
(VDD=1.8V)  
Figure 35. Maximum Output Voltage (Low)  
vs Ambient Temperature (RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
20/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR342xxx  
150  
25  
20  
15  
10  
5
120  
-40°C  
5V  
90  
25°C  
60  
85°C  
30  
1.8V  
0
0
-50  
-25  
0
25  
50  
75  
100  
0.0  
0.5  
1.0  
Output Voltage [V]  
1.5  
2.0  
AmbientTemperature [°C]  
Figure 38. Output Sink Current vs Output Voltage  
(VDD=1.8V)  
Figure 37. Output Source Current  
vs Ambient Temperature (VOUT=0V)  
150  
120  
90  
60  
30  
0
4
5V  
3
2
1
-40°C  
0
25°C  
85°C  
-1  
-2  
-3  
-4  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
AmbientTemperature [°C]  
SupplyVoltage [V]  
Figure 40. Input Offset Voltage vs Supply Voltage  
Figure 39. Output Sink Current  
vs Ambient Temperature (VOUT=VDD  
)
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
21/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR342xxx  
4
3
2
4
3
2
1
1
-40°C  
1.8V  
25°C  
85°C  
0
0
5V  
-1  
-1  
-2  
-3  
-4  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
-2  
-1  
0
1
2
3
4
5
AmbientTemperature [°C]  
Input Voltage [V]  
Figure 41. Input Offset Voltage  
vs Ambient Temperature  
Figure 42. Input Offset Voltage vs Input Voltage  
(VDD=5V)  
120  
120  
110  
100  
90  
110  
100  
90  
-40°C  
1.8V  
25°C  
5V  
85°C  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
AmbientTemperature [°C]  
Figure 44. Large Signal Voltage Gain  
vs Ambient Temperature (RL=2)  
Figure 43. Large Signal Voltage Gain  
vs Supply Voltage (RL=2)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
22/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR342xxx  
120  
110  
100  
90  
120  
110  
25°C  
5V  
100  
1.8V  
85°C  
90  
-40°C  
80  
80  
70  
60  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
AmbientTemperature [°C]  
SupplyVoltage [V]  
Figure 46. Common-mode Rejection Ratio  
vs Ambient Temperature  
Figure 45. Common-mode Rejection Ratio  
vs Supply Voltage (VDD=1.8V)  
120  
110  
100  
90  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
5V  
80  
1.8V  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AmbientTemperature [°C]  
AmbientTemperature [°C]  
Figure 48. Slew Rate L-H vs Ambient Temperature  
Figure 47. Power Supply Rejection Ratio  
vs Ambient Temperature (VDD=1.8V to 5.0V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
23/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR342xxx  
1.6  
1.5  
100  
80  
60  
40  
20  
0
200  
Phase  
160  
120  
80  
40  
0
5V  
1.4  
1.8V  
1.3  
Gain  
1.2  
1.1  
1.0  
1
10  
02  
0
1010030 10  
10  
0040 10  
10 10 10  
005001001006001000 007010000 0080000  
-50  
-25  
0
25  
AmbientTemperature [C]  
Figure 49. Slew Rate H-L vs Ambient Temperature  
50  
75  
100  
Frequency [Hz]  
Figure 50. Voltage Gain, Phase vs Frequency  
(VDD=1.8V, TA=25°C)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
24/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR344xxx  
400  
340  
280  
220  
160  
100  
1.2  
1.0  
TLR344FVJ  
85°C  
25°C  
0.8  
TLR344FJ  
0.6  
0.4  
-40°C  
TLR344F  
0.2  
0.0  
85  
0
25  
50  
75  
100  
125  
150  
1
2
3
4
5
6
AmbientTemperature [°C]  
Supply Voltage [V]  
Figure 52. Supply Current vs Supply Voltage  
Figure 51. Power Dissipation vs Ambient Temperature  
(Derating Curve)  
6
5
4
3
2
1
0
400  
340  
280  
220  
160  
100  
85°C  
1.8V  
25°C  
5V  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
AmbientTemperature [°C]  
Figure 54. Maximum Output Voltage High  
Figure 53. Supply Current vs Ambient Temperature  
vs Supply Voltage (RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
25/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR344xxx  
30  
25  
20  
15  
10  
5
6
5
5V  
4
3
2
85°C  
-40°C  
25°C  
1.8V  
1
0
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
AmbientTemperature [°C]  
Supply Voltage [V]  
Figure 56. Maximum Output Voltage Low  
Figure 55. Maximum Output Voltage High  
vs Supply Voltage (RL=2kΩ)  
vs Ambient Temperature (RL=2kΩ)  
14  
12  
10  
8
25  
20  
15  
10  
5
5V  
-40°C  
25°C  
6
85°C  
4
1.8V  
2
0
0
-50  
-25  
0
25  
50  
75  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
AmbientTemperature [°C]  
Output Voltage [V]  
Figure 58. Output Source Current  
vs Output Voltage (VDD=1.8V)  
Figure 57. Maximum Output Voltage (Low)  
vs Ambient Temperature (RL=2kΩ)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
26/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR344xxx  
25  
20  
15  
10  
5
150  
120  
-40°C  
5V  
90  
25°C  
85°C  
60  
30  
1.8V  
0
0
0.0  
0.5  
1.0  
Output Voltage [V]  
1.5  
2.0  
-50  
-25  
0
25  
50  
75  
100  
AmbientTemperature [°C]  
Figure 59. Output Source Current  
vs Ambient Temperature (VOUT=0V)  
Figure 60. Output Sink Current  
vs Output Voltage (VDD=1.8V)  
150  
120  
90  
60  
30  
0
4
3
2
5V  
1
25°C  
85°C  
0
-1  
-2  
-3  
-4  
-40°C  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
Supply Voltage [V]  
AmbientTemperature [°C]  
Figure 62. Input Offset Voltage vs Supply Voltage  
Figure 61. Output Sink Current  
vs Ambient Temperature (VOUT=VDD  
)
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
27/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR344xxx  
4
3
2
4
3
2
1
1
85°C  
25°C  
1.8V  
0
0
5.0V  
-1  
-1  
-2  
-3  
-4  
-40°C  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
-2.0 -1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
AmbientTemperature [°C]  
Input Voltage [V]  
Figure 64.Input Offset Voltage vs Input Voltage  
(VDD=5V)  
Figure 63. Input Offset Voltage vs Ambient Temperature  
120  
120  
110  
100  
90  
110  
100  
90  
1.8V  
-40°C  
25°C  
5V  
85°C  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
AmbientTemperature [°C]  
SupplyVoltage [V]  
Figure 66. Large Signal Voltage Gain  
vs Ambient Temperature (RL=2)  
Figure 65. Large Signal Voltage Gain  
vs Supply Voltage (RL=2)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
28/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR344xxx  
120  
110  
100  
90  
120  
110  
-40°C  
100  
5V  
25°C  
1.8V  
90  
85°C  
80  
70  
60  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
1
2
3
4
5
6
SupplyVoltage [V]  
AmbientTemperature [°C]  
Figure 67. Common-mode Rejection Ratio  
vs Supply Voltage  
Figure 68. Common-mode Rejection Ratio  
vs Ambient Temperature  
120  
110  
100  
90  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
5V  
80  
1.8V  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AmbientTemperature [°C]  
AmbientTemperature [°C]  
Figure 70. Slew Rate L-H vs Ambient Temperature  
Figure 69. Power Supply Rejection Ratio  
vs Ambient Temperature (VDD=1.8V to 5.0V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
29/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Typical Performance Curves continued  
TLR344xxx  
100  
1000  
10000  
100000  
1000000 10000000 100000000  
100  
80  
60  
40  
20  
0
200  
1.6  
1.5  
Phase  
160  
120  
80  
40  
0
1.4  
1.8V  
1.3  
5V  
Gain  
1.2  
1.1  
1.0  
2
3
4
5
6
7
8
-50  
-25  
0
25  
50  
75  
100  
100 1,000 10,000 100,0001,000,0100,000,1000,000,000  
10  
10  
10  
10  
10  
10  
10  
AmbientTemperature [°C]  
Frequency[Hz]  
Figure 71. Slew Rate H-L vs Ambient Temperature  
Figure 72. Voltage Gain, Phase vs Frequency  
(VDD=1.8V, TA=25°C)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
©2014 ROHM Co., Ltd. All rights reserved.  
30/51  
TSZ2211115001  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Application Information  
NULL method condition for Test Circuit 1  
VDD, VSS, EK, VICM Unit:V  
Parameter  
VF  
SW1 SW2 SW3  
VDD  
5
VSS  
0
EK  
VICM Calculation  
Input Offset Voltage  
VF1  
VF2  
VF3  
VF4  
VF5  
ON  
ON  
OFF  
-2.5  
-0.5  
-3.5  
2.5  
1
Large Signal Voltage Gain  
ON  
ON  
ON  
5
5
0
2.5  
2
0
3
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
ON  
ON  
ON  
ON  
OFF  
OFF  
0
0
-2.5  
-0.9  
3
4
VF6  
VF7  
1.8  
5
Power Supply Rejection Ratio  
0.5  
Calculation-  
|VF1|  
1 + RF/RS  
VIO  
=
[V]  
1. Input Offset Voltage (VIO)  
EK × (1+RF/RS)  
2. Large Signal Voltage Gain (AV)  
[dB]  
Av = 20Log  
|VF2 - VF3|  
VICM × (1+RF/RS)  
[dB]  
[dB]  
CMRR = 20Log  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
|VF4 - VF5|  
VDD × (1+ RF/RS)  
PSRR = 20Log  
|VF6 - VF7|  
0.1μF  
RF=50kΩ  
500kΩ  
SW1  
VDD  
0.01μF  
15V  
EK  
RS=50Ω  
RI=1MΩ  
Vo  
500kΩ  
0.1μF  
DUT  
0.1μF  
SW3  
NULL  
-15V  
1000pF  
RI=1MΩ  
RS=50Ω  
RL  
VRL  
VICM  
V
VF  
50kΩ  
SW2  
VSS  
Figure 73. Test Circuit 1  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
31/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Application Information continued  
Switch Condition for Test Circuit 2  
SW No.  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12  
Supply Current  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON ON OFF OFF OFF ON  
ON OFF OFF ON ON OFF OFF OFF ON OFF OFF ON  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
Maximum Output Voltage RL=10kΩ  
Output Current  
Slew Rate  
Unity Gain Frequency  
Turn On Time  
SW3  
R2=100kΩ  
SW4  
VDD  
SW1  
SW2  
SW8  
SW9  
SW5  
SW10 SW11 SW12  
SW7  
SW6  
R1=1kΩ  
VSS  
RL  
CL  
V+IN  
V-IN  
VOUT  
VRL  
Figure 74. Test Circuit 2 (Each Op-Amp)  
Output Voltage  
Input Voltage  
SR=V/t  
VH  
90%  
VH  
V  
10%  
VL  
VL  
t
t
t  
Input Wave  
Output Wave  
Figure 75. Slew Rate Input and Output Wave  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
32/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Application Information continued  
——————  
S H D N Voltage  
VDD  
VSS  
t
Input Wave  
Output Voltage  
VOUT  
50% of VOUT  
tON  
VSS  
t
Output Wave  
Figure 76. Turn On Time Input and Output Wave  
VDD  
VDD  
R1//R2  
R1//R2  
VSS  
VSS  
R1  
R2  
VOUT1  
1Vrms  
R1  
R2  
V
VOUT2  
V
VIN  
=
100 × VOUT1  
VOUT2  
=
CS 20× log  
Figure 77. Test Circuit 3 (Channel Separation)  
(R1=1kΩ, R2=100kΩ)  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
33/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Application Information continued  
VDD  
1. Unused Circuits  
When there are unused op-amps, it is recommended that they are  
connected as in Figure 78, setting the non-inverting input pin to a  
potential within the in-phase input voltage range (VICM).  
Keep this potential  
VICM  
in VICM  
2. Input Voltage  
Applying VDD+0.3V to the input pin is possible without causing  
deterioration of the electrical characteristics or destruction. However, this  
does not ensure normal circuit operation. Please note that the circuit  
operates normally only when the input voltage is within the common  
mode input voltage range of the electric characteristics.  
VSS  
Figure 78. Example of Application Circuit  
for Unused Op-amp  
3. Power Supply(single/dual)  
The operational amplifiers operate when the voltage supplied is between VDD and VSS. Therefore, the single supply  
operational amplifiers can be used as dual supply operational amplifiers as well.  
4. Output Capacitor  
If a large capacitor is connected between the output pin and VSS pin, current from the charged capacitor will flow into  
the output pin and may destroy the IC when the VDD pin is shorted to ground or pulled down to 0V. Use a capacitor  
smaller than 0.1µF between output pin and VSS pin.  
5. Oscillation by Output Capacitor  
Please pay attention to the oscillation by output capacitor and in designing an application of negative feedback loop  
circuit with these ICs.  
6. Latch Up  
Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up and  
protect the IC from abnormaly noise.  
7. Shutdown Terminal  
The shutdown terminal can’t be left unconnected. In case shutdown operation is not needed, the shutdown pin should be  
connected to VDD when the IC is used. Leaving the shutdown pin floating will result in an undefined operation mode,  
either shutdown or active, or even oscillating between the two modes.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
34/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
I/O Equivalent Circuit  
Pin No.  
Symbol  
Equivalent Circuit  
TLR341G  
TLR342xxx  
TLR344xxx  
+IN  
-IN  
2,3,5,6,  
9,10,12,13  
1,3  
2,3,5,6  
OUT  
4
6
5
1,7  
1,7,8,14  
VDD  
8
4
——————  
-
-
SHDN  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
35/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Application Example  
Voltage Follower  
Voltage gain is 0dB.  
VDD  
Using this circuit, the output voltage (VOUT) is configured  
to be equal to the input voltage (VIN). This circuit also  
stabilizes the output voltage (VOUT) due to high input  
impedance and low output impedance. Computation for  
output voltage (VOUT) is shown below.  
VOUT  
VIN  
VOUT=VIN  
VSS  
Figure 79. Voltage Follower Circuit  
Inverting Amplifier  
R2  
For inverting amplifier, input voltage (VIN) is amplified by  
a voltage gain and depends on the ratio of R1 and R2.  
The out-of-phase output voltage is shown in the next  
expression  
VDD  
R1  
VIN  
VOUT  
VOUT=-(R2/R1)VIN  
This circuit has input impedance equal to R1.  
VSS  
Figure 80. Inverting Amplifier Circuit  
Non-inverting Amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (VIN) is  
amplified by a voltage gain, which depends on the ratio  
of R1 and R2. The output voltage (VOUT) is in-phase with  
the input voltage (VIN) and is shown in the next  
expression.  
VDD  
VOUT  
VOUT=(1 + R2/R1)VIN  
VIN  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational amplifier.  
VSS  
Figure 81. Non-inverting Amplifier Circuit  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
36/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable temperature  
that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the thermal  
resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 82(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (Tjmax), and power dissipation  
(PD).  
θJA = (TjmaxTA) / PD  
°C/W  
The derating curve in Figure 82(b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal resistance  
JA), which depends on the chip size, power consumption, package, ambient temperature, package condition, wind velocity,  
etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Figure 82 (c), (d), and (e) shows an example of the derating curve for TLR341G,  
TLR342xxx, and TLR344xxx, respectively.  
θJA=(Tjmax-TA)/ PD °C/W  
Power Dissipation of LSI [W]  
PDmax  
Ambient Temperature TA [ °C ]  
P2  
P1  
θJA2 < θJA1  
θJA2  
Tjmax  
θJA1  
75  
150  
0
25  
50  
100  
125  
Chip Surface Temperature TJ [ °C ]  
Ambient Temperature TA [ °C ]  
(a) Thermal Resistance  
(b) Derating Curve  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TLR342F(Note 35)  
TLR342FJ(Note 36)  
TLR341G (Note 34)  
TLR342FVT(Note 37)  
TLR342FVJ(Note 38)  
85  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75  
100  
125  
150  
AmbientTemperature [°C]  
(c) TLR341G  
AmbientTemperature [°C]  
(d) TLR342xxx  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
37/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
1.2  
1.0  
0.8  
0.6  
0.4  
TLR344FVJ(Note 41)  
TLR344FJ(Note 40)  
TLR344F(Note 39)  
0.2  
0.0  
0
25  
50  
75 85 100  
125  
150  
AmbientTemperature [°C]  
(e) TLR344xxx  
(Note 34)  
5.4  
(Note 35)  
5.5  
(Note 36)  
5.4  
(Note 37)  
5.0  
(Note 38)  
4.7  
(Note 39)  
4.5  
(Note 40)  
8.2  
(Note 41)  
6.8  
Unit  
mW/°C  
When using the unit above TA =25°C, subtract the value above per Celsius degree.  
Power dissipation is the value when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area less than 3%) is mounted.  
Figure 82.Thermal Resistance and Derating Curve  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
38/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on  
the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the PD rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
12. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation  
of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage.  
Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower  
than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power  
supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have  
voltages within the values specified in the electrical characteristics of this IC.  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
39/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP6  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
40/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
41/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP-J8  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
42/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B8  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
43/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B8J  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
44/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
45/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
SOP-J14  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
46/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Physical Dimension, Tape and Reel Information continued  
Package Name  
TSSOP-B14J  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
47/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Ordering Information  
T
L
R
3
4
x
x
x
x
-
x
x
Part Number  
TLR341G  
TLR342F  
Package  
Packaging and forming specification  
TR: Embossed tape and reel  
(SSOP6)  
G
F
: SSOP6  
: SOP8  
TLR342FJ  
: SOP14  
FJ : SOP-J8  
: SOP-J14  
FVT : TSSOP-B8  
FVJ : TSSOP-B8J  
: TSSOP-B14J  
E2: Embossed tape and reel  
(SOP8, SOP-J8, TSSOP-B8,  
TSSOP-B8J, SOP14, SOP-J14,  
TSSOP-B14J)  
TLR342FVT  
TLR342FVJ  
TLR344F  
TLR344FJ  
TLR344FVJ  
Line-up  
Topr  
Channels  
Package  
Orderable Part Number  
TLR341G-TR  
1ch  
SSOP6  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
SOP8  
TLR342F-E2  
SOP-J8  
TLR342FJ-E2  
TLR342FVT-E2  
TLR342FVJ-E2  
TLR344F-E2  
2ch  
4ch  
TSSOP-B8  
TSSOP-B8J  
SOP14  
-40°C to +85°C  
SOP-J14  
TSSOP-B14J  
TLR344FJ-E2  
TLR344FVJ-E2  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
48/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Marking Diagram  
SSOP6(TOP VIEW)  
Part Number Marking  
SOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
LOT Number  
SOP-J8(TOP VIEW)  
TSSOP-B8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8J(TOP VIEW)  
SOP14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP-J14(TOP VIEW)  
TSSOP-B14J (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
49/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Marking Diagram continued  
Product Name  
TLR341  
Package Type  
Marking  
G
F
SSOP6  
SOP8  
BC  
T342  
FJ  
SOP-J8  
T342  
TLR342  
TLR344  
FVT  
FVJ  
F
TSSOP-B8  
TSSOP-B8J  
SOP14  
T342  
T342  
TLR344F  
TLR344FJ  
T344  
FJ  
SOP-J14  
TSSOP-B14J  
FVJ  
Land Pattern Data  
SSOP6  
SOP8, SOP-J8, TSSOP-B8, TSSOP-B8J, SOP14, SOP-J14, TSSOP-B14J  
0.95  
0.95  
MIE  
0.6  
2  
All dimensions in mm  
Land length  
Land pitch  
Land space  
MIE  
Land width  
b2  
Package  
e
≧ℓ2  
SSOP6  
0.95  
2.4  
4.60  
3.9  
1.0  
0.6  
SOP8  
SOP14  
1.27  
1.27  
1.10  
1.35  
0.76  
0.76  
SOP-J8  
SOP-J14  
TSSOP-B8  
TSSOP-B14J  
0.65  
0.65  
4.60  
3.20  
1.20  
1.15  
0.35  
0.35  
TSSOP-B8J  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
50/51  
Datasheet  
TLR341G TLR342xxx TLR344xxx  
Revision History  
Date  
Revision  
001  
Changes  
29.Aug.2014  
19.Mar.2015  
14.Oct.2015  
03.Feb.2016  
New Release  
002  
Add TLR342FJ, TLR342FVT, TLR342FVJ, TLR344F  
Add TLR344FJ and TLR344FVJ  
Add TLR341G  
003  
004  
www.rohm.com  
©2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200720-1-2  
03.Feb.2016 Rev.004  
51/51  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
TLR341G - Web Page  
Part Number  
Package  
Unit Quantity  
TLR341G  
SSOP6  
3000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
3000  
Taping  
inquiry  
Yes  

相关型号:

TLR344T

SEVEN-SEGMENT NUMERIC LED DISPLAY,RED,DIP
TOSHIBA

TLR346S

LED DISPLAY
TOSHIBA

TLR346T

TOSHIBA LED DISPLAY
TOSHIBA

TLR347S

LED DISPLAY
TOSHIBA

TLR347T

TOSHIBA LED DISPLAY
TOSHIBA

TLR352

LED Display, 7 SEG NUMERIC DISPLAY, RED, 12.7 mm
TOSHIBA

TLR353

LED Display, 7 SEG NUMERIC DISPLAY, RED, 12.7 mm
TOSHIBA

TLR358

TOSHIBA LED DISPLAY
TOSHIBA

TLR358T

LED DISPLAY
TOSHIBA

TLR359

TOSHIBA LED DISPLAY
TOSHIBA

TLR359T

LED DISPLAY
TOSHIBA

TLR362S

TOSHIBA LED DISPLAY
TOSHIBA