F80M4 [SAMSUNG]

8-BIT CMOS MICROCONTROLLERS USERS MANUAL; 8位CMOS微控制器用户手册
F80M4
型号: F80M4
厂家: SAMSUNG    SAMSUNG
描述:

8-BIT CMOS MICROCONTROLLERS USERS MANUAL
8位CMOS微控制器用户手册

微控制器
文件: 总248页 (文件大小:1651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S3C80M4/F80M4  
8-BIT CMOS  
MICROCONTROLLERS  
USER'S MANUAL  
Revision 1  
Important Notice  
The information in this publication has been carefully  
"Typical" parameters can and do vary in different  
applications. All operating parameters, including  
"Typicals" must be validated for each customer  
application by the customer's technical experts.  
checked and is believed to be entirely accurate at  
the time of publication. Samsung assumes no  
responsibility, however, for possible errors or  
omissions, or for any consequences resulting from  
the use of the information contained herein.  
Samsung products are not designed, intended, or  
authorized for use as components in systems  
intended for surgical implant into the body, for other  
applications intended to support or sustain life, or for  
any other application in which the failure of the  
Samsung product could create a situation where  
personal injury or death may occur.  
Samsung reserves the right to make changes in its  
products or product specifications with the intent to  
improve function or design at any time and without  
notice and is not required to update this  
documentation to reflect such changes.  
This publication does not convey to a purchaser of  
semiconductor devices described herein any license  
under the patent rights of Samsung or others.  
Should the Buyer purchase or use a Samsung  
product for any such unintended or unauthorized  
application, the Buyer shall indemnify and hold  
Samsung and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all  
claims, costs, damages, expenses, and reasonable  
attorney fees arising out of, either directly or  
indirectly, any claim of personal injury or death that  
may be associated with such unintended or  
unauthorized use, even if such claim alleges that  
Samsung was negligent regarding the design or  
manufacture of said product.  
Samsung makes no warranty, representation, or  
guarantee regarding the suitability of its products for  
any particular purpose, nor does Samsung assume  
any liability arising out of the application or use of  
any product or circuit and specifically disclaims any  
and all liability, including without limitation any  
consequential or incidental damages.  
S3C80M4/F80M4 8-Bit CMOS Microcontrollers  
User's Manual, Revision 1  
Publication Number: 21-S3-C80M4/F80M4-052005  
© 2005 Samsung Electronics  
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in  
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior  
written consent of Samsung Electronics.  
Samsung Electronics' microcontroller business has been awarded full ISO-14001  
certification (BSI Certificate No. FM24653). All semiconductor products are  
designed and manufactured in accordance with the highest quality standards and  
objectives.  
Samsung Electronics Co., Ltd.  
San #24 Nongseo-Ri, Giheung- Eup  
Yongin-City, Gyeonggi-Do, Korea  
C.P.O. Box #37, Suwon 449-900  
TEL: (82)-(031)-209-1934  
FAX: (82)-(031)-209-1889  
Home-Page URL: Http://www.samsungsemi.com  
Printed in the Republic of Korea  
Preface  
The S3C80M4/F80M4 Microcontroller User's Manual is designed for application designers and programmers who  
are using the S3C80M4/F80M4 microcontroller for application development. It is organized in two main parts:  
Part I  
Programming Model  
Part II  
Hardware Descriptions  
Part I contains software-related information to familiarize you with the microcontroller's architecture, programming  
model, instruction set, and interrupt structure. It has six chapters:  
Chapter 1  
Chapter 2  
Chapter 3  
Product Overview  
Address Spaces  
Addressing Modes  
Chapter 4  
Chapter 5  
Chapter 6  
Control Registers  
Interrupt Structure  
Instruction Set  
Chapter 1, "Product Overview," is a high-level introduction to S3C80M4/F80M4 with general product descriptions,  
as well as detailed information about individual pin characteristics and pin circuit types.  
Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register  
addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined  
stack operations.  
Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the  
S3C8-series CPU.  
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register  
values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read,  
alphabetically organized, register descriptions as a quick-reference source when writing programs.  
Chapter 5, "Interrupt Structure," describes the S3C80M4/F80M4 interrupt structure in detail and further prepares  
you for additional information presented in the individual hardware module descriptions in Part II.  
Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3C8-series  
microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of  
each instruction are presented in a standard format. Each instruction description includes one or more practical  
examples of how to use the instruction when writing an application program.  
A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in  
Part II. If you are not yet familiar with the S3C8-series microcontroller family and are reading this manual for the  
first time, we recommend that you first read Chapters 1-3 carefully. Then, briefly look over the detailed information  
in Chapters 4, 5, and 6. Later, you can reference the information in Part I as necessary.  
Part II "hardware Descriptions," has detailed information about specific hardware components of the  
S3C80M4/F80M4 microcontroller. Also included in Part II are electrical, mechanical, flash, and development tools  
data. It has 10 chapters:  
Chapter 7  
Chapter 8  
Chapter 9  
Chapter 10  
Chapter 11  
Clock Circuit  
RESET and Power-Down  
I/O Ports  
Basic Timer  
8-bit Timer 0  
Chapter 12  
Chapter 13  
Chapter 14  
Chapter 15  
Chapter 16  
8-bit PWM Timer  
Electrical Data  
Mechanical Data  
S3F80M4 Flash MCU  
Development Tools  
Two order forms are included at the back of this manual to facilitate customer order for S3C80M4/F80M4  
microcontrollers: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these  
forms, fill them out, and then forward them to your local Samsung Sales Representative.  
S3C80M4/F80M4 MICROCONTROLLER  
iii  
Table of Contents  
Part I — Programming Model  
Chapter 1  
Product Overview  
S3C8-Series Microcontrollers .......................................................................................................................1-1  
S3C80M4/F80M4 Microcontroller .................................................................................................................1-1  
Flash..............................................................................................................................................................1-1  
Features ........................................................................................................................................................1-2  
Block Diagram...............................................................................................................................................1-3  
Pin Assignment .............................................................................................................................................1-4  
Pin Descriptions ............................................................................................................................................1-6  
Pin Circuits ....................................................................................................................................................1-7  
Chapter 2  
Address Spaces  
Overview........................................................................................................................................................2-1  
Program Memory (ROM)...............................................................................................................................2-2  
Register Architecture.....................................................................................................................................2-3  
Register Page Pointer (PP) ..................................................................................................................2-5  
Register Set 1.......................................................................................................................................2-6  
Register Set 2.......................................................................................................................................2-6  
Prime Register Space...........................................................................................................................2-7  
Working Registers ................................................................................................................................2-8  
Using The Register Points....................................................................................................................2-9  
Register Addressing......................................................................................................................................2-11  
Common Working Register Area (C0H–CFH) .....................................................................................2-13  
4-Bit Working Register Addressing ......................................................................................................2-14  
8-Bit Working Register Addressing ......................................................................................................2-16  
System and User Stack.................................................................................................................................2-18  
S3C80M4/F80M4 MICROCONTROLLER  
v
Table of Contents (Continued)  
Chapter 3  
Addressing Modes  
Overview....................................................................................................................................................... 3-1  
Register Addressing Mode (R) ..................................................................................................................... 3-2  
Indirect Register Addressing Mode (IR) ....................................................................................................... 3-3  
Indexed Addressing Mode (X)...................................................................................................................... 3-7  
Direct Address Mode (DA)............................................................................................................................ 3-10  
Indirect Address Mode (IA)........................................................................................................................... 3-12  
Relative Address Mode (RA)........................................................................................................................ 3-13  
Immediate Mode (IM).................................................................................................................................... 3-14  
Chapter 4  
Control Registers  
Overview....................................................................................................................................................... 4-1  
Chapter 5  
Interrupt Structure  
Overview....................................................................................................................................................... 5-1  
Interrupt Types..................................................................................................................................... 5-2  
S3C80M4 Interrupt Structure............................................................................................................... 5-3  
Interrupt Vector Addresses .................................................................................................................. 5-4  
Enable/Disable Interrupt Instructions (EI, DI) ...................................................................................... 5-6  
System-Level Interrupt Control Registers............................................................................................ 5-6  
Interrupt Processing Control Points..................................................................................................... 5-7  
Peripheral Interrupt Control Registers ................................................................................................. 5-8  
System Mode Register (SYM) ............................................................................................................. 5-9  
Interrupt Mask Register (IMR) ............................................................................................................. 5-10  
Interrupt Priority Register (IPR)............................................................................................................ 5-11  
Interrupt Request Register (IRQ)......................................................................................................... 5-13  
Interrupt Pending Function Types........................................................................................................ 5-14  
Interrupt Source Polling Sequence...................................................................................................... 5-15  
Interrupt Service Routines ................................................................................................................... 5-15  
Generating Interrupt Vector Addresses ............................................................................................... 5-16  
Nesting of Vectored Interrupts............................................................................................................. 5-16  
Instruction Pointer (IP) ......................................................................................................................... 5-16  
Fast Interrupt Processing..................................................................................................................... 5-16  
Chapter 6  
Instruction Set  
Overview....................................................................................................................................................... 6-1  
Data Types........................................................................................................................................... 6-1  
Register Addressing............................................................................................................................. 6-1  
Addressing Modes ............................................................................................................................... 6-1  
Flags Register (FLAGS)....................................................................................................................... 6-6  
Flag Descriptions ................................................................................................................................. 6-7  
Instruction Set Notation........................................................................................................................ 6-8  
Condition Codes .................................................................................................................................. 6-12  
Instruction Descriptions........................................................................................................................ 6-13  
vi  
S3C80M4/F80M4 MICROCONTROLLER  
Table of Contents (Continued)  
Part II Hardware Descriptions  
Chapter 7  
Clock Circuit  
Overview........................................................................................................................................................7-1  
System Clock Circuit ............................................................................................................................7-1  
CPU Clock Notation..............................................................................................................................7-1  
Main Oscillator Circuits.........................................................................................................................7-2  
Clock Status During Power-Down Modes ............................................................................................7-3  
System Clock Control Register (CLKCON)..........................................................................................7-4  
Clock Output Control Register (CLOCON)...........................................................................................7-5  
Stop Control Register (STPCON).........................................................................................................7-6  
Chapter 8  
RESET and Power-Down  
System Reset................................................................................................................................................8-1  
Overview...............................................................................................................................................8-1  
Normal Mode Reset Operation.............................................................................................................8-1  
Hardware Reset Values........................................................................................................................8-2  
Power-Down Modes......................................................................................................................................8-4  
Power-Down Modes......................................................................................................................................8-4  
Stop Mode ............................................................................................................................................8-4  
Idle Mode..............................................................................................................................................8-5  
Chapter 9  
I/O Ports  
Overview........................................................................................................................................................9-1  
Port Data Registers ..............................................................................................................................9-1  
Port 0 ....................................................................................................................................................9-2  
Port 1 ....................................................................................................................................................9-5  
Chapter 10  
Basic Timer  
Overview........................................................................................................................................................10-1  
Basic Timer (BT)...................................................................................................................................10-1  
Basic Timer Control Register (BTCON) ...............................................................................................10-1  
Basic Timer Function Description.........................................................................................................10-3  
S3C80M4/F80M4 MICROCONTROLLER  
vii  
Table of Contents (Continued)  
Chapter 11  
8-bit Timer 0  
Overview....................................................................................................................................................... 11-1  
Timer 0 Function Description............................................................................................................... 11-1  
Timer 0 Control Register (T0CON)...................................................................................................... 11-2  
Block Diagram...................................................................................................................................... 11-3  
Chapter 12  
8-bit Pulse Width Modulation  
Overview....................................................................................................................................................... 12-1  
8-bit Pulse Width Modulation (PWMCON)........................................................................................... 12-2  
Block Diagram...................................................................................................................................... 12-3  
Chapter 13  
Electrical Data  
Overview....................................................................................................................................................... 13-1  
Chapter 14  
Mechanical Data  
Overview....................................................................................................................................................... 14-1  
Chapter 15  
S3F80M Flash MCU  
Overview....................................................................................................................................................... 15-1  
Operating Mode Characteristics .......................................................................................................... 15-5  
Chapter 16  
Development Tools  
Overview....................................................................................................................................................... 16-1  
SHINE .................................................................................................................................................. 16-1  
SAMA Assembler................................................................................................................................. 16-1  
SASM88............................................................................................................................................... 16-1  
HEX2ROM ........................................................................................................................................... 16-1  
Target Boards ...................................................................................................................................... 16-1  
TB80M4 Target Board ......................................................................................................................... 16-3  
SMDS2+ Selection (SAM8) ................................................................................................................. 16-5  
Idle LED ............................................................................................................................................... 16-5  
Stop LED.............................................................................................................................................. 16-5  
viii  
S3C80M4/F80M4 MICROCONTROLLER  
List of Figures  
Figure  
Title  
Page  
Number  
Number  
1-1  
1-2  
1-3  
1-4  
1-5  
1-6  
1-7  
1-8  
Block Diagram ............................................................................................................1-3  
S3C80M4/F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375).............................1-4  
S3C80M4/F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375).............................1-5  
Pin Circuit Type A.......................................................................................................1-7  
Pin Circuit Type B.......................................................................................................1-7  
Pin Circuit Type E-2 (P1.4–P1.6) ...............................................................................1-7  
Pin Circuit Type D-4 (P0)............................................................................................1-8  
Pin Circuit Type E-4 (P1.0–P1.3) ...............................................................................1-8  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
Program Memory Address Space ..............................................................................2-2  
Internal Register File Organization.............................................................................2-4  
Register Page Pointer (PP) ........................................................................................2-5  
Set 1, Set 2, Prime Area Register Map ......................................................................2-7  
8-Byte Working Register Areas (Slices).....................................................................2-8  
Contiguous 16-Byte Working Register Block .............................................................2-9  
Non-Contiguous 16-Byte Working Register Block .....................................................2-10  
16-Bit Register Pair ....................................................................................................2-11  
Register File Addressing ............................................................................................2-12  
Common Working Register Area................................................................................2-13  
4-Bit Working Register Addressing ............................................................................2-15  
4-Bit Working Register Addressing Example .............................................................2-15  
8-Bit Working Register Addressing ............................................................................2-16  
8-Bit Working Register Addressing Example .............................................................2-17  
Stack Operations........................................................................................................2-18  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
Register Addressing ...................................................................................................3-2  
Working Register Addressing.....................................................................................3-2  
Indirect Register Addressing to Register File.............................................................3-3  
Indirect Register Addressing to Program Memory .....................................................3-4  
Indirect Working Register Addressing to Register File ..............................................3-5  
Indirect Working Register Addressing to Program or Data Memory..........................3-6  
Indexed Addressing to Register File ..........................................................................3-7  
Indexed Addressing to Program or Data Memory with Short Offset..........................3-8  
Indexed Addressing to Program or Data Memory......................................................3-9  
Direct Addressing for Load Instructions .....................................................................3-10  
Direct Addressing for Call and Jump Instructions ......................................................3-11  
Indirect Addressing.....................................................................................................3-12  
Relative Addressing....................................................................................................3-13  
Immediate Addressing................................................................................................3-14  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
S3C80M4/F80M4 MICROCONTROLLER  
ix  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
4-1  
Register Description Format...................................................................................... 4-3  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
5-7  
5-8  
5-9  
S3C8-Series Interrupt Types ..................................................................................... 5-2  
S3C80M4/F80M4 Interrupt Structure......................................................................... 5-3  
ROM Vector Address Area ........................................................................................ 5-4  
Interrupt Function Diagram........................................................................................ 5-7  
System Mode Register (SYM) ................................................................................... 5-9  
Interrupt Mask Register (IMR) ................................................................................... 5-10  
Interrupt Request Priority Groups.............................................................................. 5-11  
Interrupt Priority Register (IPR) ................................................................................. 5-12  
Interrupt Request Register (IRQ)............................................................................... 5-13  
6-1  
System Flags Register (FLAGS) ............................................................................... 6-6  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
Crystal/Ceramic Oscillator (fx)................................................................................... 7-2  
External Oscillator (fx)................................................................................................ 7-2  
RC Oscillator (fx)........................................................................................................ 7-2  
System Clock Circuit Diagram................................................................................... 7-3  
System Clock Control Register (CLKCON) ............................................................... 7-4  
Clock Output Control Register (CLOCON)................................................................ 7-5  
Clock Output Block Diagram...................................................................................... 7-5  
STOP Control Register (STPCON)............................................................................ 7-6  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
Port 0 High-Byte Control Register (P0CONH)........................................................... 9-3  
Port 0 Low-Byte Control Register (P0CONL) ............................................................ 9-3  
Port 0 Interrupt Control Register................................................................................ 9-4  
Port 0 Interrupt Pending Register (P0PND)............................................................... 9-4  
Port 1 High-Byte Control Register (P1CONH)........................................................... 9-5  
Port 1 Low-Byte Control Register (P1CONL) ............................................................ 9-6  
Port 1 Pull-up Resistor Enable Register (P1PUR)..................................................... 9-6  
10-1  
10-2  
Basic Timer Control Register (BTCON)..................................................................... 10-2  
Basic Timer Block Diagram ....................................................................................... 10-4  
11-1  
11-2  
Timer 0 Control Register (T0CON)............................................................................ 11-2  
Timer 0 Functional Block Diagram............................................................................. 11-3  
12-1  
12-2  
PWM Control Register (PWMCON)........................................................................... 12-2  
PWM Circuit Diagram ................................................................................................ 12-3  
x
S3C80M4/F80M4 MICROCONTROLLER  
List of Figures (Concluded)  
Page  
Title  
Page  
Number  
Number  
13-1  
13-2  
13-3  
13-4  
13-5  
Input Timing for External Interrupts............................................................................13-5  
Input Timing for nRESET............................................................................................13-5  
Stop Mode Release Timing Initiated by RESET.........................................................13-6  
Stop Mode Release Timing Initiated by Interrupt.......................................................13-7  
Clock Timing Measurement at XIN .............................................................................13-9  
13-6  
Operating Voltage Range...........................................................................................13-9  
14-1  
14-2  
14-3  
14-4  
20-DIP-300A Package Dimensions............................................................................14-1  
20-SOP-375 Package Dimensions.............................................................................14-2  
16-DIP-300A Package Dimensions............................................................................14-3  
16-SOP-375 Package Dimensions.............................................................................14-4  
15-1  
15-2  
15-3  
S3F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375) .........................................15-2  
S3F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375) .........................................15-3  
Operating Voltage Range...........................................................................................15-6  
16-1  
16-2  
16-3  
16-4  
SMDS Product Configuration (SMDS2+) ...................................................................16-2  
TB80M4 Target Board Configuration .........................................................................16-3  
20-Pin Connectors (J101) for TB80M4.......................................................................16-7  
S3E80M0 Cables for 16/20-DIP Package..................................................................16-7  
S3C80M4/F80M4 MICROCONTROLLER  
xi  
List of Tables  
Table  
Title  
Page  
Number  
Number  
1-1  
2-1  
S3C80M4/F80M4 Pin Descriptions ............................................................................1-6  
S3C80M4/F80M4 Register Type Summary ...............................................................2-3  
4-1  
4-2  
Set 1 Registers...........................................................................................................4-1  
Set 1, Bank 0 Registers..............................................................................................4-2  
5-1  
5-2  
5-3  
Interrupt Vectors.........................................................................................................5-5  
Interrupt Control Register Overview...........................................................................5-6  
Interrupt Source Control and Data Registers.............................................................5-8  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
Instruction Group Summary........................................................................................6-2  
Flag Notation Conventions .........................................................................................6-8  
Instruction Set Symbols..............................................................................................6-8  
Instruction Notation Conventions ...............................................................................6-9  
Opcode Quick Reference...........................................................................................6-10  
Condition Codes.........................................................................................................6-12  
8-1  
8-2  
S3C80M4/F80M4 Set 1 Register and Values after RESET.......................................8-2  
S3C80M4/F80M4 Set 1, Bank 0 Register and Values after RESET..........................8-3  
9-1  
9-2  
S3C80M4/F80M4 Port Configuration Overview.........................................................9-1  
Port Data Register Summary......................................................................................9-1  
S3C80M4/F80M4 MICROCONTROLLER  
xiii  
List of Tables (Continued)  
Table  
Title  
Page  
Number  
Number  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
Absolute Maximum Ratings....................................................................................... 13-2  
D.C. Electrical Characteristics ................................................................................... 13-2  
A.C. Electrical Characteristics ................................................................................... 13-5  
Input/Output Capacitance.......................................................................................... 13-6  
Data Retention Supply Voltage in Stop Mode ........................................................... 13-6  
Main Oscillator Characteristics .................................................................................. 13-8  
Main Oscillation Stabilization Time............................................................................ 13-9  
15-1  
15-2  
15-3  
15-4  
Descriptions of Pins Used to Read/Write the EPROM.............................................. 15-4  
Comparison of S3F80M4 and F80M4 Features ........................................................ 15-4  
Operating Mode Selection Criteria............................................................................. 15-5  
D.C. Electrical Characteristics ................................................................................... 15-5  
16-1  
16-2  
16-3  
16-4  
16-5  
16-6  
Power Selection Settings for TB80M4....................................................................... 16-4  
Main-clock Selection Settings for TB80M4................................................................ 16-4  
Device Selection Settings for TB80M4 ...................................................................... 16-5  
The SMDS2+ Tool Selection Setting......................................................................... 16-5  
Smart Option Source Selection Settings for TB80M4 ............................................... 16-6  
Smart Option Switch Setting for TB80M4.................................................................. 16-6  
xiv  
S3C80M4/F80M4 MICROCONTROLLER  
List of Programming Tips  
Description  
Chapter 2:  
Page  
Number  
Address Spaces  
Using the Page Pointer for RAM clear (Page 0, Page1) ..........................................................................2-5  
Setting the Register Pointers ....................................................................................................................2-9  
Using the RPs to Calculate the Sum of a Series of Registers..................................................................2-10  
Addressing the Common Working Register Area.....................................................................................2-14  
Standard Stack Operations Using PUSH and POP..................................................................................2-19  
Chapter 7:  
Clock Circuit  
How to Use Stop Instruction .....................................................................................................................7-6  
S3C80M4/F80M4 MICROCONTROLLER  
xv  
List of Register Descriptions  
Register  
Identifier  
Full Register Name  
Page  
Number  
BTCON  
CLKCON  
CLOCON  
FLAGS  
IMR  
Basic Timer Control Register .....................................................................................4-4  
System Clock Control Register ..................................................................................4-5  
Clock Output Control Register ...................................................................................4-6  
System Flags Register ...............................................................................................4-7  
Interrupt Mask Register..............................................................................................4-8  
Instruction Pointer (High Byte) .................................................................................4-9  
Instruction Pointer (Low Byte) ..................................................................................4-9  
Interrupt Priority Register ...........................................................................................4-10  
Interrupt Request Register.........................................................................................4-11  
Port 0 Control Register (High Byte)............................................................................4-12  
Port 0 Control Register (Low Byte) ............................................................................4-13  
Port 0 Interrupt Control Register ................................................................................4-14  
Port 0 Interrupt Pending Register...............................................................................4-15  
Port 1 Control Register (High Byte)............................................................................4-16  
Port 1 Control Register (Low Byte) ............................................................................4-17  
Port 1 Pull-up Resistor Enable Register ....................................................................4-18  
Register Page Pointer ................................................................................................4-19  
Pulse Width Modulation Control Register ..................................................................4-20  
Register Pointer 0.......................................................................................................4-21  
Register Pointer 1.......................................................................................................4-21  
Stack Pointer (High Byte)...........................................................................................4-22  
Stack Pointer (Low Byte)............................................................................................4-22  
Stop Control Register.................................................................................................4-23  
System Mode Register...............................................................................................4-24  
Timer 0 Control Register............................................................................................4-25  
IPH  
IPL  
IPR  
IRQ  
P0CONH  
P0CONL  
P0INT  
P0PND  
P1CONH  
P1CONL  
P1PUR  
PP  
PWMCON  
RP0  
RP1  
SPH  
SPL  
STPCON  
SYM  
T0CON  
S3C80M4/F80M4 MICROCONTROLLER  
xvii  
List of Instruction Descriptions  
Instruction  
Mnemonic  
Full Register Name  
Page  
Number  
ADC  
ADD  
AND  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BTJRF  
BTJRT  
BXOR  
CALL  
CCF  
CLR  
COM  
CP  
Add with Carry............................................................................................................6-14  
Add .............................................................................................................................6-15  
Logical AND ...............................................................................................................6-16  
Bit AND.......................................................................................................................6-17  
Bit Compare ...............................................................................................................6-18  
Bit Complement..........................................................................................................6-19  
Bit Reset.....................................................................................................................6-20  
Bit Set.........................................................................................................................6-21  
Bit OR.........................................................................................................................6-22  
Bit Test, Jump Relative on False ...............................................................................6-23  
Bit Test, Jump Relative on True.................................................................................6-24  
Bit XOR.......................................................................................................................6-25  
Call Procedure............................................................................................................6-26  
Complement Carry Flag.............................................................................................6-27  
Clear...........................................................................................................................6-28  
Complement...............................................................................................................6-29  
Compare.....................................................................................................................6-30  
Compare, Increment, and Jump on Equal .................................................................6-31  
Compare, Increment, and Jump on Non-Equal .........................................................6-32  
Decimal Adjust ...........................................................................................................6-33  
Decrement..................................................................................................................6-35  
Decrement Word ........................................................................................................6-36  
Disable Interrupts .......................................................................................................6-37  
Divide (Unsigned).......................................................................................................6-38  
Decrement and Jump if Non-Zero..............................................................................6-39  
Enable Interrupts........................................................................................................6-40  
Enter...........................................................................................................................6-41  
Exit..............................................................................................................................6-42  
Idle Operation.............................................................................................................6-43  
Increment ...................................................................................................................6-44  
Increment Word..........................................................................................................6-45  
Interrupt Return ..........................................................................................................6-46  
Jump...........................................................................................................................6-47  
Jump Relative.............................................................................................................6-48  
Load............................................................................................................................6-49  
Load Bit ......................................................................................................................6-51  
CPIJE  
CPIJNE  
DA  
DEC  
DECW  
DI  
DIV  
DJNZ  
EI  
ENTER  
EXIT  
IDLE  
INC  
INCW  
IRET  
JP  
JR  
LD  
LDB  
S3C80M4/F80M4 MICROCONTROLLER  
xix  
List of Instruction Descriptions (Continued)  
Instruction  
Mnemonic  
Full Register Name  
Page  
Number  
LDC/LDE  
LDCD/LDED  
LDCI/LDEI  
LDCPD/LDEPD  
LDCPI/LDEPI  
LDW  
Load Memory..............................................................................................................6-52  
Load Memory and Decrement....................................................................................6-54  
Load Memory and Increment......................................................................................6-55  
Load Memory with Pre-Decrement.............................................................................6-56  
Load Memory with Pre-Increment ..............................................................................6-57  
Load Word ..................................................................................................................6-58  
Multiply (Unsigned).....................................................................................................6-59  
Next.............................................................................................................................6-60  
No Operation ..............................................................................................................6-61  
Logical OR..................................................................................................................6-62  
Pop from Stack ...........................................................................................................6-63  
Pop User Stack (Decrementing).................................................................................6-64  
Pop User Stack (Incrementing) ..................................................................................6-65  
Push to Stack..............................................................................................................6-66  
Push User Stack (Decrementing)...............................................................................6-67  
Push User Stack (Incrementing) ................................................................................6-68  
Reset Carry Flag.........................................................................................................6-69  
Return.........................................................................................................................6-70  
Rotate Left ..................................................................................................................6-71  
Rotate Left through Carry...........................................................................................6-72  
Rotate Right................................................................................................................6-73  
Rotate Right through Carry.........................................................................................6-74  
Select Bank 0..............................................................................................................6-75  
Select Bank 1..............................................................................................................6-76  
Subtract with Carry .....................................................................................................6-77  
Set Carry Flag.............................................................................................................6-78  
Shift Right Arithmetic ..................................................................................................6-79  
Set Register Pointer....................................................................................................6-80  
Stop Operation............................................................................................................6-81  
Subtract ......................................................................................................................6-82  
Swap Nibbles..............................................................................................................6-83  
Test Complement under Mask ...................................................................................6-84  
Test under Mask.........................................................................................................6-85  
Wait for Interrupt.........................................................................................................6-86  
Logical Exclusive OR..................................................................................................6-87  
MULT  
NEXT  
NOP  
OR  
POP  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
RCF  
RET  
RL  
RLC  
RR  
RRC  
SB0  
SB1  
SBC  
SCF  
SRA  
SRP/SRP0/SRP1  
STOP  
SUB  
SWAP  
TCM  
TM  
WFI  
XOR  
xx  
S3C80M4/F80M4 MICROCONTROLLER  
S3C80M4/F80M4  
PRODUCT OVERVIEW  
1
PRODUCT OVERVIEW  
S3C8-SERIES MICROCONTROLLERS  
Samsung's S3C8 series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range  
of integrated peripherals, and various mask-programmable ROM sizes. Among the major CPU features are:  
— Efficient register-oriented architecture  
— Selectable CPU clock sources  
— Idle and Stop power-down mode release by interrupt  
— Built-in basic timer with watchdog function  
A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more  
interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned to  
specific interrupt levels.  
S3C80M4/F80M4 MICROCONTROLLER  
The S3C80M4/F80M4 single-chip CMOS microcontroller is fabricated using the highly advanced CMOS process,  
Its design is based on the SAM88RC CPU core. Stop and Idle (Power-down) modes were implemented to reduce  
power consumption.  
The S3C80M4 is a microcontroller with a 4K-byte mask-programmable ROM embedded.  
The S3F80M4 is a microcontroller with a 4K-byte Flash ROM embedded.  
Using a proven modular design approach, Samsung engineers have successfully developed the  
S3C80M4/F80M4 by integrating the following peripheral modules with the powerful SAM8 core:  
— Two programmable I/O ports, including one 8-bit port, one 7-bit port (Total 15 pins).  
— Four bit-programmable pins for external interrupts.  
— One 8-bit basic timer for oscillation stabilization and watchdog functions (system reset).  
— One 8-bit timer/counter.  
— 8-bit high-speed PWM.  
FLASH  
The S3F80M4 microcontroller is available in Flash version. The S3F80M4 microcontroller has an on-chip FLASH  
ROM instead of a masked ROM. The S3F80M4 is comparable to the S3C80M4, both in function and in pin  
configuration.  
1-1  
PRODUCT OVERVIEW  
S3C80M4/F80M4  
FEATURES  
CPU  
Two Power-Down Modes  
SAM88 RC CPU core  
Idle: only CPU clock stops  
Stop: selected system clock and CPU clock stop  
Memory  
Program Memory (ROM)  
- 4K × 8 bits program memory  
Data Memory (RAM)  
- 128 × 8 bits data memory  
Power Consumption  
RUM Mode: 4mA at 10MHz, 5V  
Stop Mode: 100uA at 5V  
Instruction Execution Times  
400nS at 10 MHz fosc(minimum)  
Instruction Set  
78 instructions  
Idle and stop instructions added for power-down  
modes  
Operating Temperature Range  
–25°C to +85°C  
15 I/O Pins  
Operating Voltage Range  
15 normal I/O pins  
Bit programmable ports  
2.4 V to 5.5 V at 0.4 – 4.2MHz  
2.7 V to 5.5 V at 0.4 – 10MHz  
Interrupts  
Package Type  
6 interrupt levels and 6 interrupt sources  
20-DIP-300A, 20-SOP-375  
8-Bit Basic Timer  
16-DIP-300A, 16-SOP-375  
Watchdog timer function  
4 kinds of clock source  
IVC  
Internal Voltage Converter for 5V operation  
8-Bit Timer/Counter 0  
Programmable 8-bit internal timer  
External event counter function  
8-Bit High-Speed PWM  
8-bit PWM 1-ch  
6-bit base +2-bit extension  
Oscillation Sources  
Crystal, ceramic, or RC for main clock  
Main clock frequency: 0.4 MHz – 10 MHz  
1-2  
S3C80M4/F80M4  
PRODUCT OVERVIEW  
BLOCK DIAGRAM  
Vss  
VDD  
nRESET  
Watchdog  
Timer  
XIN  
XOUT  
OSC.  
Basic Timer  
Port I/O and  
Interrupt Control  
P0.0/INT0  
P0.1/INT1  
P0.2/INT2  
P0.3/INT3  
P0.4  
I/O Port 0  
T0OUT/P1.0  
T0CLK/P1.1  
8-Bit Timer/  
Counter 0  
P0.5  
P0.6/PWM  
P0.7  
SAM88RC CPU  
P1.0/T0OUT  
P1.1/T0CLK  
P1.2  
4-Kbyte  
ROM  
128-byte  
Register File  
PWM  
PWM/P0.6  
P1.3  
P1.4  
I/O Port 1  
P1.5  
P1.6/CLKOUT  
Figure 1-1. Block Diagram  
1-3  
PRODUCT OVERVIEW  
S3C80M4/F80M4  
PIN ASSIGNMENT  
1
VSS  
XIN  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VDD  
2
P0.0/INT0  
P0.1/INT1  
P0.2/INT2  
P0.3/INT3  
P0.4  
3
XOUT  
4
nRESET  
P1.0/T0OUT  
P1.1/T0CLK  
P1.2  
S3C80M4/F80M4  
5
(20-DIP-300A)  
(20-SOP-375)  
6
7
P0.5  
8
P1.3  
P0.6/PWM  
P0.7  
9
P1.4  
10  
P1.5  
P1.6/CLKOUT  
Figure 1-2. S3C80M4/F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375)  
1-4  
S3C80M4/F80M4  
PRODUCT OVERVIEW  
1
2
3
4
5
6
7
8
VSS  
XIN  
16  
15  
14  
13  
12  
11  
10  
9
VDD  
P0.0/INT0  
P0.1/INT1  
P0.2/INT2  
P0.3/INT3  
P0.4  
XOUT  
nRESET  
P1.0/T0OUT  
P1.1/T0CLK  
P1.2  
S3C80M4/F80M4  
(16-DIP-300A)  
(16-SOP-375)  
P0.5  
P1.3  
P0.6/PWM  
Figure 1-3. S3C80M4/F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375)  
1-5  
PRODUCT OVERVIEW  
S3C80M4/F80M4  
PIN DESCRIPTIONS  
Table 1-1. S3C80M4/F80M4 Pin Descriptions  
Pin  
Names  
Pin  
Type  
Pin Description  
Circuit  
Type  
Pin  
Share  
Pins  
Numbers (note)  
P0.0–P0.7  
I/O  
I/O port with bit-programmable pins;  
D-4  
19–13  
(15–9)  
12  
INT0–INT3  
Schmitt trigger input or push-pull output and  
software assignable pull-ups. Alternately used  
for external interrupt input (noise filters,  
interrupt enable and pending control).  
Port0 pins can also be used as PWM output.  
PWM  
P1.0  
P1.1  
P1.2  
P1.3  
I/O  
I/O port with bit-programmable pins;  
Schmitt trigger input or push-pull, open-drain  
output and software assignable pull-ups.  
E-4  
5–8  
(5–8)  
T0OUT  
T0CLK  
P1.4  
P1.5  
P1.6  
I/O  
I/O  
I/O port with bit-programmable pins;  
Input or push-pull, open-drain output and  
software assignable pull-ups.  
E-2  
D-4  
9–11  
CLKOUT  
INT0–INT3  
External interrupts input pins.  
19–16  
P0.0–P0.3  
(15–12)  
T0CLK  
I/O  
I/O  
I/O  
I/O  
I
Timer 0 external clock input.  
Timer 0 clock output.  
CPU clock output.  
E-4  
E-4  
E–2  
D-4  
B
6(6)  
5(5)  
P1.1  
P1.0  
P1.6  
P0.6  
T0OUT  
CLKOUT  
PWM  
11  
8-Bit high speed PWM output.  
System reset pin.  
15(13)  
4(4)  
nRESET  
XIN, XOUT  
Main oscillator pins.  
2,3  
(2,3)  
VDD, VSS  
Power input pins.  
1,20  
A capacitor must be connected between VDD  
and VSS.  
(1,16)  
NOTE: Parentheses indicate pin number for 16-DIP-300A/16-SOP-375 package.  
1-6  
S3C80M4/F80M4  
PRODUCT OVERVIEW  
PIN CIRCUITS  
V
DD  
P-Channel  
N-Channel  
In  
In  
Schmitt Trigger  
Figure 1-4. Pin Circuit Type A  
Figure 1-5. Pin Circuit Type B  
VDD  
Open drain  
Enable  
Pull-up  
Resistor  
VDD  
Pull-up  
Enable  
P-CH  
Data  
I/O  
N-CH  
Output  
Disable  
Figure 1-6. Pin Circuit Type E-2 (P1.4–P1.6)  
1-7  
PRODUCT OVERVIEW  
S3C80M4/F80M4  
VDD  
Pull-up  
Resistor  
VDD  
Pull-up  
Enable  
P-CH  
I/O  
Data  
Output  
Disable  
N-CH  
IN  
Figure 1-7. Pin Circuit Type D-4 (P0)  
VDD  
Open drain  
Enable  
Pull-up  
Resistor  
VDD  
Resistor  
Enable  
P-CH  
Data  
I/O  
N-CH  
Output  
Disable  
Schmitt Trigger  
Figure 1-8. Pin Circuit Type E-4 (P1.0-P1.3)  
1-8  
S3C80M4/F80M4  
ADDRESS SPACES  
2
ADDRESS SPACES  
OVERVIEW  
The S3C80M4 microcontroller has two types of address space:  
— Internal program memory (ROM)  
— Internal register file  
A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and  
data between the CPU and the register file.  
The S3C80M4 has an internal 4-Kbyte mask-programmable ROM.  
The 256-byte physical register space is expanded into an addressable area of 320 bytes using addressing  
modes.  
2-1  
ADDRESS SPACES  
S3C80M4/F80M4  
PROGRAM MEMORY (ROM)  
Program memory (ROM) stores program codes or table data. The S3C80M4/F80M4 has 4K bytes internal mask-  
programmable program memory.  
The first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses. Unused locations in this  
address range can be used as normal program memory. If you use the vector address area to store a program  
code, be careful not to overwrite the vector addresses stored in these locations.  
The ROM address at which a program execution starts after a reset is 0100H in the S3C80M4.  
(Decimal)  
4,095  
(Hex)  
FFFH  
4K-bytes  
Internal  
Program  
Memory Area  
255  
0
FFH  
00H  
Interrupt  
Vector Area  
S3C80M4/F80M4  
Figure 2-1. Program Memory Address Space  
2-2  
S3C80M4/F80M4  
ADDRESS SPACES  
REGISTER ARCHITECTURE  
In the S3C80M4/F80M4 implementation, the upper 64-byte area of register files is expanded two 64-byte areas,  
called set 1 and set 2. The upper 32-byte area of set 1 is further expanded two 32-byte register banks (bank 0  
and bank 1), and the lower 32-byte area is a single 32-byte common area.  
In case of S3C80M4/F80M4 the total number of addressable 8-bit registers is 175. Of these 175 registers, 13  
bytes are for CPU and system control registers, 18 bytes are for peripheral control and data registers, 16 bytes  
are used as a shared working registers, and 128 registers are for general-purpose use, page 0.  
You can always address set 1 register locations, regardless of which of the ten register pages is currently  
selected. Set 1 locations, however, can only be addressed using register addressing modes.  
The extension of register space into separately addressable areas (sets, banks, and pages) is supported by  
various addressing mode restrictions, the select bank instructions, SB0 and SB1.  
Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.  
Table 2-1. S3C80M4/F80M4 Register Type Summary  
Register Type  
Number of Bytes  
General-purpose registers (including the 16-byte  
common working register area, one 128-byte prime  
register area)  
144  
CPU and system control registers  
Mapped clock, peripheral, I/O control, and data registers  
13  
18  
175  
Total Addressable Bytes  
2-3  
ADDRESS SPACES  
S3C80M4/F80M4  
Set1  
FFH  
Peripheral Control  
Registers  
(Register Addressing Mode)  
7FH  
E0H  
DFH  
64  
Bytes  
Page 0  
System Control Registers  
(Register Addressing Mode)  
D0H  
CFH  
General Purpose  
Register Files  
(All Addressing Modes)  
Working Registers  
(Register Addressing Mode)  
128  
Bytes  
C0H  
00H  
Figure 2-2. Internal Register File Organization  
2-4  
S3C80M4/F80M4  
ADDRESS SPACES  
REGISTER PAGE POINTER (PP)  
The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using  
an 8-bit data bus) into as many as 16 separately addressable register pages. Page addressing is controlled by  
the register page pointer (PP, DFH). In the S3C80M4 microcontroller, the register page pointer must be changed  
to address other pages.  
After a reset, the page pointer's source value (lower nibble) and the destination value (upper nibble) are always  
"0000", automatically selecting page 0 as the source and destination page for register addressing.  
Register Page Pointer (PP)  
DFH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Destination register page selection bits:  
0000 Destination: Page 0  
Source register page selection bits:  
0000 Source: page 0  
Others Not used for the S3C80M4  
Others Not used for the S3C80M4  
NOTE:  
In the S3C80M4 microcontroller, the internal register file is configured as eleven pages (Pages 0).  
The pages 0 is used for general purpose register file.  
Figure 2-3. Register Page Pointer (PP)  
)
PROGRAMMING TIP — Using the Page Pointer for RAM clear (Page 0, Page 1)  
LD  
SRP  
LD  
CLR  
DJNZ  
CLR  
PP,#00H  
#0C0H  
R0,#0FFH  
@R0  
R0,RAMCL0  
@R0  
;
;
Destination  
0, Source  
0
0
Page 0 RAM clear starts  
R0 = 00H  
RAMCL0  
;
LD  
LD  
CLR  
DJNZ  
CLR  
PP,#10H  
R0,#0FFH  
@R0  
R0,RAMCL1  
@R0  
;
;
Destination 1, Source  
Page 1 RAM clear starts  
RAMCL1  
;
R0 = 00H  
NOTE: You should refer to page 6-39 and use DJNZ instruction properly when DJNZ instruction is used in your program.  
2-5  
ADDRESS SPACES  
S3C80M4/F80M4  
REGISTER SET 1  
The term set 1 refers to the upper 64 bytes of the register file, locations C0H–FFH.  
The upper 32-byte area of this 64-byte space (E0H–FFH) is expanded two 32-byte register banks, bank 0 and  
bank 1. The set register bank instructions, SB0 or SB1, are used to address one bank or the other. A hardware  
reset operation always selects bank 0 addressing.  
The upper two 32-byte areas (bank 0 and bank 1) of set 1 (E0H–FFH) contains 68 mapped system and  
peripheral control registers. The lower 32-byte area contains 16 system registers (D0H–DFH) and a 16-byte  
common working register area (C0H–CFH). You can use the common working register area as a “scratch” area  
for data operations being performed in other areas of the register file.  
Registers in set 1 locations are directly accessible at all times using Register addressing mode. The 16-byte  
working register area can only be accessed using working register addressing (For more information about  
working register addressing, please refer to Chapter 3, “Addressing Modes.”)  
REGISTER SET 2  
The same 64-byte physical space that is used for set 1 locations C0H–FFH is logically duplicated to add another  
64 bytes of register space. This expanded area of the register file is called set 2. For the S3C80M4,  
the set 2 address range (C0H–FFH) is not accessible.  
The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions. You can use only  
Register addressing mode to access set 1 locations. In order to access registers in set 2, you must use Register  
Indirect addressing mode or Indexed addressing mode.  
The set 2 register area is commonly used for stack operations.  
2-6  
S3C80M4/F80M4  
ADDRESS SPACES  
PRIME REGISTER SPACE  
The lower 128 bytes (00H–7FH) of the S3C80M4's one 128-byte register pages is called prime register area.  
Prime registers can be accessed using any of the seven addressing modes  
(see Chapter 3, "Addressing Modes.")  
The prime register area is immediately addressable following a reset.  
Set 1  
Bank 0  
Bank 1  
FFH  
FCH  
FFH  
Set 2  
(Not used for  
the S3C80M4)  
(Not used for  
the S3C80M4)  
E0H  
D0H  
C0H  
C0H  
7FH  
Page 0  
Prime  
Space  
CPU and system control  
General-purpose  
Peripheral and I/O  
LCD data register  
00H  
Figure 2-4. Set 1, Set2, Prime Area Register Map  
2-7  
ADDRESS SPACES  
S3C80M4/F80M4  
WORKING REGISTERS  
Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.  
When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as one  
that consists of 32 8-byte register groups or "slices." Each slice comprises of eight 8-bit registers.  
Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to  
form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block  
anywhere in the addressable register file, except the set 2 area.  
The terms slice and block are used in this manual to help you visualize the size and relative locations of selected  
working register spaces:  
— One working register slice is 8 bytes (eight 8-bit working registers, R0–R7 or R8–R15)  
— One working register block is 16 bytes (sixteen 8-bit working registers, R0–R15)  
All the registers in an 8-byte working register slice have the same binary value for their five most significant  
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.  
The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.  
After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).  
FFH  
Slice 32  
F8H  
F7H  
F0H  
Slice 31  
1 1 1 1 1 X X X  
Set 1  
Only  
RP1 (Registers R8-R15)  
Each register pointer points to  
one 8-byte slice of the register  
space, selecting a total 16-byte  
working register block.  
CFH  
C0H  
~
~
0 0 0 0 0 X X X  
10H  
FH  
8H  
7H  
0H  
RP0 (Registers R0-R7)  
Slice 2  
Slice 1  
Figure 2-5. 8-Byte Working Register Areas (Slices)  
2-8  
S3C80M4/F80M4  
ADDRESS SPACES  
USING THE REGISTER POINTS  
Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable  
8-byte working register slices in the register file. After a reset, they point to the working register common area:  
RP0 points to addresses C0H–C7H, and RP1 points to addresses C8H–CFH.  
To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction.  
(see Figures 2-6 and 2-7).  
With working register addressing, you can only access those two 8-bit slices of the register file that are currently  
pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in  
set 2, C0H–FFH, because these locations can be accessed only using the Indirect Register or Indexed  
addressing modes.  
The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general  
programming guideline, it is recommended that RP0 point to the "lower" slice and RP1 point to the "upper" slice  
(see Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-  
contiguous) areas of the register file. In Figure 2-7, RP0 points to the "upper" slice and RP1 to the "lower" slice.  
Because a register pointer can point to either of the two 8-byte slices in the working register block, you can  
flexibly define the working register area to support program requirements.  
)
PROGRAMMING TIP — Setting the Register Pointers  
SRP  
SRP1  
SRP0  
CLR  
LD  
#70H  
#48H  
#0A0H  
RP0  
RP1,#0F8H  
;
;
;
;
;
RP0  
RP0  
RP0  
RP0  
RP0  
70H, RP1  
no change, RP1  
A0H, RP1  
00H, RP1  
no change, RP1  
78H  
no change  
no change  
48H,  
0F8H  
Register File  
Contains 32  
8-Byte Slices  
0 0 0 0 1 X X X  
RP1  
FH (R15)  
16-Byte  
Contiguous  
Working  
8-Byte Slice  
8-Byte Slice  
8H  
7H  
0 0 0 0 0 X X X  
RP0  
Register block  
0H (R0)  
Figure 2-6. Contiguous 16-Byte Working Register Block  
2-9  
ADDRESS SPACES  
S3C80M4/F80M4  
F7H (R7)  
F0H (R0)  
8-Byte Slice  
16-Byte  
Contiguous  
working  
Register File  
Contains 32  
8-Byte Slices  
1 1 1 1 0 X X X  
Register block  
RP0  
0 0 0 0 0 X X X  
RP1  
7H (R15)  
0H (R0)  
8-Byte Slice  
Figure 2-7. Non-Contiguous 16-Byte Working Register Block  
)
PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers  
Calculate the sum of registers 80H–85H using the register pointer. The register addresses from 80H through 85H  
contain the values 10H, 11H, 12H, 13H, 14H, and 15H, respectively:  
SRP0  
ADD  
ADC  
ADC  
ADC  
ADC  
#80H  
;
;
;
;
;
;
RP0  
R0  
R0  
R0  
R0  
R0  
80H  
R0,R1  
R0,R2  
R0,R3  
R0,R4  
R0,R5  
R0  
+
+
+
+
+
R1  
R0  
R0  
R0  
R0  
R2 + C  
R3 + C  
R4 + C  
R5 + C  
The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this  
example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to  
calculate the sum of these registers, the following instruction sequence would have to be used:  
ADD  
ADC  
ADC  
ADC  
ADC  
80H,81H  
80H,82H  
80H,83H  
80H,84H  
80H,85H  
;
;
;
;
;
80H  
80H  
80H  
80H  
80H  
(80H)  
(80H)  
(80H)  
(80H)  
(80H)  
+
+
+
+
+
(81H)  
(82H)  
(83H)  
(84H)  
(85H)  
+
+
+
+
C
C
C
C
Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of  
instruction code rather than 12 bytes, and its execution time is 50 cycles rather than 36 cycles.  
2-10  
S3C80M4/F80M4  
ADDRESS SPACES  
REGISTER ADDRESSING  
The S3C8-series register architecture provides an efficient method of working register addressing that takes full  
advantage of shorter instruction formats to reduce execution time.  
With Register (R) addressing mode, in which the operand value is the content of a specific register or register  
pair, you can access any location in the register file except for set 2. With working register addressing, you use a  
register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that  
space.  
Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register  
pair, the address of the first 8-bit register is always an even number and the address of the next register is always  
an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register, and  
the least significant byte is always stored in the next (+1) odd-numbered register.  
Working register addressing differs from Register addressing as it uses a register pointer to identify a specific  
8-byte working register space in the internal register file and a specific 8-bit register within that space.  
MSB  
Rn  
LSB  
n = Even address  
Rn+1  
Figure 2-8. 16-Bit Register Pair  
2-11  
ADDRESS SPACES  
S3C80M4/F80M4  
Special-Purpose Registers  
General-Purpose Register  
FFH  
Bank 1  
Bank 0  
FFH  
Control  
Registers  
(Not used for  
the S3C80M4)  
Set 2  
E0H  
D0H  
System  
Registers  
(Not used for  
the S3C80M4)  
CFH  
C0H  
C0H  
BFH  
RP1  
RP0  
Register  
Pointers  
Each register pointer (RP) can independently point  
to one of the 24 8-byte "slices" of the register file  
(other than set 2). After a reset, RP0 points to  
locations C0H-C7H and RP1 to locations C8H-CFH  
(that is, to the common working register area).  
Prime  
Registers  
NOTE:  
In the S3C80M4 microcontroller, pages 0 is  
implemented.  
Pages 0 contain all of the addressable  
registers in the internal register file.  
00H  
Page 0  
Page 0  
Register Addressing Only  
All  
Indirect Register,  
Indexed  
Addressing  
Modes  
Addressing  
Modes  
Can be Pointed by Register Pointer  
Figure 2-9. Register File Addressing  
2-12  
S3C80M4/F80M4  
ADDRESS SPACES  
COMMON WORKING REGISTER AREA (C0H–CFH)  
After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations  
C0H–CFH, as the active 16-byte working register block:  
RP0  
RP1  
C0H–C7H  
C8H–CFH  
This 16-byte address range is called common area. That is, locations in this area can be used as working  
registers by operations that address any location on any page in the register file. Typically, these working  
registers serve as temporary buffers for data operations between different pages.  
Set 1  
FFH  
Set 2  
FFH  
FCH  
(Not used for  
the S3C80M4)  
E0H  
D0H  
C0H  
C0H  
7FH  
Page 0  
Following a hardware reset, register  
pointers RP0 and RP1 point to the  
common working register area,  
locations C0H-CFH.  
Prime  
Space  
RP0 = 1 1 0 0  
RP1 = 1 1 0 0  
0 0 0 0  
1 0 0 0  
00H  
Figure 2-10. Common Working Register Area  
2-13  
ADDRESS SPACES  
S3C80M4/F80M4  
)
PROGRAMMING TIP — Addressing the Common Working Register Area  
As the following examples show, you should access working registers in the common area, locations C0H–CFH,  
using working register addressing mode only.  
Examples 1. LD  
0C2H,40H  
;
Invalid addressing mode!  
Use working register addressing instead:  
SRP  
LD  
#0C0H  
R2,40H  
;
;
R2 (C2H) the value in location 40H  
2. ADD  
0C3H,#45H  
Invalid addressing mode!  
Use working register addressing instead:  
SRP  
ADD  
#0C0H  
R3,#45H  
;
R3 (C3H) R3 + 45H  
4-BIT WORKING REGISTER ADDRESSING  
Each register pointer defines a movable 8-byte slice of working register space. The address information stored in  
a register pointer serves as an addressing "window" that makes it possible for instructions to access working  
registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected  
working register area, the address bits are concatenated in the following way to form a complete 8-bit address:  
— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0, "1" selects RP1).  
— The five high-order bits in the register pointer select an 8-byte slice of the register space.  
— The three low-order bits of the 4-bit address select one of the eight registers in the slice.  
As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are  
concatenated with the three low-order bits from the instruction address to form the complete address. As long as  
the address stored in the register pointer remains unchanged, the three bits from the address will always point to  
an address in the same 8-byte register slice.  
Figure 2-12 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction  
"INC R6" is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the  
three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).  
2-14  
S3C80M4/F80M4  
ADDRESS SPACES  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
OPCODE  
4-bit address  
provides three  
low-order bits  
Register pointer  
provides five  
high-order bits  
Together they create an  
8-bit register address  
Figure 2-11. 4-Bit Working Register Addressing  
RP0  
0 1 1 1 0  
RP1  
0 1 1 1 1  
0 0 0  
0 0 0  
Selects RP0  
R6  
OPCODE  
1 1 1 0  
Register  
address  
(76H)  
Instruction  
'INC R6'  
0 1 1 1 0  
1 1 0  
0 1 1 0  
Figure 2-12. 4-Bit Working Register Addressing Example  
2-15  
ADDRESS SPACES  
S3C80M4/F80M4  
8-BIT WORKING REGISTER ADDRESSING  
You can also use 8-bit working register addressing to access registers in a selected working register area. To  
initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value  
"1100B." This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working  
register addressing.  
As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit  
addressing: Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address; the  
three low-order bits of the complete address are provided by the original instruction.  
Figure 2-14 shows an example of 8-bit working register addressing. The four high-order bits of the instruction  
address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in  
RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register  
address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from  
RP1 and the three address bits from the instruction are concatenated to form the complete register address,  
0ABH (10101011B).  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
These address  
bits indicate 8-bit  
working register  
addressing  
8-bit logical  
address  
1
1
0
0
Register pointer  
provides five  
Three low-order bits  
high-order bits  
8-bit physical address  
Figure 2-13. 8-Bit Working Register Addressing  
2-16  
S3C80M4/F80M4  
ADDRESS SPACES  
RP0  
0 1 1 0 0  
RP1  
1 0 1 0 1  
0 0 0  
0 0 0  
Selects RP1  
R11  
8-bit address  
form instruction  
'LD R11, R2'  
Register  
address  
(0ABH)  
1 1 0 0  
1
0 1 1  
1 0 1 0 1  
0 1 1  
Specifies working  
register addressing  
Figure 2-14. 8-Bit Working Register Addressing Example  
2-17  
ADDRESS SPACES  
S3C80M4/F80M4  
SYSTEM AND USER STACK  
The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH  
and POP instructions are used to control system stack operations. The S3C80M4/F80M4 architecture supports  
stack operations in the internal register file.  
Stack Operations  
Return addresses for procedure calls, interrupts, and data are stored on the stack. The contents of the PC are  
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents  
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to  
their original locations. The stack address value is always decreased by one before a push operation and  
increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top  
of the stack, as shown in Figure 2-15.  
High Address  
PCL  
PCL  
PCH  
Top of  
PCH  
stack  
Top of  
stack  
Flags  
Stack contents  
after a call  
Stack contents  
after an  
instruction  
interrupt  
Low Address  
Figure 2-15. Stack Operations  
User-Defined Stacks  
You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI,  
PUSHUD, POPUI, and POPUD support user-defined stack operations.  
Stack Pointers (SPL, SPH)  
Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations.  
The most significant byte of the SP address, SP15–SP8, is stored in the SPH register (D8H), and the least  
significant byte, SP7–SP0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.  
Because only internal memory space is implemented in the S3C84G5, the SPL must be initialized to an 8-bit  
value in the range 00H–FFH. The SPH register is not needed and can be used as a general-purpose register, if  
necessary.  
When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the  
register file), you can use the SPH register as a general-purpose data register. However, if an overflow or  
underflow condition occurs as a result of increasing or decreasing the stack address value in the SPL register  
during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register,  
overwriting any other data that is currently stored there. To avoid overwriting data in the SPH register, you can  
initialize the SPL value to "FFH" instead of "00H".  
2-18  
S3C80M4/F80M4  
ADDRESS SPACES  
)
PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP  
The following example shows you how to perform stack operations in the internal register file using PUSH and  
POP instructions:  
LD  
SPL,#0FFH  
;
;
;
SPL FFH  
(Normally, the SPL is set to 0FFH by the initialization  
routine)  
PUSH  
PUSH  
PUSH  
PUSH  
PP  
;
;
;
;
Stack address 0FEH  
Stack address 0FDH  
Stack address 0FCH  
Stack address 0FBH  
PP  
RP0  
RP1  
R3  
RP0  
RP1  
R3  
POP  
POP  
POP  
POP  
R3  
;
;
;
;
R3  
Stack address 0FBH  
Stack address 0FCH  
Stack address 0FDH  
Stack address 0FEH  
RP1  
RP0  
PP  
RP1  
RP0  
PP  
2-19  
ADDRESS SPACES  
S3C80M4/F80M4  
NOTES  
2-20  
S3C80M4/F80M4  
ADDRESSING MODES  
3
ADDRESSING MODES  
OVERVIEW  
Instructions that are stored in program memory are fetched for execution using the program counter. Instructions  
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to  
determine the location of the data operand. The operands specified in SAM88RC instructions may be condition  
codes, immediate data, or a location in the register file, program memory, or data memory.  
The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are  
available for each instruction. The seven addressing modes and their symbols are:  
— Register (R)  
— Indirect Register (IR)  
— Indexed (X)  
— Direct Address (DA)  
— Indirect Address (IA)  
— Relative Address (RA)  
— Immediate (IM)  
3-1  
ADDRESSING MODES  
S3C80M4/F80M4  
REGISTER ADDRESSING MODE (R)  
In Register addressing mode (R), the operand value is the content of a specified register or register pair  
(see Figure 3-1).  
Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte  
working register space in the register file and an 8-bit register within that space (see Figure 3-2).  
Program Memory  
Register File  
OPERAND  
8-bit Register  
File Address  
dst  
Point to One  
Register in Register  
File  
OPCODE  
One-Operand  
Instruction  
(Example)  
Value used in  
Instruction Execution  
Sample Instruction:  
DEC  
CNTR  
;
Where CNTR is the label of an 8-bit register address  
Figure 3-1. Register Addressing  
Register File  
MSB Point to  
RP0 ot RP1  
RP0 or RP1  
Selected  
RP points  
to start  
Program Memory  
of working  
register  
block  
4-bit  
Working Register  
3 LSBs  
dst  
src  
Point to the  
Working Register  
(1 of 8)  
OPCODE  
OPERAND  
Two-Operand  
Instruction  
(Example)  
Sample Instruction:  
ADD R1, R2  
;
Where R1 and R2 are registers in the currently  
selected working register area.  
Figure 3-2. Working Register Addressing  
3-2  
S3C80M4/F80M4  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (IR)  
In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the  
operand. Depending on the instruction used, the actual address may point to a register in the register file, to  
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).  
You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to  
indirectly address another memory location. Please note, however, that you cannot access locations C0H–FFH in  
set 1 using the Indirect Register addressing mode.  
Program Memory  
Register File  
ADDRESS  
8-bit Register  
File Address  
dst  
Point to One  
Register in Register  
File  
OPCODE  
One-Operand  
Instruction  
Address of Operand  
used by Instruction  
(Example)  
OPERAND  
Value used in  
Instruction Execution  
Sample Instruction:  
RL  
@SHIFT  
;
Where SHIFT is the label of an 8-bit register address  
Figure 3-3. Indirect Register Addressing to Register File  
3-3  
ADDRESSING MODES  
S3C80M4/F80M4  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
Program Memory  
Example  
REGISTER  
PAIR  
dst  
Instruction  
References  
Program  
Points to  
Register Pair  
OPCODE  
16-Bit  
Memory  
Address  
Points to  
Program  
Memory  
Program Memory  
OPERAND  
Sample Instructions:  
Value used in  
Instruction  
CALL  
JP  
@RR2  
@RR2  
Figure 3-4. Indirect Register Addressing to Program Memory  
3-4  
S3C80M4/F80M4  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
MSB Points to  
RP0 or RP1  
RP0 or RP1  
Selected  
RP points  
to start fo  
working register  
block  
Program Memory  
~
~
~
~
4-bit  
Working  
Register  
Address  
3 LSBs  
dst  
src  
Point to the  
Working Register  
(1 of 8)  
ADDRESS  
OPERAND  
OPCODE  
Sample Instruction:  
OR R3, @R6  
Value used in  
Instruction  
Figure 3-5. Indirect Working Register Addressing to Register File  
3-5  
ADDRESSING MODES  
S3C80M4/F80M4  
INDIRECT REGISTER ADDRESSING MODE (Concluded)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
4-bit Working  
Register Address  
dst  
src  
Register  
Pair  
Next 2-bit Point  
to Working  
Register Pair  
(1 of 4)  
OPCODE  
Example Instruction  
References either  
Program Memory or  
Data Memory  
16-Bit  
address  
points to  
program  
memory  
or data  
Program Memory  
or  
Data Memory  
LSB Selects  
memory  
Value used in  
Instruction  
OPERAND  
Sample Instructions:  
LCD  
LDE  
LDE  
R5,@RR6  
R3,@RR14  
@RR4, R8  
; Program memory access  
; External data memory access  
; External data memory access  
Figure 3-6. Indirect Working Register Addressing to Program or Data Memory  
3-6  
S3C80M4/F80M4  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (X)  
Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to  
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access  
locations in the internal register file or in external memory. Please note, however, that you cannot access  
locations C0H–FFH in set 1 using Indexed addressing mode.  
In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128  
to +127. This applies to external memory accesses only (see Figure 3-8.)  
For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained  
in a working register. For external memory accesses, the base address is stored in the working register pair  
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to that base address  
(see Figure 3-9).  
The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction  
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for  
external data memory, when implemented.  
Register File  
RP0 or RP1  
~
~
~
~
Selected RP  
points to  
start of  
working  
register  
block  
Value used in  
Instruction  
OPERAND  
+
Program Memory  
Base Address  
3 LSBs  
Two-Operand  
Instruction  
Example  
dst/src  
x
INDEX  
Point to One of the  
Woking Register  
(1 of 8)  
OPCODE  
Sample Instruction:  
LD R0, #BASE[R1]  
;
Where BASE is an 8-bit immediate value  
Figure 3-7. Indexed Addressing to Register File  
3-7  
ADDRESSING MODES  
S3C80M4/F80M4  
INDEXED ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
~
~
Program Memory  
OFFSET  
NEXT 2 Bits  
4-bit Working  
Register Address  
dst/src  
x
Register  
Pair  
Point to Working  
Register Pair  
(1 of 4)  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
LSB Selects  
Data Memory  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #04H[RR2]  
R4,#04H[RR2]  
;
;
The values in the program address (RR2 + 04H)  
are loaded into register R4.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset  
3-8  
S3C80M4/F80M4  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (Concluded)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
~
~
OFFSET  
OFFSET  
NEXT 2 Bits  
4-bit Working  
Register Address  
dst/src  
src  
Register  
Pair  
Point to Working  
Register Pair  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
LSB Selects  
Data Memory  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #1000H[RR2]  
R4,#1000H[RR2]  
;
;
The values in the program address (RR2 + 1000H)  
are loaded into register R4.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-9. Indexed Addressing to Program or Data Memory  
3-9  
ADDRESSING MODES  
S3C80M4/F80M4  
DIRECT ADDRESS MODE (DA)  
In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call  
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC  
whenever a JP or CALL instruction is executed.  
The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for  
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.  
Program or  
Data Memory  
Memory  
Address  
Used  
Program Memory  
Upper Address Byte  
Lower Address Byte  
dst/src "0" or "1"  
OPCODE  
LSB Selects Program  
Memory or Data Memory:  
"0" = Program Memory  
"1" = Data Memory  
Sample Instructions:  
LDC  
LDE  
R5,1234H  
R5,1234H  
;
;
The values in the program address (1234H)  
are loaded into register R5.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-10. Direct Addressing for Load Instructions  
3-10  
S3C80M4/F80M4  
ADDRESSING MODES  
DIRECT ADDRESS MODE (Continued)  
Program Memory  
Next OPCODE  
Memory  
Address  
Used  
Upper Address Byte  
Lower Address Byte  
OPCODE  
Sample Instructions:  
JP  
C,JOB1  
;
;
Where JOB1 is a 16-bit immediate address  
Where DISPLAY is a 16-bit immediate address  
CALL DISPLAY  
Figure 3-11. Direct Addressing for Call and Jump Instructions  
3-11  
ADDRESSING MODES  
S3C80M4/F80M4  
INDIRECT ADDRESS MODE (IA)  
In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program  
memory. The selected pair of memory locations contains the actual address of the next instruction to be executed.  
Only the CALL instruction can use the Indirect Address mode.  
Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program  
memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are  
assumed to be all zeros.  
Program Memory  
Next Instruction  
LSB Must be Zero  
dst  
Current  
OPCODE  
Instruction  
Lower Address Byte  
Upper Address Byte  
Program Memory  
Locations 0-255  
Sample Instruction:  
CALL #40H  
;
The 16-bit value in program memory addresses 40H  
and 41H is the subroutine start address.  
Figure 3-12. Indirect Addressing  
3-12  
S3C80M4/F80M4  
ADDRESSING MODES  
RELATIVE ADDRESS MODE (RA)  
In Relative Address (RA) mode, a twos-complement signed displacement between – 128 and + 127 is specified  
in the instruction. The displacement value is then added to the current PC value. The result is the address of the  
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction  
immediately following the current instruction.  
Several program control instructions use the Relative Address mode to perform conditional jumps. The  
instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Current  
PC Value  
+
Displacement  
OPCODE  
Current Instruction  
Signed  
Displacement Value  
Sample Instructions:  
JR  
ULT,$+OFFSET  
;
Where OFFSET is a value in the range +127 to -128  
Figure 3-13. Relative Addressing  
3-13  
ADDRESSING MODES  
S3C80M4/F80M4  
IMMEDIATE MODE (IM)  
In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand  
field itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate  
addressing mode is useful for loading constant values into registers.  
Program Memory  
OPERAND  
OPCODE  
(The Operand value is in the instruction)  
Sample Instruction:  
LD  
R0,#0AAH  
Figure 3-14. Immediate Addressing  
3-14  
S3C80M4/F80M4  
CONTROL REGISTER  
4
CONTROL REGISTERS  
OVERVIEW  
In this chapter, detailed descriptions of the S3C80M4 control registers are presented in an easy-to-read format.  
You can use this chapter as a quick-reference source when writing application programs. Figure 4-1 illustrates  
the important features of the standard register description format.  
Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed  
information about control registers is presented in the context of the specific peripheral hardware descriptions in  
Part II of this manual.  
Data and counter registers are not described in detail in this reference chapter. More information about all of the  
registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part II of this  
manual.  
The locations and read/write characteristics of all mapped registers in the S3C80M4 register file are listed in  
Table 4-1. The hardware reset value for each mapped register is described in Chapter 8, "RESET and Power-  
Down."  
Table 4-1. Set 1 Registers  
Register Name  
Mnemonic  
Decimal  
Hex  
R/W  
Locations D0 – D2H are not mapped.  
Basic Timer Control Register  
System Clock Control Register  
System Flags Register  
Register Pointer 0  
BTCON  
CLKCON  
FLAGS  
RP0  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Register Pointer 1  
RP1  
Stack Pointer (High Byte)  
Stack Pointer (Low Byte)  
Instruction Pointer (High Byte)  
Instruction Pointer (Low Byte)  
Interrupt Request Register  
Interrupt Mask Register  
System Mode Register  
Register Page Pointer  
SPH  
SPL  
IPH  
IPL  
IRQ  
IMR  
R/W  
R/W  
R/W  
SYM  
PP  
4-1  
CONTROL REGISTERS  
S3C80M4/F80M4  
Table 4-2. Set 1, Bank 0 Registers  
Register Name  
Mnemonic  
Decimal  
Hex  
E0H  
E1H  
R/W  
R/W  
R/W  
Port 0 Data Register  
Port 1 Data Register  
P0  
P1  
224  
225  
Location E2H is not mapped.  
CLOCON  
Clock Output Control Register  
Timer 0 Counter Register  
Timer 0 Data Register  
Timer 0 Control Register  
PWM Data Register  
227  
228  
229  
230  
231  
232  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
R/W  
R
T0CNT  
T0DATA  
R/W  
R/W  
R/W  
R/W  
T0CON  
PWMDATA  
PWMCON  
PWM Control Register  
Locations E9 – EEH are not mapped.  
Port 1 Control Register(High Byte)  
Port 1 Control Register(Low Byte)  
Port 1 Pull-up Resistor Enable Register  
Port 0 Control Register(High Byte)  
Port 0 Control Register(Low Byte)  
Port 0 Interrupt Control Register  
Port 0 Interrupt Pending Register  
P1CONH  
P1CONL  
P1PUR  
240  
241  
242  
243  
244  
245  
246  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P0CONH  
P0CONL  
P0INT  
P0PND  
Locations F6 – FAH are not mapped.  
STPCON 251  
Location FCH is not mapped.  
STOP Control Register  
Basic Timer Counter  
FBH  
FDH  
FFH  
R/W  
R
BTCNT  
Location FEH is not mapped.  
IPR  
253  
Interrupt Priority Register  
255  
R/W  
4-2  
S3C80M4/F80M4  
CONTROL REGISTER  
Bit number(s) that is/are appended to  
the register name for bit addressing  
Name of individual  
bit or related bits  
Register location  
in the internal  
register file  
Register address  
(hexadecimal)  
Register ID  
Full Register name  
FLAGS - System Flags Register  
D5H  
Set 1  
Bit Identifier  
RESET Value  
Read/Write  
Bit Addressing  
Mode  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
.1  
.0  
0
x
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
.7  
Carry Flag (C)  
0
0
Operation does not generate a carry or borrow condition  
Operation generates carry-out or borrow into high-order bit 7  
.6  
.5  
Zero Flag (Z)  
Operation result is a non-zero value  
Operation result is zero  
0
0
Sign Flag (S)  
Operation generates positive number (MSB = "0")  
0
0
Operation generates negative number (MSB = "1")  
R = Read-only  
W = Write-only  
R/W = Read/write  
'-' = Not used  
Description of the  
effect of specific  
bit settings  
Bit number:  
MSB = Bit 7  
LSB = Bit 0  
Type of addressing  
that must be used to  
address the bit  
RESET value notation:  
'-' = Not used  
'x' = Undetermined value  
'0' = Logic zero  
(1-bit, 4-bit, or 8-bit)  
'1' = Logic one  
Figure 4-1. Register Description Format  
4-3  
CONTROL REGISTERS  
S3C80M4/F80M4  
BTCON — Basic Timer Control Register  
D3H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.4  
.3–.2  
Watchdog Timer Function Disable Code (for System Reset)  
1
0
1
0
Disable watchdog timer function  
Enable watchdog timer function  
Others  
Basic Timer Input Clock Selection Bits  
0
0
1
1
0
1
0
1
fxx/4096  
fxx/1024  
fxx/128  
fxx/16  
Basic Timer Counter Clear Bit (1)  
.1  
0
1
No effect  
Clear the basic timer counter value  
Clock Frequency Divider Clear Bit for Basic Timer and Timer/Counters (2)  
.0  
0
1
No effect  
Clear both clock frequency dividers  
NOTES:  
1. When you write a “1” to BTCON.1, the basic timer counter value is cleared to "00H". Immediately following the write  
operation, the BTCON.1 value is automatically cleared to “0”.  
2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to "00H". Immediately following the  
write operation, the BTCON.0 value is automatically cleared to "0".  
4-4  
S3C80M4/F80M4  
CONTROL REGISTER  
CLKCON — System Clock Control Register  
D4H  
Set 1  
Bit Identifier  
.7  
0
.6  
.5  
.4  
0
.3  
0
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7  
Oscillator IRQ Wake-up Function Bit  
0
1
Enable IRQ for main wake-up in power down mode  
Disable IRQ for main wake-up in power down mode  
Not used for the S3C80M4  
.6–.5  
.4–.3  
CPU Clock (System Clock) Selection Bits (note)  
0
0
1
1
0
1
0
1
fxx/16  
fxx/8  
fxx/2  
fxx  
Not used for the S3C80M4  
.2–.0  
NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load  
the appropriate values to CLKCON.3 and CLKCON.4.  
4-5  
CONTROL REGISTERS  
S3C80M4/F80M4  
CLOCON — Clock Output Control Register  
E3H  
Set 1, Bank0  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
Not used for the S3C80M4  
.7–.2  
.1–.0  
Clock Output Frequency Selection Bits  
0
0
1
1
0
1
0
1
fxx/64  
fxx/16  
fxx/8  
fxx/4  
4-6  
S3C80M4/F80M4  
CONTROL REGISTER  
FLAGS — System Flags Register  
D5H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Carry Flag (C)  
0
1
Operation does not generate a carry or borrow condition  
Operation generates a carry-out or borrow into high-order bit 7  
Zero Flag (Z)  
0
1
Operation result is a non-zero value  
Operation result is zero  
Sign Flag (S)  
0
1
Operation generates a positive number (MSB = "0")  
Operation generates a negative number (MSB = "1")  
Overflow Flag (V)  
0
1
Operation result is  
+127 or  
–128  
–128  
Operation result is > +127 or  
<
Decimal Adjust Flag (D)  
0
1
Add operation completed  
Subtraction operation completed  
Half-Carry Flag (H)  
0
1
No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction  
Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3  
Fast Interrupt Status Flag (FIS)  
0
1
Interrupt return (IRET) in progress (when read)  
Fast interrupt service routine in progress (when read)  
Bank Address Selection Flag (BA)  
0
1
Bank 0 is selected  
Bank 1 is selected  
4-7  
CONTROL REGISTERS  
S3C80M4/F80M4  
IMR — Interrupt Mask Register  
DDH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
.0  
x
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
Interrupt Level 7 (IRQ7) Enable Bit; External Interrupts P0.3  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 6 (IRQ6) Enable Bit; External Interrupts P0.2  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 5 (IRQ5) Enable Bit; External Interrupts P0.1  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 4 (IRQ4) Enable Bit; External Interrupts P0.0  
0
1
Disable (mask)  
Enable (unmask)  
Reserved  
.3  
.2  
Interrupt Level 2 (IRQ2) Enable Bit; PWM  
0
1
Disable (mask)  
Enable (unmask)  
Reserved  
.1  
.0  
Interrupt Level 0 (IRQ0) Enable Bit; Timer 0 Match  
0
1
Disable (mask)  
Enable (unmask)  
NOTE: When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.  
4-8  
S3C80M4/F80M4  
CONTROL REGISTER  
IPH — Instruction Pointer (High Byte)  
DAH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.0  
Instruction Pointer Address (High Byte)  
The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction  
pointer address (IP15–IP8). The lower byte of the IP address is located in the IPL  
register (DBH).  
IPL — Instruction Pointer (Low Byte)  
DBH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.0  
Instruction Pointer Address (Low Byte)  
The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction  
pointer address (IP7–IP0). The upper byte of the IP address is located in the IPH  
register (DAH).  
4-9  
CONTROL REGISTERS  
S3C80M4/F80M4  
IPR — Interrupt Priority Register  
FFH  
Set 1, Bank 0  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7, .4, and .1  
Priority Control Bits for Interrupt Groups A, B, and C  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Group priority undefined  
B
A
B
C
C
A
>
>
>
>
>
>
C
B
A
A
B
C
>
>
>
>
>
>
A
C
C
B
A
B
Group priority undefined  
.6  
.5  
.3  
.2  
.0  
Interrupt Subgroup C Priority Control Bit  
0
1
IRQ6  
IRQ7  
>
>
IRQ7  
IRQ6  
Interrupt Group C Priority Control Bit  
0
1
IRQ5  
>
(IRQ6, IRQ7)  
IRQ5  
(IRQ6, IRQ7)  
>
Interrupt Subgroup B Priority Control Bit  
0
1
IRQ3 > IRQ4  
IRQ4 > IRQ3  
Interrupt Group B Priority Control Bit  
0
1
IRQ2  
>
(IRQ3, IRQ4)  
IRQ2  
(IRQ3, IRQ4)  
>
Interrupt Group A Priority Control Bit  
0
1
IRQ0  
IRQ1  
>
>
IRQ1  
IRQ0  
NOTE: Interrupt group A - IRQ0, IRQ1  
Interrupt group B -IRQ2, IRQ3, IRQ4  
Interrupt group C -IRQ5, IRQ6, IRQ7  
4-10  
S3C80M4/F80M4  
CONTROL REGISTER  
IRQ — Interrupt Request Register  
DCH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R
R
R
R
R
R
R
R
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
Level 7 (IRQ7) Request Pending Bit; External Interrupts P0.3  
0
1
Not pending  
Pending  
Level 6 (IRQ6) Request Pending Bit; External Interrupts P0.2  
0
1
Not pending  
Pending  
Level 5 (IRQ5) Request Pending Bit; ; External Interrupts P0.1  
0
1
Not pending  
Pending  
Level 4 (IRQ4) Request Pending Bit; ; External Interrupts P0.0  
0
1
Not pending  
Pending  
Reserved  
.3  
.2  
Level 2 (IRQ2) Request Pending Bit; PWM  
0
1
Not pending  
Pending  
Reserved  
.1  
.0  
Level 0 (IRQ0) Request Pending Bit; Timer 0 Match  
0
1
Not pending  
Pending  
4-11  
CONTROL REGISTERS  
S3C80M4/F80M4  
P0CONH — Port 0 Control Register (High Byte)  
F2H  
Set 1,Bank 0  
Bit Identifier  
.7  
0
.6  
1
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P0.7  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode with pull-up resistor  
Not available  
Output mode, push-pull  
P0.6/PWM  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode with pull-up resistor  
Alternative function (PWM)  
Output mode, push-pull  
P0.5  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode with pull-up resistor  
Not available  
Output mode, push-pull  
P0.4  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode with pull-up resistor  
Not available  
Output mode, push-pull  
4-12  
S3C80M4/F80M4  
CONTROL REGISTER  
P0CONL — Port 0 Control Register (Low Byte)  
F3H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P0.3/INT3  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode with pull-up resistor  
Not available  
Output mode, push-pull  
P0.2/INT2  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode with pull-up resistor  
Not available  
Output mode, push-pull  
P0.1/INT1  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode with pull-up resistor  
Not available  
Output mode, push-pull  
P0.0/INT0  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode with pull-up resistor  
Not available  
Output mode, push-pull  
4-13  
CONTROL REGISTERS  
S3C80M4/F80M4  
P0INT — Port 0 Interrupt Control Register  
F4H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P0.3/External interrupt (INT3) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P0.2/External interrupt (INT2) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P0.1/External interrupt (INT1) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P0.0/External interrupt (INT0) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
4-14  
S3C80M4/F80M4  
CONTROL REGISTER  
P0PND — Port 0 Interrupt Pending Register  
F5H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
Not used for the S3C80M4  
.7–.4  
.3  
P0.3/External Interrupt (INT3) Pending Bit  
0
1
Interrupt request is not pending (When read), Clear pending bit when write 0  
P0.3/INT3 interrupt request is pending (when read)  
.2  
.1  
.0  
P0.2/External Interrupt (INT2) Pending Bit  
0
1
Interrupt request is not pending (When read), Clear pending bit when write 0  
P0.2/INT2 interrupt request is pending (when read)  
P0.1/External Interrupt (INT1) Pending Bit  
0
1
Interrupt request is not pending (When read), Clear pending bit when write 0  
P0.1/INT1 interrupt request is pending (when read)  
P0.0/External Interrupt (INT0) Pending Bit  
0
1
Interrupt request is not pending (When read), Clear pending bit when write 0  
P0.0/INT0 interrupt request is pending (when read)  
4-15  
CONTROL REGISTERS  
S3C80M4/F80M4  
P1CONH — Port 1 Control Register (High Byte)  
EFH  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Not used for the S3C80M4  
P1.6/CLKOUT  
Addressing Mode  
.7–.6  
.5–.4  
0
0
1
1
0
1
0
1
Input mode  
Output mode, N-channel open-drain  
Alternative function (CLKOUT)  
Output mode, push-pull  
.3–.2  
.1–.0  
P1.5  
0
0
1
1
0
1
0
1
Input mode  
Output mode, N-channel open-drain  
Not available  
Output mode, push-pull  
P1.4  
0
0
1
1
0
1
0
1
input mode  
Output mode, N-channel open-drain  
Not available  
Output mode, push-pull  
4-16  
S3C80M4/F80M4  
CONTROL REGISTER  
P1CONL — Port 1 Control Register (Low Byte)  
F0H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.3  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, N-channel open-drain  
Not available  
Output mode, push-pull  
P1.2  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, N-channel open-drain  
Not available  
Output mode, push-pull  
P1.1/T0CLK  
0
0
1
1
0
1
0
1
Schmitt trigger input mode (T0CLK)  
Output mode, N-channel open-drain  
Not available  
Output mode, push-pull  
P1.0/T0OUT  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, N-channel open-drain  
Alternative function (T0OUT)  
Output mode, push-pull  
4-17  
CONTROL REGISTERS  
S3C80M4/F80M4  
P1PUR — Port 1 Pull-up Resistor Enable Register  
F1H  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
Not used for the S3C80M4  
.7  
.6  
P1.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
.5  
.4  
.3  
.2  
.1  
.0  
P1.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
NOTE: A pull-up resistor of port 1 is automatically disabled only when the corresponding pin is selected as push-pull output  
or alternative function.  
4-18  
S3C80M4/F80M4  
CONTROL REGISTER  
PP — Register Page Pointer  
DFH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.4  
Destination Register Page Selection Bits  
Destination: page 0  
Not used for the S3C80M4  
0
0
0
0
Others  
.3– .0  
Source Register Page Selection Bits  
0
0
0
0
Source: page 0  
Others  
Not used for the S3C80M4  
NOTE: In the S3C80M4 microcontroller, the internal register file is configured as one pages (pages 0).  
The page 0 is used for general purpose register file.  
4-19  
CONTROL REGISTERS  
S3C80M4/F80M4  
PWMCON — Pulse Width Modulation Control Register  
E8H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.6  
PWM Input Clock Selection Bits  
0
0
1
1
0
1
0
1
fosc/64  
fosc/8  
fosc/2  
fosc/1  
Not used, But you must keep "1"  
PWMDATA Reload Interval Selection Bit  
.5  
.4  
0
1
Reload from 8-bit up counter overflow  
Reload from 6-bit up counter overflow  
.3  
.2  
PWM Counter Clear Bit  
0
1
No effect  
Clear the PWM counter (when write)  
PWM Counter Enable Bit  
0
1
Counter STOP  
Counter RUN (Resume countering)  
.1  
.0  
PWM Overflow Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
PWM Overflow Interrupt Pending Bit  
0
1
Interrupt is not pending (when read), Clear pending (when write)  
Interrupt is pending (when read), No effect (when write)  
NOTE: The PWMCON.3 is not automatically cleared to "0". You must pay attention when clear pending bit.  
4-20  
S3C80M4/F80M4  
CONTROL REGISTER  
RP0 — Register Pointer 0  
D6H  
Set 1  
Bit Identifier  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
0
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing only  
Addressing Mode  
.7–.3  
.2–.0  
Register Pointer 0 Address Value  
Register pointer 0 can independently point to one of the 256-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP0 points to address C0H in register set 1, selecting the 8-byte working register  
slice C0H–C7H.  
Not used for the S3C80M4  
RP1 — Register Pointer 1  
D7H  
Set 1  
Bit Identifier  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
1
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing only  
Addressing Mode  
.7– .3  
Register Pointer 1 Address Value  
Register pointer 1 can independently point to one of the 256-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP1 points to address C8H in register set 1, selecting the 8-byte working register  
slice C8H–CFH.  
Not used for the S3C80M4  
.2– .0  
4-21  
CONTROL REGISTERS  
S3C80M4/F80M4  
SPH — Stack Pointer (High Byte)  
D8H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
.0  
x
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.0  
Stack Pointer Address (High Byte)  
The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer  
address (SP15–SP8). The lower byte of the stack pointer value is located in register  
SPL (D9H). The SP value is undefined following a reset.  
SPL — Stack Pointer (Low Byte)  
D9H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.0  
Stack Pointer Address (Low Byte)  
The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer  
address (SP7–SP0). The upper byte of the stack pointer value is located in register  
SPH (D8H). The SP value is undefined following a reset.  
4-22  
S3C80M4/F80M4  
CONTROL REGISTER  
STPCON — Stop Control Register  
FBH  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.0  
STOP Control Bits  
1 0 1 0 0 1 0 1 Enable stop instruction  
Other values Disable stop instruction  
NOTE: Before execute the STOP instruction, You must set this STPCON register as “10100101b”. Otherwise the STOP  
instruction will not execute as well as reset will be generated.  
4-23  
CONTROL REGISTERS  
S3C80M4/F80M4  
SYM — System Mode Register  
DEH  
Set 1  
Bit Identifier  
.7  
0
.6  
.5  
.4  
x
.3  
x
.2  
x
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Not used, But you must keep "0"  
Not used for the S3C80M4  
Addressing Mode  
.7  
.6–.5  
.4–.2  
Fast Interrupt Level Selection Bits (1)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Fast Interrupt Enable Bit (2)  
.1  
0
1
Disable fast interrupt processing  
Enable fast interrupt processing  
Global Interrupt Enable Bit (3)  
.0  
0
1
Disable all interrupt processing  
Enable all interrupt processing  
NOTES:  
1. You can select only one interrupt level at a time for fast interrupt processing.  
2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2–SYM.4.  
3. Following a reset, you must enable global interrupt processing by executing an EI instruction  
(not by writing a "1" to SYM.0).  
4-24  
S3C80M4/F80M4  
CONTROL REGISTER  
T0CON — Timer 0 Control Register  
E6H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7–.5  
Timer 0 Input Clock Selection Bits  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fxx/1024  
fxx/256  
fxx/64  
fxx/8  
fxx/1  
External clock (T0CLK) falling edge  
External clock (T0CLK) rising edge  
Counter stop  
Not used for the S3C80M4  
.4  
.3  
Timer 0 Counter Clear Bit  
0
1
No effect  
Clear the timer 0 counter (when write)  
.2  
.1  
.0  
Timer 0 Counter Enable Bit  
0
1
Disable counting operation  
Enable counting operation  
Timer 0 Match Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer 0 Interrupt Pending Bit  
0
Interrupt request is not pending (when read),  
Pending bit clear when write 0  
1
Interrupt request is pending (when read)  
NOTE: The T0CON.3 value is automatically cleared to "0" after being cleared counter.  
4-25  
CONTROL REGISTERS  
S3C80M4/F80M4  
NOTES  
4-26  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
5
INTERRUPT STRUCTURE  
OVERVIEW  
The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8 CPU  
recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has  
more than one vector address, the vector priorities are established in hardware. A vector address can be  
assigned to one or more sources.  
Levels  
Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks  
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight  
possible interrupt levels: IRQ0–IRQ7, also called level 0–level 7. Each interrupt level directly corresponds to an  
interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from  
device to device. The S3C80M4 interrupt structure recognizes eight interrupt levels.  
The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just  
identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is  
determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR  
settings lets you define more complex priority relationships between different levels.  
Vectors  
Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The  
maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors used for  
S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the vector  
priorities are set in hardware. S3C80M4 uses eight vectors.  
Sources  
A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow.  
Each vector can have several interrupt sources. In the S3C80M4 interrupt structure, there are eight possible  
interrupt sources.  
When a service routine starts, the respective pending bit should be either cleared automatically by hardware or  
cleared "manually" by program software. The characteristics of the source's pending mechanism determine which  
method would be used to clear its respective pending bit.  
5-1  
INTERRUPT STRUCTURE  
INTERRUPT TYPES  
S3C80M4/F80M4  
The three components of the S3C8 interrupt structure described before — levels, vectors, and sources — are  
combined to determine the interrupt structure of an individual device and to make full use of its available interrupt  
logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3.  
The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):  
Type 1:  
Type 2:  
Type 3:  
One level (IRQn) + one vector (V1) + one source (S1)  
One level (IRQn) + one vector (V1) + multiple sources (S1 – Sn)  
One level (IRQn) + multiple vectors (V1 – Vn) + multiple sources (S1 – Sn , Sn+1 – Sn+m  
)
In the S3C80M4 microcontroller, two interrupt types are implemented.  
Levels  
Vectors  
Sources  
Type 1:  
Type 2:  
IRQn  
V1  
S1  
S1  
IRQn  
IRQn  
V1  
S2  
S3  
Sn  
V1  
V2  
V3  
Vn  
S1  
Type 3:  
NOTES:  
S2  
S3  
Sn  
Sn + 1  
Sn + 2  
Sn + m  
1. The number of Sn and Vn value is expandable.  
2. In the S3C80M4 implementation,  
interrupt types 1 is used.  
Figure 5-1. S3C8-Series Interrupt Types  
5-2  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
S3C80M4 INTERRUPT STRUCTURE  
The S3C80M4/F80M4 microcontroller supports nineteen interrupt sources. All nineteen of the interrupt sources  
have a corresponding interrupt vector address. Eight interrupt levels are recognized by the CPU in this device-  
specific interrupt structure, as shown in Figure 5-2.  
When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which  
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt  
with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single  
level are fixed in hardware).  
When the CPU grants an interrupt request, interrupt processing starts. All other interrupts are disabled and the  
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched  
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the  
service routine is executed.  
Levels  
Vectors  
Sources  
Reset/Clear  
100H  
RESET  
Basic Timer Overflow  
Timer 0 match  
H/W  
S/W  
-
EEH  
ECH  
IRQ0  
IRQ1  
Reserved  
EAH  
E8H  
IRQ2  
IRQ3  
S/W  
PWM interrupt  
Reserved  
-
P0.0 External interrupt  
P0.1 External interrupt  
P0.2 External interrupt  
P0.3 External interrupt  
S/W  
E6H  
E4H  
IRQ4  
IRQ5  
IRQ6  
S/W  
S/W  
S/W  
E2H  
E0H  
IRQ7  
Figure 5-2. S3C80M4/F80M4 Interrupt Structure  
5-3  
INTERRUPT STRUCTURE  
S3C80M4/F80M4  
INTERRUPT VECTOR ADDRESSES  
All interrupt vector addresses for the S3C80M4/F80M4 interrupt structure are stored in the vector address area of  
the internal 4-Kbyte ROM, 0H–FFFH (see Figure 5-3).  
You can allocate unused locations in the vector address area as normal program memory. If you do so, please be  
careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).  
The program reset address in the ROM is 0100H.  
(Decimal)  
4,095  
(Hex)  
FFFH  
4K-bytes  
Internal  
Program  
Memory Area  
255  
0
FFH  
00H  
Interrupt  
Vector Area  
S3C80M4/F80M4  
Figure 5-3. ROM Vector Address Area  
5-4  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
Reset/Clear  
Table 5-1. Interrupt Vectors  
Interrupt Source  
Vector Address  
Request  
Decimal  
Value  
Hex  
Value  
Interrupt  
Level  
H/W  
S/W  
256  
238  
236  
234  
232  
230  
228  
226  
224  
100H  
EEH  
ECH  
EAH  
E8H  
E6H  
E4H  
E2H  
E0H  
Basic timer overflow  
Reset  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Timer 0 match  
Reserved  
PWM interrupt  
Reserved  
P0.0 external interrupt  
P0.1 external interrupt  
P0.2 external interrupt  
P0.3 external interrupt  
5-5  
INTERRUPT STRUCTURE  
S3C80M4/F80M4  
ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)  
Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then  
serviced as they occur according to the established priorities.  
NOTE  
The system initialization routine executed after a reset must always contain an EI instruction to globally  
enable the interrupt structure.  
During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable  
interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register.  
SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS  
In addition to the control registers for specific interrupt sources, four system-level registers control interrupt  
processing:  
— The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.  
— The interrupt priority register, IPR, controls the relative priorities of interrupt levels.  
— The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to  
each interrupt source).  
— The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable  
fast interrupts and control the activity of external interface, if implemented).  
Table 5-2. Interrupt Control Register Overview  
Control Register  
ID  
R/W  
Function Description  
Interrupt mask register  
IMR  
R/W  
Bit settings in the IMR register enable or disable interrupt  
processing for each of the eight interrupt levels: IRQ0–IRQ7.  
Interrupt priority register  
IPR  
R/W  
Controls the relative processing priorities of the interrupt levels.  
The seven levels of S3C80M4/F80M4 are organized into three  
groups: A, B, and C. Group A is IRQ0 and IRQ1, group B is  
IRQ2, IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.  
Interrupt request register  
System mode register  
IRQ  
R
This register contains a request pending bit for each interrupt  
level.  
SYM  
R/W  
This register enables/disables fast interrupt processing,  
dynamic global interrupt processing, and external interface  
control (An external memory interface is implemented in the  
S3C80M4/F80M4 microcontroller).  
NOTE: Before IMR register is changed to any value, all interrupts must be disable. Using DI instruction is recommended.  
5-6  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
INTERRUPT PROCESSING CONTROL POINTS  
Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. The  
system-level control points in the interrupt structure are:  
— Global interrupt enable and disable (by EI and DI instructions or by direct manipulation of SYM.0 )  
— Interrupt level enable/disable settings (IMR register)  
— Interrupt level priority settings (IPR register)  
— Interrupt source enable/disable settings in the corresponding peripheral control registers  
NOTE  
When writing an application program that handles interrupt processing, be sure to include the necessary  
register file address (register pointer) information.  
EI  
S
R
Q
Interrupt Request Register  
(Read-only)  
Polling  
Cycle  
RESET  
IRQ0-IRQ7,  
Interrupts  
Interrupt Priority  
Register  
Vector  
Interrupt  
Cycle  
Interrupt Mask  
Register  
Global Interrupt Control (EI,  
DI or SYM.0 manipulation)  
Figure 5-4. Interrupt Function Diagram  
5-7  
INTERRUPT STRUCTURE  
S3C80M4/F80M4  
PERIPHERAL INTERRUPT CONTROL REGISTERS  
For each interrupt source there is one or more corresponding peripheral control registers that let you control the  
interrupt generated by the related peripheral (see Table 5-3).  
Table 5-3. Interrupt Source Control and Data Registers  
Interrupt Source  
Timer 0 match  
Interrupt Level  
Register(s)  
T0CON  
T0DATA  
T0CNT  
Location(s) in Set 1  
IRQ0  
E6H, bank 0  
E5H, bank 0  
E4H, bank 0  
Reserved  
IRQ1  
IRQ2  
PWM interrupt  
PWMCON  
PWMDATA  
E8H, bank 0  
E7H, bank 0  
Reserved  
IRQ3  
IRQ4  
P0.0 external interrupt  
P0CONL  
P0INT  
P0PND  
F3H, bank 0  
F4H, bank 0  
F5H, bank 0  
P0.1 external interrupt  
P0.2 external interrupt  
P0.3 external interrupt  
IRQ5  
IRQ6  
IRQ7  
P0CONL  
P0INT  
P0PND  
F3H, bank 0  
F4H, bank 0  
F5H, bank 0  
P0CONL  
P0INT  
P0PND  
F3H, bank 0  
F4H, bank 0  
F5H, bank 0  
P0CONL  
P0INT  
P0PND  
F3H, bank 0  
F4H, bank 0  
F5H, bank 0  
5-8  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
SYSTEM MODE REGISTER (SYM)  
The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to  
control fast interrupt processing (see Figure 5-5).  
A reset clears SYM.1, and SYM.0 to "0". The 3-bit value for fast interrupt level selection, SYM.4–SYM.2, is  
undetermined.  
The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0  
value of the SYM register. In order to enable interrupt processing an Enable Interrupt (EI) instruction must be  
included in the initialization routine, which follows a reset operation. Although you can manipulate SYM.0 directly  
to enable and disable interrupts during the normal operation, it is recommended to use the EI and DI instructions  
for this purpose.  
System Mode Register (SYM)  
DEH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Always logic "0"  
Not used for the S3C80M4  
Global interrupt enable bit: (3)  
0 = Disable all interrupts processing  
1 = Enable all interrupts processing  
Fast interrupt level  
selection bits: (1)  
Fast interrupt enable bit: (2)  
0 = Disable fast interrupts processing  
1 = Enable fast interrupts processing  
0 0 0 = IRQ0  
0 0 1 = IRQ1  
0 1 0 = IRQ2  
0 1 1 = IRQ3  
1 0 0 = IRQ4  
1 0 1 = IRQ5  
1 1 0 = IRQ6  
1 1 1 = IRQ7  
NOTES:  
1. You can select only one interrupt level at a time for fast interrupt processing.  
2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt processing for the  
interrupt level currently selected by SYM.2-SYM.4.  
3. Following a reset, you must enable global interrupt processing by executing EI instruction  
(not by writing a "1" to SYM.0)  
Figure 5-5. System Mode Register (SYM)  
5-9  
INTERRUPT STRUCTURE  
S3C80M4/F80M4  
INTERRUPT MASK REGISTER (IMR)  
The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual  
interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required  
settings by the initialization routine.  
Each IMR bit corresponds to a specific interrupt level: bit 0 to IRQ0, bit 2 to IRQ2, and so on. When the IMR bit of  
an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a level's  
IMR bit to "1", interrupt processing for the level is enabled (not masked).  
The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions  
using the Register addressing mode.  
Interrupt Mask Register (IMR)  
DDH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
Reserved  
IRQ2  
Reserved  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Interrupt level enable bits :  
0 = Disable (mask) interrupt level  
1 = Enable (un-mask) interrupt level  
NOTE: When an interrupt level is masked, any interrupt requests that may be  
issued are not recognized by the CPU.  
Figure 5-6. Interrupt Mask Register (IMR)  
5-10  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
INTERRUPT PRIORITY REGISTER (IPR)  
The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels in  
the microcontroller’s interrupt structure. After a reset, all IPR bit values are undetermined and must therefore be  
written to their required settings by the initialization routine.  
When more than one interrupt sources are active, the source with the highest priority level is serviced first. If two  
sources belong to the same interrupt level, the source with the lower vector address usually has the priority (This  
priority is fixed in hardware).  
To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by  
the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register  
priority definitions (see Figure 5-7):  
Group A  
Group B  
Group C  
IRQ0, IRQ1  
IRQ2, IRQ3, IRQ4  
IRQ5, IRQ6, IRQ7  
IPR  
IPR  
IPR  
Group A  
Group B  
Group C  
A1  
A2  
B1  
B2  
C1  
C2  
B21  
B22  
C21  
C22  
IRQ0  
IRQ1  
IRQ2 IRQ3  
IRQ4  
IRQ5 IRQ6  
IRQ7  
Figure 5-7. Interrupt Request Priority Groups  
As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C.  
For example, the setting "001B" for these bits would select the group relationship B > C > A. The setting "101B"  
would select the relationship C > B > A.  
The functions of the other IPR bit settings are as follows:  
— IPR.5 controls the relative priorities of group C interrupts.  
— Interrupt group C includes a subgroup that has an additional priority relationship among the interrupt levels 5,  
6, and 7. IPR.6 defines the subgroup C relationship. IPR.5 controls the interrupt group C.  
— IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.  
5-11  
INTERRUPT STRUCTURE  
S3C80M4/F80M4  
Interrupt Priority Register (IPR)  
FFH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Group priority:  
D7 D4 D1  
Group A:  
0 = IRQ0 > IRQ1  
1 = IRQ1 > IRQ0  
Group B:  
0 = IRQ2 > (IRQ3, IRQ4)  
1 = (IRQ3, IRQ4) > IRQ2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 = Undefined  
1 = B > C > A  
0 = A > B > C  
1 = B > A > C  
0 = C > A > B  
1 = C > B > A  
0 = A > C > B  
1 = Undefined  
Subgroup B:  
0 = IRQ3 > IRQ4  
1 = IRQ4 > IRQ3  
Group C:  
0 = IRQ5 > (IRQ6, IRQ7)  
1 = (IRQ6, IRQ7) > IRQ5  
Subgroup C:  
0 = IRQ6 > IRQ7  
1 = IRQ7 > IRQ6  
Figure 5-8. Interrupt Priority Register (IPR)  
5-12  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
INTERRUPT REQUEST REGISTER (IRQ)  
You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all  
levels in the microcontroller’s interrupt structure. Each bit corresponds to the interrupt level of the same number:  
bit 0 to IRQ0, bit 2 to IRQ2, and so on. A "0" indicates that no interrupt request is currently being issued for that  
level. A "1" indicates that an interrupt request has been generated for that level.  
IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the  
IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific  
interrupt levels. After a reset, all IRQ status bits are cleared to “0”.  
You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing  
is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can,  
however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events  
occurred while the interrupt structure was globally disabled.  
Interrupt Request Register (IRQ)  
DCH, Set 1, Read-only  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
Reserved  
IRQ2  
Reserved  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Interrupt level request pending bits:  
0 = Interrupt level is not pending  
1 = Interrupt level is pending  
Figure 5-9. Interrupt Request Register (IRQ)  
5-13  
INTERRUPT STRUCTURE  
S3C80M4/F80M4  
INTERRUPT PENDING FUNCTION TYPES  
Overview  
There are two types of interrupt pending bits: one type that is automatically cleared by hardware after the interrupt  
service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.  
Pending Bits Cleared Automatically by Hardware  
For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding  
pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting  
to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine,  
and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written  
by application software.  
In the S3C80M4 interrupt structure, the timer 0 overflow interrupt (IRQ0) belongs to this category of interrupts in  
which pending condition is cleared automatically by hardware.  
Pending Bits Cleared by the Service Routine  
The second type of pending bit is the one that should be cleared by program software. The service routine must  
clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be  
written to the corresponding pending bit location in the source’s mode or control register.  
5-14  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
INTERRUPT SOURCE POLLING SEQUENCE  
The interrupt request polling and servicing sequence is as follows:  
1. A source generates an interrupt request by setting the interrupt request bit to "1".  
2. The CPU polling procedure identifies a pending condition for that source.  
3. The CPU checks the source's interrupt level.  
4. The CPU generates an interrupt acknowledge signal.  
5. Interrupt logic determines the interrupt's vector address.  
6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).  
7. The CPU continues polling for interrupt requests.  
INTERRUPT SERVICE ROUTINES  
Before an interrupt request is serviced, the following conditions must be met:  
— Interrupt processing must be globally enabled (EI, SYM.0 = "1")  
— The interrupt level must be enabled (IMR register)  
— The interrupt level must have the highest priority if more than one levels are currently requesting service  
— The interrupt must be enabled at the interrupt's source (peripheral control register)  
When all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle.  
The CPU then initiates an interrupt machine cycle that completes the following processing sequence:  
1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.  
2. Save the program counter (PC) and status flags to the system stack.  
3. Branch to the interrupt vector to fetch the address of the service routine.  
4. Pass control to the interrupt service routine.  
When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores  
the PC and status flags, setting SYM.0 to "1". It allows the CPU to process the next interrupt request.  
5-15  
INTERRUPT STRUCTURE  
S3C80M4/F80M4  
GENERATING INTERRUPT VECTOR ADDRESSES  
The interrupt vector area in the ROM (00H–FFH) contains the addresses of interrupt service routines that  
correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:  
1. Push the program counter's low-byte value to the stack.  
2. Push the program counter's high-byte value to the stack.  
3. Push the FLAG register values to the stack.  
4. Fetch the service routine's high-byte address from the vector location.  
5. Fetch the service routine's low-byte address from the vector location.  
6. Branch to the service routine specified by the concatenated 16-bit vector address.  
NOTE  
A 16-bit vector address always begins at an even-numbered ROM address within the range of 00H–FFH.  
NESTING OF VECTORED INTERRUPTS  
It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this,  
you must follow these steps:  
1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).  
2. Load the IMR register with a new mask value that enables only the higher priority interrupt.  
3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it  
occurs).  
4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the  
previous mask value from the stack (POP IMR).  
5. Execute an IRET.  
Depending on the application, you may be able to simplify the procedure above to some extent.  
INSTRUCTION POINTER (IP)  
The instruction pointer (IP) is adopted by all the S3C8-series microcontrollers to control the optional high-speed  
interrupt processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The names of IP  
registers are IPH (high byte, IP15–IP8) and IPL (low byte, IP7–IP0).  
FAST INTERRUPT PROCESSING  
The feature called fast interrupt processing allows an interrupt within a given level to be completed in  
approximately 6 clock cycles rather than the usual 16 clock cycles. To select a specific interrupt level for fast  
interrupt processing, you write the appropriate 3-bit value to SYM.4–SYM.2. Then, to enable fast interrupt  
processing for the selected level, you set SYM.1 to “1”.  
5-16  
S3C80M4/F80M4  
INTERRUPT STRUCTURE  
FAST INTERRUPT PROCESSING (Continued)  
Two other system registers support fast interrupt processing:  
— The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the  
program counter values), and  
— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated register  
called FLAGS' (“FLAGS prime”).  
NOTE  
For the S3C80M4/F80M4 microcontroller, the service routine for any one of the eight interrupt levels:  
IRQ0–IRQ7, can be selected for fast interrupt processing.  
Procedure for Initiating Fast Interrupts  
To initiate fast interrupt processing, follow these steps:  
1. Load the start address of the service routine into the instruction pointer (IP).  
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4–SYM.2)  
3. Write a "1" to the fast interrupt enable bit in the SYM register.  
Fast Interrupt Service Routine  
When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:  
1. The contents of the instruction pointer and the PC are swapped.  
2. The FLAG register values are written to the FLAGS' (“FLAGS prime”) register.  
3. The fast interrupt status bit in the FLAGS register is set.  
4. The interrupt is serviced.  
5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction  
pointer and PC values are swapped back.  
6. The content of FLAGS' (“FLAGS prime”) is copied automatically back to the FLAGS register.  
7. The fast interrupt status bit in FLAGS is cleared automatically.  
Relationship to Interrupt Pending Bit Types  
As described previously, there are two types of interrupt pending bits: One type that is automatically cleared by  
hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared by the  
application program's interrupt service routine. You can select fast interrupt processing for interrupts with either  
type of pending condition clear function — by hardware or by software.  
Programming Guidelines  
Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the  
SYM register, SYM.1. Executing an EI or DI instruction globally enables or disables all interrupt processing,  
including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast  
interrupt service routine ends.  
5-17  
INTERRUPT STRUCTURE  
S3C80M4/F80M4  
NOTES  
5-18  
S3C80M4/F80M4  
INSTRUCTION SET  
6
INSTRUCTION SET  
OVERVIEW  
The SAM8 instruction set is specifically designed to support the large register files that are typical of most SAM8  
microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the  
instruction set include:  
— A full complement of 8-bit arithmetic and logic operations, including multiply and divide  
— No special I/O instructions (I/O control/data registers are mapped directly into the register file)  
— Decimal adjustment included in binary-coded decimal (BCD) operations  
— 16-bit (word) data can be incremented and decremented  
— Flexible instructions for bit addressing, rotate, and shift operations  
DATA TYPES  
The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can  
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least  
significant (right-most) bit.  
REGISTER ADDRESSING  
To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is  
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory  
addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."  
ADDRESSING MODES  
There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative  
(RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to  
Section 3, "Addressing Modes."  
6-1  
INSTRUCTION SET  
S3C80M4/F80M4  
Table 6-1. Instruction Group Summary  
Operands Instruction  
Mnemonic  
Load Instructions  
CLR  
dst  
Clear  
LD  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst  
Load  
LDB  
Load bit  
LDE  
Load external data memory  
Load program memory  
LDC  
LDED  
LDCD  
LDEI  
Load external data memory and decrement  
Load program memory and decrement  
Load external data memory and increment  
Load program memory and increment  
Load external data memory with pre-decrement  
Load program memory with pre-decrement  
Load external data memory with pre-increment  
Load program memory with pre-increment  
Load word  
LDCI  
LDEPD  
LDCPD  
LDEPI  
LDCPI  
LDW  
POP  
Pop from stack  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
dst,src  
dst,src  
src  
Pop user stack (decrementing)  
Pop user stack (incrementing)  
Push to stack  
dst,src  
dst,src  
Push user stack (decrementing)  
Push user stack (incrementing)  
6-2  
S3C80M4/F80M4  
INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Mnemonic  
Arithmetic Instructions  
ADC  
ADD  
CP  
dst,src  
dst,src  
Add with carry  
Add  
dst,src  
dst  
Compare  
DA  
Decimal adjust  
Decrement  
Decrement word  
Divide  
DEC  
DECW  
DIV  
dst  
dst  
dst,src  
dst  
INC  
Increment  
INCW  
MULT  
SBC  
SUB  
dst  
Increment word  
Multiply  
dst,src  
dst,src  
dst,src  
Subtract with carry  
Subtract  
Logic Instructions  
AND  
COM  
OR  
dst,src  
dst  
Logical AND  
Complement  
dst,src  
dst,src  
Logical OR  
XOR  
Logical exclusive OR  
6-3  
INSTRUCTION SET  
Mnemonic  
S3C80M4/F80M4  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Program Control Instructions  
BTJRF  
BTJRT  
CALL  
CPIJE  
CPIJNE  
DJNZ  
ENTER  
EXIT  
IRET  
JP  
dst,src  
dst,src  
dst  
Bit test and jump relative on false  
Bit test and jump relative on true  
Call procedure  
dst,src  
dst,src  
r,dst  
Compare, increment and jump on equal  
Compare, increment and jump on non-equal  
Decrement register and jump on non-zero  
Enter  
Exit  
Interrupt return  
cc,dst  
dst  
Jump on condition code  
Jump unconditional  
JP  
JR  
cc,dst  
Jump relative on condition code  
Next  
NEXT  
RET  
Return  
WFI  
Wait for interrupt  
Bit Manipulation Instructions  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BXOR  
TCM  
TM  
dst,src  
dst,src  
dst  
Bit AND  
Bit compare  
Bit complement  
Bit reset  
dst  
dst  
Bit set  
dst,src  
dst,src  
dst,src  
dst,src  
Bit OR  
Bit XOR  
Test complement under mask  
Test under mask  
6-4  
S3C80M4/F80M4  
Mnemonic  
INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Concluded)  
Operands Instruction  
Rotate and Shift Instructions  
RL  
dst  
dst  
dst  
dst  
dst  
dst  
Rotate left  
RLC  
RR  
Rotate left through carry  
Rotate right  
RRC  
SRA  
SWAP  
Rotate right through carry  
Shift right arithmetic  
Swap nibbles  
CPU Control Instructions  
CCF  
DI  
Complement carry flag  
Disable interrupts  
Enable interrupts  
Enter Idle mode  
No operation  
EI  
IDLE  
NOP  
RCF  
SB0  
SB1  
SCF  
Reset carry flag  
Set bank 0  
Set bank 1  
Set carry flag  
SRP  
src  
src  
src  
Set register pointers  
Set register pointer 0  
Set register pointer 1  
Enter Stop mode  
SRP0  
SRP1  
STOP  
6-5  
INSTRUCTION SET  
S3C80M4/F80M4  
FLAGS REGISTER (FLAGS)  
The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these  
bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and  
FLAGS.2 are used for BCD arithmetic.  
The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank  
address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register  
can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.  
Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For  
example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND  
instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will  
occur to the Flags register producing an unpredictable result.  
System Flags Register (FLAGS)  
D5H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Bank address  
status flag (BA)  
Carry flag (C)  
First interrupt  
status flag (FIS)  
Zero flag (Z)  
Sign flag (S)  
Overflow (V)  
Half-carry flag (H)  
Decimal adjust flag (D)  
Figure 6-1. System Flags Register (FLAGS)  
6-6  
S3C80M4/F80M4  
INSTRUCTION SET  
FLAG DESCRIPTIONS  
C
Carry Flag (FLAGS.7)  
The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to  
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the  
specified register. Program instructions can set, clear, or complement the carry flag.  
Z
Zero Flag (FLAGS.6)  
For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For  
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is  
logic zero.  
S
V
D
Sign Flag (FLAGS.5)  
Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the  
result. A logic zero indicates a positive number and a logic one indicates a negative number.  
Overflow Flag (FLAGS.4)  
The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than  
– 128. It is also cleared to "0" following logic operations.  
Decimal Adjust Flag (FLAGS.3)  
The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a  
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by  
programmers, and cannot be used as a test condition.  
H
Half-Carry Flag (FLAGS.2)  
The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows  
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous  
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a  
program.  
FIS Fast Interrupt Status Flag (FLAGS.1)  
The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.  
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET  
instruction is executed.  
BA Bank Address Flag (FLAGS.0)  
The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected,  
bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SB0 instruction and  
is set to "1" (select bank 1) when you execute the SB1 instruction.  
6-7  
INSTRUCTION SET  
S3C80M4/F80M4  
INSTRUCTION SET NOTATION  
Table 6-2. Flag Notation Conventions  
Flag  
C
Z
Description  
Carry flag  
Zero flag  
S
V
D
H
0
Sign flag  
Overflow flag  
Decimal-adjust flag  
Half-carry flag  
Cleared to logic zero  
Set to logic one  
1
*
Set or cleared according to operation  
Value is unaffected  
Value is undefined  
x
Table 6-3. Instruction Set Symbols  
Symbol  
dst  
src  
@
Description  
Destination operand  
Source operand  
Indirect register address prefix  
Program counter  
PC  
IP  
Instruction pointer  
FLAGS  
RP  
#
Flags register (D5H)  
Register pointer  
Immediate operand or register address prefix  
Hexadecimal number suffix  
Decimal number suffix  
Binary number suffix  
Opcode  
H
D
B
opc  
6-8  
S3C80M4/F80M4  
Notation  
INSTRUCTION SET  
Table 6-4. Instruction Notation Conventions  
Description Actual Operand Range  
cc  
r
Condition code  
Working register only  
See list of condition codes in Table 6-6.  
Rn (n = 0–15)  
rb  
r0  
rr  
Bit (b) of working register  
Rn.b (n = 0–15, b = 0–7)  
Rn (n = 0–15)  
Bit 0 (LSB) of working register  
Working register pair  
RRp (p = 0, 2, 4, ..., 14)  
reg or Rn (reg = 0–255, n = 0–15)  
reg.b (reg = 0–255, b = 0–7)  
R
Register or working register  
Bit 'b' of register or working register  
Register pair or working register pair  
Rb  
RR  
reg or RRp (reg = 0–254, even number only, where  
p = 0, 2, ..., 14)  
IA  
Ir  
Indirect addressing mode  
addr (addr = 0–254, even number only)  
@Rn (n = 0–15)  
Indirect working register only  
IR  
Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)  
Irr  
Indirect working register pair only  
@RRp (p = 0, 2, ..., 14)  
IRR  
Indirect register pair or indirect working  
register pair  
@RRp or @reg (reg = 0–254, even only, where  
p = 0, 2, ..., 14)  
X
Indexed addressing mode  
#reg [Rn] (reg = 0–255, n = 0–15)  
XS  
Indexed (short offset) addressing mode  
#addr [RRp] (addr = range –128 to +127, where  
p = 0, 2, ..., 14)  
xl  
Indexed (long offset) addressing mode  
#addr [RRp] (addr = range 0–65535, where  
p = 0, 2, ..., 14)  
da  
ra  
Direct addressing mode  
Relative addressing mode  
addr (addr = range 0–65535)  
addr (addr = number in the range +127 to –128 that is  
an offset relative to the address of the next instruction)  
im  
Immediate addressing mode  
#data (data = 0–255)  
iml  
Immediate (long) addressing mode  
#data (data = range 0–65535)  
6-9  
INSTRUCTION SET  
S3C80M4/F80M4  
Table 6-5. Opcode Quick Reference  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
1
2
3
4
5
6
7
DEC  
R1  
DEC  
IR1  
ADD  
r1,r2  
ADD  
r1,Ir2  
ADD  
R2,R1  
ADD  
IR2,R1  
ADD  
R1,IM  
BOR  
r0–Rb  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
U
P
P
E
R
RLC  
R1  
RLC  
IR1  
ADC  
r1,r2  
ADC  
r1,Ir2  
ADC  
R2,R1  
ADC  
IR2,R1  
ADC  
R1,IM  
BCP  
r1.b, R2  
INC  
R1  
INC  
IR1  
SUB  
r1,r2  
SUB  
r1,Ir2  
SUB  
R2,R1  
SUB  
IR2,R1  
SUB  
R1,IM  
BXOR  
r0–Rb  
JP  
IRR1  
SRP/0/1  
IM  
SBC  
r1,r2  
SBC  
r1,Ir2  
SBC  
R2,R1  
SBC  
IR2,R1  
SBC  
R1,IM  
BTJR  
r2.b, RA  
DA  
R1  
DA  
IR1  
OR  
r1,r2  
OR  
r1,Ir2  
OR  
R2,R1  
OR  
IR2,R1  
OR  
R1,IM  
LDB  
r0–Rb  
POP  
R1  
POP  
IR1  
AND  
r1,r2  
AND  
r1,Ir2  
AND  
R2,R1  
AND  
IR2,R1  
AND  
R1,IM  
BITC  
r1.b  
COM  
R1  
COM  
IR1  
TCM  
r1,r2  
TCM  
r1,Ir2  
TCM  
R2,R1  
TCM  
IR2,R1  
TCM  
R1,IM  
BAND  
r0–Rb  
N
I
PUSH  
R2  
PUSH  
IR2  
TM  
r1,r2  
TM  
r1,Ir2  
TM  
R2,R1  
TM  
IR2,R1  
TM  
R1,IM  
BIT  
r1.b  
DECW  
RR1  
DECW  
IR1  
PUSHUD PUSHUI  
IR1,R2  
MULT  
R2,RR1  
MULT  
IR2,RR1  
MULT  
IM,RR1  
LD  
r1, x, r2  
B
B
L
E
IR1,R2  
RL  
R1  
RL  
IR1  
POPUD  
IR2,R1  
POPUI  
IR2,R1  
DIV  
R2,RR1  
DIV  
IR2,RR1  
DIV  
IM,RR1  
LD  
r2, x, r1  
INCW  
RR1  
INCW  
IR1  
CP  
r1,r2  
CP  
r1,Ir2  
CP  
R2,R1  
CP  
IR2,R1  
CP  
R1,IM  
LDC  
r1, Irr2, xL  
CLR  
R1  
CLR  
IR1  
XOR  
r1,r2  
XOR  
r1,Ir2  
XOR  
R2,R1  
XOR  
IR2,R1  
XOR  
R1,IM  
LDC  
r2, Irr2, xL  
RRC  
R1  
RRC  
IR1  
CPIJE  
Ir,r2,RA  
LDC  
r1,Irr2  
LDW  
LDW  
LDW  
LD  
r1, Ir2  
RR2,RR1 IR2,RR1 RR1,IML  
SRA  
R1  
SRA  
IR1  
CPIJNE  
Irr,r2,RA  
LDC  
r2,Irr1  
CALL  
IA1  
LD  
IR1,IM  
LD  
Ir1, r2  
H
E
X
RR  
R1  
RR  
IR1  
LDCD  
r1,Irr2  
LDCI  
r1,Irr2  
LD  
R2,R1  
LD  
R2,IR1  
LD  
R1,IM  
LDC  
r1, Irr2, xs  
SWAP  
R1  
SWAP  
IR1  
LDCPD  
r2,Irr1  
LDCPI  
r2,Irr1  
CALL  
IRR1  
LD  
IR2,R1  
CALL  
DA1  
LDC  
r2, Irr1, xs  
6-10  
S3C80M4/F80M4  
INSTRUCTION SET  
Table 6-5. Opcode Quick Reference (Continued)  
OPCODE MAP  
LOWER NIBBLE (HEX)  
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
NEXT  
U
P
P
E
R
ENTER  
EXIT  
WFI  
SB0  
SB1  
IDLE  
STOP  
DI  
N
I
B
B
L
E
EI  
RET  
IRET  
RCF  
SCF  
CCF  
NOP  
H
E
X
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
6-11  
INSTRUCTION SET  
S3C80M4/F80M4  
CONDITION CODES  
The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under  
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"  
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.  
The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump  
instructions.  
Table 6-6. Condition Codes  
Binary  
Mnemonic  
Description  
Always false  
Flags Set  
0000  
1000  
F
T
Always true  
0111 (note)  
1111 (note)  
0110 (note)  
1110 (note)  
1101  
C
Carry  
C = 1  
C = 0  
Z = 1  
Z = 0  
S = 0  
S = 1  
V = 1  
V = 0  
Z = 1  
Z = 0  
NC  
Z
No carry  
Zero  
NZ  
PL  
MI  
OV  
Not zero  
Plus  
0101  
Minus  
0100  
Overflow  
1100  
NOV  
EQ  
No overflow  
Equal  
0110 (note)  
1110 (note)  
1001  
NE  
Not equal  
GE  
Greater than or equal  
Less than  
(S XOR V) = 0  
(S XOR V) = 1  
(Z OR (S XOR V)) = 0  
(Z OR (S XOR V)) = 1  
C = 0  
0001  
LT  
1010  
GT  
Greater than  
Less than or equal  
Unsigned greater than or equal  
Unsigned less than  
Unsigned greater than  
Unsigned less than or equal  
0010  
LE  
1111 (note)  
0111 (note)  
1011  
UGE  
ULT  
UGT  
ULE  
C = 1  
(C = 0 AND Z = 0) = 1  
(C OR Z) = 1  
0011  
NOTES:  
1. It indicates condition codes that are related to two different mnemonics but which test the same flag. For  
example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;  
after a CP instruction, however, EQ would probably be used.  
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.  
6-12  
S3C80M4/F80M4  
INSTRUCTION SET  
INSTRUCTION DESCRIPTIONS  
This section contains detailed information and programming examples for each instruction in the SAM8  
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The  
following information is included in each instruction description:  
— Instruction name (mnemonic)  
— Full instruction name  
— Source/destination format of the instruction operand  
— Shorthand notation of the instruction's operation  
— Textual description of the instruction's effect  
— Specific flag settings affected by the instruction  
— Detailed description of the instruction's format, execution time, and addressing mode(s)  
— Programming example(s) explaining how to use the instruction  
6-13  
INSTRUCTION SET  
S3C80M4/F80M4  
ADC — Add with carry  
ADC  
dst,src  
Operation:  
dst dst + src + c  
The source operand, along with the setting of the carry flag, is added to the destination operand  
and the sum is stored in the destination. The contents of the source are unaffected. Two's-  
complement addition is performed. In multiple precision arithmetic, this instruction permits the  
carry from the addition of low-order operands to be carried into the addition of high-order  
operands.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result  
is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
12  
13  
r
r
r
lr  
dst  
src  
3
3
6
6
14  
15  
R
R
R
IR  
dst  
6
16  
R
IM  
Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and  
register 03H = 0AH:  
Examples:  
ADC R1,R2  
R1 = 14H, R2 = 03H  
ADC R1,@R2  
ADC 01H,02H  
ADC 01H,@02H  
ADC 01H,#11H  
R1 = 1BH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 32H  
In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",  
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds  
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.  
6-14  
S3C80M4/F80M4  
INSTRUCTION SET  
ADD — Add  
ADD  
dst,src  
Operation:  
dst dst + src  
The source operand is added to the destination operand and the sum is stored in the destination.  
The contents of the source are unaffected. Two's-complement addition is performed.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
Set if the result is negative; cleared otherwise.  
S:  
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if a carry from the low-order nibble occurred.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
02  
03  
r
r
r
lr  
dst  
src  
3
3
6
6
04  
05  
R
R
R
IR  
dst  
6
06  
R
IM  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
Examples:  
ADD R1,R2  
R1 = 15H, R2 = 03H  
ADD R1,@R2  
ADD 01H,02H  
ADD 01H,@02H  
ADD 01H,#25H  
R1 = 1CH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 46H  
In the first example, destination working register R1 contains 12H and the source working register  
R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in  
register R1.  
6-15  
INSTRUCTION SET  
S3C80M4/F80M4  
AND — Logical AND  
AND  
dst,src  
Operation:  
dst dst AND src  
The source operand is logically ANDed with the destination operand. The result is stored in the  
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits  
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the  
source are unaffected.  
Flags:  
C: Unaffected.  
Set if the result is "0"; cleared otherwise.  
Z:  
S: Set if the result bit 7 is set; cleared otherwise.  
Always cleared to "0".  
V:  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
2
4
6
52  
53  
r
r
r
lr  
src  
dst  
dst  
src  
3
3
6
6
54  
55  
R
R
R
IR  
6
56  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
AND R1,R2  
R1 = 02H, R2 = 03H  
AND R1,@R2  
AND 01H,02H  
AND 01H,@02H  
AND 01H,#25H  
R1 = 02H, R2 = 03H  
Register 01H = 01H, register 02H = 03H  
Register 01H = 00H, register 02H = 03H  
Register 01H = 21H  
In the first example, destination working register R1 contains the value 12H and the source  
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source  
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.  
6-16  
S3C80M4/F80M4  
INSTRUCTION SET  
BAND — Bit AND  
BAND  
dst,src.b  
BAND  
dst.b,src  
Operation:  
dst(0) dst(0) AND src(b)  
or  
dst(b) dst(b) AND src(0)  
The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of  
the destination (or source). The resultant bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
Cleared to "0".  
S:  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
67  
r0  
Rb  
dst | b | 0  
src | b | 1  
3
6
67  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H and register 01H = 05H:  
BAND R1,01H.1  
BAND 01H.1,R1  
R1 = 06H, register 01H = 05H  
Register 01H = 05H, R1 = 07H  
In the first example, source register 01H contains the value 05H (00000101B) and destination  
working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1  
value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the value  
06H (00000110B) in register R1.  
6-17  
INSTRUCTION SET  
S3C80M4/F80M4  
BCP — Bit Compare  
BCP  
dst,src.b  
Operation:  
dst(0) – src(b)  
The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.  
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both  
operands are unaffected by the comparison.  
Flags:  
C: Unaffected.  
Z: Set if the two bits are the same; cleared otherwise.  
Cleared to "0".  
S:  
V: Undefined.  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
3
6
17  
r0  
Rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H and register 01H = 01H:  
BCP  
R1,01H.1  
R1 = 07H, register 01H = 01H  
If destination working register R1 contains the value 07H (00000111B) and the source register  
01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit one of  
the source register (01H) and bit zero of the destination register (R1). Because the bit values are  
not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).  
6-18  
S3C80M4/F80M4  
INSTRUCTION SET  
BITC — Bit Complement  
BITC  
dst.b  
Operation:  
dst(b) NOT dst(b)  
This instruction complements the specified bit within the destination without affecting any other  
bits in the destination.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
Cleared to "0".  
S:  
V: Undefined.  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
57  
rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H  
BITC R1.1  
R1 = 05H  
If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"  
complements bit one of the destination and leaves the value 05H (00000101B) in register R1.  
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H) is  
cleared.  
6-19  
INSTRUCTION SET  
S3C80M4/F80M4  
BITR — Bit Reset  
BITR  
dst.b  
Operation:  
dst(b) 0  
The BITR instruction clears the specified bit within the destination without affecting any other bits  
in the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
77  
rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BITR R1.1  
R1 = 05H  
If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit one  
of the destination register R1, leaving the value 05H (00000101B).  
6-20  
S3C80M4/F80M4  
INSTRUCTION SET  
BITS — Bit Set  
BITS  
dst.b  
Operation:  
dst(b) 1  
The BITS instruction sets the specified bit within the destination without affecting any other bits in  
the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
77  
rb  
dst | b | 1  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BITS R1.3  
R1 = 0FH  
If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit  
three of the destination register R1 to "1", leaving the value 0FH (00001111B).  
6-21  
INSTRUCTION SET  
S3C80M4/F80M4  
BOR — Bit OR  
BOR  
BOR  
dst,src.b  
dst.b,src  
Operation:  
dst(0) dst(0) OR src(b)  
or  
dst(b) dst(b) OR src(0)  
The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the  
destination (or the source). The resulting bit value is stored in the specified bit of the destination.  
No other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
Cleared to "0".  
S:  
V: Undefined.  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
07  
r0  
Rb  
dst | b | 0  
src | b | 1  
3
6
07  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit.  
Examples:  
Given: R1 = 07H and register 01H = 03H:  
BOR R1, 01H.1  
BOR 01H.2, R1  
R1 = 07H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 contains the value 07H (00000111B) and  
source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs  
bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value  
(07H) in working register R1.  
In the second example, destination register 01H contains the value 03H (00000011B) and the  
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically  
ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H  
in register 01H.  
6-22  
S3C80M4/F80M4  
INSTRUCTION SET  
BTJRF — Bit Test, Jump Relative on False  
BTJRF  
dst,src.b  
Operation:  
If src(b) is a "0", then PC PC + dst  
The specified bit within the source operand is tested. If it is a "0", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRF instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(Note 1)  
dst  
src  
opc  
dst  
3
10  
37  
RA  
rb  
src | b | 0  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BTJRF SKIP,R1.3  
PC jumps to SKIP location  
If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3"  
tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the  
memory location pointed to by the SKIP. (Remember that the memory location must be within the  
allowed range of + 127 to – 128.)  
6-23  
INSTRUCTION SET  
S3C80M4/F80M4  
BTJRT — Bit Test, Jump Relative on True  
BTJRT  
dst,src.b  
Operation:  
If src(b) is a "1", then PC PC + dst  
The specified bit within the source operand is tested. If it is a "1", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRT instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(Note 1)  
dst  
src  
opc  
dst  
3
10  
37  
RA  
rb  
src | b | 1  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BTJRT  
SKIP,R1.1  
If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1"  
tests bit one in the source register (R1). Because it is a "1", the relative address is added to the  
PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the  
memory location must be within the allowed range of + 127 to – 128.)  
6-24  
S3C80M4/F80M4  
INSTRUCTION SET  
BXOR — Bit XOR  
BXOR  
BXOR  
dst,src.b  
dst.b,src  
Operation:  
dst(0) dst(0) XOR src(b)  
or  
dst(b) dst(b) XOR src(0)  
The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)  
of the destination (or source). The result bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
Cleared to "0".  
S:  
V: Undefined.  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
27  
r0  
Rb  
dst | b | 0  
src | b | 1  
3
6
27  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):  
BXOR R1,01H.1  
BXOR 01H.2,R1  
R1 = 06H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 has the value 07H (00000111B) and source  
register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs  
bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in  
bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is  
unaffected.  
6-25  
INSTRUCTION SET  
S3C80M4/F80M4  
CALL — Call Procedure  
CALL  
dst  
Operation:  
SP  
@SP  
SP  
@SP  
PC  
SP – 1  
PCL  
SP –1  
PCH  
dst  
The current contents of the program counter are pushed onto the top of the stack. The program  
counter value used is the address of the first instruction following the CALL instruction. The  
specified destination address is then loaded into the program counter and points to the first  
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used  
to return to the original program flow. RET pops the top of the stack back into the program  
counter.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
opc  
opc  
dst  
3
14  
F6  
F4  
D4  
DA  
IRR  
IA  
dst  
dst  
2
2
12  
14  
Examples:  
Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:  
CALL 3521H →  
SP = 0000H  
(Memory locations 0000H = 1AH, 0001H = 4AH, where  
4AH is the address that follows the instruction.)  
CALL @RR0 →  
SP = 0000H (0000H = 1AH, 0001H = 49H)  
SP = 0000H (0000H = 1AH, 0001H = 49H)  
CALL #40H  
In the first example, if the program counter value is 1A47H and the stack pointer contains the  
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the  
stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the  
value 3521H, the address of the first instruction in the program sequence to be executed.  
If the contents of the program counter and stack pointer are the same as in the first example, the  
statement "CALL @RR0" produces the same result except that the 49H is stored in stack  
location 0001H (because the two-byte instruction format was used). The PC is then loaded with  
the value 3521H, the address of the first instruction in the program sequence to be executed.  
Assuming that the contents of the program counter and stack pointer are the same as in the first  
example, if program address 0040H contains 35H and program address 0041H contains 21H, the  
statement "CALL #40H" produces the same result as in the second example.  
6-26  
S3C80M4/F80M4  
INSTRUCTION SET  
CCF — Complement Carry Flag  
CCF  
Operation:  
C NOT C  
The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic  
zero; if C = "0", the value of the carry flag is changed to logic one.  
Flags:  
C: Complemented.  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
EF  
Example:  
Given: The carry flag = "0":  
CCF  
If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),  
changing its value from logic zero to logic one.  
6-27  
INSTRUCTION SET  
S3C80M4/F80M4  
CLR — Clear  
CLR  
dst  
Operation:  
dst "0"  
The destination location is cleared to "0".  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
B0  
B1  
R
IR  
Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:  
Examples:  
CLR  
CLR  
00H  
Register 00H = 00H  
@01H →  
Register 01H = 02H, register 02H = 00H  
In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H  
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)  
addressing mode to clear the 02H register value to 00H.  
6-28  
S3C80M4/F80M4  
INSTRUCTION SET  
COM — Complement  
COM  
dst  
Operation:  
dst NOT dst  
The contents of the destination location are complemented (one's complement); all "1s" are  
changed to "0s", and vice-versa.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
60  
61  
R
IR  
Given: R1 = 07H and register 07H = 0F1H:  
Examples:  
COM R1  
R1 = 0F8H  
R1 = 07H, register 07H = 0EH  
COM @R1  
In the first example, destination working register R1 contains the value 07H (00000111B). The  
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,  
and vice-versa, leaving the value 0F8H (11111000B).  
In the second example, Indirect Register (IR) addressing mode is used to complement the value  
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).  
6-29  
INSTRUCTION SET  
S3C80M4/F80M4  
CP — Compare  
CP  
dst,src  
Operation:  
dst – src  
The source operand is compared to (subtracted from) the destination operand, and the  
appropriate flags are set accordingly. The contents of both operands are unaffected by the  
comparison.  
Flags:  
C: Set if a "borrow" occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
Set if the result is negative; cleared otherwise.  
S:  
V: Set if arithmetic overflow occurred; cleared otherwise.  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
2
4
6
A2  
A3  
r
r
r
lr  
src  
dst  
dst  
src  
3
3
6
6
A4  
A5  
R
R
R
IR  
6
A6  
R
IM  
Examples:  
1. Given: R1 = 02H and R2 = 03H:  
CP R1,R2 Set the C and S flags  
Destination working register R1 contains the value 02H and source register R2 contains the value  
03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value  
(destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are  
"1".  
2. Given: R1 = 05H and R2 = 0AH:  
CP  
JP  
INC  
R1,R2  
UGE,SKIP  
R1  
SKIP LD  
R3,R1  
In this example, destination working register R1 contains the value 05H which is less than the  
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1"  
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"  
executes, the value 06H remains in working register R3.  
6-30  
S3C80M4/F80M4  
INSTRUCTION SET  
CPIJE — Compare, Increment, and Jump on Equal  
CPIJE  
dst,src,RA  
Operation:  
If dst – src = "0", PC PC + RA  
Ir Ir + 1  
The source operand is compared to (subtracted from) the destination operand. If the result is "0",  
the relative address is added to the program counter and control passes to the statement whose  
address is now in the program counter. Otherwise, the instruction immediately following the  
CPIJE instruction is executed. In either case, the source pointer is incremented by one before the  
next instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src dst  
RA  
3
12  
C2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1 = 02H, R2 = 03H, and register 03H = 02H:  
CPIJE R1,@R2,SKIP →  
R2 = 04H, PC jumps to SKIP location  
In this example, working register R1 contains the value 02H, working register R2 the value 03H,  
and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value  
02H (00000010B) to 02H (00000010B). Because the result of the comparison is equal, the  
relative address is added to the PC and the PC then jumps to the memory location pointed to by  
SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that  
the memory location must be within the allowed range of + 127 to – 128.)  
6-31  
INSTRUCTION SET  
S3C80M4/F80M4  
CPIJNE — Compare, Increment, and Jump on Non-Equal  
CPIJNE  
dst,src,RA  
Operation:  
If dst – src "0", PC PC + RA  
Ir Ir + 1  
The source operand is compared to (subtracted from) the destination operand. If the result is not  
"0", the relative address is added to the program counter and control passes to the statement  
whose address is now in the program counter; otherwise the instruction following the CPIJNE  
instruction is executed. In either case the source pointer is incremented by one before the next  
instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src dst  
RA  
3
12  
D2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1 = 02H, R2 = 03H, and register 03H = 04H:  
CPIJNER1,@R2,SKIP →  
R2 = 04H, PC jumps to SKIP location  
Working register R1 contains the value 02H, working register R2 (the source pointer) the value  
03H, and general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP" subtracts  
04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-equal, the  
relative address is added to the PC and the PC then jumps to the memory location pointed to by  
SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.  
(Remember that the memory location must be within the allowed range of + 127 to – 128.)  
6-32  
S3C80M4/F80M4  
INSTRUCTION SET  
DA — Decimal Adjust  
DA  
dst  
Operation:  
dst DA dst  
The destination operand is adjusted to form two 4-bit BCD digits following an addition or  
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table  
indicates the operation performed. (The operation is undefined if the destination operand was not  
the result of a valid addition or subtraction of BCD digits):  
Instruction  
Carry  
Before DA  
Bits 4–7  
Value (Hex)  
H Flag  
Before DA  
Bits 0–3  
Value (Hex)  
Number Added  
to Byte  
Carry  
After DA  
0
0
0
0
0
0
1
1
1
0
0
1
1
0–9  
0–8  
0–9  
A–F  
9–F  
A–F  
0–2  
0–2  
0–3  
0–9  
0–8  
7–F  
6–F  
0
0
1
0
0
1
0
0
1
0
1
0
1
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
6–F  
0–9  
6–F  
00  
0
0
0
1
1
1
1
1
1
0
0
1
1
06  
06  
ADD  
ADC  
60  
66  
66  
60  
66  
66  
00 = – 00  
FA = – 06  
A0 = – 60  
9A = – 66  
SUB  
SBC  
Flags:  
C: Set if there was a carry from the most significant bit; cleared otherwise (see table).  
Set if result is "0"; cleared otherwise.  
Z:  
S: Set if result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
40  
41  
R
IR  
6-33  
INSTRUCTION SET  
S3C80M4/F80M4  
DA — Decimal Adjust  
DA  
(Continued)  
Example:  
Given: Working register R0 contains the value 15 (BCD), working register R1 contains  
27 (BCD), and address 27H contains 46 (BCD):  
ADD  
DA  
R1,R0  
R1  
;
;
C "0", H "0", Bits 4–7 = 3, bits 0–3 = C, R1 3CH  
R1 3CH + 06  
If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is  
incorrect, however, when the binary representations are added in the destination location using  
standard binary arithmetic:  
0 0 0 1 0 1 0 1  
15  
27  
+ 0 0 1 0 0 1 1 1  
0 0 1 1 1 1 0 0  
=
3CH  
The DA instruction adjusts this result so that the correct BCD representation is obtained:  
0 0 1 1 1 1 0 0  
+ 0 0 0 0 0 1 1 0  
0 1 0 0 0 0 1 0  
=
42  
Assuming the same values given above, the statements  
SUB  
DA  
27H,R0 ;  
@R1  
C "0", H "0", Bits 4–7 = 3, bits 0–3 = 1  
@R1 31–0  
;
leave the value 31 (BCD) in address 27H (@R1).  
6-34  
S3C80M4/F80M4  
INSTRUCTION SET  
DEC — Decrement  
DEC  
dst  
Operation:  
dst dst – 1  
The contents of the destination operand are decremented by one.  
Flags:  
C: Unaffected.  
Set if the result is "0"; cleared otherwise.  
Z:  
S: Set if result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
00  
01  
R
IR  
Examples:  
Given: R1 = 03H and register 03H = 10H:  
DEC R1  
R1 = 02H  
DEC @R1  
Register 03H = 0FH  
In the first example, if working register R1 contains the value 03H, the statement "DEC R1"  
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the  
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by  
one, leaving the value 0FH.  
6-35  
INSTRUCTION SET  
S3C80M4/F80M4  
DECW — Decrement Word  
DECW  
dst  
Operation:  
dst dst – 1  
The contents of the destination location (which must be an even address) and the operand  
following that location are treated as a single 16-bit value that is decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
80  
81  
RR  
IR  
Examples:  
Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:  
DECW RR0  
DECW @R2  
R0 = 12H, R1 = 33H  
Register 30H = 0FH, register 31H = 20H  
In the first example, destination register R0 contains the value 12H and register R1 the value  
34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word  
and decrements the value of R1 by one, leaving the value 33H.  
NOTE:  
A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW  
instruction. To avoid this problem, we recommend that you use DECW as shown in the following  
example:  
LOOP: DECW RR0  
LD  
OR  
JR  
R2,R1  
R2,R0  
NZ,LOOP  
6-36  
S3C80M4/F80M4  
INSTRUCTION SET  
DI — Disable Interrupts  
DI  
Operation:  
SYM (0) 0  
Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all  
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,  
but the CPU will not service them while interrupt processing is disabled.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
8F  
Given: SYM = 01H:  
DI  
Example:  
If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the  
register and clears SYM.0 to "0", disabling interrupt processing.  
Before changing IMR, interrupt pending and interrupt source control  
register, be sure DI state.  
6-37  
INSTRUCTION SET  
S3C80M4/F80M4  
DIV — Divide (Unsigned)  
DIV  
dst,src  
Operation:  
dst ÷ src  
dst (UPPER) REMAINDER  
dst (LOWER) QUOTIENT  
The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)  
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of  
8
the destination. When the quotient is 2 , the numbers stored in the upper and lower halves of  
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned  
integers.  
Flags:  
C: Set if the V flag is set and quotient is between 28 and 29 –1; cleared otherwise.  
Z: Set if divisor or quotient = "0"; cleared otherwise.  
S: Set if MSB of quotient = "1"; cleared otherwise.  
Set if quotient is 28 or if divisor = "0"; cleared otherwise.  
V:  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
RR  
src  
opc  
src  
dst  
3
26/10  
26/10  
26/10  
94  
95  
96  
R
IR  
IM  
NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.  
Given: R0 = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:  
Examples:  
DIV  
DIV  
DIV  
RR0,R2  
R0 = 03H, R1 = 40H  
R0 = 03H, R1 = 20H  
R0 = 03H, R1 = 80H  
RR0,@R2  
RR0,#20H  
In the first example, destination working register pair RR0 contains the values 10H (R0) and 03H  
(R1), and register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit  
RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0 contains the  
value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the destination  
register RR0 (R0) and the quotient in the lower half (R1).  
6-38  
S3C80M4/F80M4  
INSTRUCTION SET  
DJNZ — Decrement and Jump if Non-Zero  
DJNZ  
r,dst  
Operation:  
r r – 1  
If r 0, PC PC + dst  
The working register being used as a counter is decremented. If the contents of the register are  
not logic zero after decrementing, the relative address is added to the program counter and  
control passes to the statement whose address is now in the PC. The range of the relative  
address is +127 to –128, and the original value of the PC is taken to be the address of the  
instruction byte following the DJNZ statement.  
NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at  
the one of location 0C0H to 0CFH with SRP, SRP0, or SRP1 instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
r | opc  
dst  
2
8 (jump taken)  
8 (no jump)  
rA  
RA  
r = 0 to F  
Example:  
Given: R1 = 02H and LOOP is the label of a relative address:  
SRP  
#0C0H  
DJNZ R1,LOOP  
DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the  
destination operand instead of a numeric relative address value. In the example, working register  
R1 contains the value 02H, and LOOP is the label for a relative address.  
The statement "DJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H.  
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative  
address specified by the LOOP label.  
6-39  
INSTRUCTION SET  
S3C80M4/F80M4  
EI — Enable Interrupts  
EI  
Operation:  
SYM (0) 1  
An EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to  
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was  
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced  
when you execute the EI instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
9F  
Given: SYM = 00H:  
EI  
Example:  
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the  
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for  
global interrupt processing.)  
6-40  
S3C80M4/F80M4  
INSTRUCTION SET  
ENTER — Enter  
ENTER  
Operation:  
SP  
@SP  
IP  
SP – 2  
IP  
PC  
PC  
IP  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The contents of the  
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the  
instruction pointer. The program memory word that is pointed to by the instruction pointer is  
loaded into the PC, and the instruction pointer is incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
14  
1F  
Example:  
The diagram below shows one example of how to use an ENTER statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0043  
0110  
0020  
Address  
Data  
1F  
Address  
40 Enter  
Data  
1F  
PC  
SP  
40 Enter  
PC  
SP  
41 Address H 01  
42 Address L 10  
43 Address H  
41 Address H 01  
42 Address L 10  
43 Address H  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
110 Routine  
Memory  
Memory  
22  
Data  
Stack  
Stack  
6-41  
INSTRUCTION SET  
S3C80M4/F80M4  
EXIT — Exit  
EXIT  
Operation:  
IP  
@SP  
SP  
PC  
IP  
SP + 2  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The stack value is  
popped and loaded into the instruction pointer. The program memory word that is pointed to by  
the instruction pointer is then loaded into the program counter, and the instruction pointer is  
incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
14 (internal stack)  
16 (internal stack)  
2F  
Example:  
The diagram below shows one example of how to use an EXIT statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0052  
0060  
0022  
Address  
Data  
Address  
Data  
PC  
SP  
PC  
SP  
50 PCL old  
51 PCH  
60  
00  
60  
Main  
140 Exit  
2F  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
Memory  
Memory  
Data  
22  
Stack  
Stack  
6-42  
S3C80M4/F80M4  
INSTRUCTION SET  
IDLE — Idle Operation  
IDLE  
Operation:  
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle  
mode can be released by an interrupt request (IRQ) or an external reset operation.  
No flags are affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
6F  
Example:  
The instruction  
IDLE  
stops the CPU clock but not the system clock.  
6-43  
INSTRUCTION SET  
S3C80M4/F80M4  
INC — Increment  
INC  
dst  
Operation:  
dst dst + 1  
The contents of the destination operand are incremented by one.  
Flags:  
C: Unaffected.  
Set if the result is "0"; cleared otherwise.  
Z:  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
dst | opc  
opc  
1
4
rE  
r
r = 0 to F  
dst  
2
4
4
20  
21  
R
IR  
Examples:  
Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:  
INC  
INC  
INC  
R0  
R0 = 1CH  
00H  
@R0  
Register 00H = 0DH  
R0 = 1BH, register 01H = 10H  
In the first example, if destination working register R0 contains the value 1BH, the statement "INC  
R0" leaves the value 1CH in that same register.  
The next example shows the effect an INC instruction has on register 00H, assuming that it  
contains the value 0CH.  
In the third example, INC is used in Indirect Register (IR) addressing mode to increment the  
value of register 1BH from 0FH to 10H.  
6-44  
S3C80M4/F80M4  
INSTRUCTION SET  
INCW — Increment Word  
INCW  
dst  
Operation:  
dst dst + 1  
The contents of the destination (which must be an even address) and the byte following that  
location are treated as a single 16-bit value that is incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
A0  
A1  
RR  
IR  
Examples:  
Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register 03H = 0FFH:  
INCW RR0  
INCW @R1  
R0 = 1AH, R1 = 03H  
Register 02H = 10H, register 03H = 00H  
In the first example, the working register pair RR0 contains the value 1AH in register R0 and 02H  
in register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the  
value 03H in register R1. In the second example, the statement "INCW @R1" uses Indirect  
Register (IR) addressing mode to increment the contents of general register 03H from 0FFH to  
00H and register 02H from 0FH to 10H.  
NOTE:  
A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an  
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the  
following example:  
LOOP:  
INCW  
LD  
OR  
RR0  
R2,R1  
R2,R0  
NZ,LOOP  
JR  
6-45  
INSTRUCTION SET  
S3C80M4/F80M4  
IRET — Interrupt Return  
IRET  
IRET (Normal)  
IRET (Fast)  
Operation:  
FLAGS @SP  
SP SP + 1  
PC @SP  
PC IP  
FLAGS FLAGS'  
FIS 0  
SP SP + 2  
SYM(0) 1  
This instruction is used at the end of an interrupt service routine. It restores the flag register and  
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the  
fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast  
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.  
All flags are restored to their original settings (that is, the settings before the interrupt occurred).  
Flags:  
Format:  
IRET  
Bytes  
Cycles  
Opcode (Hex)  
(Normal)  
opc  
1
10 (internal stack)  
12 (internal stack)  
BF  
IRET  
Bytes  
Cycles  
Opcode (Hex)  
(Fast)  
opc  
1
6
BF  
Example:  
In the figure below, the instruction pointer is initially loaded with 100H in the main program before  
interrupts are enabled. When an interrupt occurs, the program counter and instruction pointer are  
swapped. This causes the PC to jump to address 100H and the IP to keep the return address.  
The last instruction in the service routine normally is a jump to IRET at address FFH. This causes  
the instruction pointer to be loaded with 100H "again" and the program counter to jump back to  
the main program. Now, the next interrupt can occur and the IP is still correct at 100H.  
0H  
FFH  
IRET  
100H  
Interrupt  
Service  
Routine  
JP to FFH  
FFFFH  
NOTE:  
In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay  
attention to the order of the last two instructions. The IRET cannot be immediately proceded by a  
clearing of the interrupt status (as with a reset of the IPR register).  
6-46  
S3C80M4/F80M4  
INSTRUCTION SET  
JP — Jump  
JP  
cc,dst  
(Conditional)  
JP  
dst  
(Unconditional)  
Operation:  
If cc is true, PC dst  
The conditional JUMP instruction transfers program control to the destination address if the  
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP  
instruction is executed. The unconditional JP simply replaces the contents of the PC with the  
contents of the specified register pair. Control then passes to the statement addressed by the  
PC.  
Flags:  
No flags are affected.  
Format: (1)  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(2)  
cc | opc  
dst  
3
8
ccD  
DA  
cc = 0 to F  
opc  
dst  
2
8
30  
IRR  
NOTES:  
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.  
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the  
opcode are both four bits.  
Examples:  
Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:  
JP  
JP  
C,LABEL_W  
@00H  
LABEL_W = 1000H, PC = 1000H  
PC = 0120H  
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement  
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to  
that location. Had the carry flag not been set, control would then have passed to the statement  
immediately following the JP instruction.  
The second example shows an unconditional JP. The statement "JP @00" replaces the contents  
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.  
6-47  
INSTRUCTION SET  
S3C80M4/F80M4  
JR — Jump Relative  
JR  
cc,dst  
Operation:  
If cc is true, PC PC + dst  
If the condition specified by the condition code (cc) is true, the relative address is added to the  
program counter and control passes to the statement whose address is now in the program  
counter; otherwise, the instruction following the JR instruction is executed. (See list of condition  
codes).  
The range of the relative address is +127, –128, and the original value of the program counter is  
taken to be the address of the first instruction byte following the JR statement.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(1)  
cc | opc  
dst  
2
6
ccB  
RA  
cc = 0 to F  
NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each  
four bits.  
Given: The carry flag = "1" and LABEL_X = 1FF7H:  
Example:  
JR  
C,LABEL_X  
PC = 1FF7H  
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will  
pass control to the statement whose address is now in the PC. Otherwise, the program  
instruction following the JR would be executed.  
6-48  
S3C80M4/F80M4  
INSTRUCTION SET  
LD — Load  
LD  
dst,src  
Operation:  
dst src  
The contents of the source are loaded into the destination. The source's contents are unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
IM  
R
dst | opc  
src | opc  
opc  
src  
dst  
2
4
4
rC  
r8  
r
r
2
2
3
3
4
r9  
R
r
r = 0 to F  
dst | src  
4
4
C7  
D7  
r
lr  
r
Ir  
opc  
src  
dst  
src  
6
6
E4  
E5  
R
R
R
IR  
opc  
dst  
6
6
E6  
D6  
R
IM  
IM  
IR  
opc  
opc  
opc  
src  
dst  
x
3
3
3
6
6
6
F5  
87  
97  
IR  
r
R
x [r]  
r
dst | src  
src | dst  
x
x [r]  
6-49  
INSTRUCTION SET  
S3C80M4/F80M4  
LD — Load  
LD  
(Continued)  
Examples:  
Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,  
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
R0,#10H  
R0,01H  
R0 = 10H  
R0 = 20H, register 01H = 20H  
Register 01H = 01H, R0 = 01H  
R1 = 20H, R0 = 01H  
01H,R0  
R1,@R0  
@R0,R1  
R0 = 01H, R1 = 0AH, register 01H = 0AH  
Register 00H = 20H, register 01H = 20H  
Register 02H = 20H, register 00H = 01H  
Register 00H = 0AH  
00H,01H  
02H,@00H  
00H,#0AH  
@00H,#10H  
@00H,02H  
Register 00H = 01H, register 01H = 10H  
Register 00H = 01H, register 01H = 02, register 02H = 02H  
R0 = 0FFH, R1 = 0AH  
R0,#LOOP[R1] →  
#LOOP[R0],R1 →  
Register 31H = 0AH, R0 = 01H, R1 = 0AH  
6-50  
S3C80M4/F80M4  
INSTRUCTION SET  
LDB — Load Bit  
LDB  
dst,src.b  
LDB  
dst.b,src  
Operation:  
dst(0) src(b)  
or  
dst(b) src(0)  
The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the  
source is loaded into the specified bit of the destination. No other bits of the destination are  
affected. The source is unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
47  
r0  
Rb  
dst | b | 0  
src | b | 1  
3
6
47  
Rb  
r0  
NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the bit  
address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R0 = 06H and general register 00H = 05H:  
LDB  
LDB  
R0,00H.2  
00H.0,R0  
R0 = 07H, register 00H = 05H  
R0 = 06H, register 00H = 04H  
In the first example, destination working register R0 contains the value 06H and the source  
general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the  
00H register into bit zero of the R0 register, leaving the value 07H in register R0.  
In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit  
zero of register R0 to the specified bit (bit zero) of the destination register, leaving 04H in general  
register 00H.  
6-51  
INSTRUCTION SET  
S3C80M4/F80M4  
LDC/LDE — Load Memory  
LDC/LDE  
dst,src  
Operation:  
dst src  
This instruction loads a byte from program or data memory into a working register or vice-versa.  
The source values are unaffected. LDC refers to program memory and LDE to data memory. The  
assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd number  
for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
1.  
2.  
3.  
4.  
5.  
opc  
opc  
opc  
opc  
opc  
dst | src  
src | dst  
dst | src  
src | dst  
dst | src  
2
10  
C3  
D3  
E7  
F7  
A7  
r
Irr  
2
3
3
4
10  
12  
12  
14  
Irr  
r
XS  
XS  
r
XS [rr]  
r
XS [rr]  
r
XLL  
XLH  
XLH  
DAH  
DAH  
DAH  
DAH  
XL [rr]  
XLL  
DAL  
DAL  
DAL  
DAL  
6.  
7.  
opc  
opc  
opc  
opc  
src | dst  
dst | 0000  
src | 0000  
dst | 0001  
src | 0001  
4
4
4
4
4
14  
14  
14  
14  
14  
B7  
A7  
B7  
A7  
B7  
XL [rr]  
r
DA  
r
r
8.  
DA  
r
9.  
DA  
r
10.  
opc  
DA  
NOTES:  
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.  
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one  
byte.  
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two  
bytes.  
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set  
of values, used in formats 9 and 10, are used to address data memory.  
6-52  
S3C80M4/F80M4  
INSTRUCTION SET  
LDC/LDE — Load Memory  
LDC/LDE  
(Continued)  
Examples:  
Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations  
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory  
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:  
LDC  
R0,@RR2  
;
;
R0 contents of program memory location 0104H  
R0 = 1AH, R2 = 01H, R3 = 04H  
LDE  
R0,@RR2  
;
;
R0 contents of external data memory location 0104H  
R0 = 2AH, R2 = 01H, R3 = 04H  
LDC (note) @RR2,R0  
;
;
;
11H (contents of R0) is loaded into program memory  
location 0104H (RR2),  
working registers R0, R2, R3 no change  
LDE  
LDC  
LDE  
@RR2,R0  
;
;
;
11H (contents of R0) is loaded into external data memory  
location 0104H (RR2),  
working registers R0, R2, R3 no change  
R0,#01H[RR2]  
R0,#01H[RR2]  
;
;
;
R0 contents of program memory location 0105H  
(01H + RR2),  
R0 = 6DH, R2 = 01H, R3 = 04H  
;
;
R0 contents of external data memory location 0105H  
(01H + RR2), R0 = 7DH, R2 = 01H, R3 = 04H  
LDC (note) #01H[RR2],R0  
;
;
11H (contents of R0) is loaded into program memory location  
0105H (01H + 0104H)  
LDE  
LDC  
LDE  
#01H[RR2],R0  
;
;
11H (contents of R0) is loaded into external data memory  
location 0105H (01H + 0104H)  
R0,#1000H[RR2] ; R0 contents of program memory location 1104H  
(1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H  
;
R0,#1000H[RR2] ; R0 contents of external data memory location 1104H  
;
(1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H  
LDC  
LDE  
R0,1104H  
R0,1104H  
;
R0 contents of program memory location 1104H, R0 = 88H  
;
;
R0 contents of external data memory location 1104H,  
R0 = 98H  
LDC (note) 1105H,R0  
;
;
11H (contents of R0) is loaded into program memory location  
1105H, (1105H) 11H  
LDE  
1105H,R0  
;
;
11H (contents of R0) is loaded into external data memory  
location 1105H, (1105H) 11H  
NOTE: These instructions are not supported by masked ROM type devices.  
6-53  
INSTRUCTION SET  
S3C80M4/F80M4  
LDCD/LDED — Load Memory and Decrement  
LDCD/LDED dst,src  
Operation:  
dst src  
rr rr – 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then decremented. The contents of the source are unaffected.  
LDCD references program memory and LDED references external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E2  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and  
external data memory location 1033H = 0DDH:  
LDCD  
R8,@RR6  
;
;
;
0CDH (contents of program memory location 1033H) is loaded  
into R8 and RR6 is decremented by one  
R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 RR6 – 1)  
LDED  
R8,@RR6  
;
;
;
0DDH (contents of data memory location 1033H) is loaded  
into R8 and RR6 is decremented by one (RR6 RR6 – 1)  
R8 = 0DDH, R6 = 10H, R7 = 32H  
6-54  
S3C80M4/F80M4  
INSTRUCTION SET  
LDCI/LDEI — Load Memory and Increment  
LDCI/LDEI  
dst,src  
Operation:  
dst src  
rr rr + 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then incremented automatically. The contents of the source are unaffected.  
LDCI refers to program memory and LDEI refers to external data memory. The assembler makes  
'Irr' even for program memory and odd for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E3  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and  
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:  
LDCI  
R8,@RR6  
;
;
;
0CDH (contents of program memory location 1033H) is loaded  
into R8 and RR6 is incremented by one (RR6 RR6 + 1)  
R8 = 0CDH, R6 = 10H, R7 = 34H  
LDEI  
R8,@RR6  
;
;
;
0DDH (contents of data memory location 1033H) is loaded  
into R8 and RR6 is incremented by one (RR6 RR6 + 1)  
R8 = 0DDH, R6 = 10H, R7 = 34H  
6-55  
INSTRUCTION SET  
S3C80M4/F80M4  
LDCPD/LDEPD — Load Memory with Pre-Decrement  
LDCPD/  
LDEPD  
dst,src  
Operation:  
rr rr – 1  
dst src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is first  
decremented. The contents of the source location are then loaded into the destination location.  
The contents of the source are unaffected.  
LDCPD refers to program memory and LDEPD refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for external data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F2  
Irr  
r
Examples:  
Given: R0 = 77H, R6 = 30H, and R7 = 00H:  
LDCPD @RR6,R0  
;
;
;
;
(RR6 RR6 – 1)  
77H (contents of R0) is loaded into program memory location  
2FFFH (3000H – 1H)  
R0 = 77H, R6 = 2FH, R7 = 0FFH  
LDEPD @RR6,R0  
;
;
;
;
(RR6 RR6 – 1)  
77H (contents of R0) is loaded into external data memory  
location 2FFFH (3000H – 1H)  
R0 = 77H, R6 = 2FH, R7 = 0FFH  
6-56  
S3C80M4/F80M4  
INSTRUCTION SET  
LDCPI/LDEPI — Load Memory with Pre-Increment  
LDCPI/  
LDEPI  
dst,src  
Operation:  
rr rr + 1  
dst src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is first  
incremented. The contents of the source location are loaded into the destination location. The  
contents of the source are unaffected.  
LDCPI refers to program memory and LDEPI refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F3  
Irr  
r
Examples:  
Given: R0 = 7FH, R6 = 21H, and R7 = 0FFH:  
LDCPI  
@RR6,R0  
;
;
;
;
(RR6 RR6 + 1)  
7FH (contents of R0) is loaded into program memory  
location 2200H (21FFH + 1H)  
R0 = 7FH, R6 = 22H, R7 = 00H  
LDEPI  
@RR6,R0  
;
;
;
;
(RR6 RR6 + 1)  
7FH (contents of R0) is loaded into external data memory  
location 2200H (21FFH + 1H)  
R0 = 7FH, R6 = 22H, R7 = 00H  
6-57  
INSTRUCTION SET  
S3C80M4/F80M4  
LDW — Load Word  
LDW  
dst,src  
Operation:  
dst src  
The contents of the source (a word) are loaded into the destination. The contents of the source  
are unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
src  
RR  
IR  
opc  
opc  
src  
dst  
dst  
3
8
8
C4  
C5  
src  
4
8
C6  
RR  
IML  
Examples:  
Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH,  
register 01H = 02H, register 02H = 03H, and register 03H = 0FH:  
LDW  
LDW  
RR6,RR4  
00H,02H  
R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH  
Register 00H = 03H, register 01H = 0FH,  
register 02H = 03H, register 03H = 0FH  
LDW  
LDW  
LDW  
LDW  
RR2,@R7  
R2 = 03H, R3 = 0FH,  
04H,@01H  
RR6,#1234H  
02H,#0FEDH  
Register 04H = 03H, register 05H = 0FH  
R6 = 12H, R7 = 34H  
Register 02H = 0FH, register 03H = 0EDH  
In the second example, please note that the statement "LDW 00H,02H" loads the contents of the  
source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in general  
register 00H and the value 0FH in register 01H.  
The other examples show how to use the LDW instruction with various addressing modes and  
formats.  
6-58  
S3C80M4/F80M4  
INSTRUCTION SET  
MULT — Multiply (Unsigned)  
MULT  
dst,src  
Operation:  
dst dst × src  
The 8-bit destination operand (even register of the register pair) is multiplied by the source  
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination  
address. Both operands are treated as unsigned integers.  
Set if result is > 255; cleared otherwise.  
C:  
Flags:  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if MSB of the result is a "1"; cleared otherwise.  
V: Cleared.  
D: Unaffected.  
Unaffected.  
H:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
RR  
src  
opc  
src  
dst  
3
22  
22  
22  
84  
85  
86  
R
IR  
IM  
Examples:  
Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:  
MULT  
MULT  
MULT  
00H, 02H  
Register 00H = 01H, register 01H = 20H, register 02H = 09H  
Register 00H = 00H, register 01H = 0C0H  
00H, @01H  
00H, #30H  
Register 00H = 06H, register 01H = 00H  
In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in  
the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The  
16-bit product, 0120H, is stored in the register pair 00H, 01H.  
6-59  
INSTRUCTION SET  
S3C80M4/F80M4  
NEXT — Next  
NEXT  
Operation:  
PC @ IP  
IP IP + 2  
The NEXT instruction is useful when implementing threaded-code languages. The program  
memory word that is pointed to by the instruction pointer is loaded into the program counter. The  
instruction pointer is then incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
10  
0F  
Example:  
The following diagram shows one example of how to use the NEXT instruction.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0043  
0120  
0045  
0130  
Address  
Data  
Address  
43 Address H  
Data  
PC  
43 Address H 01  
PC  
44 Address L 10  
45 Address H  
44 Address L  
45 Address H  
120 Next  
Memory  
130 Routine  
Memory  
6-60  
S3C80M4/F80M4  
INSTRUCTION SET  
NOP — No Operation  
NOP  
Operation:  
No action is performed when the CPU executes this instruction. Typically, one or more NOPs are  
executed in sequence in order to effect a timing delay of variable duration.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
FF  
Example:  
When the instruction  
NOP  
is encountered in a program, no operation occurs. Instead, there is a delay in instruction  
execution time.  
6-61  
INSTRUCTION SET  
S3C80M4/F80M4  
OR — Logical OR  
OR  
dst,src  
Operation:  
dst dst OR src  
The source operand is logically ORed with the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. The OR operation results in a "1" being  
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is  
stored.  
Flags:  
C: Unaffected.  
Set if the result is "0"; cleared otherwise.  
Z:  
S: Set if the result bit 7 is set; cleared otherwise.  
Always cleared to "0".  
V:  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
2
4
6
42  
43  
r
r
r
lr  
src  
dst  
dst  
src  
3
3
6
6
44  
45  
R
R
R
IR  
6
46  
R
IM  
Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and  
register 08H = 8AH:  
Examples:  
OR  
OR  
OR  
OR  
OR  
R0,R1  
R0 = 3FH, R1 = 2AH  
R0,@R2  
00H,01H  
01H,@00H  
00H,#02H  
R0 = 37H, R2 = 01H, register 01H = 37H  
Register 00H = 3FH, register 01H = 37H  
Register 00H = 08H, register 01H = 0BFH  
Register 00H = 0AH  
In the first example, if working register R0 contains the value 15H and register R1 the value 2AH,  
the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result  
(3FH) in destination register R0.  
The other examples show the use of the logical OR instruction with the various addressing  
modes and formats.  
6-62  
S3C80M4/F80M4  
INSTRUCTION SET  
POP — Pop From Stack  
POP  
dst  
Operation:  
dst @SP  
SP SP + 1  
The contents of the location addressed by the stack pointer are loaded into the destination. The  
stack pointer is then incremented by one.  
No flags affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
50  
51  
R
IR  
Examples:  
Given: Register 00H = 01H, register 01H = 1BH, SPH (0D8H) = 00H, SPL (0D9H) = 0FBH,  
and stack register 0FBH = 55H:  
POP  
POP  
00H  
Register 00H = 55H, SP = 00FCH  
@00H  
Register 00H = 01H, register 01H = 55H, SP = 00FCH  
In the first example, general register 00H contains the value 01H. The statement "POP 00H"  
loads the contents of location 00FBH (55H) into destination register 00H and then increments the  
stack pointer by one. Register 00H then contains the value 55H and the SP points to location  
00FCH.  
6-63  
INSTRUCTION SET  
S3C80M4/F80M4  
POPUD — Pop User Stack (Decrementing)  
POPUD  
dst,src  
Operation:  
dst src  
IR IR – 1  
This instruction is used for user-defined stacks in the register file. The contents of the register file  
location addressed by the user stack pointer are loaded into the destination. The user stack  
pointer is then decremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
8
92  
R
IR  
Example:  
Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and  
register 02H = 70H:  
POPUD 02H,@00H  
Register 00H = 41H, register 02H = 6FH, register 42H = 6FH  
If general register 00H contains the value 42H and register 42H the value 6FH, the statement  
"POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The  
user stack pointer is then decremented by one, leaving the value 41H.  
6-64  
S3C80M4/F80M4  
INSTRUCTION SET  
POPUI — Pop User Stack (Incrementing)  
POPUI  
dst,src  
Operation:  
dst src  
IR IR + 1  
The POPUI instruction is used for user-defined stacks in the register file. The contents of the  
register file location addressed by the user stack pointer are loaded into the destination. The user  
stack pointer is then incremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
8
93  
R
IR  
Example:  
Given: Register 00H = 01H and register 01H = 70H:  
POPUI 02H,@00H Register 00H = 02H, register 01H = 70H, register 02H = 70H  
If general register 00H contains the value 01H and register 01H the value 70H, the statement  
"POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user  
stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.  
6-65  
INSTRUCTION SET  
S3C80M4/F80M4  
PUSH — Push To Stack  
PUSH  
src  
Operation:  
SP SP – 1  
@SP src  
A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)  
into the location addressed by the decremented stack pointer. The operation then adds the new  
value to the top of the stack.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
src  
2
8 (internal clock)  
8 (external clock)  
70  
R
8 (internal clock)  
8 (external clock)  
71  
IR  
Examples:  
Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 00H, and SPL = 00H:  
PUSH  
40H  
Register 40H = 4FH, stack register 0FFH = 4FH,  
SPH = 0FFH, SPL = 0FFH  
PUSH  
@40H  
Register 40H = 4FH, register 4FH = 0AAH, stack register  
0FFH = 0AAH, SPH = 0FFH, SPL = 0FFH  
In the first example, if the stack pointer contains the value 0000H, and general register 40H the  
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH. It  
then loads the contents of register 40H into location 0FFFFH and adds this new value to the top  
of the stack.  
6-66  
S3C80M4/F80M4  
INSTRUCTION SET  
PUSHUD — Push User Stack (Decrementing)  
PUSHUD  
dst,src  
Operation:  
IR IR – 1  
dst src  
This instruction is used to address user-defined stacks in the register file. PUSHUD decrements  
the user stack pointer and loads the contents of the source into the register addressed by the  
decremented stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
3
8
82  
IR  
R
Example:  
Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:  
PUSHUD @00H,01H Register 00H = 02H, register 01H = 05H, register 02H = 05H  
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The  
01H register value, 05H, is then loaded into the register addressed by the decremented user  
stack pointer.  
6-67  
INSTRUCTION SET  
S3C80M4/F80M4  
PUSHUI — Push User Stack (Incrementing)  
PUSHUI  
dst,src  
Operation:  
IR IR + 1  
dst src  
This instruction is used for user-defined stacks in the register file. PUSHUI increments the user  
stack pointer and then loads the contents of the source into the register location addressed by  
the incremented user stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
3
8
83  
IR  
R
Example:  
Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:  
PUSHUI @00H,01H Register 00H = 04H, register 01H = 05H, register 04H = 05H  
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H  
register value, 05H, is then loaded into the location addressed by the incremented user stack  
pointer.  
6-68  
S3C80M4/F80M4  
INSTRUCTION SET  
RCF — Reset Carry Flag  
RCF  
RCF  
Operation:  
C 0  
The carry flag is cleared to logic zero, regardless of its previous value.  
Flags:  
C:  
Cleared to "0".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
CF  
Example:  
Given: C = "1" or "0":  
The instruction RCF clears the carry flag (C) to logic zero.  
6-69  
INSTRUCTION SET  
S3C80M4/F80M4  
RET — Return  
RET  
Operation:  
PC @SP  
SP SP + 2  
The RET instruction is normally used to return to the previously executing procedure at the end of  
a procedure entered by a CALL instruction. The contents of the location addressed by the stack  
pointer are popped into the program counter. The next statement that is executed is the one that  
is addressed by the new program counter value.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
8 (internal stack)  
10 (internal stack)  
AF  
Example:  
Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:  
RET PC = 101AH, SP = 00FEH  
The statement "RET" pops the contents of stack pointer location 00FCH (10H) into the high byte  
of the program counter. The stack pointer then pops the value in location 00FEH (1AH) into the  
PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to  
memory location 00FEH.  
6-70  
S3C80M4/F80M4  
INSTRUCTION SET  
RL — Rotate Left  
RL  
dst  
Operation:  
C dst (7)  
dst (0) dst (7)  
dst (n + 1) dst (n), n = 0–6  
The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is  
moved to the bit zero (LSB) position and also replaces the carry flag.  
7
0
C
Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Flags:  
C:  
Z: Set if the result is "0"; cleared otherwise.  
Set if the result bit 7 is set; cleared otherwise.  
S:  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
90  
91  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:  
RL  
RL  
00H  
Register 00H = 55H, C = "1"  
Register 01H = 02H, register 02H = 2EH, C = "0"  
@01H  
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement  
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)  
and setting the carry and overflow flags.  
6-71  
INSTRUCTION SET  
S3C80M4/F80M4  
RLC — Rotate Left Through Carry  
RLC  
dst  
Operation:  
dst (0) C  
C dst (7)  
dst (n + 1) dst (n), n = 0–6  
The contents of the destination operand with the carry flag are rotated left one bit position. The  
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
V:  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
10  
11  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":  
RLC  
RLC  
00H  
Register 00H = 54H, C = "1"  
@01H  
Register 01H = 02H, register 02H = 2EH, C = "0"  
In the first example, if general register 00H has the value 0AAH (10101010B), the statement  
"RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag  
and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H  
(01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.  
6-72  
S3C80M4/F80M4  
INSTRUCTION SET  
RR — Rotate Right  
RR  
dst  
Operation:  
C dst (0)  
dst (7) dst (0)  
dst (n) ← dst (n + 1), n = 0–6  
The contents of the destination operand are rotated right one bit position. The initial value of bit  
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
E0  
E1  
R
IR  
Examples:  
Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:  
RR  
RR  
00H  
Register 00H = 98H, C = "1"  
Register 01H = 02H, register 02H = 8BH, C = "1"  
@01H  
In the first example, if general register 00H contains the value 31H (00110001B), the statement  
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to  
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also  
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".  
6-73  
INSTRUCTION SET  
S3C80M4/F80M4  
RRC — Rotate Right Through Carry  
RRC  
dst  
Operation:  
dst (7) C  
C dst (0)  
dst (n) dst (n + 1), n = 0–6  
The contents of the destination operand and the carry flag are rotated right one bit position. The  
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7  
(MSB).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0" cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
V:  
D: Unaffected.  
Unaffected.  
H:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
C0  
C1  
R
IR  
Examples:  
Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":  
RRC  
RRC  
00H  
Register 00H = 2AH, C = "1"  
@01H  
Register 01H = 02H, register 02H = 0BH, C = "1"  
In the first example, if general register 00H contains the value 55H (01010101B), the statement  
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")  
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new  
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both  
cleared to "0".  
6-74  
S3C80M4/F80M4  
INSTRUCTION SET  
SB0 — Select Bank 0  
SB0  
Operation:  
BANK 0  
The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,  
selecting bank 0 register addressing in the set 1 area of the register file.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
4F  
Example:  
The statement  
SB0  
clears FLAGS.0 to "0", selecting bank 0 register addressing.  
6-75  
INSTRUCTION SET  
S3C80M4/F80M4  
SB1 — Select Bank 1  
SB1  
Operation:  
BANK 1  
The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,  
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not  
implemented in some S3C8-series microcontrollers.)  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
5F  
Example:  
The statement  
SB1  
sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.  
6-76  
S3C80M4/F80M4  
INSTRUCTION SET  
SBC — Subtract with Carry  
SBC  
dst,src  
Operation:  
dst dst – src – c  
The source operand, along with the current value of the carry flag, is subtracted from the  
destination operand and the result is stored in the destination. The contents of the source are  
unaffected. Subtraction is performed by adding the two's-complement of the source operand to  
the destination operand. In multiple precision arithmetic, this instruction permits the carry  
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of  
high-order operands.  
Flags:  
C: Set if a borrow occurred (src > dst); cleared otherwise.  
Z:  
Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign  
of the result is the same as the sign of the source; cleared otherwise.  
D: Always set to "1".  
Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise, indicating a "borrow".  
H:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
32  
33  
r
r
r
lr  
dst  
src  
3
3
6
6
34  
35  
R
R
R
IR  
dst  
6
36  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register  
03H = 0AH:  
SBC  
SBC  
SBC  
SBC  
SBC  
R1,R2  
R1 = 0CH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#8AH  
R1 = 05H, R2 = 03H, register 03H = 0AH  
Register 01H = 1CH, register 02H = 03H  
Register 01H = 15H,register 02H = 03H, register 03H = 0AH  
Register 01H = 95H; C, S, and V = "1"  
In the first example, if working register R1 contains the value 10H and register R2 the value 03H,  
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the  
destination (10H) and then stores the result (0CH) in register R1.  
6-77  
INSTRUCTION SET  
S3C80M4/F80M4  
SCF — Set Carry Flag  
SCF  
Operation:  
Flags:  
C 1  
The carry flag (C) is set to logic one, regardless of its previous value.  
Set to "1".  
C:  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
DF  
Example:  
The statement  
SCF  
sets the carry flag to logic one.  
6-78  
S3C80M4/F80M4  
INSTRUCTION SET  
SRA — Shift Right Arithmetic  
SRA  
dst  
Operation:  
dst (7) dst (7)  
C dst (0)  
dst (n) dst (n + 1), n = 0–6  
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the  
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit  
position 6.  
7
6
0
C
Flags:  
C: Set if the bit shifted from the LSB position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Always cleared to "0".  
Unaffected.  
D:  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
D0  
D1  
R
IR  
Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":  
Examples:  
SRA  
SRA  
00H  
Register 00H = 0CD, C = "0"  
@02H  
Register 02H = 03H, register 03H = 0DEH, C = "0"  
In the first example, if general register 00H contains the value 9AH (10011010B), the statement  
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C  
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the  
value 0CDH (11001101B) in destination register 00H.  
6-79  
INSTRUCTION SET  
S3C80M4/F80M4  
SRP/SRP0/SRP1 — Set Register Pointer  
SRP  
src  
src  
src  
SRP0  
SRP1  
Operation:  
If src (1) = 1 and src (0) = 0 then: RP0 (3–7)  
src (3–7)  
src (3–7)  
src (4–7),  
0
If src (1) = 0 and src (0) = 1 then: RP1 (3–7)  
If src (1) = 0 and src (0) = 0 then: RP0 (4–7)  
RP0 (3)  
RP1 (4–7)  
RP1 (3)  
src (4–7),  
1
The source data bits one and zero (LSB) determine whether to write one or both of the register  
pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register  
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.  
No flags are affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
src  
opc  
src  
2
4
31  
IM  
The statement  
SRP #40H  
Examples:  
sets register pointer 0 (RP0) at location 0D6H to 40H and register pointer 1 (RP1) at location  
0D7H to 48H.  
The statement "SRP0 #50H" sets RP0 to 50H, and the statement "SRP1 #68H" sets RP1 to  
68H.  
6-80  
S3C80M4/F80M4  
INSTRUCTION SET  
STOP — Stop Operation  
STOP  
Operation:  
The STOP instruction stops the both the CPU clock and system clock and causes the  
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,  
peripheral registers, and I/O port control and data registers are retained. Stop mode can be  
released by an external reset operation or by external interrupts. For the reset operation, the  
RESET pin must be held to Low level until the required oscillation stabilization interval has  
elapsed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
7F  
Example:  
The statement  
STOP  
halts all microcontroller operations.  
6-81  
INSTRUCTION SET  
S3C80M4/F80M4  
SUB — Subtract  
SUB  
dst,src  
Operation:  
dst dst – src  
The source operand is subtracted from the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. Subtraction is performed by adding the  
two's complement of the source operand to the destination operand.  
Flags:  
C: Set if a "borrow" occurred; cleared otherwise.  
Set if the result is "0"; cleared otherwise.  
Z:  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the  
sign of the result is of the same as the sign of the source operand; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
22  
23  
r
r
r
lr  
dst  
src  
3
3
6
6
24  
25  
R
R
R
IR  
dst  
6
26  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
R1,R2  
R1 = 0FH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#90H  
01H,#65H  
R1 = 08H, R2 = 03H  
Register 01H = 1EH, register 02H = 03H  
Register 01H = 17H, register 02H = 03H  
Register 01H = 91H; C, S, and V = "1"  
Register 01H = 0BCH; C and S = "1", V = "0"  
In the first example, if working register R1 contains the value 12H and if register R2 contains the  
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination  
value (12H) and stores the result (0FH) in destination register R1.  
6-82  
S3C80M4/F80M4  
INSTRUCTION SET  
SWAP — Swap Nibbles  
SWAP  
dst  
Operation:  
dst (0 – 3) dst (4 – 7)  
The contents of the lower four bits and upper four bits of the destination operand are swapped.  
7
4 3  
0
Undefined.  
Flags:  
C:  
Z: Set if the result is "0"; cleared otherwise.  
Set if the result bit 7 is set; cleared otherwise.  
S:  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
F0  
F1  
R
IR  
Examples:  
Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:  
SWAP  
SWAP  
00H  
Register 00H = 0E3H  
@02H  
Register 02H = 03H, register 03H = 4AH  
In the first example, if general register 00H contains the value 3EH (00111110B), the statement  
"SWAP 00H" swaps the lower and upper four bits (nibbles) in the 00H register, leaving the value  
0E3H (11100011B).  
6-83  
INSTRUCTION SET  
S3C80M4/F80M4  
TCM — Test Complement Under Mask  
TCM  
dst,src  
Operation:  
(NOT dst) AND src  
This instruction tests selected bits in the destination operand for a logic one value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask). The TCM statement complements the destination operand, which is then ANDed with the  
source mask. The zero (Z) flag can then be checked to determine the result. The destination and  
source operands are unaffected.  
Flags:  
C: Unaffected.  
Set if the result is "0"; cleared otherwise.  
Z:  
S: Set if the result bit 7 is set; cleared otherwise.  
Always cleared to "0".  
V:  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
2
4
6
62  
63  
r
r
r
lr  
src  
dst  
dst  
src  
3
3
6
6
64  
65  
R
R
R
IR  
6
66  
R
IM  
Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
Examples:  
TCM  
TCM  
TCM  
TCM  
R0,R1  
R0 = 0C7H, R1 = 02H, Z = "1"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "1"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "1"  
TCM  
00H,#34  
Register 00H = 2BH, Z = "0"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register  
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one  
and can be tested to determine the result of the TCM operation.  
6-84  
S3C80M4/F80M4  
INSTRUCTION SET  
TM — Test Under Mask  
TM  
dst,src  
Operation:  
dst AND src  
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to  
determine the result. The destination and source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
72  
73  
r
r
r
lr  
dst  
src  
3
3
6
6
74  
75  
R
R
R
IR  
dst  
6
76  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TM  
TM  
TM  
TM  
R0,R1  
R0 = 0C7H, R1 = 02H, Z = "0"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "0"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "0"  
TM  
00H,#54H  
Register 00H = 2BH, Z = "1"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register  
for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic  
zero and can be tested to determine the result of the TM operation.  
6-85  
INSTRUCTION SET  
S3C80M4/F80M4  
WFI — Wait for Interrupt  
WFI  
Operation:  
The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take  
place during this wait state. The WFI status can be released by an internal interrupt, including a  
fast interrupt .  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4n  
3F  
( n = 1, 2, 3, … )  
The following sample program structure shows the sequence of operations that follow a "WFI"  
statement:  
Example:  
Main program  
.
.
.
EI  
WFI  
(Enable global interrupt)  
(Wait for interrupt)  
(Next instruction)  
.
.
.
Interrupt occurs  
Interrupt service routine  
.
.
.
Clear interrupt flag  
IRET  
Service routine completed  
6-86  
S3C80M4/F80M4  
INSTRUCTION SET  
XOR — Logical Exclusive OR  
XOR  
dst,src  
Operation:  
dst dst XOR src  
The source operand is logically exclusive-ORed with the destination operand and the result is  
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever  
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.  
Flags:  
C: Unaffected.  
Set if the result is "0"; cleared otherwise.  
Z:  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
3
3
4
6
B2  
B3  
r
r
r
lr  
dst  
src  
6
6
B4  
B5  
R
R
R
IR  
dst  
6
B6  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
XOR  
XOR  
XOR  
XOR  
XOR  
R0,R1  
R0 = 0C5H, R1 = 02H  
R0,@R1  
00H,01H  
00H,@01H  
00H,#54H  
R0 = 0E4H, R1 = 02H, register 02H = 23H  
Register 00H = 29H, register 01H = 02H  
Register 00H = 08H, register 01H = 02H, register 02H = 23H  
Register 00H = 7FH  
In the first example, if working register R0 contains the value 0C7H and if register R1 contains  
the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0  
value and stores the result (0C5H) in the destination register R0.  
6-87  
INSTRUCTION SET  
S3C80M4/F80M4  
NOTES  
6-88  
S3C80M4/F80M4  
CLOCK CIRCUIT  
7
CLOCK CIRCUIT  
OVERVIEW  
The clock frequency generated for the S3C80M4/F80M4 by an external crystal can range from 0.4 MHz to 10  
MHz. The maximum CPU clock frequency is 10 MHz. The XIN and XOUT pins connect the external oscillator or  
clock source to the on-chip clock circuit.  
SYSTEM CLOCK CIRCUIT  
The system clock circuit has the following components:  
— External crystal or ceramic resonator oscillation source (or an external clock source)  
— Oscillator stop and wake-up functions  
— Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)  
— System clock control register, CLKCON  
— Clock output control register, CLOCON  
— STOP control register, STPCON  
CPU CLOCK NOTATION  
In this document, the following notation is used for descriptions of the CPU clock;  
fx: main clock  
fxx: selected system clock  
7-1  
CLOCK CIRCUIT  
S3C80M4/F80M4  
MAIN OSCILLATOR CIRCUITS  
XIN  
XOUT  
Figure 7-1. Crystal/Ceramic Oscillator (fx)  
XIN  
XOUT  
Figure 7-2. External Oscillator (fx)  
XIN  
R
XOUT  
Figure 7-3. RC Oscillator (fx)  
7-2  
S3C80M4/F80M4  
CLOCK CIRCUIT  
CLOCK STATUS DURING POWER-DOWN MODES  
The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:  
— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator is started, by a reset  
operation or an external interrupt (with RC delay noise filter), and can be released by internal interrupt too  
when the sub-system oscillator is running and watch timer is operating with sub-system clock.  
— In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers and timer/  
counters. Idle mode is released by a reset or by an external or internal interrupt.  
INT  
CLKCON.7  
Stop Release  
Main-System  
Oscillator  
Circuit  
fx (fxx)  
Stop  
1/1-1/4096  
STOP OSC  
inst.  
Basic Timer  
Timer/Counter 0  
PWM  
Frequency  
Dividing  
Circuit  
STPCON  
1/1 1/2 1/8 1/16  
CLKCON.4-.3  
Selector  
CPU Clock  
IDLE Instruction  
Figure 7-4. System Clock Circuit Diagram  
7-3  
CLOCK CIRCUIT  
S3C80M4/F80M4  
SYSTEM CLOCK CONTROL REGISTER (CLKCON)  
The system clock control register, CLKCON, is located in the set 1, address D4H. It is read/write addressable and  
has the following functions:  
— Oscillator frequency divide-by value  
After the main oscillator is activated, and the fxx/16 (the slowest clock speed) is selected as the CPU clock. If  
necessary, you can then increase the CPU clock speed fxx/8, fxx/2, or fxx/1.  
System Clock Control Register (CLKCON)  
D4H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the  
S3C80M4  
Not used for the  
S3C80M4  
Oscillator IRQ wake-up function bit:  
0 = Enable IRQ for main wake-up in  
power down mode  
1 = Diable IRQ for main wake-up  
in power down mode  
Divide-by selection bits for  
CPU clock frequency:  
00 = fXX/16  
01 = fXX/8  
10 = fXX/2  
11 = fXX/1  
NOTE:  
After a reset, the slowest clock (divided by 16) is selected as the system clock.  
To select faster speeds, load the appropriate values to CLKCON.3 and CLKCON.4.  
Figure 7-5. System Clock Control Register (CLKCON)  
7-4  
S3C80M4/F80M4  
CLOCK CIRCUIT  
CLOCK OUTPUT CONTROL REGISTER (CLOCON)  
The clock output control register, CLOCON, is located in the bank 0 of set1, address E3H. It is read/write  
addressable and has the following functions;  
— Clock Output Frequency Selection  
After a reset, fxx/64 is select for Clock Output Frequency because the reset value of CLOCON.1-.0 is "0".  
Clock Output Control Register (CLOCON)  
E3H, Set 1, bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Clock Output Frequency Selection Bits:  
Not used for the S3C80M4  
00 = fxx/64  
01 = fxx/16  
10 = fxx/8  
11 = fxx/4  
Figure 7-6. Clock Output Control Register (CLOCON)  
CLOCON.1-.0  
P1CONH.5-.4  
fxx/64  
fxx/16  
MUX  
CLKOUT  
fxx/8  
fxx/4  
Figure 7-7. Clock Output Block Diagram  
7-5  
CLOCK CIRCUIT  
S3C80M4/F80M4  
STOP CONTROL REGISTER (STPCON)  
The STOP control register, STPCON, is located in the bank 0 of set1, address FBH. It is read/write addressable  
and has the following functions:  
— Enable/Disable STOP instruction  
After a reset, the STOP instruction is disabled, because the value of STPCON is "other values".  
If necessary, you can use the STOP instruction by setting the value of STPCON to "10100101B".  
STOP Control Register (STPCON)  
FBH, Set 1,bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
STOP Control bits:  
Other values = Disable STOP instruction  
10100101 = Enable STOP instruction  
NOTE:  
Before executing the STOP instruction, set the STPCON  
register as "10100101b". Otherwise the STOP instruction  
will not be executed and reset will be generated.  
Figure 7-8. STOP Control Register (STPCON)  
PROGRAMMING TIP — How to Use Stop Instruction  
This example shows how to go STOP mode when a main clock is selected as the system clock.  
LD  
STOPCON,#1010010B  
STOPCON,#00000000B  
;
;
Enable STOP instruction  
Enter STOP mode  
STOP  
NOP  
NOP  
NOP  
LD  
;
;
Release STOP mode  
Disable STOP instruction  
7-6  
S3C80M4/F80M4  
RESET and POWER-DOWN  
8
RESET and POWER-DOWN  
SYSTEM RESET  
OVERVIEW  
During a power-on reset, the voltage at VDD goes to High level and the RESET pin is forced to Low level. The  
RESET signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock. This  
procedure brings the S3C80M4/F80M4 into a known operating status.  
To allow time for internal CPU clock oscillation to stabilize, the RESET pin must be held to Low level for a  
minimum time interval after the power supply comes within tolerance. The minimum required time of a reset  
operation for oscillation stabilization is 1 millisecond.  
Whenever a reset occurs during normal operation (that is, when both VDD and RESET are High level), the  
nRESET pin is forced Low level and the reset operation starts. All system and peripheral control registers are  
then reset to their default hardware values  
In summary, the following sequence of events occurs during a reset operation:  
— All interrupt is disabled.  
— The watchdog function (basic timer) is enabled.  
— Ports 0-1 and set to input mode, and all pull-up resistors are disabled for the I/O port.  
— Peripheral control and data register settings are disabled and reset to their default hardware values.  
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM  
location 0100H (and 0101H) is fetched and executed at normal mode by smart option.  
NORMAL MODE RESET OPERATION  
A reset enables access to the S3C80M4 (4Kbyte) on-chip ROM. (The external interface is not automatically  
configured).  
NOTE  
To program the duration of the oscillation stabilization interval, you make the appropriate settings to the  
basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic  
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can  
disable it by writing "1010B" to the upper nibble of BTCON.  
8-1  
RESET and POWER-DOWN  
S3C80M4/F80M4  
HARDWARE RESET VALUES  
Table 8-1, 8-2 list the reset values for CPU and system registers, peripheral control registers, and peripheral data  
registers following a reset operation. The following notation is used to represent reset values:  
— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  
— An "x" means that the bit value is undefined after a reset.  
— A dash ("–") means that the bit is either not used or not mapped, but read 0 is the bit value.  
Table 8-1. S3C80M4/F80M4 Set 1 Register and Values After RESET  
Register Name  
Mnemonic  
Address  
Dec Hex  
Locations D0H-D2H are not mapped.  
Bit Values After RESET  
7
6
5
4
3
2
1
0
Basic timer control register  
System clock control register  
System flags register  
BTCON  
CLKCON  
FLAGS  
RP0  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
0
0
x
1
1
x
x
x
x
0
x
0
0
0
x
1
1
x
x
x
x
0
x
0
0
x
0
0
x
x
x
x
0
x
0
0
0
x
0
0
x
x
x
x
0
x
x
0
0
0
x
0
1
x
x
x
x
0
x
x
0
0
x
x
x
x
x
0
x
x
0
0
0
x
x
x
x
0
x
0
0
0
0
x
x
x
x
0
x
0
0
Register pointer 0  
Register pointer 1  
RP1  
Stack pointer (high byte)  
Stack pointer (low byte)  
Instruction pointer (high byte)  
Instruction pointer (low byte)  
Interrupt request register  
Interrupt mask register  
System mode register  
Register page pointer  
SPH  
SPL  
IPH  
IPL  
IRQ  
IMR  
SYM  
PP  
8-2  
S3C80M4/F80M4  
RESET and POWER-DOWN  
Table 8-2. S3C80M4/F80M4 Set 1, Bank 0 Register and Values After RESET  
Register Name  
Mnemonic  
Address  
Bit Values After RESET  
Dec  
Hex  
E0H  
E1H  
7
0
0
6
0
0
5
0
0
4
0
0
3
0
0
2
0
0
1
0
0
0
0
0
Port 0 Data Register  
Port 1 Data Register  
P0  
P1  
224  
225  
Location E2H is not mapped.  
Clock Output Control Register  
Timer 0 Counter Register  
Timer 0 Data Register  
Timer 0 Control Register  
PWM Data Register  
CLOCON  
T0CNT  
227  
228  
229  
230  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
T0DATA  
T0CNT  
PWMDATA 231  
PWMCON 232  
PWM Control Register  
Locations E9H-EEH are not mapped.  
P1CONH  
P1CONL  
P1PUR  
240  
241  
242  
243  
244  
245  
246  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Port 1 Control Register (High Byte)  
Port 1 Control Register (Low Byte)  
Port 1 Pull-up Resistor Enable Register  
Port 0 Control Register (High Byte)  
Port 0 Control Register (Low Byte)  
Port 0 Interrupt Control Register  
Port 0 Interrupt Pending Register  
P0CONH  
P0CONL  
P0INT  
P0PND  
Locations F6H-FAH are not mapped.  
STOP control register  
Basic Timer Counter  
Interrupt Priority Register  
STPCON  
Location FCH is not mapped.  
BTCNT 253 FDH  
Location FEH is not mapped.  
IPR 255 FFH  
251  
FBH  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
8-3  
RESET and POWER-DOWN  
S3C80M4/F80M4  
POWER-DOWN MODES  
STOP MODE  
Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all  
peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than  
3µA. All system functions stop when the clock “freezes”, but data stored in the internal register file is retained.  
Stop mode can be released in one of two ways: by a reset or by interrupts, for more details see Figure 7-4.  
NOTE  
Do not use stop mode if you are using an external clock source because XIN input must be restricted  
internally to VSS to reduce current leakage.  
Using nRESET to Release Stop Mode  
Stop mode is released when the nRESET signal is released and returns to high level: all system and peripheral  
control registers are reset to their default hardware values and the contents of all data registers are retained. A  
reset operation automatically selects a slow clock fxx/16 because CLKCON.3 and CLKCON.4 are cleared to  
‘00B’. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization  
routine by fetching the program instruction stored in ROM location 0100H (and 0101H)  
Using an External Interrupt to Release Stop Mode  
External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you can  
use to release Stop mode in a given situation depends on the microcontroller’s current internal operating mode.  
The external interrupts in the S3C80M4/F80M4 interrupt structure that can be used to release Stop mode are:  
— External interrupts P0.0–P0.3 (INT0–INT3)  
Please note the following conditions for Stop mode release:  
— If you release Stop mode using an external interrupt, the current values in system and peripheral control  
registers are unchanged except STPCON register.  
— If you use an internal or external interrupt for Stop mode release, you can also program the duration of the  
oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before  
entering Stop mode.  
— When the Stop mode is released by external interrupt, the CLKCON.4 and CLKCON.3 bit-pair setting remains  
unchanged and the currently selected clock value is used.  
— The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service  
routine, the instruction immediately following the one that initiated Stop mode is executed.  
Using an Internal Interrupt to Release Stop Mode  
Activate any enabled interrupt, causing Stop mode to be released. Other things are same as using external  
interrupt.  
How to Enter into Stop Mode  
Handling STPCON register then writing STOP instruction (keep the order).  
LD STPCON,#10100101B  
STOP  
NOP  
NOP  
NOP  
8-4  
S3C80M4/F80M4  
IDLE MODE  
RESET and POWER-DOWN  
Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some  
peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all  
peripherals timers remain active. Port pins retain the mode (input or output) they had at the time idle mode was  
entered.  
There are two ways to release idle mode:  
1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents  
of all data registers are retained. The reset automatically selects the slow clock fxx/16 because CLKCON.4  
and CLKCON.3 are cleared to ‘00B’. If interrupts are masked, a reset is the only way to release idle mode.  
2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle  
mode, the CLKCON.4 and CLKCON.3 register values remain unchanged, and the currently selected clock  
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction  
immediately following the one that initiated idle mode is executed.  
8-5  
RESET and POWER-DOWN  
S3C80M4/F80M4  
NOTES  
8-6  
S3C80M4/F80M4  
I/O PORTS  
9
I/O PORTS  
OVERVIEW  
The S3C80M4/F80M4 microcontroller has two bit-programmable I/O ports, P0–P1. The port 0 is a 8-bit port, the  
port 1 is a 7-bit port. This gives a total of 15 I/O pins. Each port can be flexibly configured to meet application  
design requirements. The CPU accesses ports by directly writing or reading port registers. No special I/O  
instructions are required.  
Table 9-1 gives you a general overview of the S3C80M4/F80M4 I/O port functions.  
Table 9-1. S3C80M4/F80M4 Port Configuration Overview  
Port  
Configuration Options  
0
1-bit programmable I/O port.  
Schmitt trigger input or push-pull output mode selected by software; software assignable pull-ups.  
P0.0–P0.3 can be used as inputs for external interrupts INT0–INT3  
(with interrupt enable and pending control). Alternately P0.6 can be used as PWM.  
1
1-bit programmable I/O port.  
Input or push-pull, open-drain output mode selected by software; software assignable pull-ups.  
Alternately P1.0, P1.0, P1.6 can be used as T0OUT, T0CLK, CLKOUT.  
PORT DATA REGISTERS  
Table 9-2 gives you an overview of the register locations of all four S3C80M4/F80M4 I/O port data registers. Data  
registers for ports 0 and 1 have the general format shown in Figure 9-1.  
Table 9-2. Port Data Register Summary  
Register Name  
Port 0 data register  
Port 1 data register  
Mnemonic  
Decimal  
224  
Hex  
E0H  
E1H  
Location  
R/W  
R/W  
R/W  
P0  
P1  
Set 1, Bank 0  
Set 1, Bank 0  
225  
9-1  
I/O PORTS  
PORT 0  
S3C80M4/F80M4  
Port 0 is an 8-bit I/O port with individually configurable pins. Port 0 pins are accessed directly by writing or reading  
the port 0 data register, P0 at location E0H in set 1, bank 0. P0.0–P0.7 can serve inputs, as output push pull  
or you can configure the following alternative functions:  
— Low-byte pins (P0.0–P0.3): INT0–INT3  
— High-byte pins (P0.4–P0.7): PWM  
Port 0 Control Register (P0CONH, P0CONL)  
Port 0 has two 8-bit control registers: P0CONH for P0.4-P0.7 and P0CONL for P0.0-P0.3. A reset clears the  
P0CONH and P0CONL registers to "40H" and "00H", configuring all pins to input mode. In input mode, three  
different selections are available:  
— Schmitt trigger input with interrupt generation on falling signal edges.  
— Schmitt trigger input with interrupt generation on rising signal edges.  
— Schmitt trigger input with interrupt generation on falling/rising signal edges.  
Port 0 Interrupt Enable and Pending Registers (P0INT)  
To process external interrupts at the port 0 pins, the additional control registers are provided: the port 0 interrupt  
enable register P0INT (F4H, set 1, bank 0) and the port 0 interrupt pending register P0PND (F5H, set 1, bank 0).  
The port 0 interrupt pending register P0PND lets you check for interrupt pending conditions and clear the pending  
condition when the interrupt service routine has been initiated. The application program detects interrupt requests  
by polling the P0PND register at regular intervals.  
When the interrupt enable bit of any port 0 pin is “1”, a rising or falling signal edge at that pin will generate an  
interrupt request. The corresponding P0PND bit is then automatically set to “1” and the IRQ level goes low to  
signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application  
software must the clear the pending condition by writing a “0” to the corresponding P0PND bit.  
9-2  
S3C80M4/F80M4  
I/O PORTS  
Port 0 Control Register, High Byte (P0CONH)  
F2H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.7  
P0.6  
(PWM)  
P0.5  
P0.4  
P0CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Schmitt trigger input mode  
Schmitt trigger input mode, pull-up  
Alternative function (PWM,not used for P0.7/P0.5/P0.4)  
Output mode, push-pull  
Figure 9-1. Port 0 High-Byte Control Register (P0CONH)  
Port 0 Control Register, Low Byte (P0CONL)  
F3H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.3  
(INT3)  
P0.2  
(INT2)  
P0.1  
(INT1)  
P0.0  
(INT0)  
P0CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Schmitt trigger input mode  
Schmitt trigger input mode, pull-up  
Not available  
Output mode, push-pull  
Figure 9-2. Port 0 Low-Byte Control Register (P0CONL)  
9-3  
I/O PORTS  
S3C80M4/F80M4  
Port 0 Interrupt Control Register (P0INT)  
F4H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
INT3  
INT2  
INT1  
INT0  
P0INT bit configuration settings:  
00  
01  
10  
11  
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
Figure 9-3. Port 0 Interrupt Control Register  
Port 0 Interrupt Pending Register (P0PND)  
F5H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3C80M4 PND3 PND2 PND1 PND0  
P0PND bit configuration settings:  
0
Interrupt request is not pending,  
pending bit clear when write 0  
1
Interrupt request is pending  
Figure 9-4. Port 0 Interrupt Pending Register (P0PND)  
9-4  
S3C80M4/F80M4  
PORT 1  
I/O PORTS  
Port 1 is an 7-bit I/O port with individually configurable pins. Port 1 pins are accessed directly by writing or reading  
the port 1 data register, P1 at location E1H in set 1, bank 0. P1.0–P1.6 can serve inputs, as outputs  
(push pull or open-drain) or you can configure the following alternative functions:  
— Low-byte pins (P1.0-P1.3): T0OUT, T0CLK  
— High-byte pins (P1.4-P1.6): CLKOUT  
Port 1 Control Register (P1CONH, P1CONL)  
Port 1 has two 8-bit control registers: P1CONH for P1.4–P1.6 and P1CONL for P1.0–P1.3. A reset clears the  
P1CONH and P1CONL registers to “00H”, configuring all pins to input mode. You use control registers settings to  
select input or output mode (push-pull or open drain) and enable the alternative functions.  
When programming the port, please remember that any alternative peripheral I/O function you configure using the  
port 1 control registers must also be enabled in the associated peripheral module.  
Port 1 Pull-up Resistor Enable Register (P1PUR)  
Using the port 1 pull-up resistor enable register, P1PUR (F1H, set 1, bank 0), you can configure pull-up resistors  
to individual port 1 pins.  
Port 1 Control Register, High Byte (P1CONH)  
EFH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.4  
P1.5  
P1.6/CLKOUT  
Not used for the S3C80M4  
P1CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, N-channel open-drain  
Alternative function (CLKOUT, not used for P1.5/P1.4)  
Output mode, Push-pull  
Figure 9-5. Port 1 High-Byte Control Register (P1CONH)  
9-5  
I/O PORTS  
S3C80M4/F80M4  
Port 1 Control Register, Low Byte (P1CONL)  
F0H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.0/T0OUT  
P1.1/T0CLK  
P1.2  
P1.3  
P1CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode (T0CLK)  
Output mode, N-channel open-drain  
Alternative function ( T0OUT, not used for P1.3/P1.2/P1.1)  
Output mode, push-pull  
Figure 9-6. Port 1 Low-Byte Control Register (P1CONL)  
Port 1 Pull-up Resistor Enable Register (P1PUR)  
F1H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0  
the S3C80M4  
P1PUR bit configuration settings:  
0
1
Pull-up Disable  
Pull-up Enable  
Figure 9-7. Port 1 Pull-up Resistor Enable Register (P1PUR)  
9-6  
S3C80M4/F80M4  
BASIC TIMER  
10 BASIC TIMER  
OVERVIEW  
S3C80M4/F80M4 has an 8-bit basic timer .  
BASIC TIMER (BT)  
You can use the basic timer (BT) in two different ways:  
— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction, or  
— To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.  
The functional components of the basic timer block are:  
— Clock frequency divider (fxx divided by 4096, 1024, 128, or 16) with multiplexer  
— 8-bit basic timer counter, BTCNT (set 1, Bank 0, FDH, read-only)  
— Basic timer control register, BTCON (set 1, D3H, read/write)  
BASIC TIMER CONTROL REGISTER (BTCON)  
The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer  
counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1,  
address D3H, and is read/write addressable using Register addressing mode.  
A reset clears BTCON to "00H". This enables the watchdog function and selects a basic timer clock frequency of  
fxx/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register  
control bits BTCON.7–BTCON.4.  
The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during the normal  
operation by writing a "1" to BTCON.1. To clear the frequency dividers, write a "1" to BTCON.0.  
10-1  
BASIC TIMER  
S3C80M4/F80M4  
Basic TImer Control Register (BTCON)  
D3H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Divider clear bit:  
0 = No effect  
1= Clear dvider  
Watchdog timer enable bits:  
1010B = Disable watchdog function  
Other value = Enable watchdog function  
Basic timer counter clear bit:  
0 = No effect  
1= Clear BTCNT  
Basic timer input clock selection bits:  
00 = fXX/4096  
01 = fXX/1024  
10 = fXX/128  
11 = fXX/16  
Figure 10-1. Basic Timer Control Register (BTCON)  
10-2  
S3C80M4/F80M4  
BASIC TIMER  
BASIC TIMER FUNCTION DESCRIPTION  
Watchdog Timer Function  
You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to  
any value other than "1010B". (The "1010B" value disables the watchdog function.) A reset clears BTCON to  
"00H", automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by  
the current CLKCON register setting), divided by 4096, as the BT clock.  
The MCU is reset whenever a basic timer counter overflow occurs, During normal operation, the application  
program must prevent the overflow, and the accompanying reset operation, from occurring, To do this, the  
BTCNT value must be cleared (by writing a “1” to BTCON.1) at regular intervals.  
If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation  
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during the normal  
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always  
broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.  
Oscillation Stabilization Interval Timer Function  
You can also use the basic timer to program a specific oscillation stabilization interval after a reset or when stop  
mode has been released by an external interrupt.  
In stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts  
increasing at the rate of fxx/4096 (for reset), or at the rate of the preset clock source (for an external interrupt).  
When BTCNT.4 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate  
the clock signal off to the CPU so that it can resume the normal operation.  
In summary, the following events occur when stop mode is released:  
1. During the stop mode, a power-on reset or an external interrupt occurs to trigger the Stop mode release and  
oscillation starts.  
2. If a power-on reset occurred, the basic timer counter will increase at the rate of fxx/4096. If an interrupt is  
used to release stop mode, the BTCNT value increases at the rate of the preset clock source.  
3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.  
4. When a BTCNT.4 overflow occurs, the normal CPU operation resumes.  
10-3  
BASIC TIMER  
S3C80M4/F80M4  
RESET or STOP  
Bit 1  
Bits 3, 2  
Basic Timer Control Register  
(Write '1010xxxxB' to Disable)  
Data Bus  
fXX/4096  
fXX/1024  
fXX/128  
fXX/16  
Clear  
8-Bit Up Counter  
(BTCNT, Read-Only)  
fXX  
DIV  
MUX  
OVF  
RESET  
Start the CPU (NOTE)  
R
Bit 0  
NOTE:  
During a power-on reset operation, the CPU is idle during the required oscillation  
stabilization interval (until bit 4 of the basic timer counter overflows).  
Figure 10-2. Basic Timer Block Diagram  
10-4  
S3C80M4/F80M4  
8-BIT TIMER 0  
11 8-BIT TIMER 0  
OVERVIEW  
The 8-bit timer 0 is an 8-bit general-purpose timer/counter.  
Timer 0 has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 256, 64, 8 or 1) with multiplexer  
— External clock input pin (T0CLK)  
— 8-bit counter (T0CNT), 8-bit comparator, and 8-bit reference data register (T0DATA)  
— I/O pins for match output (T0OUT)  
— Timer 0 interrupt (IRQ0, vector EEH) generation  
— Timer 0 control register, T0CON (set 1, Bank 0, E6H, read/write)  
TIMER 0 FUNCTION DESCRIPTION  
Interval Timer Mode  
The timer 0 can generate an interrupt, the timer 0 match interrupt (T0INT). T0INT belongs to interrupt level IRQ0,  
and is assigned the separate vector address, EEH.  
The T0INT pending condition should be cleared by software when it has been serviced. Even though T0INT is  
disabled, the application’s service routine can detect a pending condition of T0INT by the software and execute its  
sub-routine. When this case is used, the T0INT pending bit must be cleared by application sub-routine by writing a  
“0” to the T0CON.0 pending bit.  
In interval timer mode, a match signal is generated when the counter value is identical to the value written to the  
timer 0 reference data register, T0DATA. The match signal generates a timer 0 match interrupt (T0INT, vector  
EEH) and clears the counter.  
If, for example, you write the value "10H" to T0DATA, the counter will increment until it reaches “10H”. At this  
point, the timer 0 interrupt request is generated, the counter value is reset, and counting resumes  
11-1  
8-BIT TIMER 0  
S3C80M4/F80M4  
TIMER 0 CONTROL REGISTER (T0CON)  
You use the timer 0 control register, T0CON, to  
— Enable the timer 0 operating mode (interval timer)  
— Select the timer 0 input clock frequency  
— Clear the timer 0 counter, T0CNT  
— Enable the timer 0 interrupt  
— Clear timer 0 interrupt pending condition  
T0CON is located in set 1, Bank 0 at address E6H, and is read/write addressable using Register addressing  
mode.  
A reset clears T0CON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency of  
fxx/1024, and disables all timer 0 interrupts. You can clear the timer 0 counter at any time during normal operation  
by writing a "1" to T0CON.3.  
To enable the timer 0 interrupt (IRQ0, vector EEH), you must write T0CON.2, and T0CON.1 to "1". To detect an  
interrupt pending condition, when T0INT is disabled, the application program polls pending bit, T0CON.0. When  
a "1" is detected, a timer 0 interrupt is pending. When the interrupt request has been serviced, the pending  
condition must be cleared by software by writing a "0" to the timer 0 interrupt pending bit, T0CON.0.  
Timer 0 Control Register (T0CON)  
E6H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 0 input clock selection bits:  
000 = fXX/1024  
001 = fXX/256  
Timer 0 interrupt pending bit:  
0 = No interrupt pending  
0 = Clear pending bit(when write)  
1 = Interrupt is pending  
010 = fXX/64  
011 = fxx/8  
100 = fxx  
101 = External clock (T0CLK) falling edge  
110 = External clock (T0CLK) rising edge  
111 = Counter stop  
Timer 0 match interrupt enable bit:  
0 = DIsable interrupt  
1 = Enable interrupt  
Timer 0 counter enable selection bit:  
0 = Disable counting operation  
1 = Disable counting operation  
Timer 0 counter clear bit:  
0 = No effect  
1 = Clear the timer 0 counter (when write)  
Not uesed for the S3C80M4  
Figure 11-1. Timer 0 Control Register (T0CON)  
11-2  
S3C80M4/F80M4  
8-BIT TIMER 0  
BLOCK DIAGRAM  
T0CON.7-.5  
Data Bus  
8
fXX/1024  
fXX/256  
fXX/64  
fXX/8  
T0CON.3  
T0CON.1  
Clear  
R
8-bit Up-Counter  
(Read Only)  
M
U
X
fXX/1  
T0CLK  
Pending  
T0CON.0  
T0INT  
(IRQ0)  
8-bit Comparator  
Match  
Counter stop  
T0OUT  
Timer 0 Buffer Register  
T0CON.2  
Counter clear signal (T0CON.3)  
or Match signal  
Timer 0 Data Register  
8
Data Bus  
Figure 11-2. Timer 0 Functional Block Diagram  
11-3  
8-BIT TIMER 0  
S3C80M4/F80M4  
NOTES  
11-4  
S3C80M4/F80M4  
8-BIT PULSE WIDTH MODULATION  
12 8-BIT PULSE WIDTH MODULATION  
OVERVIEW  
The S3C80M4/F80M4 microcontroller has a 8-bit PWM.  
The PWM have the following components:  
— Clock frequency dividers (fOSC divider by 64, 8, 2 and 1)  
— 6-bit counter, 6-bit comparators and data registers (PWMDATA)  
— 8-bit counter overflow interrupt generations  
— Selectors for data reload 6- and 8- bit overflow  
— PWM control register, PWMON (set 1, bank 0, E8H, read/write)  
12-1  
8-BIT PULSE WIDTH MODULATION  
S3C80M4/F80M4  
8-BIT PULSE WIDTH MODULATION (PWMCON)  
The PWM control register, PWMCON is used to select the PWM interrupt to enable or disable the PWM function.  
It is located in set 1, bank 0 at address E8H, and is read/write addressable using register addressing mode.  
A reset clears PWMCON to "00H". This disable the PWM interrupt, selects an input clock frequency of fosc/64,  
disables all PWM interrupt. So, if you want to use the PWM, you must write PWMCON.5 to “1” and write  
P0CONH.5-.4 to “10”.  
To enable the PWM interrupt (IRQ2, vector EAH), you must write PWMCON.2, and PWMCON.1 to “1”. To detect  
an interrupt pending condition when PWMINT is disabled, the application program polls pending bit, PWMCON.0.  
When a “1” is detected, a PWM interrupt is pending. When PWMINT sub-routine has been serviced, the pending  
condition must be cleared by software by writing a “0” to the PWM interrupt pending bit, PWMCON.0.  
PWM Control Register (PWMCON)  
E8H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
PWM overflow interrupt pending bit:  
0 = No interrupt pending (when read)  
0 = Clear pending bit (when write)  
1 = Interrupt is pending (when read)  
1 = No effect (when write)  
PWM input clock selection bits:  
00 = fosc/64  
01 = fosc/8  
10 = fosc/2  
11 = fosc/1  
Not used for the S3C80M4  
(must keep always "1")  
PWM overflow interrupt enable bit:(8-bit overflow)  
0 = Disable interrupt  
1 = Enable interrupt  
PWMDATA reload interval Selection bit:  
0 = Reload from 8-bit up counter overflow  
1 = Reload from 6-bit up counter overflow  
PWM counter enable bit:  
0 = Stop counter  
1 = Start counter (Resume countering)  
PWM counter clear bit:  
0 = No effect  
1 = Clear the PWM counter (when write)  
Figure 12-1. PWM Control Register (PWMCON)  
12-2  
S3C80M4/F80M4  
8-BIT PULSE WIDTH MODULATION  
BLOCK DIAGRAM  
PWMCON.7-.6  
PWM/P0.6  
fosc/64  
From 8-Bit Up Counter(5:0)  
6-Bit Counter  
From 8-Bit Up Counter(7:6)  
2-Bit Counter  
fosc/8  
fosc/2  
fosc/1  
M
U
X
"1" When  
REG > Count  
Extension  
Control Logic  
6-Bit Comparator  
6-Bit Data Buffer  
PWMCON.2  
"1" When  
REG = Count  
Extension Data  
Buffer  
PWMDATA.1-.0  
PWMDATA.7-.2  
PWM Extension  
Data Register  
6-Bit Data Register  
8
8
Clear  
PWMCON.4 PWMCON.3  
Data Bus  
Data Bus  
Figure 12-2. PWM Circuit Diagram  
12-3  
8-BIT PULSE WIDTH MODULATION  
S3C80M4/F80M4  
NOTES  
12-4  
S3C80M4/F80M4  
ELECTRICAL DATA  
13 ELECTRICAL DATA  
OVERVIEW  
In this chapter, S3C80M4/F80M4 electrical characteristics are presented in tables and graphs. The information is  
arranged in the following order:  
— Absolute maximum ratings  
— D.C. electrical characteristics  
— Input/output capacitance  
— A.C. electrical characteristics  
— Oscillation characteristics  
— Oscillation stabilization time  
— Data retention supply voltage in stop mode  
— Operating voltage range  
13-1  
ELECTRICAL DATA  
S3C80M4/F80M4  
Table13-1. Absolute Maximum Ratings  
°
(TA = 25 C)  
Parameter  
Symbol  
Conditions  
Rating  
Unit  
VDD  
VI  
Supply voltage  
Input voltage  
– 0.3 to +6.5  
V
– 0.3 to VDD + 0.3  
– 0.3 to VDD + 0.3  
– 15  
Ports 0-1  
VO  
IOH  
Output voltage  
Output current high  
One I/O pin active  
mA  
All I/O pins active  
One I/O pin active  
– 60  
IOL  
Output current low  
+ 30(Peak value)  
Total pin current for ports  
+ 100(Peak value)  
– 25 to + 85  
°
C
TA  
Operating temperature  
Storage temperature  
TSTG  
– 65 to + 150  
Table 13-2. D.C. Electrical Characteristics  
(TA = –25 C to + 85 C, VDD = 2.4 V to 5.5V)  
°
°
Parameter  
Symbol  
Conditions  
x = 0.4 – 4.2 MHz  
x = 0.4 – 10.0 MHz  
Min  
Typ  
Max  
Unit  
VDD  
f
f
Operating voltage  
2.4  
5.5  
5.5  
V
2.7  
VIH1  
VIH2  
VIH3  
VIL1  
VIL2  
VIL3  
All input pins except VIH2, VIH3  
Ports0, Ports1.0 - 1.3, nRESET  
0.7VDD  
0.8VDD  
VDD-0.1  
VDD  
Input high voltage  
Input low voltage  
VDD  
XIN  
X
VDD  
,
OUT  
All input pins except VIL2, VIL3  
Ports0, Ports1.0 - 1.3, nRESET  
0.3VDD  
0.2VDD  
XIN  
X
OUT  
0.1  
,
13-2  
S3C80M4/F80M4  
ELECTRICAL DATA  
Table 13-2. D.C. Electrical Characteristics (Continued)  
(TA = –25 C to + 85 C, VDD = 2.4V to 5.5V)  
°
°
Parameter  
Symbol  
Conditions  
VDD = 4.5V to 5.5V  
OH = –1 mA  
All output pins  
DD = 4.5V to 5.5V  
Min  
Typ  
Max  
Unit  
VOH  
VDD–1.0  
Output high  
voltage  
V
I
VOL1  
V
Output low  
voltage  
2.0  
2.0  
IOL = 15 mA  
Ports1.0–.3  
VOL2  
VDD = 4.5V to 5.5V  
IOL = 10 mA  
All output ports except VOL1  
VIN = VDD  
ILIH1  
Input high  
leakage  
current  
3
µA  
All input pins except I  
LIH2  
ILIH2  
ILIL1  
VIN = VDD, XIN, XOUT  
VIN = 0 V  
20  
–3  
Input low  
leakage  
current  
All input pins except for nRESET, ILIL2  
ILIL2  
ILOH  
VIN = 0 V, XIN, XOUT  
–20  
3
VOUT = VDD  
Output high  
leakage  
current  
All output pins  
ILOL  
VOUT = 0 V  
Output low  
leakage  
current  
–3  
All output pins  
°
ROSC1  
Oscillator feed  
back resistors  
300  
600  
1200  
kΩ  
VDD = 5 V, TA=25 C  
XIN = VDD, XOUT = 0 V  
°
RL1  
V
DD = 5 V  
DD = 3 V  
Pull-up resistor  
30  
60  
60  
120  
220  
VIN = 0 V, TA = 25 C  
Port 0–1  
°
V
110  
V
IN = 0 V, TA = 25 C  
Port 0–1  
13-3  
ELECTRICAL DATA  
S3C80M4/F80M4  
Table 13-2. D.C. Electrical Characteristics (Continued)  
(TA = –25 C to + 85 C, VDD = 2.4 V to 5.5 V)  
°
°
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
IDD1  
Supply current  
(1)  
Run mode:  
Crystal oscillator  
C1 = C2 = 22pF  
10 MHz  
4.0 MHz  
4.0  
8.0  
mA  
2.0  
4.0  
V
DD = 5.0V ± 10%  
4.0 MHz  
1.5  
3.0  
VDD = 3.0V ± 10%  
IDD2  
Idle mode:  
10 MHz  
4.0 MHz  
1.2  
1.0  
2.4  
2.0  
Crystal oscillator  
C1 = C2 = 22pF  
VDD = 5.0V ± 10%  
4.0 MHz  
0.5  
1.0  
V
DD = 3.0V ± 10%  
(2)  
Stop mode:  
100  
200  
µA  
IDD3  
VDD = 5V ± 10%, TA = 25 °C  
VDD = 3V ± 10%, TA = 25 °C  
80  
160  
NOTES:  
1. Supply current does not include current drawn through internal pull-up resistors and external output current loads.  
2. is current when main clock oscillation stops.  
I
DD3  
3. Every values in this table is measured when bits 4-3 of the system clock control register (CLKCON.4–.3) is set to 11B.  
13-4  
S3C80M4/F80M4  
ELECTRICAL DATA  
Table 13-3. A.C. Electrical Characteristics  
(TA = –25 C to +85 C, VDD = 2.4 V to 5.5 V)  
°
°
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
tINTH, tINTL All interrupt, VDD = 3.0 V  
Interrupt input  
high, low width  
500  
700  
ns  
tRSL  
VDD = 3.0 V  
nRESET input low  
width  
10  
µs  
t
INTL  
tINTH  
External  
Interrupt  
0.8 VDD  
0.2 VDD  
Figure 13-1. Input Timing for External Interrupts  
tRSL  
nRESET  
0.2 VDD  
Figure 13-2. Input Timing for nRESET  
13-5  
ELECTRICAL DATA  
S3C80M4/F80M4  
Table 13-4. Input/Output Capacitance  
(TA = –25 C to +85 C, VDD = 2.4 V to 5.5 V)  
°
°
Parameter  
Input  
capacitance  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CIN  
f = 1 MHz; unmeasured pins  
are returned to VSS  
10  
pF  
COUT  
CIO  
Output  
capacitance  
I/O capacitance  
Table 13-5. Data Retention Supply Voltage in Stop Mode  
(TA = –25 C to + 85 C, VDD = 2.4 V to 5.5 V)  
°
°
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VDDDR  
Data retention  
supply voltage  
2.4  
5.5  
V
IDDDR  
VDDDR = 2.4V  
Stop mode, TA = 25 C  
Data retention  
supply current  
1
uA  
°
RESET  
Occurs  
Oscillation  
Stabilization  
Time  
Stop Mode  
Data Retention Mode  
Normal  
Operating Mode  
VDD  
VDDDR  
Execution of  
STOP Instrction  
nRESET  
0.8 VDD  
tWAIT  
0.2 VDD  
NOTE:  
tWAIT is the same as 16 x 1/BT clock.  
Figure 13-3. Stop Mode Release Timing Initiated by RESET  
13-6  
S3C80M4/F80M4  
ELECTRICAL DATA  
Idle Mode  
(Basic Timer Active)  
Stop Mode  
Normal  
Data Retention Mode  
Operating Mode  
V
DD  
V
DDDR  
Execution of  
STOP Instruction  
0.8VDD  
t
WAIT  
NOTE:  
tWAIT is the same as 16 x 1/BT clock.  
Figure 13-4. Stop Mode Release Timing Initiated by Interrupt  
13-7  
ELECTRICAL DATA  
S3C80M4/F80M4  
Table13-6. Main Oscillator Characteristics  
(T = –25 C to +85 C, VDD = 2.4V to 5.5V)  
°
°
A
Oscillator  
Clock Configuration  
Parameter  
Test Condition  
Min  
Typ  
Max Units  
C1  
Crystal  
Main oscillation  
frequency  
2.7 V – 5.5 V  
0.4  
10  
MHz  
XIN  
2.4 V – 5.5 V  
0.4  
4.2  
XOUT  
C2  
C1  
Ceramic  
Oscillator  
Main oscillation  
frequency  
2.7 V – 5.5 V  
2.4 V – 5.5 V  
0.4  
0.4  
10  
X
IN  
4.2  
XOUT  
C2  
X
IN input frequency  
External  
Clock  
2.7 V – 5.5 V  
2.4 V – 5.5 V  
0.4  
0.4  
10  
X
IN  
4.2  
XOUT  
RC  
Oscillator  
Frequency  
5.0 V  
3.0 V  
0.4  
0.4  
2
1
MHz  
X
IN  
R
XOUT  
13-8  
S3C80M4/F80M4  
ELECTRICAL DATA  
Table 13-7. Main Oscillation Stabilization Time  
(TA = –25 C to + 85 C, VDD = 2.4V to 5.5V)  
Oscillator Test Condition  
Crystal  
°
°
Min  
Typ  
Max  
40  
Unit  
ms  
fx > 1 MHz  
Oscillation stabilization occurs when VDD is  
Ceramic  
10  
ms  
equal to the minimum oscillator voltage range.  
X
IN input high and low width (tXH, tXL)  
External clock  
62.5  
1250  
ns  
1/fx  
t
XL  
tXH  
XIN  
V
DD - 0.1V  
0.1V  
0.1V  
Figure 13-5. Clock Timing Measurement at XIN  
Instruction Clock  
2.5 MHz  
fx (Main oscillation frequency)  
10 MHz  
4.2 MHz  
1.05 MHz  
6.25 kHz(Main)  
400 kHz(Main)  
1
4
6
2.4  
5
3
2.7  
Supply Voltage (V)  
5.5  
Minimum instruction clock = 1/4n x oscillator frequency (n = 1,2,8,16)  
Figure 13-6. Operating Voltage Range  
13-9  
ELECTRICAL DATA  
S3C80M4/F80M4  
NOTES  
13-10  
S3C80M4/F80M4  
MECHANICAL DATA  
14 MECHANICAL DATA  
OVERVIEW  
The S3C80M/F80M4 microcontroller is currently available in 20-DIP-300A/20-SOP-375 and 16-DIP-300A/16-  
SOP-375 package.  
#20  
#11  
0-15  
20-DIP-300A  
#1  
#10  
26.80 MAX  
26.40 ± 0.20  
0.46  
1.52  
±
±
0.10  
0.10  
2.54  
(1.77)  
NOTE: Dimensions are in millimeters.  
Figure 14-1. 20-DIP-300A Package Dimensions  
14-1  
MECHANICAL DATA  
S3C80M4/F80M4  
0-8  
#20  
#11  
20-SOP-375  
+ 0.10  
0.203 - 0.05  
#1  
#10  
13.14 MAX  
12.74 ± 0.20  
0.10 MAX  
1.27  
(0.66)  
+ 0.10  
0.40 - 0.05  
NOTE: Dimensions are in millimeters.  
Figure 14-2. 20-SOP-375 Package Dimensions  
14-2  
S3C80M4/F80M4  
MECHANICAL DATA  
#16  
#9  
0-15  
16-DIP-300A  
#1  
#8  
19.80 MAX  
±
19.40 0.20  
0.46  
1.50  
2.54  
(0.81)  
NOTE:  
Dimensions are in millimeters.  
Figure 14-3. 16-DIP-300A Package Dimensions  
14-3  
MECHANICAL DATA  
S3C80M4/F80M4  
0-8  
#16  
#9  
16-SOP-375  
+ 0.10  
0.203 - 0.05  
#1  
#8  
10.50 MAX  
10.10 ± 0.20  
0.10 MAX  
1.27  
(0.66)  
+ 0.10  
0.40 - 0.05  
NOTE: Dimensions are in millimeters.  
Figure 14-4. 16-SOP-375 Package Dimensions  
14-4  
S3C80M4/F80M4  
S3F80M4 FLASH MCU  
15 S3F80M4 FLASH MCU  
OVERVIEW  
The S3F80M4 single-chip CMOS microcontroller is the Flash MCU version of the S3C80M4 microcontroller. It has  
an on-chip Flash MCU ROM instead of a masked ROM. The Flash ROM is accessed by serial data format.  
The S3F80M4 is fully compatible with the S3C80M4, both in function and in pin configuration. Because of its  
simple programming requirements, the S3F80M4 is ideal as an evaluation chip for the S3C80M4.  
15-1  
S3F80M4 FLASH MCU  
S3C80M4/F80M4  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VDD/VDD  
V
SS/VSS  
2
P0.0/INT0/SCLK  
P0.1/INT1/SDAT  
P0.2/INT2  
P0.3/INT3  
P0.4  
X
IN/XIN  
3
XOUT  
4
V
PP/nRESET  
S3F80M4  
(20-DIP-300A)  
(20-SOP-375)  
5
P1.0/T0OUT  
P1.1/T0CLK  
P1.2  
6
7
P0.5  
8
P0.6/PWM  
P0.7  
P1.3  
9
P1.4  
P1.5  
10  
P1.6/CLKOUT  
Figure 15-1. S3F80M4 Pin Assignments (20-DIP-300A, 20-SOP-375)  
15-2  
S3C80M4/F80M4  
S3F80M4 FLASH MCU  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD/VDD  
V
SS/VSS  
IN/XIN  
OUT  
P0.0/INT0/SCLK  
P0.1/INT1/SDAT  
P0.2/INT2  
P0.3/INT3  
P0.4  
X
X
V
PP/nRESET  
S3F80M4  
P1.0/T0OUT  
P1.1/T0CLK  
P1.2  
(16-DIP-300A)  
(16-SOP-375)  
P0.5  
P1.3  
P0.6/PWM  
Figure 15-2. S3F80M4 Pin Assignments (16-DIP-300A, 16-SOP-375)  
15-3  
S3F80M4 FLASH MCU  
Main Chip  
S3C80M4/F80M4  
Table 15-1. Descriptions of Pins Used to Read/Write the EPROM  
During Programming  
Pin Name  
Pin Name  
Pin No.  
I/O  
Function  
P0.1  
SDAT  
18(14)  
I/O  
Serial data pin. Output port when reading and input port  
when writing. Can be assigned as a Input/push-pull output  
port.  
P0.0  
SCLK  
VPP  
19(15)  
4(4)  
I/O  
I
Serial clock pin. Input only pin.  
nRESET  
Power supply pin for Flash ROM cell writing (indicates that  
FLASH MCU enters into the writing mode). When 12.5 V is  
applied, FLASH MCU is in writing mode and when 3.3 V is  
applied, FLASH MCU is in reading mode. (Option)  
VDD  
VSS  
VDD  
VSS  
Power supply pin for logic circuit. VDD should be tied to  
+3.3V during programming.  
20(16)  
1(1)  
I
XIN  
XIN  
This pin should be connected to VSS in the tool program  
mode.  
2(2)  
NOTE: Parentheses indicate pin number for 16-DIP-300A/16-SOP-375 package.  
Table 15-2. Comparison of S3F80M4 and S3C80M4 Features  
Characteristic  
Program Memory  
Operating Voltage (VDD  
S3F80M4  
4K-byte Flash ROM  
2.4 V to 5.5 V  
DD = 3.3 V, VPP (nRESET) = 12.5 V  
User Program multi time  
S3C80M4  
4K-byte mask ROM  
2.4 V to 5.5 V  
)
V
FLASH MCU Programming Mode  
Programmability  
Programmed at the factory  
15-4  
S3C80M4/F80M4  
S3F80M4 FLASH MCU  
OPERATING MODE CHARACTERISTICS  
When 12.5 V is supplied to the VPP (nRESET) pin of the S3C80M4, the Flash ROM programming mode is  
entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins  
listed in Table 15-3 below.  
Table 15-3. Operating Mode Selection Criteria  
VDD  
VPP(nRESET)  
REG/nMEM  
Address  
(A15–A0)  
R/W  
Mode  
3.3 V  
3.3 V  
12.5 V  
12.5 V  
12.5 V  
0
0
0
1
0000H  
0000H  
0000H  
0E3FH  
1
0
1
0
Flash ROM read  
Flash ROM program  
Flash ROM verify  
Flash ROM read protection  
NOTE: "0" means Low level; "1" means High level.  
Table 15-4. D.C. Electrical Characteristics  
(TA = –25 C to + 85 C, VDD = 2.4 V to 5.5 V)  
°
°
Parameter  
Supply current(1)  
Symbol  
Conditions  
Min  
Typ  
4.0  
2.0  
Max  
8.0  
Unit  
IDD1  
Run mode:  
10 MHz  
4.0 MHz  
mA  
Crystal oscillator  
C1 = C2 = 22pF  
VDD = 5.0V ± 10%  
4.0  
VDD = 3.0V ± 10%  
4.0 MHz  
1.5  
3.0  
IDD2  
Idle mode:  
Crystal oscillator  
C1 = C2 = 22pF  
10 MHz  
4.0 MHz  
1.2  
1.0  
2.4  
2.0  
VDD = 5.0V ± 10%  
VDD = 3.0V ± 10%  
4.0 MHz  
0.5  
1.0  
(2)  
Stop mode:  
100  
200  
µA  
IDD3  
°
VDD = 5V ± 10%, TA = 25 C  
°
80  
160  
V
DD = 3V ± 10%, TA = 25 C  
NOTES:  
1. Supply current does not include current drawn through internal pull-up resistors and external output current loads.  
2. is current when main clock oscillation stops.  
I
DD3  
3. Every values in this table is measured when bits 4-3 of the system clock control register (CLKCON.4–.3) is set to 11B.  
15-5  
S3F80M4 FLASH MCU  
S3C80M4/F80M4  
Instruction Clock  
fx (Main oscillation frequency)  
10 MHz  
4.2 MHz  
2.5 MHz  
1.05 MHz  
6.25 kHz(Main)  
400 kHz(Main)  
1
4
6
2.4  
5
3
2.7  
Supply Voltage (V)  
5.5  
Minimum instruction clock = 1/4n x oscillator frequency (n = 1,2,8,16)  
Figure 15-3. Operating Voltage Range  
15-6  
S3C80M4/F80M4  
DEVELOPMENT TOOLS  
16 DEVELOPMENT TOOLS  
OVERVIEW  
Samsung provides a powerful and easy-to-use development support system in turnkey form. The development  
support system is configured with a host system, debugging tools, and support software. For the host system, any  
standard computer that operates with MS-DOS, Windows 95, and 98 as its operating system can be used. One  
type of debugging tool including hardware and software is provided: the sophisticated and powerful in-circuit  
emulator, SMDS2+, and OPENice for S3C7, S3C9, S3C8 families of microcontrollers. The SMDS2+ is a new and  
improved version of SMDS2. Samsung also offers support software that includes debugger, assembler, and a  
program for setting options.  
SHINE  
Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE  
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help.  
It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be sized,  
moved, scrolled, highlighted, added, or removed completely.  
SAMA ASSEMBLER  
The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates  
object code in standard hexadecimal format. Assembled program code includes the object code that is used for  
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and an  
auxiliary definition (DEF) file with device specific information.  
SASM88  
The SASM88 is a relocatable assembler for Samsung's S3C8-series microcontrollers. The SASM88 takes a  
source file containing assembly language statements and translates into a corresponding source code, object  
code and comments. The SASM88 supports macros and conditional assembly. It runs on the MS-DOS operating  
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked  
with other object files and loaded into memory.  
HEX2ROM  
HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be  
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by  
HEX2ROM, the value "FF" is filled into the unused ROM area up to the maximum ROM size of the target device  
automatically.  
TARGET BOARDS  
Target boards are available for all S3C8-series microcontrollers. All required target system cables and adapters  
are included with the device-specific target board.  
16-1  
DEVELOPMENT TOOLS  
S3C80M4/F80M4  
IBM-PC AT or Compatible  
RS-232C  
SMDS2+  
Target  
Application  
System  
PROM/OTP Writer Unit  
RAM Break/Display Unit  
Trace/Timer Unit  
Probe  
Adapter  
TB80M4  
Target  
Board  
POD  
SAM8 Base Unit  
EVA  
Chip  
Power Supply Unit  
Figure 16-1. SMDS Product Configuration (SMDS2+)  
16-2  
S3C80M4/F80M4  
DEVELOPMENT TOOLS  
TB80M4 TARGET BOARD  
The TB80M4 target board is used for the S3C80M4/F80M4 microcontroller. It is supported with the SMDS2+.  
TB80M4  
To User_VCC  
Idle  
+
Stop  
+
Off  
On  
7411  
RESET  
JP5  
Smart Option Selection  
B8  
B7  
B4 B3 B2  
B1 B0  
B5  
B6  
XTAL  
MDS  
SW1  
High  
O N  
Low  
25  
XI  
Smart Option Source Device Selection  
JP1  
JP2  
J102  
S3C80M4  
External  
1
24  
J101  
1
20  
S3C84G5  
Internal  
1
65  
64  
102  
103  
128 QFP  
S3E84G0  
EVA Chip  
9
10  
S3C84G5/S3C80M4  
20-DIP  
12  
13  
128  
39  
S3C84G5 24-SDIP  
1
38  
SMDS2+  
SMDS2  
Figure 16-2. TB80M4 Target Board Configuration  
16-3  
DEVELOPMENT TOOLS  
S3C80M4/F80M4  
Table 16-1. Power Selection Settings for TB80M4  
Operating Mode  
"To User_Vcc"  
Settings  
Comments  
The SMDS2/SMDS2+  
supplies VCC to the target  
To User_VCC  
TB80M4  
Target  
Off  
On  
board (evaluation chip) and  
the target system.  
VCC  
System  
VSS  
VCC  
SMDS2/SMDS2+  
The SMDS2/SMDS2+  
supplies VCC only to the target  
To User_VCC  
External  
TB80M4  
Target  
System  
Off  
On  
VCC  
board (evaluation chip).  
The target system must have  
its own power supply.  
VSS  
VCC  
SMDS2/SMDS2+  
NOTE: The following symbol in the "To User_Vcc" Setting column indicates the electrical short (off) configuration:  
Table 16-2. Main-clock Selection Settings for TB80M4  
Main Clock Settings  
X
Operating Mode  
Comments  
Set the XI switch to “MDS”  
when the target board is  
connected to the  
IN  
EVA Chip  
S3E84G0  
MDS  
XTAL  
SMDS2/SMDS2+.  
XOUT  
XIN  
No Connection  
100 Pin Connector  
SMDS2/SMDS2+  
Set the XI switch to “XTAL”  
when the target board is used  
as a standalone unit, and is  
not connected to the  
X
IN  
EVA Chip  
S3E84G0  
MDS  
XTAL  
SMDS2/SMDS2+.  
XOUT  
XIN  
XTAL  
Target Board  
16-4  
S3C80M4/F80M4  
DEVELOPMENT TOOLS  
Comments  
Table 16-3. Device Selection Settings for TB80M4  
Operating Mode  
"Device Selection"  
Settings  
Operate with TB84G5  
Device Selection  
Target  
80M4  
84G5  
TB84G5  
System  
Operate with TB80M4  
Device Selection  
80M4 84G5  
Target  
TB80M4  
System  
SMDS2+ SELECTION (SAM8)  
In order to write data into program memory that is available in SMDS2+, the target board should be selected to be  
for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.  
Table 16-4. The SMDS2+ Tool Selection Setting  
"SMDS2+" Setting  
Operating Mode  
SMDS2 SMDS2+  
R/W  
SMDS2+  
R/W  
Target  
System  
IDLE LED  
The Yellow LED is ON when the evaluation chip (S3E84G0) is in idle mode.  
STOP LED  
The Red LED is ON when the evaluation chip (S3E84G0) is in stop mode.  
16-5  
DEVELOPMENT TOOLS  
S3C80M4/F80M4  
Table 16-5. Smart Option Source Settings for TB80M4  
Operating Mode  
"Smart Option Source"  
Settings  
Comments  
Always must keep the External.  
Select Smart  
Option Source  
Target  
System  
Internal  
External  
TB80M4  
TB80M4  
Do not setting on left figure.  
Select Smart  
Option Source  
Target  
System  
Internal  
External  
Table 16-6. Smart Option Switch Setting for TB80M4  
"Smart Option" Setting Comments  
Always must keep all High (“1”).  
ON  
Low : "0"  
High: "1"  
B0 B1 B2 B3 B4 B5 B6 B7 B8  
Smart Option  
16-6  
S3C80M4/F80M4  
DEVELOPMENT TOOLS  
J101  
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
V
SS  
1
2
3
4
5
6
7
8
9
VDD  
X
IN  
P0.0/INT0  
P0.1/INT1  
P0.2/INT2  
P0.3/INT3  
P0.4  
XOUT  
nRESET  
P1.0/T0OUT  
P1.1/T0CLK  
P1.2  
P0.5  
P1.3  
P1.4  
P0.6PWM  
P0.7  
1
0
P1.6/CLKOUT  
P1.5  
S3C80M4 20-DIP  
Figure 16-3. 20-Pin Connectors (J101) for TB80M4  
Target Board  
Target System  
J101  
J101  
20  
1
(1) (16)  
1
20  
(1) (16)  
Target Cable for 16/20-Pin Connector  
Part Name: AS40D-A  
Order Code: SM6306  
(8) (9)  
10  
(8) (9)  
11  
10  
11  
Figure 16-4. S3E80M0 Cables for 16/20-DIP Package  
16-7  
DEVELOPMENT TOOLS  
S3C80M4/F80M4  
NOTES  
16-8  

相关型号:

F81-10-M

Ferrules, Non-Insulated
PANDUIT

F81-12-M

Ferrules, Non-Insulated
PANDUIT

F81-15-M

Ferrules, Non-Insulated
PANDUIT

F81-18-M

Ferrules, Non-Insulated
PANDUIT

F81-20-M

Ferrules, Non-Insulated
PANDUIT

F81-9-M

Ferrules, Non-Insulated
PANDUIT

F811CPL

IF Filter for TV(PIF+SIF)
FUJITSU

F811GSL

HIGH RELIABILITY FOR LOW COST
PETERMANN

F81216

LPC to 4 UART Datasheet
FINTEK

F81216AD

LPC to 4 UART + 9-bit Protocol
FINTEK

F81216D

LPC to 4 UART Datasheet
FINTEK

F81216DG

LPC to 4 UART Datasheet
FINTEK