K4B4G0846B-MCH9 [SAMSUNG]

DDP 4Gb B-die DDR3 SDRAM Specification; DDP的4Gb B-死DDR3 SDRAM规格
K4B4G0846B-MCH9
型号: K4B4G0846B-MCH9
厂家: SAMSUNG    SAMSUNG
描述:

DDP 4Gb B-die DDR3 SDRAM Specification
DDP的4Gb B-死DDR3 SDRAM规格

动态存储器 双倍数据速率
文件: 总59页 (文件大小:1074K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
DDP 4Gb B-die DDR3 SDRAM Specification  
78 FBGA with Lead-Free & Halogen-Free  
(RoHS Compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE  
CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-  
WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-  
OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT  
GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Rev. 1.0 March 2009  
Page 1 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Revision History  
Revision  
Month  
Year  
History  
1.0  
March  
2009  
- First release  
Rev. 1.0 March 2009  
Page 2 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Table Contents  
1.0 Ordering Information ................................................................................................................... 5  
2.0 Key Features ................................................................................................................................ 5  
3.0 Package pinout/Mechanical Dimension & Addressing ............................................................ 6  
3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package .............................................................. 6  
3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package .............................................................. 7  
3.3 FBGA Package Dimension (x4) ..................................................................................................... 8  
3.4 FBGA Package Dimension (x8) ..................................................................................................... 9  
4.0 Input/Output Functional Description ....................................................................................... 10  
5.0 DDR3 SDRAM Addressing ........................................................................................................ 11  
6.0 Absolute Maximum Ratings ...................................................................................................... 12  
6.1 Absolute Maximum DC Ratings ................................................................................................... 12  
6.2 DRAM Component Operating Temperature Range ......................................................................... 12  
7.0 AC & DC Operation Conditions ................................................................................................ 12  
7.1 Recommended DC operating Conditions (SSTL_1.5) ..................................................................... 12  
8.0 AC & DC Input Measurement Levels ........................................................................................ 13  
8.1 AC and DC Logic input levels for single-ended singnals ................................................................ 13  
8.2 VREF Tolerances ....................................................................................................................... 14  
8.3 AC and DC Logic Input Levels for Ditterential Signals ................................................................... 15  
8.3.1 Differential signal definition ................................................................................................ 15  
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) .............................. 15  
8.3.3 Single-ended requirements for differential signals ................................................................. 16  
8.4 Differential Input Cross Point Voltage .......................................................................................... 17  
8.5 Slew Rate Definition for Single Ended Input Signals ...................................................................... 17  
8.6 Slew rate definition for Differential Input Signals ........................................................................... 17  
9.0 AC and DC Output Measurement Levels ................................................................................. 18  
9.1 Single Ended AC and DC Output Levels ....................................................................................... 18  
9.2 Differential AC and DC Output Levels .......................................................................................... 18  
9.3 Single Ended Output Slew Rate ................................................................................................... 18  
9.4 Differential Output Slew Rate ...................................................................................................... 19  
9.5 Reference Load for AC Timing and Output Slew Rate .................................................................... 19  
9.6 Overshoot/Undershoot Specification ........................................................................................... 20  
9.6.1 Address and Control Overshoot and Undershoot specifications ............................................. 20  
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications ................................. 20  
9.7 34 ohm Output Driver DC Electrical Characteristics ....................................................................... 21  
9.7.1 Output Drive Temperature and Voltage sensitivity ................................................................. 22  
9.8 On-Die Termination (ODT) Levels and I-V Characteristics ............................................................... 22  
9.8.1 ODT DC electrical characteristics ........................................................................................ 23  
9.8.2 ODT Temperature and Voltage sensitivity ............................................................................. 24  
Rev. 1.0 March 2009  
Page 3 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
9.9 ODT Timing Definitions .............................................................................................................. 25  
9.9.1 Test Load for ODT Timings ................................................................................................. 25  
9.9.2 ODT Timing Definition ........................................................................................................ 25  
10.0 IDD Specification Parameters and Test Conditions ............................................................. 28  
10.1 IDD Measurement Conditions .................................................................................................... 28  
10.2 IDD Specifications definition ..................................................................................................... 30  
11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table ..................................................................... 37  
12.0 Input/Output Capacitance ....................................................................................................... 38  
13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 .............................. 39  
13.1 Clock specification ............................................................................................................. 39  
13.1.1 Definition for tCK (avg) ..................................................................................................... 39  
13.1.2 Definition for tCK (abs) ..................................................................................................... 39  
13.1.3 Definition for tCH(avg) and tCL(avg) ................................................................................... 39  
13.1.4 Definition for note for tJIT(per), tJIT(per,Ick) ........................................................................ 39  
13.1.5 Definition for tJIT(cc), tJIT(cc,Ick) ...................................................................................... 39  
13.1.6 Definition for tERR(nper) ................................................................................................... 39  
13.2 Refresh Parameters by Device Density ....................................................................................... 40  
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ............................................. 40  
13.3.1 Speed Bin Table Notes........................................................................................................................... 43  
14.0 Timing Parameters by Speed Grade ...................................................................................... 44  
14.1 Jitter Notes ............................................................................................................................. 47  
14.2 Timing Parameter Notes ........................................................................................................... 48  
14.3 Address / Command Setup, Hold and Derating: ........................................................................... 49  
14.4 Data Setup, Hold and Slew Rate Derating: .................................................................................. 55  
Rev. 1.0 March 2009  
Page 4 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
1.0 Ordering Information  
[ Table 1 ] Samsung DDP 4Gb DDR3 B-die ordering information table  
Organization  
1Gx4  
DDR3-800 (6-6-6)  
K4B4G0446B-MCF7  
K4B4G0846B-MCF7  
DDR3-1066 (7-7-7)  
K4B4G0446B-MCF8  
K4B4G0846B-MCF8  
DDR3-1333 (9-9-9)  
K4B4G0446B-MCH9  
K4B4G0846B-MCH9  
Package  
78 FBGA  
78 FBGA  
512Mx8  
Note :  
1. Speed bin is in order of CL-tRCD-tRP.  
2.0 Key Features  
[ Table 2 ] DDP 4Gb DDR3 B-die Speed bins  
DDR3-800  
6-6-6  
DDR3-1066  
7-7-7  
DDR3-1333  
9-9-9  
1.5  
Speed  
Unit  
tCK(min)  
CAS Latency  
tRCD(min)  
tRP(min)  
2.5  
6
1.875  
7
ns  
nCK  
ns  
9
15  
13.125  
13.125  
37.5  
13.5  
13.5  
36  
15  
ns  
tRAS(min)  
tRC(min)  
37.5  
52.5  
ns  
50.625  
49.5  
ns  
JEDEC standard 1.5V ± 0.075V Power Supply  
VDDQ = 1.5V ± 0.075V  
The DDP 4Gb DDR3 SDRAM B-die is organized as a 128Mbit x 4 I/Os x  
8banks, 64Mbit x 8 I/Os x 8banks. This synchronous device achieves high  
speed double-data-rate transfer rates of up to 1333Mb/sec/pin (DDR3-  
1333) for general applications.  
400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin,  
667MHz fCK for 1333Mb/sec/pin  
The chip is designed to comply with the following key DDR3 SDRAM fea-  
tures such as posted CAS, Programmable CWL, Internal (Self) Calibra-  
tion, On Die Termination using ODT pin and Asynchronous Reset .  
All of the control and address inputs are synchronized with a pair of exter-  
nally supplied differential clocks. Inputs are latched at the crosspoint of dif-  
ferential clocks (CK rising and CK falling). All I/Os are synchronized with a  
pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-  
ion. The address bus is used to convey row, column, and bank address  
information in a RAS/CAS multiplexing style. The DDR3 device operates  
8 Banks  
Posted CAS  
Programmable CAS Latency(posted CAS): 6, 7, 8, 9, 10  
Programmable Additive Latency: 0, CL-2 or CL-1 clock  
Programmable CAS Write Latency (CWL) = 5 (DDR3-800),  
(DDR3-1066) and 7 (DDR3-1333)  
6
8-bit pre-fetch  
with a single 1.5V ± 0.075V power supply and 1.5V ± 0.075V VDDQ  
The 4Gb DDR3 B-die device is available in 78ball FBGAs(x4/x8).  
.
Burst Length: 8 (Interleave without any limit, sequential with starting  
address “000” only), 4 with tCCD = 4 which does not allow seamless  
read or write [either On the fly using A12 or MRS]  
Note : 1. The functionality described and the timing specifications included  
in this data sheet are for the DLL Enabled mode of operation.  
Bi-directional Differential Data-Strobe  
Internal(self) calibration : Internal self calibration through ZQ pin  
(RZQ : 240 ohm ± 1%)  
On Die Termination using ODT pin  
Average Refresh Period 7.8us at lower than TCASE 85°C, 3.9us at  
85°C < TCASE < 95 °C  
Asynchronous Reset  
Package : 78 balls FBGA - x4/x8  
All of Lead-Free products are compliant for RoHS  
All of products are Halogen-free  
Note : This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device  
Operation & Timing Diagram”.  
Rev. 1.0 March 2009  
Page 5 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
3.0 Package pinout/Mechanical Dimension & Addressing  
3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
VSS  
VSS  
VDD  
VSS  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
CKE1  
A
B
C
D
E
F
NC  
DQ0  
DQS  
DQS  
NC  
NC  
DM  
A
B
C
D
E
F
VSSQ  
VSSQ  
VDDQ  
VSSQ  
VREFDQ  
ODT1  
DQ2  
NC  
VDDQ  
VSS  
DQ1  
VDD  
DQ3  
VSS  
NC  
CK  
NC  
VSS  
VDD  
RAS  
CAS  
WE  
BA2  
A0  
VDD  
CS0  
BA0  
A3  
G
H
J
ODT0  
CS1  
VSS  
CK  
A10/AP  
NC  
CKE0  
ZQ1  
VSS  
G
H
J
ZQ0  
VREFCA  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
K
L
A12/BC  
A1  
BA1  
A4  
K
L
A5  
A2  
M
N
A7  
A9  
A11  
A6  
M
N
RESET  
A13  
A14  
A8  
1
2
3
4
5
6
7
8
9
Ball Locations (x4)  
A
B
C
D
E
F
Populated ball  
Ball not populated  
G
H
J
K
L
Top view  
(See the balls through the package)  
M
N
Rev. 1.0 March 2009  
Page 6 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
VSS  
VSS  
VDD  
VSS  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
CKE1  
A
B
C
D
E
F
NC  
DQ0  
DQS  
DQS  
DQ4  
RAS  
CAS  
WE  
NU/TDQS  
DM/TDQS  
DQ1  
A
B
C
D
E
F
VSSQ  
VSSQ  
VDDQ  
VSSQ  
VREFDQ  
ODT1  
DQ2  
DQ6  
VDDQ  
VSS  
DQ3  
VSS  
VDD  
DQ7  
CK  
DQ5  
VSS  
VDD  
VDD  
CS0  
BA0  
A3  
G
H
J
ODT0  
CS1  
VSS  
CK  
A10/AP  
NC  
CKE0  
ZQ1  
VSS  
G
H
J
ZQ0  
VREFCA  
BA2  
A0  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
K
L
A12/BC  
A1  
BA1  
A4  
K
L
A5  
A2  
M
N
A7  
A9  
A11  
A6  
M
N
RESET  
A13  
A14  
A8  
1
2
3
4
5
6
7
8
9
Ball Locations (x8)  
A
B
C
D
E
F
Populated ball  
Ball not populated  
G
H
J
K
L
Top view  
(See the balls through the package)  
M
N
Rev. 1.0 March 2009  
Page 7 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
3.3 FBGA Package Dimension (x4)  
Units : Millimeters  
10.00 ± 0.10  
A
0.80 x 8 = 6.40  
#A1 INDEX MARK  
(Datum A)  
(Datum B)  
0.80 1.60  
3.20  
B
9
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
78 - 0.45 Solder ball  
(Post Reflow 0.50 ± 0.05)  
0.2  
M A B  
BOTTOM VIEW  
10.00 ± 0.10  
#A1  
0.35 ± 0.05  
1.40 ± 0.10  
TOP VIEW  
Rev. 1.0 March 2009  
Page 8 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
3.4 FBGA Package Dimension (x8)  
Units : Millimeters  
10.00 ± 0.10  
A
0.80 x 8 = 6.40  
#A1 INDEX MARK  
(Datum A)  
(Datum B)  
0.80 1.60  
3.20  
B
9
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
78 - 0.45 Solder ball  
(Post Reflow 0.50 ± 0.05)  
0.2  
M A B  
BOTTOM VIEW  
10.00 ± 0.10  
#A1  
0.35 ± 0.05  
1.40 ± 0.10  
TOP VIEW  
Rev. 1.0 March 2009  
Page 9 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
4.0 Input/Output Functional Description  
[ Table 3 ] Input/Output function description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of  
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and  
output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or  
Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become  
stable during the power on and initialization sequence, it must be maintained during all operations (including Self-  
Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT  
and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.  
CKE  
CS  
Input  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on  
systems with multiple Ranks. CS is considered part of the command code.  
Input  
Input  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When  
enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode  
Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is pro-  
grammed to disable ODT.  
ODT  
RAS, CAS, WE  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-  
dent with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of  
DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.  
DM  
(DMU), (DML)  
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being  
applied. Bank address also determines if the mode register or extended mode register is to be accessed during a  
MRS cycle.  
BA0 - BA2  
A0 - A14  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands  
to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,  
see below)  
The address inputs also provide the op-code during Mode Register Set commands.  
Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be per-  
formed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)  
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or  
all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.  
A10 / AP  
A12 / BC  
Input  
Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be per-  
formed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details  
Input  
Input  
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.  
RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and  
20% of VDD, i.e. 1.20V for DC high and 0.30V for DC low.  
RESET  
DQ  
Input/Output Data Input/ Output: Bi-directional data bus.  
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the  
x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data  
Input/Output strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide dif-  
ferential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and  
does not support single-ended.  
DQS, (DQS)  
Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in  
MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When  
TDQS, (TDQS)  
Output  
disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/  
x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.  
NC  
No Connect: No internal electrical connection is present.  
VDDQ  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ Power Supply: 1.5V +/- 0.075V  
DQ Ground  
VSSQ  
VDD  
Power Supply: 1.5V +/- 0.075V  
Ground  
VSS  
VREFDQ  
VREFCA  
ZQ  
Reference voltage for DQ  
Reference voltage for CA  
Reference Pin for ZQ calibration  
Note : Input only pins (BA0-BA2, A0-A12, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.  
Rev. 1.0 March 2009  
Page 10 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
5.0 DDR3 SDRAM Addressing  
1Gb  
Configuration  
# of Bank  
256Mb x 4  
8
128Mb x 8  
64Mb x 16  
8
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A12  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
Page size *1  
2Gb  
Configuration  
# of Bank  
512Mb x 4  
8
256Mb x 8  
8
128Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
Page size *1  
4Gb  
Configuration  
# of Bank  
1Gb x 4  
8
512Mb x 8  
8
256Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
Page size *1  
8Gb  
Configuration  
# of Bank  
2Gb x 4  
8
1Gb x 8  
8
512Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9,A11  
A12/BC  
2 KB  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9  
A12/BC  
2 KB  
A0 - A15  
A0 - A9,A11,A13  
A12/BC  
Column Address  
BC switch on the fly  
Page size *1  
2 KB  
Note 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.  
Page size is per bank, calculated as follows:  
page size = 2 COLBITS * ORG÷8  
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits  
Rev. 1.0 March 2009  
Page 11 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
6.0 Absolute Maximum Ratings  
6.1 Absolute Maximum DC Ratings  
[ Table 4 ] Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
Notes  
VDD  
Voltage on VDD pin relative to Vss  
-0.4 V ~ 1.975 V  
V
1,3  
VDDQ  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-55 to +100  
V
V
1,3  
1
V
IN, VOUT  
TSTG  
Note :  
°C  
1, 2  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2  
standard.  
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than  
500mV; VREF may be equal to or less than 300mV.  
6.2 DRAM Component Operating Temperature Range  
[ Table 5 ] Temperature Range  
Symbol  
Parameter  
rating  
Unit  
Notes  
TOPER  
Operating Temperature Range  
0 to 95  
°C  
1, 2, 3  
Note :  
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the  
JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case tem-  
perature must be maintained between 0-85°C under all operating conditions  
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaran-  
teed in this range, but the following additional conditions apply:  
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component  
with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range.  
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with  
Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 =  
0b)  
7.0 AC & DC Operation Conditions  
7.1 Recommended DC operating Conditions (SSTL_1.5)  
[ Table 6 ] Recommended DC Operating Conditions  
Rating  
Typ.  
1.5  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.425  
1.425  
Max.  
1.575  
1.575  
VDD  
Supply Voltage  
Supply Voltage for Output  
V
V
1,2  
1,2  
VDDQ  
1.5  
Note :  
1. Under all conditions VDDQ must be less than or equal to VDD  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
.
Rev. 1.0 March 2009  
Page 12 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
8.0 AC & DC Input Measurement Levels  
8.1 AC and DC Logic input levels for single-ended singnals  
[ Table 7 ] Single Ended AC and DC input levels for Command and Address  
DDR3-800/1066  
DDR3-1333/1600  
Unit Notes  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
VIH.CA(DC)  
VREF + 100  
VDD  
VREF + 100  
VDD  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic lowM  
mV  
mV  
mV  
mV  
mV  
mV  
1
V
IL.CA(DC)  
IH.CA(AC)  
IL.CA(AC)  
IH.CA(AC150)  
IL.CA(AC150)  
VSS  
VREF - 100  
VSS  
VREF - 100  
1
V
VREF + 175  
VREF + 175  
-
-
1,2  
1,2  
1,2  
1,2  
V
VREF - 175  
VREF - 175  
-
-
-
-
V
VREF+150  
-
-
-
V
VREF-150  
-
Reference Voltage for ADD,  
CMD inuts  
V
REFCA(DC)  
0.49*VDD  
0.51*VDD  
0.49*VDD  
0.51*VDD  
V
3,4  
Note :  
1. For input only pins except RESET, VREF = VREFCA(DC)  
2. See 9.6 "Overshoot and Undershoot specifications"  
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)  
4. For reference : approx. VDD/2 ± 15mV  
[ Table 8 ] Single Ended AC and DC input levels for DQ and DM  
DDR3-800/1066  
DDR3-1333  
Symbol  
Parameter  
Unit Notes  
Min.  
Max.  
Min.  
Max.  
VIH.DQ(DC100)  
VREF + 100  
VSS  
VDD  
VREF + 100  
VSS  
VDD  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
I/O Reference Voltage(DQ)  
mV  
mV  
mV  
mV  
mV  
mV  
V
1
V
IL.DQ(DC100)  
IH.DQ(AC175)  
IL.DQ(AC175)  
IH.DQ(AC150)  
IL.DQ(AC150)  
VREFDQ(DC)  
Note :  
VREF - 100  
VREF - 100  
1
V
VREF + 175  
VREF + 150  
-
-
1,2,5  
1,2,5  
1,2,5  
1,2,5  
3,4  
V
VREF - 175  
VREF - 150  
-
-
V
VREF + 150  
Note 2  
-
-
V
VREF - 150  
0.51*VDD  
Note 2  
-
-
0.49*VDD  
0.49*VDD  
0.51*VDD  
1. For input only pins except RESET, VREF = VREFDQ(DC)  
2. See "Overshoot and Undershoot specifications"  
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)  
4. For reference : approx. VDD/2 ± 15mV  
5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak).  
Rev. 1.0 March 2009  
Page 13 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
8.2 V  
Tolerances  
REF  
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage  
REF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).  
REF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts in table 7. Fur-  
V
V
thermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD  
.
voltage  
VDD  
VSS  
time  
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF  
.
"VREF" shall be understood as VREF(DC), as defined in Figure 1.  
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to  
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the  
data-eye of the input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing  
and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.  
Rev. 1.0 March 2009  
Page 14 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
8.3 AC and DC Logic Input Levels for Ditterential Signals  
8.3.1 Differential signal definition  
tDVAC  
VIH.DIFF.AC.MIN  
VIH.DIFF.MIN  
0.0  
half cycle  
VIL.DIFF.MAX  
VIL.DIFF.AC.MAX  
tDVAC  
time  
Figure 2 : Definition of differential ac-swing and "time above ac level" tDVAC  
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)  
[ Table 9 ] Defferential AC and DC Input Levels  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
unit  
Note  
min  
+0.2  
max  
VIHdiff  
VILdiff  
differential input high  
differential input low  
note 3  
-0.2  
V
V
V
V
1
1
2
2
note 3  
V
IHdiff(AC)  
ILdiff(AC)  
2 x (VIH(AC)-VREF)  
differential input high ac  
differential input low ac  
note 3  
V
2 x (VREF - VIL(AC))  
note 3  
Notes:  
1. Used to define a differential signal slew-rate.  
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use VIH/VIL(AC) of DQs and VREFDQ; if a  
reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Reter to "overshoot and Undersheet  
Specification "  
[ Table 10 ] Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV  
Slew Rate [V/ns]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
< 1.0  
0
Rev. 1.0 March 2009  
Page 15 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
8.3.3 Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for  
single-ended signals.  
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every  
half-cycle.  
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle  
preceeding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD sig-  
nals, then these ac-levels apply also for the single-ended signals CK and CK .  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Figure 3 : Single-ended requirement for differential signals.  
Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement  
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-  
ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common  
mode charateristics of these signals.  
[ Table 11 ] Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
Note3  
Note3  
(VDD/2)+0.175  
(VDD/2)+0.175  
Note3  
Single-ended high-level for strobes  
Single-ended high-level for CK, CK  
Single-ended low-level for strobes  
Single-ended low-level for CK, CK  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
VSEH  
(VDD/2)-0.175  
(VDD/2)-0.175  
VSEL  
Note3  
Notes:  
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs.  
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a  
signal group, then the reduced level applies also here  
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot  
Specification"  
Rev. 1.0 March 2009  
Page 16 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
8.4 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input  
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual  
cross point of true and complement signal to the mid level between of VDD and VSS  
.
VDD  
CK, DQS  
VIX  
VDD/2  
VIX  
VIX  
CK, DQS  
VSS  
Figure 4. VIX Definition  
[ Table 12 ] Cross point voltage for differential input signals (CK, DQS)  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
Notes  
Min  
-150  
-175  
-150  
Max  
150  
175  
150  
mV  
mV  
mV  
VIX  
VIX  
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK  
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS  
1
Note :  
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CKand CK are monotonic, have a single-ended swing VSEL  
/
VSEH of at least VDD/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for VSEL and VSEH stan-  
dard values.  
8.5 Slew Rate Definition for Single Ended Input Signals  
See 14.3 "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.  
See 14.4 "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.tDH nominal slew rate for a falling signal is  
defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF  
8.6 Slew rate definition for Differential Input Signals  
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 13 and Figure 5.  
[ Table 13 ] Differential input slew rate definition  
Measured  
From  
Description  
Defined by  
To  
VIHdiffmin - VILdiffmax  
Delta TRdiff  
VIHdiffmin - VILdiffmax  
VILdiffmax  
VIHdiffmin  
Differential input slew rate for rising edge (CK-CK and DQS-DQS)  
Differential input slew rate for falling edge (CK-CK and DQS-DQS)  
VIHdiffmin  
VILdiffmax  
Delta TFdiff  
Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds  
V
IHdiffmin  
0
V
ILdiffmax  
delta TFdiff  
delta TRdiff  
Figure 5. Differential Input Slew Rate definition for DQS, DQS and CK, CK  
Rev. 1.0 March 2009  
Page 17 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
9.0 AC and DC Output Measurement Levels  
9.1 Single Ended AC and DC Output Levels  
[ Table 14 ] Single Ended AC and DC output levels  
Symbol Parameter  
DDR3-800/1066/1333/1600  
Units  
Notes  
VOH(DC) DC output high measurement level (for IV curve linearity)  
0.8 x VDDQ  
V
V
OM(DC) DC output mid measurement level (for IV curve linearity)  
OL(DC) DC output low measurement level (for IV curve linearity)  
OH(AC) AC output high measurement level (for output SR)  
VOL(AC) AC output low measurement level (for output SR)  
0.5 x VDDQ  
0.2 x VDDQ  
V
V
V
V
V
V
VTT + 0.1 x VDDQ  
VTT - 0.1 x VDDQ  
1
1
Note : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω  
and an effective test load of 25to VTT=VDDQ/2.  
9.2 Differential AC and DC Output Levels  
[ Table 15 ] Differential AC and DC output levels  
Symbol  
Parameter  
DDR3-800/1066/1333/1600  
Units  
Notes  
VOHdiff(AC)  
AC differential output high measurement level (for output SR)  
+0.2 x VDDQ  
V
1
VOLdiff(DC)  
AC differential output low measurement level (for output SR)  
-0.2 x VDDQ  
V
1
Note : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 40Ω  
and an effective test load of 25to VTT=VDDQ/2 at each of the differential outputs.  
9.3 Single Ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)  
for single ended signals as shown in Table 16 and figure 6.  
[ Table 16 ] Single Ended Output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOH(AC)-VOL(AC)  
Delta TRse  
V
OL(AC)  
VOH(AC)  
Single ended output slew rate for rising edge  
Single ended output slew rate for falling edge  
VOH(AC)-VOL(AC)  
VOH(AC)  
VOL(AC)  
Delta TFse  
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.  
[ Table 17 ] Single Ended Output slew rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter  
Symbol  
Units  
Min  
2.5  
Max  
5
Min  
2.5  
Max  
5
Min  
2.5  
Max  
5
Min  
Max  
Single ended output slew rate  
Description : SR : Slew Rate  
SRQse  
TBD  
5
V/ns  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output  
se : Singe-ended Signals  
For Ron = RZQ/7 setting  
V
OH(AC)  
V
V
TT  
OL(AC)  
delta TFse  
delta TRse  
Figure 6. Single Ended Output Slew Rate definition  
Rev. 1.0 March 2009  
Page 18 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
9.4 Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and  
V
OHdiff(AC) for differential signals as shown inTable 18 and figure 7.  
[ Table 18 ] Differential Output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOHdiff(AC)-VOLdiff(AC)  
Delta TRdiff  
V
OLdiff(AC)  
VOHdiff(AC)  
VOLdiff(AC)  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOHdiff(AC)-VOLdiff(AC)  
Delta TFdiff  
V
OHdiff(AC)  
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.  
[ Table 19 ] Differential Output slew rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
TBD  
Max  
10  
Differential output slew rate  
Description : SR : Slew Rate  
SRQse  
5
10  
5
10  
5
10  
V/ns  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output  
diff : Singe-ended Signals  
For Ron = RZQ/7 setting  
V
(AC)  
OHdiff  
V
V
TT  
(AC)  
OLdiff  
delta TFdiff  
delta TRdiff  
Figure 7. Differential Output Slew Rate definition  
9.5 Reference Load for AC Timing and Output Slew Rate  
Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate  
measurements.  
It is not intended as a precise representation of any particular system environment of a depiction of the actual load presented by a production tester. Sys-  
tem designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their  
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.  
VDDQ  
DQ  
CK/CK  
DQS  
DUT  
VTT = VDDQ/2  
DQS  
25Ω  
Reference  
Point  
Figure 8. Reference Load for AC Timing and Output Slew Rate  
Rev. 1.0 March 2009  
Page 19 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
9.6 Overshoot/Undershoot Specification  
9.6.1 Address and Control Overshoot and Undershoot specifications  
[ Table 20 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2, CS, RAS, CAS, WE, CKE, ODT)  
Specification  
Parameter  
Unit  
DDR3-800  
0.4V  
DDR3-1066  
0.4V  
DDR3-1333  
0.4V  
DDR3-1600  
0.4V  
Maximum peak amplitude allowed for overshoot area (See Figure 9)  
Maximum peak amplitude allowed for undershoot area (See Figure 9)  
Maximum overshoot area above VDD (See Figure 9)  
V
V
0.4V  
0.4V  
0.4V  
0.4V  
0.67V-ns  
0.5V-ns  
0.4V-ns  
0.33V-ns  
V-ns  
Maximum undershoot area below VSS (See Figure 9)  
0.67V-ns  
0.5V-ns  
0.4V-ns  
0.33V-ns  
V-ns  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 9. Address and Control Overshoot and Undershoot definition  
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications  
[ Table 21 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)  
Specification  
Parameter  
Unit  
DDR3-800  
0.4V  
DDR3-1066  
0.4V  
DDR3-1333  
0.4V  
DDR3-1600  
0.4V  
Maximum peak amplitude allowed for overshoot area (See Figure 11)  
Maximum peak amplitude allowed for undershoot area (See Figure 11)  
Maximum overshoot area above VDDQ (See Figure 11)  
V
V
0.4V  
0.4V  
0.4V  
0.4V  
0.25V-ns  
0.19V-ns  
0.15V-ns  
0.13V-ns  
V-ns  
Maximum undershoot area below VSSQ (See Figure 11)  
0.25V-ns  
0.19V-ns  
0.15V-ns  
0.13V-ns  
V-ns  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot definition  
Rev. 1.0 March 2009  
Page 20 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
9.7 34 ohm Output Driver DC Electrical Characteristics  
A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ  
as follows:  
RON34 = RZQ/7 (Nominal 34ohms +/- 10% with nominal RZQ=240ohm)  
RON40 = RZQ/6 (Nominal 40ohms +/- 10% with nominal RZQ=240ohm)  
The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows  
VDDQ-VOUT  
under the condition that RONpd is turned off  
RONpu =  
l Iout l  
VOUT  
l Iout l  
under the condition that RONpu is turned off  
RONpd =  
Output Driver : Definition of Voltages and Currents  
Output Driver  
VDDQ  
Ipu  
To  
RON  
other  
Pu  
circuity  
DQ  
Iout  
RON  
Pd  
Vout  
Ipd  
VSSQ  
Figure 11. Output Driver : Definition of Voltages and Currents  
[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240 ohms ;  
entire operating temperature range; after proper ZQ calibration  
RONnom  
Resistor  
Vout  
OLdc = 0.2 x VDDQ  
Min  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
Nom  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
Max  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
Units  
Notes  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
V
V
OMdc = 0.5 x VDDQ  
OHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
OMdc = 0.5 x VDDQ  
OHdc = 0.8 x VDDQ  
OLdc = 0.2 x VDDQ  
OMdc = 0.5 x VDDQ  
OHdc = 0.8 x VDDQ  
OLdc = 0.2 x VDDQ  
OMdc = 0.5 x VDDQ  
OHdc = 0.8 x VDDQ  
RON34pd  
V
34Ohms  
RZQ/7  
V
RON34pu  
RON40pd  
RON40pu  
V
V
V
V
40Ohms  
RZQ/6  
%
V
V
V
Mismatch between Pull-up and Pull-down,  
MMpupd  
V
OMdc = 0.5 x VDDQ  
-10  
10  
1,2,4  
Note :  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-  
tion, see following section on voltage and temperature sensitivity  
2. The tolerance limits are specified under the condition that V  
= V and that V  
= V  
SSQ SS  
DDQ  
DD  
3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X V  
. Other calibration schemes may be used to achieve the linearity spec shown  
DDQ  
above, e.g. calibration at 0.2 X V  
and 0.8 X V  
DDQ  
DDQ  
4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X V  
:
DDQ  
RONpu - RONpd  
x 100  
MMpupd =  
RONnom  
Rev. 1.0 March 2009  
Page 21 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
9.7.1 Output Drive Temperature and Voltage sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to table 23 and 24.  
T = T - T(@calibration); V = VDDQ - VDDQ (@calibration); VDD = VDDQ  
*dRONdT and dRONdV are not subject to production test but are verified by design and characterization  
[ Table 23 ] Output Driver Sensitivity Definition  
Min  
Max  
Units  
RZQ/7  
RZQ/7  
RZQ/7  
RONPU@VOHDC  
RON@VOMDC  
0.6 - dRONdTH * |T| - dR dVH * |V|  
1.1 + dRONdTH * |T| + dR dVH * |V|  
ON  
ON  
0.9 - dRONdTM * |T| - dR dVM * |V|  
1.1 + dRONdTM * |T| + dR dVM * |V|  
ON  
ON  
RONPD@VOLDC  
0.6 - dRONdTL * |T| - dR dVL * |V|  
1.1 + dRONdTL * |T| + dR dVL * |V|  
ON  
ON  
[ Table 24 ] Output Driver Voltage and Temperature Sensitivity  
Speed Bin  
800/1066/1333  
1600  
Units  
Min  
0
Max  
1.5  
Min  
0
Max  
1.5  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
%/°C  
%/mV  
%/°C  
0
0.15  
1.5  
0
0.13  
1.5  
0
0
0
0.15  
1.5  
0
0.13  
1.5  
%/mV  
%/°C  
0
0
0
0.15  
0
0.13  
%/mV  
9.8 On-Die Termination (ODT) Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.  
ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.  
A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as  
follows :  
V
DDQ-VOUT  
l Iout l  
under the condition that RTTpd is turned off  
under the condition that RTTpu is turned off  
RTTpu =  
RTTpd =  
VOUT  
l Iout l  
On-Die Termination : Definition of Voltages and Currents  
Chip in Termination Mode  
ODT  
VDDQ  
Ipu  
Iout=Ipd-Ipu  
To  
RTTPu  
other  
circuitry  
DQ  
like  
RCV,  
...  
Iout  
RTTPd  
Ipd  
VOUT  
VSSQ  
Figure 12. On-Die Termination : Definition of Voltages and Currents  
Rev. 1.0 March 2009  
Page 22 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
9.8.1 ODT DC electrical characteristics  
Table 26 provides and overview of the ODT DC electrical characteristics. They values for RTT60pd120, RTT60pu120, RTT120pd240, RTT120pu240, RTT40pd80,  
RTT40pu80, RTT30pd60, RTT30pu60, RTT20pd40, RTT20pu40 are not specification requirements, but can be used as design guide lines:  
[ Table 25 ] ODT DC Electrical characteristics, assuming RZQ=240 ohm +/- 1% entire operationg temperature range ;  
after proper ZQ calibration.  
MR1 (A9,A6,A2)  
RTT  
RESISTOR  
Vout  
Min  
Nom  
Max  
Unit  
RZQ  
Notes  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
-5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
5
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT120pd240  
RZQ  
V
OH(DC) 0.8XVDDQ  
RZQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RZQ  
(0,1,0)  
120 ohm  
RTT120pu240  
RZQ  
V
OH(DC) 0.8XVDDQ  
RZQ  
RTT120  
VIL(AC) to VIH(AC)  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/4  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/6  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/8  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/12  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60pd240  
V
OH(DC) 0.8XVDDQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
(0,0,1)  
(0,1,1)  
(1,0,1)  
(1,0,0)  
60 ohm  
40 ohm  
30 ohm  
20 ohm  
RTT60pu240  
RTT60  
V
OH(DC) 0.8XVDDQ  
VIL(AC) to VIH(AC)  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT40pd240  
V
OH(DC) 0.8XVDDQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RTT40pu240  
RTT40  
V
OH(DC) 0.8XVDDQ  
VIL(AC) to VIH(AC)  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60pd240  
V
OH(DC) 0.8XVDDQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RTT60pu240  
RTT60  
V
OH(DC) 0.8XVDDQ  
VIL(AC) to VIH(AC)  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60pd240  
V
OH(DC) 0.8XVDDQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RTT60pu240  
RTT60  
V
OH(DC) 0.8XVDDQ  
VIL(AC) to VIH(AC)  
Deviation of VM w.r.t VDDQ/2, VM  
%
1,2,5,6  
Rev. 1.0 March 2009  
Page 23 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage  
changes after calibration, see following section on voltage and temperature sensitivity  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS  
3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XVDDQ. Other calibration schemes may be used to achieve the linearity  
spec shown above, e.g. calibration at 0.2XVDDQ and 0.8XVDDQ  
.
4. Not a specification requirement, but a design guide line  
5. Measurement definition for RTT:  
Apply VIH(AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure current I(VIL(AC)) perspectively  
VIH(AC) - VIL(AC)  
RTT  
=
I(VIH(AC)) - I(VIL(AC))  
6. Measurement definition for VM and VM : Measure voltage (VM) at test pin (midpoint) with no load  
2 x VM  
- 1  
x 100  
VM  
=
VDDQ  
9.8.2 ODT Temperature and Voltage sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below  
T = T - T(@calibration); V = VDDQ - VDDQ (@calibration); VDD = VDDQ  
[ Table 26 ] ODT Sensitivity Definition  
Min  
Max  
Units  
0.9 - dRTTdT * |T| - dR dV * |V|  
1.6 + dRTTdT * |T| + dR dV * |V|  
RTT  
RZQ/2,4,6,8,12  
TT  
TT  
[ Table 27 ] ODT Voltage and Temperature Sensitivity  
Min  
Max  
1.5  
Units  
%/°C  
dRTTdT  
0
dRTTdV  
0
0.15  
%/mV  
These parameters may not be subject to production test. They are verified by design and characterization.  
Rev. 1.0 March 2009  
Page 24 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
9.9 ODT Timing Definitions  
9.9.1 Test Load for ODT Timings  
Different than for timing measurements, the reference load for ODT timings is defined in Figgure 13.  
VDDQ  
DUT  
DQ, DM  
CK,CK  
VTT  
=
DQS , DQS  
VSSQ  
RTT  
TDQS , TDQS  
=25 ohm  
VSSQ  
Timing Reference Points  
Figure 13. ODT Timing Reference Load  
9.9.2 ODT Timing Definition  
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 28 and subsequent figures. Measurement reference settings are provided  
in Table 29.  
[ Table 28 ] ODT Timing Definitions  
Symbol  
tAON  
Begin Point Definition  
End Point Definition  
Extrapolated point at VSSQ  
Figute  
Rising edge of CK - CK defined by the end point of ODTLon  
Rising edge of CK - CK with ODT being first registered high  
Rising edge of CK - CK defined by the end point of ODTLoff  
Rising edge of CK - CK with ODT being first registered low  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
tAONPD  
tAOF  
Extrapolated point at VSSQ  
End point: Extrapolated point at VRTT_Nom  
End point: Extrapolated point at VRTT_Nom  
tAOFPD  
Rising edge of CK - CK defined by the end point of ODTLcnw,  
ODTLcwn4 of ODTLcwn8  
End point: Extrapolated point at VRTT_Wr and VRTT_Nom  
respectively  
tADC  
Figure 18  
[ Table 29 ] Reference Settings for ODT Timing Measurements  
Measured  
RTT_Nom Setting  
RTT_Wr Setting  
VSW1[V]  
VSW2[V]  
Note  
Parameter  
RZQ/4  
RZQ/12  
RZQ/4  
NA  
NA  
0.05  
0.10  
0.05  
0.10  
0.05  
0.10  
0.05  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.30  
tAON  
NA  
tAONPD  
tAOF  
RZQ/12  
RZQ/4  
NA  
NA  
RZQ/12  
RZQ/4  
NA  
NA  
tAOFPD  
tADC  
RZQ/12  
RZQ/12  
NA  
RZQ/2  
Rev. 1.0 March 2009  
Page 25 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLon  
CK  
CK  
VTT  
t
AON  
T
SW2  
T
SW1  
DQ, DM  
DQS , DQS  
TDQS , TDQS  
V
SW2  
V
SW1  
VSSQ  
VSSQ  
End point Extrapolated point at VSSQ  
Figure 14. Definition of tAON  
Begin point : Rising edge of CK - CK  
with ODT being first registered high  
CK  
CK  
VTT  
t
AONPD  
T
SW2  
T
SW1  
DQ, DM  
DQS , DQS  
TDQS , TDQS  
V
SW2  
V
SW1  
VSSQ  
VSSQ  
End point Extrapolated point at VSSQ  
Figure 15. Definition of tAONPD  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLoff  
CK  
CK  
VTT  
t
AOF  
End point Extrapolated point at VRTT_Nom  
VRTT_Nom  
T
SW2  
T
DQ, DM  
SW1  
DQS , DQS  
V
SW2  
V
TDQS , TDQS  
SW1  
VSSQ  
TD_TAON_DEF  
Figure 16. Definition of tAOF  
Rev. 1.0 March 2009  
Page 26 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Begin point : Rising edge of CK - CK  
with ODT being first registered low  
CK  
CK  
VTT  
t
AOFPD  
End point Extrapolated point at VRTT_Nom  
VRTT_Nom  
T
SW2  
T
DQ, DM  
SW1  
DQS , DQS  
V
SW2  
V
TDQS , TDQS  
SW1  
VSSQ  
Figure 17. Definition of tAOFPD  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLcnw  
Begin point : Rising edge of CK - CK defined by  
the end point of ODTLcwn4 or ODTLcwn8  
CK  
CK  
VTT  
t
t
ADC  
ADC  
End point Extrapolated point at VRTT_Nom  
VRTT_Nom  
VRTT_Nom  
T
SW21  
T
End point  
T
DQ, DM  
DQS , DQS  
TDQS , TDQS  
SW22  
Extrapolated point  
at VRTT_Nom  
V
SW2  
SW11  
T
SW12  
V
SW1  
End point Extrapolated point at VRTT_Wr  
VRTT_Wr  
VSSQ  
Figure 18. Definition of tADC  
Rev. 1.0 March 2009  
Page 27 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
10.0 IDD Specification Parameters and Test Conditions  
10.1 IDD Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and  
IDDQ measurements.  
- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and  
IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in  
IDD currents.  
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied  
together. Any IDD current is not included in IDDQ currents.  
Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO  
power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ  
are using one merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply :  
- "0" and "LOW" is defined as VIN <= VILAC(max).  
- "1" and "HIGH" is defined as VIN >= VIHAC(min).  
- "FLOATING" is defined as inputs are VREF = VDD / 2.  
- Timings used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 30.  
- Basic IDD and IDDQ Measurement Conditions are described in Table 31.  
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 33 through Table 39.  
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0B (Output Buffer enabled in MR1);  
RTT_Nom = RZQ/6 (40 Ohm in MR1);  
RTT_Wr = RZQ/2 (120 Ohm in MR2);  
TDQS Feature disabled in MR1  
- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.  
- Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW}  
- Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH}  
Timing parameters are listed in the following table:  
[ Table 30 ] Timing used for IDD and IDDQ Measured-Loop Patterns.  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter Bin  
tCKmin(IDD)  
Unit  
5-5-5 6-6-6 6-6-6 7-7-7 8-8-8 7-7-7 8-8-8 9-9-9 10-10-10 8-8-8 9-9-9 10-10-10 11-11-11  
2.5  
1.875  
7
1.5  
1.25  
10  
ns  
CL(IDD)  
5
5
6
6
6
6
8
8
7
7
8
8
9
9
10  
10  
34  
8
8
9
9
11  
11  
39  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
tRCDmin(IDD)  
tRCmin(IDD)  
tRASmin(IDD)  
tRPmin(IDD)  
7
10  
38  
20  
21  
26  
27  
20  
7
28  
31  
32  
33  
36  
37  
15  
24  
28  
5
6
6
8
7
8
9
10  
8
9
10  
11  
x4/x8  
x16  
16  
20  
4
20  
27  
4
20  
30  
4
24  
32  
5
tFAW(IDD)  
tRRD(IDD)  
x4/x8  
x16  
4
6
5
6
tRFC(IDD) - 512Mb  
tRFC(IDD) - 1Gb  
tRFC(IDD) - 2Gb  
tRFC(IDD) - 4Gb  
tRFC(IDD) - 8Gb  
36  
44  
64  
120  
140  
48  
59  
86  
160  
187  
60  
74  
72  
88  
107  
200  
234  
128  
240  
280  
Rev. 1.0 March 2009  
Page 28 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 31 ] Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 30 ; BL: 8 ; AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address  
Inputs: partially toggling according to Table 32 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...  
a)  
IDD0  
b)  
(see Table32); Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 32  
Operating One Bank Active-Read-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 30 ; BL: 8 ; AL: 0; CS: High between ACT, RD and PRE; Command, Address,  
Bank Address Inputs, Data IO: partially toggling according to Table 33 ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...  
a)  
IDD1  
b)  
(see Table33); Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 33  
Precharge Standby Current  
a)  
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling  
according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT  
Signal: stable at 0; Pattern Details: see Table 34  
IDD2N  
DD2NT  
b)  
Precharge Standby ODT Current  
a)  
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling  
according to Table 35 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT  
Signal: toggling according to Table 35 ; Pattern Details: see Table 35  
b)  
DDQ2NT  
(optional)  
Precharge Standby ODT IDDQ Current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
a)  
IDD2P0  
b)  
MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pecharge  
c)  
Power Down Mode: Slow Exi  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
a)  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
b)  
MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pecharge  
c)  
Power Down Mode: Fast Exit  
Precharge Quiet Standby Current  
a)  
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
MID-LEVEL; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
b)  
Active Standby Current  
a)  
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling  
according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ; ODT Sig-  
nal: stable at 0; Pattern Details: see Table 34  
b)  
Active Power-Down Current  
a)  
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
MID-LEVEL;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
b)  
Operating Burst Read Current  
a)  
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling  
IDD4R  
according to Table 36 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank  
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Regis-  
b)  
ters ; ODT Signal: stable at 0; Pattern Details: see Table 36  
IDDQ4R  
(optional)  
Operating Burst Read IDDQ Current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
a)  
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8 ; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially tog-  
gling according to Table 37 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0;  
Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registers  
ODT Signal: stable at HIGH; Pattern Details: see Table 37  
IDD4W  
b)  
;
Burst Refresh Current  
a)  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 30 ; BL: 8 ; AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially  
toggling according to Table 38 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT:  
Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 38  
IDD5B  
IDD6  
b)  
Self Refresh Current: Normal Temperature Range  
d)  
e)  
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled ; Self-Refresh Temperature Range (SRT): Normal ; CKE: Low; External clock: Off; CK and CK:  
a)  
LOW; CL: see Table 30 ; BL: 8 ; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Self-Refresh operation;  
b)  
Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: MID-LEVEL  
Rev. 1.0 March 2009  
Page 29 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 31 ] Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
f
Self-Refresh Current: Extended Temperature Range (optional) )  
d)  
e)  
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled ; Self-Refresh Temperature Range (SRT): Extended ; CKE: Low; External clock: Off; CK and CK:  
IDD6ET  
a)  
LOW; CL: see Table 30 ; BL: 8 ; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Extended Temperature  
b)  
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: MID-LEVEL  
f
Auto Self-Refresh Current (optional) )  
d)  
e)  
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabled ; Self-Refresh Temperature Range (SRT): Normal ; CKE: Low; External clock: Off; CK and CK:  
IDD6TC  
IDD7  
a)  
LOW; CL: see Table 30 ; BL: 8 ; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Auto  
b)  
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: MID-LEVEL  
Operating Bank Interleave Read Current  
a, g)  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 30 ; BL: 8  
; AL: CL-1; CS: High between ACT and RDA; Command,  
Address, Bank Address Inputs: partially toggling according to Table 39 ; Data IO: read data bursts with different data between one burst and the next one  
according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output  
b)  
Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 39  
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B  
c) Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit  
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range  
f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device  
10.2 IDD Specifications definition  
Editorial Instruction: Chapter 10.2 in JESD79-3B in principal stays at it is. See Reference Material at the end of this ballot.  
Only the following changes will be done to Chapter 10.2:  
Table 53 "IDD Specification Example 512M DDR3", add the following Rows:  
- Between IDD2N and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol "IDD2NT".  
- Between IDD2NT (as inserted with above bullet) and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol ’IDDQ2NT".  
- Between IDD4R and IDD4W: Add 3 rows (one for x4, one for x8 and one for x16) with a straddled cell for Symbol "IDDQ4R".  
Rev. 1.0 March 2009  
Page 30 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
(optional)  
IDD  
IDDQ  
VDD  
VDDQ  
RESET  
CK/CK  
CKE  
CS  
RAS, CAS, WE  
DQS, DQS  
DQ, DM,  
TDQS, TDQS  
RTT = 25 Ohm  
VDDQ/2  
A, BA  
ODT  
ZQ  
VSS  
VSSQ  
[Note: DIMM level Output test load condition may be different from above ]  
Figure 19 : Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements  
Application specific  
memory channel  
environment  
IDDQ  
Test Load  
Channel  
IO Power  
Simulation  
IDDQ  
Measurement  
IDDQ  
Simulation  
Correlation  
Correction  
Channel IO Power  
Number  
Figure 20 :Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.  
Rev. 1.0 March 2009  
Page 31 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 32 ] IDD0 Measurement - Loop Pattern1  
0
0
1,2  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
3,4  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRAS  
0
0
1
0
0
0
00  
0
0
0
0
-
...  
1*nRC + 0  
1*nRC + 1, 2  
1*nRC + 3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC + nRAS  
...  
0
0
1
0
0
0
0
0
F
0
repeat 1...4 until 2*nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
Note :  
1. DM must be driben LOW all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
Rev. 1.0 March 2009  
Page 32 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 33 ] IDD1 Measurement - Loop Pattern1  
0
0
1,2  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
3,4  
...  
repeat pattern 1...4 until nRCD- 1, truncate if necessary  
RD  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
00  
00  
0
0
0
0
0
0
0
0
00000000  
-
nRAS  
0
0
1
0
0
0
...  
1*nRC+0  
1*nRC + 1, 2  
1*nRC + 3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary  
RD 00  
repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary  
PRE 00 0  
1*nRC + nRCD  
...  
0
1
0
1
0
0
0
0
F
F
0
0
00110011  
-
1*nRC + nRAS  
...  
0
0
1
0
0
0
0
repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
Note :  
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
[ Table 34 ] IDD2 and IDD3N Measurement - Loop Pattern1  
0
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
Note :  
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
Rev. 1.0 March 2009  
Page 33 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 35 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern1  
0
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 2  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 3  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 6  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
Note :  
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
[ Table 36 ] IDD4R and IDDQ4R Measurement - Loop Pattern1  
0
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
-
2,3  
D,D  
RD  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
Note :  
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 1.0 March 2009  
Page 34 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 37 ] IDD4W Measurement - Loop Pattern1  
0
0
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
-
2,3  
D,D  
WR  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
Note :  
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
[ Table 38 ] IDD5B Measurement - Loop Pattern1  
0
1
0
1,2  
REF  
D
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
3,4  
D,D  
5...8  
repeat cycles 1...4, but BA[2:0] = 1  
repeat cycles 1...4, but BA[2:0] = 2  
repeat cycles 1...4, but BA[2:0] = 3  
repeat cycles 1...4, but BA[2:0] = 4  
repeat cycles 1...4, but BA[2:0] = 5  
repeat cycles 1...4, but BA[2:0] = 6  
repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC - 1  
2
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.  
Note :  
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
Rev. 1.0 March 2009  
Page 35 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 39 ] IDD7 Measurement - Loop Pattern1  
0
1
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
0
1
2
...  
repeat above D Command until nRRD - 1  
nRRD  
nRRD + 1  
nRRD + 2  
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
repeat above D Command until 2*nRRD-1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
2 * nRRD  
3 * nRRD  
D
1
0
0
0
0
3
00  
0
0
F
F
0
0
-
-
4
4 * nRRD  
Assert and repeat above D Command until nFAW - 1, if necessary  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 1, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 1, but BA[2:0] = 7  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
D
1
0
0
0
0
7
00  
0
0
9
nFAW+4*nRRD  
Assert and repeat above D Command until 2*nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
10  
2*nFAW+2  
Repeat above D Command until 2*nFAW + nRRD - 1  
2*nFAW+nRRD  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
2*nFAW+nRRD+1  
00000000  
-
11  
2*nFAW+nRRD+2  
Repeat above D Command until 2*nFAW + 2*nRRD - 1  
repeat Sub-Loop 10, but BA[2:0] = 2  
repeat Sub-Loop 11, but BA[2:0] = 3  
12  
13  
2*nFAW+2*nRRD  
2*nFAW+3*nRRD  
D
1
0
0
0
0
3
00  
0
0
0
0
0
-
-
14  
2*nFAW+4*nRRD  
Assert and repeat above D Command until 3*nFAW - 1, if necessary  
repeat Sub-Loop 10, but BA[2:0] = 4  
repeat Sub-Loop 11, but BA[2:0] = 5  
repeat Sub-Loop 10, but BA[2:0] = 6  
repeat Sub-Loop 11, but BA[2:0] = 7  
15  
16  
17  
18  
3*nFAW  
3*nFAW+nRRD  
3*nFAW+2*nRRD  
3*nFAW+3*nRRD  
D
1
0
0
0
0
7
00  
0
0
0
19  
3*nFAW+4*nRRD  
Assert and repeat above D Command until 4*nFAW - 1, if necessary  
Note :  
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otheerwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.  
Rev. 1.0 March 2009  
Page 36 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table  
[ Table 40 ] IDD Specification for DDP 4Gb DDR3 B-die  
1Gx4 (K4B4G0446B)  
DDR3-1066  
Symbol  
DDR3-800  
6-6-6  
100  
115  
24  
DDR3-1333  
9-9-9  
115  
130  
24  
DDR3-1600  
TBD  
TBD  
Unit  
Notes  
7-7-7  
110  
125  
24  
50  
80  
80  
70  
70  
95  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2NT  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
50  
70  
70  
60  
60  
85  
135  
140  
220  
24  
50  
80  
90  
70  
70  
100  
175  
180  
225  
24  
IDD4R  
IDD4W  
IDD5B  
IDD6  
160  
165  
225  
24  
IDD7  
235  
250  
300  
TBD  
512Mx8 (K4B4G0846B)  
Symbol  
DDR3-800  
6-6-6  
100  
115  
24  
DDR3-1066  
7-7-7  
110  
125  
24  
DDR3-1333  
9-9-9  
115  
130  
24  
DDR3-1600  
TBD  
TBD  
Unit  
Notes  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2NT  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
50  
70  
80  
64  
60  
85  
140  
145  
220  
24  
60  
80  
80  
70  
70  
95  
165  
170  
225  
24  
70  
80  
90  
80  
70  
100  
185  
190  
225  
24  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
245  
270  
320  
TBD  
Rev. 1.0 March 2009  
Page 37 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
12.0 Input/Output Capacitance  
[ Table 41 ] Input/Output Capacitance  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter  
Symbol  
Units Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Input/output capacitance  
CIO  
CCK  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
pF  
pF  
pF  
pF  
pF  
pF  
1,2,3  
2,3  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
Input capacitance  
(CK and CK)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Input capacitance delta  
(CK and CK)  
CDCK  
2,3,4  
2,3,6  
2,3,5  
2,3,7,8  
Input capacitance  
(All other input-only pins)  
CI  
Input capacitance delta  
(DQS and DQS)  
CDDQS  
CDI_CTRL  
CDI_ADD_CMD  
Input capacitance delta  
(All control input-only pins)  
Input capacitance delta  
(all ADD and CMD input-onlypins)  
pF 2,3,9,10  
Input/output capacitance delta  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CDIO  
CZQ  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
pF  
pF  
2,3,11  
Input/output capacitance of ZQ pin  
2, 3, 12  
Note :  
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS  
2. This parameter is not subject to production test. It is verified by design and characterization.  
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK  
ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary).  
V
DD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off.  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4. Absolute value of CCK-CCK  
5. Absolute value of CIO(DQS)-CIO(DQS)  
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.  
7. CDI_CTRL applies to ODT, CS and CKE  
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))  
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE  
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))  
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))  
12. Maximum external load capacitance on ZQ pin: 5pF  
Rev. 1.0 March 2009  
Page 38 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600  
13.1 Clock specification  
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3  
SDRAM device.  
13.1.1 Definition for tCK (avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to  
rising edge.  
N
tCKj  
N=200  
N
j=1  
13.1.2 Definition for tCK (abs)  
tCK(abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.  
13.1.3 Definition for tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:  
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:  
N
N
tCHj  
tCLj  
N x tCK(avg) N=200  
N x tCK(avg)  
N=200  
j=1  
j=1  
13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)  
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}  
tJIT(per) defines the single period jitter when the DLL is already locked.  
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
tJIT(per) and tJIT(per,lck) are not subject to production test.  
13.1.5 Definition for note for tJIT(cc), tJIT(cc,Ick)  
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}  
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.  
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
tJIT(cc) and tJIT(cc,lck) are not subject to production test.  
13.1.6 Definition for tERR(nper)  
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.  
Rev. 1.0 March 2009  
Page 39 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
13.2 Refresh Parameters by Device Density  
[ Table 42 ] Refresh parameters by device density  
Parameter  
All Bank Refresh to active/refresh cmd time  
Symbol  
tRFC  
1Gb  
110  
7.8  
2Gb  
160  
7.8  
4Gb  
300  
7.8  
8Gb  
350  
7.8  
Units  
ns  
Note  
0 °C TCASE 85°C  
µs  
Average periodic refresh interval  
tREFI  
85 °C < TCASE 95°C  
3.9  
3.9  
3.9  
3.9  
µs  
1
Note :  
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or  
requirements referred to in this material.  
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin  
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
[ Table 43 ] DDR3-800 Speed Bins  
Speed  
CL-nRCD-nRP  
DDR3-800  
6 - 6 - 6  
Units  
Note  
Parameter  
Symbol  
tAA  
min  
15  
max  
20  
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ns  
ns  
tRCD  
tRP  
15  
-
15  
-
-
ns  
ACT to ACT or REF command period  
ACT to PRE command period  
CL = 6 / CWL = 5  
tRC  
52.5  
37.5  
2.5  
ns  
tRAS  
9*tREFI  
3.3  
ns  
8
tCK(AVG)  
ns  
1,2,3  
Supported CL Settings  
6
5
nCK  
nCK  
Supported CWL Settings  
[ Table 44 ] DDR3-1066 Speed Bins  
Speed  
CL-nRCD-nRP  
DDR3-1066  
7 - 7 - 7  
Units  
Note  
Parameter  
Symbol  
tAA  
min  
13.125  
13.125  
13.125  
50.625  
37.5  
max  
20  
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ns  
ns  
tRCD  
-
tRP  
-
-
ns  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
ns  
tRAS  
9*tREFI  
3.3  
ns  
8
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
ns  
1,2,3,6  
1,2,3,4  
4
CL = 6  
CL = 7  
CL = 8  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
Reserved  
Reserved  
ns  
ns  
1.875  
1.875  
<2.5  
<2.5  
ns  
1,2,3,4  
4
Reserved  
ns  
ns  
1,2,3  
Supported CL Settings  
Supported CWL Settings  
6,7,8  
5,6  
nCK  
nCK  
Rev. 1.0 March 2009  
Page 40 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 45 ] DDR3-1333 Speed Bins  
Speed  
CL-nRCD-nRP  
Parameter  
DDR3-1333  
9 -9 - 9  
Units  
Note  
Symbol  
min  
max  
13.5  
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
20  
ns  
ns  
ns  
ns  
(13.125)5,9  
13.5  
tRCD  
tRP  
-
-
-
(13.125)5,9  
13.5  
(13.125)5,9  
49.5  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
(49.125)5,9  
tRAS  
36  
9*tREFI  
3.3  
ns  
ns  
ns  
ns  
ns  
8
1,2,3,7  
1,2,3,4,7  
4
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
CL = 6  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
4
1.875  
<2.5  
<2.5  
CL = 7  
CWL = 6  
tCK(AVG)  
ns  
1,2,3,4,7  
(Optional) Note 5,9  
Reserved  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5,6  
CWL = 7  
CWL = 5,6  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3,4,  
Reserved  
4
1,2,3,7  
1,2,3,4,  
4
CL = 8  
CL = 9  
CL = 10  
1.875  
ns  
Reserved  
Reserved  
ns  
ns  
1.5  
1.5  
<1.875  
<1.875  
ns  
1,2,3,4  
4
Reserved  
ns  
ns  
1,2,3  
5
CWL = 7  
tCK(AVG)  
(Optional)  
6,7,8,9  
5,6,7  
ns  
Supported CL Settings  
Supported CWL Settings  
nCK  
nCK  
Rev. 1.0 March 2009  
Page 41 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 46 ] DDR3-1600 Speed Bins  
Speed  
CL-nRCD-nRP  
Parameter  
DDR3-1600  
11-11-11  
Units  
Note  
Symbol  
min  
max  
13.75  
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
20  
ns  
ns  
ns  
ns  
(13.125)5,9  
13.75  
tRCD  
tRP  
-
-
-
(13.125)5,9  
13.75  
(13.125)5,9  
48.75  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
(48.125)5,9  
tRAS  
35  
9*tREFI  
3.3  
ns  
ns  
ns  
ns  
ns  
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
1,2,3,8  
CL = 6  
CWL = 6  
CWL = 7, 8  
CWL = 5  
Reserved  
Reserved  
Reserved  
1,2,3,4,8  
4
4
1.875  
<2.5  
CWL = 6  
tCK(AVG)  
ns  
1,2,3,4,8  
CL = 7  
(Optional) Note 5,9  
Reserved  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5,6  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3,4,8  
Reserved  
4
4
Reserved  
1.875  
1.5  
<2.5  
1,2,3,8  
1,2,3,4,8  
1,2,3,4  
4
CL = 8  
CL = 9  
Reserved  
Reserved  
Reserved  
<1.875  
CWL = 7  
tCK(AVG)  
ns  
1,2,3,4,8  
(Optional) Note 9,10  
TBD  
CWL = 8  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3,4  
4
CWL = 5,6  
Reserved  
1.5  
<1.875  
CL = 10  
CL = 11  
CWL = 7  
tCK(AVG)  
ns  
1,2,3,8  
(Optional) Note 9,10  
Reserved  
CWL = 8  
CWL = 5,6,7  
CWL = 8  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3,4  
4
Reserved  
1.25  
<1.5  
ns  
1,2,3,5  
Supported CL Settings  
Supported CWL Settings  
6,7,8,9,10,11  
5,6,7,8  
nCK  
nCK  
Rev. 1.0 March 2009  
Page 42 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
13.3.1 Speed Bin Table Notes  
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);  
Note :  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be ful-  
filled: Requirements from CL setting as well as requirements from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequen-  
cies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculat-  
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns  
or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.  
4. "Reserved" settings are not allowed. User must program a different value.  
5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/  
or the DIMM SPD information if and how this setting is supported.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to  
match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte  
16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should pro-  
gram 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin  
(Byte 21,23) also should be programmed accodingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns  
(tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).  
Rev. 1.0 March 2009  
Page 43 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
14.0 Timing Parameters by Speed Grade  
[ Table 47 ] Timing Parameters by Speed Bin  
Speed  
Parameter  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
Note  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Clock Timing  
tCK(DLL_OF  
F)  
Minimum Clock Cycle Time (DLL off mode)  
8
-
8
-
8
-
8
-
ns  
6
Average Clock Period  
Clock Period  
tCK(avg)  
tCK(abs)  
See Speed Bins Table  
ps  
ps  
tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +  
tJIT(per)min  
tJIT(per)max  
tJIT(per)min  
tJIT(per)max  
tJIT(per)min  
tJIT(per)max  
tJIT(per)min  
tJIT(per)max  
Average high pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.53  
0.47  
0.53  
0.47  
0.53  
0.47  
0.53  
tCK(avg)  
Average low pulse width  
0.47  
0.53  
0.47  
0.53  
0.47  
0.53  
0.47  
0.53  
tCK(avg)  
ps  
Clock Period Jitter  
tJIT(per)  
-100  
100  
-90  
90  
-80  
80  
-70  
70  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
tJIT(per, lck)  
tJIT(cc)  
-90  
90  
-80  
80  
-70  
70  
-60  
60  
ps  
200  
180  
180  
160  
160  
140  
140  
120  
ps  
Cycle to Cycle Period Jitter during DLL locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tJIT(cc, lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
ps  
- 147  
- 175  
- 194  
- 209  
- 222  
- 232  
- 241  
- 249  
- 257  
- 263  
- 269  
147  
175  
194  
209  
222  
232  
241  
249  
257  
263  
269  
- 132  
- 157  
- 175  
- 188  
- 200  
- 209  
- 217  
- 224  
- 231  
- 237  
- 242  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
- 118  
- 140  
- 155  
- 168  
- 177  
- 186  
- 193  
- 200  
- 205  
- 210  
- 215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
-103  
-122  
-136  
-147  
-155  
-163  
-169  
-175  
-180  
-184  
-188  
103  
122  
136  
147  
155  
163  
169  
175  
180  
184  
188  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min  
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max  
Cumulative error across n = 13, 14 ... 49, 50 cycles  
tERR(nper)  
ps  
24  
Absolute clock HIGH pulse width  
Absolute clock Low pulse width  
tCH(abs)  
tCL(abs)  
0.43  
0.43  
-
-
0.43  
0.43  
-
-
0.43  
0.43  
-
-
0.43  
0.43  
-
-
tCK(avg)  
tCK(avg)  
25  
26  
Data Timing  
DQS,DQS to DQ skew, per group, per access  
DQ output hold time from DQS, DQS  
DQ low-impedance time from CK, CK  
DQ high-impedance time from CK, CK  
Data setup time to DQS, DQS referenced to  
tDQSQ  
tQH  
-
200  
-
-
150  
-
-
125  
-
-
100  
-
ps  
tCK(avg)  
ps  
13  
0.38  
-800  
-
0.38  
-600  
-
0.38  
-500  
-
0.38  
-450  
-
13, g  
tLZ(DQ)  
tHZ(DQ)  
400  
400  
300  
300  
250  
250  
225  
225  
13,14, f  
13,14, f  
ps  
tDS(base)  
75  
25  
30  
-
10  
ps  
d, 17  
-
-
V
(AC)V (AC) levels  
IL  
IH  
Data hold time to DQS, DQS referenced to  
(AC)V (AC) levels  
tDH(base)  
tDIPW  
150  
600  
-
-
100  
490  
-
-
65  
-
45  
ps  
ps  
d, 17  
28  
V
IH  
IL  
DQ and DM Input pulse width for each input  
Data Strobe Timing  
400  
360  
-
DQS, DQS READ Preamble  
DQS, DQS differential READ Postamble  
DQS, DQS output high time  
tRPRE  
tRPST  
tQSH  
0.9  
0.3  
Note 19  
0.9  
0.3  
Note 19  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19  
tCK  
tCK  
13, 19, g  
11, 13, b  
13, g  
Note 11  
Note 11  
Note 11  
Note 11  
0.38  
0.38  
0.9  
-
-
-
-
0.38  
0.38  
0.9  
-
-
-
-
-
-
-
-
-
-
-
-
tCK(avg)  
tCK(avg)  
tCK  
DQS, DQS output low time  
tQSL  
13, g  
DQS, DQS WRITE Preamble  
DQS, DQS WRITE Postamble  
tWPRE  
tWPST  
0.3  
0.3  
tCK  
DQS, DQS rising edge output access time from rising  
CK, CK  
tDQSCK  
-400  
-800  
-
400  
400  
400  
-300  
-600  
-
300  
300  
300  
-255  
-500  
-
255  
250  
250  
-225  
-450  
-
225  
225  
225  
ps  
ps  
ps  
13,f  
DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS)  
13,14,f  
12,13,14  
DQS, DQS high-impedance time (Referenced from  
tHZ(DQS)  
RL+BL/2)  
DQS, DQS differential input low pulse width  
tDQSL  
tDQSH  
tDQSS  
tDSS  
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
0.45  
0.45  
-0.27  
0.18  
0.18  
0.55  
0.55  
0.27  
-
tCK  
29, 31  
30, 31  
c
DQS, DQS differential input high pulse width  
DQS, DQS rising edge to CK, CK rising edge  
DQS,DQS faling edge setup time to CK, CK rising edge  
DQS,DQS faling edge hold time to CK, CK rising edge  
tCK  
tCK(avg)  
tCK(avg)  
tCK(avg)  
c, 32  
c, 32  
tDSH  
0.2  
-
0.2  
-
0.2  
-
-
Rev. 1.0 March 2009  
Page 44 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Tabel 47 ] Timing Parameters by Speed Bin (Cont.)  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
Note  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Command and Address Timing  
DLL locking time  
tDLLK  
tRTP  
512  
-
-
512  
-
-
512  
-
-
512  
-
-
nCK  
internal READ Command to PRECHARGE Command  
delay  
max  
max  
max  
max  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
(4nCK,7.5ns)  
(4nCK,7.5ns)  
Delay from start of internal write transaction to internal  
read command  
max  
max  
max  
max  
tWTR  
-
-
-
-
e,18  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
(4nCK,7.5ns)  
(4nCK,7.5ns)  
WRITE recovery time  
tWR  
15  
4
-
-
15  
4
-
-
15  
4
-
-
15  
4
-
-
ns  
Mode Register Set command cycle time  
tMRD  
nCK  
max  
max  
max  
max  
Mode Register Set command update delay  
tMOD  
(12nCK,15ns  
)
-
-
(12nCK,15ns  
)
-
-
(12nCK,15ns  
)
-
-
(12nCK,15ns  
)
-
-
CAS# to CAS# command delay  
tCCD  
tDAL(min)  
tMPRR  
tRAS  
4
4
4
4
nCK  
nCK  
nCK  
ns  
Auto precharge write recovery + precharge time  
Multi-Purpose Register Recovery Time  
ACTIVE to PRECHARGE command period  
WR + roundup (tRP / tCK(AVG))  
1
-
1
-
1
-
1
-
22  
e
See 13.3 " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin" on page 37  
max  
max  
max  
max  
ACTIVE to ACTIVE command period for 1KB page size  
ACTIVE to ACTIVE command period for 2KB page size  
tRRD  
tRRD  
-
-
-
-
-
-
-
-
e
e
(4nCK,10ns)  
(4nCK,7.5ns)  
(4nCK,6ns)  
(4nCK,6ns)  
max  
max  
max  
max  
(4nCK,10ns)  
(4nCK,10ns)  
(4nCK,7.5ns)  
(4nCK,7.5ns)  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
Command and Address setup time to CK, CK refer-  
tFAW  
tFAW  
40  
50  
-
-
37.5  
50  
-
-
30  
45  
-
-
30  
40  
-
-
ns  
ns  
e
e
tIS(base)  
tIH(base)  
200  
275  
125  
200  
65  
-
-
TBD  
TBD  
-
-
ps  
ps  
b,16  
b,16  
-
-
-
-
enced to V (AC) / V (AC) levels  
IH  
IL  
Command and Address hold time from CK, CK refer-  
enced to V (AC) / V (AC) levels  
140  
IH  
IL  
Command and Address setup time to CK, CK refer-  
enced to V (AC) / V (AC) levels  
tIS(base)  
AC150  
200 + 150  
900  
125 + 150  
780  
65+125  
620  
-
-
TBD+125  
560  
-
-
ps  
ps  
b,16,27  
28  
-
-
-
-
IH  
IL  
Control & Address Input pulse width for each input  
Calibration Timing  
tIPW  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation short calibration time  
Reset Timing  
tZQinitI  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
nCK  
nCK  
nCK  
23  
max(5nCK,  
max(5nCK,  
max(5nCK,  
max(5nCK,  
Exit Reset from CKE HIGH to a valid command  
tXPR  
-
-
-
-
tRFC + 10ns)  
tRFC + 10ns)  
tRFC + 10ns)  
tRFC + 10ns)  
Self Refresh Timing  
Exit Self Refresh to commands not requiring a locked  
DLL  
max(5nCK,tR  
FC + 10ns)  
max(5nCK,tR  
FC + 10ns)  
max(5nCK,tR  
FC + 10ns)  
max(5nCK,tR  
FC + 10ns)  
tXS  
-
-
-
-
-
-
-
-
-
-
-
-
Exit Self Refresh to commands requiring a locked DLL  
tXSDLL  
tCKESR  
tDLLK(min)  
tDLLK(min)  
tDLLK(min)  
tDLLK(min)  
nCK  
Minimum CKE low width for Self refresh entry to exit  
timing  
tCKE(min) +  
1tCK  
tCKE(min) +  
1tCK  
tCKE(min) +  
1tCK  
tCKE(min) +  
1tCK  
Valid Clock Requirement after Self Refresh Entry  
(SRE) or Power-Down Entry (PDE)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
tCKSRE  
tCKSRX  
-
-
-
-
-
-
-
-
Valid Clock Requirement before Self Refresh Exit  
(SRX) or Power-Down Exit (PDX) or Reset Exit  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
Rev. 1.0 March 2009  
Page 45 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 47 ] Timing Parameters by Speed Bin (Cont.)  
Speed  
Parameter  
Power Down Timing  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
Note  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Exit Power Down with DLL on to any valid com-  
mand;Exit Percharge Power Down with DLL  
frozen to commands not requiring a locked DLL  
max  
max  
max  
max  
tXP  
tXPDLL  
tCKE  
(3nCK,  
7.5ns)  
-
-
-
(3nCK,  
7.5ns)  
-
-
-
-
-
-
-
-
-
(3nCK,6ns)  
(3nCK,6ns)  
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
Exit Precharge Power Down with DLL frozen to com-  
mands requiring a locked DLL  
2
max  
max  
max  
max  
CKE minimum pulse width  
(3nCK,  
7.5ns)  
(3nCK,  
5.625ns)  
(3nCK,  
5.625ns)  
(3nCK,5ns)  
Command pass disable delay  
tCPDED  
tPD  
1
-
1
-
1
-
1
-
nCK  
tCK  
Power Down Entry to Exit Timing  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
15  
20  
20  
Timing of ACT command to Power Down entry  
Timing of PRE command to Power Down entry  
Timing of RD/RDA command to Power Down entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
1
-
-
-
1
1
-
-
-
1
1
-
-
-
1
1
-
-
-
nCK  
nCK  
RL + 4 +1  
RL + 4 +1  
RL + 4 +1  
RL + 4 +1  
WL + 4  
+(tWR/  
WL + 4  
+(tWR/  
WL + 4  
+(tWR/  
WL + 4  
+(tWR/  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
9
10  
9
tCK(avg))  
tCK(avg))  
tCK(avg))  
tCK(avg))  
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
WL + 4  
WL + 4  
WL + 4  
WL + 4  
+WR +1  
+WR +1  
+WR +1  
+WR +1  
WL + 2  
+(tWR/  
WL + 2  
+(tWR/  
WL + 2  
+(tWR/  
WL + 2  
+(tWR/  
Timing of WR command to Power Down entry  
(BL4MRS)  
tCK(avg))  
tCK(avg))  
tCK(avg))  
tCK(avg))  
Timing of WRA command to Power Down entry  
(BL4MRS)  
WL+2+WR  
+1  
WL+2+WR  
+1  
WL+2+WR  
+1  
WL+2+WR  
+1  
tWRAPDEN  
tREFPDEN  
10  
Timing of REF command to Power Down entry  
Timing of MRS command to Power Down entry  
ODT Timing  
1
-
-
1
-
-
1
-
-
1
-
-
20,21  
tMRSPDEN tMOD(min)  
tMOD(min)  
tMOD(min)  
tMOD(min)  
ODT high time without write command or with wirte  
command and BC4  
ODTH4  
ODTH8  
tAONPD  
4
6
2
-
-
4
6
2
-
-
4
6
2
-
-
4
6
2
-
-
nCK  
nCK  
ns  
ODT high time with Write command and BL8  
Asynchronous RTT tum-on delay (Power-Down with  
DLL frozen)  
8.5  
8.5  
8.5  
8.5  
Asynchronous RTT tum-off delay (Power-Down with  
DLL frozen)  
tAOFPD  
tAON  
2
8.5  
400  
0.7  
0.7  
2
8.5  
300  
0.7  
0.7  
2
8.5  
250  
0.7  
0.7  
2
8.5  
225  
0.7  
0.7  
ns  
ODT turn-on  
-400  
0.3  
0.3  
-300  
0.3  
0.3  
-250  
0.3  
0.3  
-225  
0.3  
0.3  
ps  
7,f  
8,f  
f
RTT_NOM and RTT_WR turn-off time from ODTLoff  
reference  
tAOF  
tCK(avg)  
tCK(avg)  
RTT dynamic change skew  
tADC  
Write Leveling Timing  
First DQS pulse rising edge after tDQSS margining  
mode is programmed  
tWLMRD  
40  
-
40  
-
40  
-
40  
-
tCK  
3
3
DQS/DQS delay after tDQS margining mode is pro-  
grammed  
tWLDQSEN  
tWLS  
25  
-
-
-
25  
-
-
-
25  
-
-
-
25  
-
-
-
tCK  
ps  
Setup time for tDQSS latch  
325  
325  
245  
245  
195  
195  
165  
165  
Write leveling hold time from rising DQS, DQS cross-  
ing to rising CK, CK crossing  
tWLH  
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9
2
0
0
9
2
0
0
9
2
0
0
7.5  
2
ns  
ns  
tWLOE  
Rev. 1.0 March 2009  
Page 46 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
14.1 Jitter Notes  
Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input  
clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another  
Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.  
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge  
to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per),  
tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these param-  
eters should be met whether clock jitter is present or not.  
Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) cross-  
ing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the  
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.  
Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe  
signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] =  
RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the  
device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For  
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifi-  
cations are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to  
input clock jitter.  
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock,  
where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps,  
then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) =  
tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) =  
- 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)  
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=  
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.  
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (out-  
put deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act =  
2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9  
x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min =  
0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)  
Rev. 1.0 March 2009  
Page 47 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
14.2 Timing Parameter Notes  
1. Actual value dependant upon measurement level definitions which are TBD.  
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register  
5. Value must be rounded-up to next higher integer value  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. For definition of RTT turn-on time tAON see "Device Operation"  
8. For definition of RTT turn-off time tAOF see "Device Operation".  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.  
10. WR in clock cycles as programmed in MR0  
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. Device Operation.  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated  
by TBD  
13. Value is valid for RON34  
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.  
15. tREFI depends on T  
OPER  
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,  
V
(DC) = V DQ(DC). FOr input only pins except RESET, V (DC)=V CA(DC).  
REF  
REF  
REF  
REF  
See "Address/ Command Setup, Hold and Derating"  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,  
V
(DC)= V  
DQ(DC). For input only pins except RESET, V  
(DC)=V  
CA(DC).  
REF  
REF  
REF  
REF  
See "Data Setup, Hold and Slew Rate Derating"  
18. Start of internal write transaction is definited as follows ;  
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL  
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL  
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation"  
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down  
IDD spec will not be applied until finishing those operations.  
21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time  
such as tXPDLL(min) is also required. See "Device Operation".  
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming  
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The  
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.  
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-  
ject to in the application, is illustrated. The interval could be defined by the following formula:  
ZQCorrection  
(TSens x Tdriftrate) + (VSens x Vdriftrate)  
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.  
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-  
lated as:  
0.5  
~
~
= 0.133  
128ms  
(1.5 x 1) + (0.15 x 15)  
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.  
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.  
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-  
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].  
28. Pulse width of a input signal is defined as the width between the first crossing of V  
(DC) and the consecutive crossing of V  
(DC)  
REF  
REF  
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.  
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.  
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
Rev. 1.0 March 2009  
Page 48 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
14.3 Address / Command Setup, Hold and Derating:  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table  
48) to the tIS and tIH derating value (see Table 49) respectively.  
Example: tIS (total setup time) = tIS(base) + tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
V
REF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as  
the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate  
line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value (see Figure 23). If the actual signal is later than the nominal slew  
rate line anywhere between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for der-  
ating value (see Figure 25).  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If  
the actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value (see  
Figure 24). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line  
to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 26).  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 50).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
[ Table 48 ] ADD/CMD Setup and Hold Base-Values for 1V/ns  
[ps]  
tIS(base)  
DDR3-800  
200  
DDR3-1066  
125  
DDR3-1333  
65  
DDR3-1600  
45  
reference  
VIH/L(AC)  
VIH/L(DC)  
VIH/L(AC)  
tIH(base)  
275  
200  
140  
120  
tIS(base)-AC150  
200 + 150  
125 + 150  
65+125  
45+125  
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate  
Note : The tIS(base)-AC150 specifications are further adjusted to add an addi-tional 100ps of derating to accommodate for the lower alternate thresh-old  
of 150mV and another 25ps to acccount for the earlier reference point [(175mv-150mV)/1 V/ns].  
[ Table 49 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based  
tIS, tIH Derating [ps] AC/DC based  
AC175 Threshold -> VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV  
CLK,CLK Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
88  
59  
0
88  
59  
0
96  
67  
8
104  
75  
16  
14  
10  
5
112  
83  
24  
20  
13  
13  
7
120  
91  
32  
30  
26  
21  
15  
-2  
128  
99  
40  
38  
34  
29  
23  
5
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
-2  
-4  
-2  
-4  
-2  
-4  
6
4
46  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
2
-2  
40  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-3  
-9  
-27  
-54  
-8  
0
34  
V/ns  
-18  
-32  
-52  
-1  
-10  
-24  
-44  
-2  
24  
-19  
-46  
-11  
-38  
-16  
-36  
-6  
10  
-30  
-26  
-22  
-10  
Rev. 1.0 March 2009  
Page 49 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
[ Table 50 ] Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC150 Threshold -> VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV  
CLK,CLK Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
75  
50  
0
75  
50  
0
83  
58  
8
91  
66  
16  
16  
16  
16  
15  
6
99  
74  
24  
24  
24  
24  
23  
14  
-1  
107  
82  
32  
32  
32  
32  
31  
22  
7
115  
90  
40  
40  
40  
40  
39  
30  
15  
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
0
-4  
0
-4  
0
-4  
8
4
46  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
8
-2  
40  
0
0
0
8
-8  
0
34  
V/ns  
-1  
-10  
-25  
-1  
-10  
-25  
-1  
-10  
-25  
7
-18  
-32  
-52  
-10  
-24  
-44  
-2  
24  
-2  
-17  
-16  
-36  
-6  
10  
-9  
-26  
-10  
[ Table 51 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition  
tVAC @175mV [ps]  
Slew Rate[V/ns]  
tVAC @150mV [ps]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
>2.0  
2.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
< 0.5  
0
Rev. 1.0 March 2009  
Page 50 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
VIH(AC) min  
VREF to ac  
region  
V
IH(DC) min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC) max  
VREF to ac  
region  
VIL(AC) max  
VSS  
tVAC  
Delta TF  
Delta TR  
Setup Slew Rate VIH(AC)min - VREF(DC)  
=
V
REF(DC) - VIL(AC)max  
Setup Slew Rate  
=
Rising Signal  
Delta TR  
Falling Signal  
Delta TF  
Figure 21 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock).  
Rev. 1.0 March 2009  
Page 51 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
V
IH(DC) min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
dc to VREF  
region  
dc to VREF  
region  
slew rate  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
Hold Slew Rate  
Hold Slew Rate  
Rising Signal  
VREF(DC) - VIL(DC)max  
Delta TR  
V
IH(DC)min - VREF(DC)  
Delta TF  
=
=
Falling Signal  
Figure 22 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock).  
Rev. 1.0 March 2009  
Page 52 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
nominal  
line  
VIH(AC) min  
V
REF to ac  
region  
V
IH(DC) min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC) max  
VIL(AC) max  
VREF to ac  
region  
nominal  
line  
Delta TR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Delta TR  
Setup Slew Rate  
=
Rising Signal  
Delta TF  
Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max]  
=
Falling Signal  
Delta TF  
Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
Rev. 1.0 March 2009  
Page 53 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
nominal  
line  
V
IH(DC) min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Delta TR  
Hold Slew Rate  
=
Rising Signal  
tangent line [ VIH(DC)min - VREF(DC) ]  
Delta TF  
Hold Slew Rate  
=
Falling Signal  
Figure 24 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
Rev. 1.0 March 2009  
Page 54 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
14.4 Data Setup, Hold and Slew Rate Derating:  
or all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see  
Table 52) to the tDS and tDH (see Table 53) derating value respectively. Example: tDS (total setup time) = tDS(base) + tDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min.  
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max  
(see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for  
derating value. If the actual signal is later than the nominal slew rate line anywhere  
between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see  
Figure 27).  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC)  
(see Figure 26). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for  
derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent  
line to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 28).  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 54).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization  
[ Table 52 ] Data Setup and Hold Base-Value  
[ps]  
DDR3-800  
75  
DDR3-1066  
25  
DDR3-1333  
DDR3-1600  
reference  
VIH/L(AC)  
VIH/L(DC)  
VIH/L(AC)  
tDS(base)  
tDH(base)  
tDS(AC150)  
30  
65  
-
10  
45  
-
150  
100  
75+50  
25+50  
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)  
[ Table 53 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based  
tDS, tDH Derating [ps] AC/DC baseda  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
-
50  
34  
0
-
88  
59  
0
-2  
-
50  
34  
0
-4  
-
88  
59  
0
50  
34  
0
-
67  
8
6
2
-3  
-
-
42  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
14  
10  
5
16  
12  
6
-
-
-
-
DDR3 DQ  
-2  
-6  
-
-4  
-10  
-
4
22  
18  
13  
7
20  
14  
8
-
-
-
-
-
-
-
Slew  
-
-
-2  
-8  
-
26  
21  
15  
-2  
-30  
-
24  
18  
8
800/ rate  
1066 V/ns  
-
-
-
-
0
29  
23  
6
34  
24  
10  
-10  
-
-
-
-
-
-
-
-1  
-
-10  
-
-2  
-16  
-
-
-
-
-
-
-
-
-
-11  
-
-6  
-26  
-
-
-
-
-
-
-
-
-
-
-
-
-22  
-
75  
50  
0
-
50  
34  
0
-
75  
50  
0
0
-
50  
34  
0
-4  
-
75  
50  
0
50  
34  
0
-
-
-
-
-
58  
8
8
8
8
-
42  
8
-
-
-
-
-
-
-
-
16  
16  
16  
16  
15  
-
16  
12  
6
-
-
-
-
-
-
-
DDR3 DQ  
0
-4  
-10  
-
4
24  
24  
24  
23  
14  
-
20  
14  
8
-2  
-16  
-
-
-
-
-
Slew  
-
-
0
-2  
-8  
-
32  
32  
31  
22  
7
24  
18  
8
-6  
-26  
-
-
1333/ rate  
1600 V/ns  
-
-
-
-
-
0
40  
39  
30  
15  
34  
24  
10  
-10  
-
-
-
-
-
-
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Note : a. Cell contents shaded in red are defined as ’not supported’.  
[ Table 54 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition  
tVAC[ps] DDR3-800/1066  
Slew Rate[V/ns]  
tVAC[ps] DDR3-1333/1600  
min max  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
-
-
-
-
-
-
-
-
-
-
175  
170  
167  
163  
162  
161  
159  
155  
155  
150  
-
-
-
-
-
-
-
-
-
-
0
Rev. 1.0 March 2009  
Page 55 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
VIH(AC) min  
VREF to ac  
region  
V
IH(DC) min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC) max  
VREF to ac  
region  
VIL(AC) max  
VSS  
tVAC  
Delta TF  
Delta TR  
V
REF(DC) - VIL(AC)max  
Setup Slew Rate VIH(AC)min - VREF(DC)  
Setup Slew Rate  
=
=
Rising Signal  
Delta TR  
Falling Signal  
Delta TF  
Figure 25 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock).  
Rev. 1.0 March 2009  
Page 56 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
V
IH(DC) min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
dc to VREF  
region  
dc to VREF  
region  
slew rate  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
V
REF(DC) - VIL(DC)max  
VIH(DC)min - VREF(DC)  
Delta TF  
Hold Slew Rate  
Rising Signal  
Hold Slew Rate  
Falling Signal  
=
=
Delta TR  
Figure 26 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock).  
Rev. 1.0 March 2009  
Page 57 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
nominal  
line  
VIH(AC) min  
V
REF to ac  
region  
V
IH(DC) min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC) max  
VIL(AC) max  
VREF to ac  
region  
nominal  
line  
Delta TR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Delta TR  
Setup Slew Rate  
=
Rising Signal  
Delta TF  
tangent line[VREF(DC) - VIL(AC)max]  
Delta TF  
Setup Slew Rate  
=
Falling Signal  
Figure 27 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
Rev. 1.0 March 2009  
Page 58 of 59  
K4B4G0446B  
K4B4G0846B  
DDP 4Gb DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
nominal  
line  
V
IH(DC) min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Delta TR  
Hold Slew Rate  
=
Rising Signal  
tangent line [ VIH(DC)min - VREF(DC) ]  
Delta TF  
Hold Slew Rate  
=
Falling Signal  
Figure 28 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
Rev. 1.0 March 2009  
Page 59 of 59  

相关型号:

K4B4G0846B-MCH9T

DDR DRAM, 512MX8, CMOS, PBGA78,
SAMSUNG

K4B4G0846E

4Gb E-die DDR3L SDRAM
SAMSUNG

K4B4G0846E-BMK0

4Gb E-die DDR3L SDRAM
SAMSUNG

K4B4G0846E-BMMA

4Gb E-die DDR3L SDRAM
SAMSUNG

K4B4G0846E-BYK0

4Gb E-die DDR3L SDRAM
SAMSUNG

K4B4G0846E-BYMA

4Gb E-die DDR3L SDRAM
SAMSUNG

K4B4G1646B

4Gb B-die DDR3 SDRAM Olny x16
SAMSUNG

K4B4G1646B-HCF8

4Gb B-die DDR3 SDRAM Olny x16
SAMSUNG

K4B4G1646B-HCH9

4Gb B-die DDR3 SDRAM Olny x16
SAMSUNG

K4B4G1646B-HCK0

4Gb B-die DDR3 SDRAM Olny x16
SAMSUNG

K4B4G1646B-HCMA

4Gb B-die DDR3 SDRAM Olny x16
SAMSUNG

K4B4G1646B-HCNB

4Gb B-die DDR3 SDRAM Olny x16
SAMSUNG