K4D261638I-LC40T [SAMSUNG]

DDR DRAM, 8MX16, 0.6ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66;
K4D261638I-LC40T
型号: K4D261638I-LC40T
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 8MX16, 0.6ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66

时钟 动态存储器 双倍数据速率 光电二极管 内存集成电路
文件: 总19页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K4D261638I  
128M GDDR SDRAM  
128Mbit GDDR SDRAM  
2M x 16Bit x 4 Banks  
Graphic Double Data Rate  
Synchronous DRAM  
Revision 1.2  
November 2006  
Notice  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
- 1 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
Revision History  
Revision  
Month  
Year  
History  
- Target Spec  
- Defined target specification  
0.0  
March  
2005  
- Corrected typo.  
0.1  
1.0  
May  
2005  
2005  
- Added CL2 feature in AC Characteristics.  
- Finalized SPEC  
- Deleted CL2.5 option  
August  
1.1  
1.2  
January  
November  
2006  
2006  
- Corrected typo.  
- Corrected typo.  
- 2 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
2M x 16Bit x 4 Banks Double Data Rate Synchronous DRAM  
with Bi-directional Data Strobe and DLL  
1.0 FEATURES  
• 2.5V + 5% power supply for device operation  
• 2.5V + 5% power supply for I/O interface  
• SSTL_2 compatible inputs/outputs  
• 4 banks operation  
• 2 DQS’s ( 1DQS / Byte )  
• Data I/O transactions on both edges of Data strobe  
• DLL aligns DQ and DQS transitions with Clock transition  
• Edge aligned data & data strobe output  
• Center aligned data & data strobe input  
• DM for write masking only  
• MRS cycle with address key programs  
-. Read latency 2,3(clock)  
-. Burst length (2, 4 and 8)  
• Auto & Self refresh  
-. Burst type (sequential & interleave)  
• All inputs except data & DM are sampled at the positive going  
edge of the system clock  
• 32ms refresh period (4K cycle)  
• Lead free 66pin TSOP-II (RoHS compliant)  
• Maximum clock frequency up to 250MHz  
• Maximum data rate up to 500Mbps/pin  
• Differential clock input  
• Wrtie-Interrupted by Read Function  
2.0 ORDERING INFORMATION  
Part NO.  
K4D261638I-LC40  
K4D261638I-LC50  
Max Freq.  
250MHz  
200MHz  
Max Data Rate  
500Mbps/pin  
400Mbps/pin  
Interface  
Package  
SSTL_2  
66pin TSOP-II  
* K4D261638I-TC is the Leaded package part number.  
* For K4D261638I-LC50, VDD & VDDQ = 2.375V to 2.7V.  
3.0 GENERAL DESCRIPTION  
FOR 2M x 16Bit x 4 Bank DDR SDRAM  
The K4D261638I is 134,217,728 bits of hyper synchronous data rate Dynamic RAM organized as 4 x 2,097,152 words by 16 bits, fabri-  
cated with SAMSUNGs high performance CMOS technology. Synchronous features with Data Strobe allow extremely high performance  
up to 1GB/s/chip. I/O transactions are possible on both edges of the clock cycle. Range of operating frequencies, programmable burst  
length and programmable latencies allow the device to be useful for a variety of high performance memory system applications.  
- 3 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
4.0 PIN CONFIGURATION (Top View)  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
1
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC  
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
NC  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
66 PIN TSOP(II)  
(400mil x 875mil)  
(0.65 mm Pin Pitch)  
VSSQ  
UDQS  
NC  
VDDQ  
LDQS  
NC  
VREF  
VSS  
VDD  
NC  
UDM  
CK  
LDM  
WE  
CK  
CAS  
RAS  
CS  
22  
23  
CKE  
NC  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC  
NC  
A11  
BA0  
BA1  
AP/A10  
A0  
A9  
A8  
A7  
A6  
A1  
A5  
A2  
A4  
A3  
VSS  
VDD  
PIN DESCRIPTION  
CK,CK  
CKE  
CS  
Differential Clock Input  
Clock Enable  
Chip Select  
BA0, BA1  
A0 ~A11  
DQ0 ~ DQ15  
VDD  
VSS  
Bank Select Address  
Address Input  
Data Input/Output  
Power  
RAS  
Row Address Strobe  
CAS  
Column Address Strobe  
Write Enable  
Ground  
WE  
VDDQ  
VSSQ  
NC  
Power for DQ’s  
Ground for DQ’s  
No Connection  
L(U)DQS  
Data Strobe  
L(U)DM  
RFU  
Data Mask  
Reserved for Future Use  
- 4 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
5.0 INPUT/OUTPUT FUNCTIONAL DESCRIPTION  
Symbol  
Type  
Function  
The differential system clock Input.  
All of the inputs are sampled on the rising edge of the clock except DQ’s and DM’s that are  
sampled on both edges of the DQS.  
CK, CK*1  
Input  
Activates the CK signal when high and deactivates the CK signal when low. By deactivating  
the clock, CKE low indicates the Power down mode or Self refresh mode.  
CS enables the command decoder when low and disabled the command decoder when high.  
When the command decoder is disabled, new commands are ignored but previous operations  
continue.  
CKE  
CS  
Input  
Input  
Latches row addresses on the positive going edge of the CK with RAS low. Enables row  
access & precharge.  
Latches column addresses on the positive going edge of the CK with CAS low. Enables col-  
umn access.  
Enables write operation and row precharge.  
Latches data in starting from CAS, WE active.  
RAS  
CAS  
WE  
Input  
Input  
Input  
Data input and output are synchronized with both edge of DQS.  
For the x16, LDQS corresponds to the data on DQ0-DQ7 ; UDQS corresponds to the data on  
DQ8-DQ15.  
Data in Mask. Data In is masked by DM Latency=0 when DM is  
high in burst write. For the x16, LDM corresponds to the data on DQ0-DQ7 ; UDM correspons  
to the data on DQ8-DQ15.  
LDQS,UDQS  
LDM,UDM  
Input/Output  
Input  
DQ0 ~ DQ15  
BA0, BA1  
Input/Output  
Input  
Data inputs/Outputs are multiplexed on the same pins.  
Selects which bank is to be active.  
Row/Column addresses are multiplexed on the same pins.  
Row addresses : RA0 ~ RA11, Column addresses : CA0 ~ CA8.  
A0 ~ A11  
VDD/VSS  
Input  
Power Supply  
Power Supply  
Power Supply  
Power and ground for the input buffers and core logic.  
VDDQ/VSSQ  
Isolated power supply and ground for the output buffers to provide improved noise immunity.  
Reference voltage for inputs, used for SSTL interface.  
VREF  
No connection/  
Reserved for future use  
NC/RFU  
This pin is recommended to be left "No connection" on the device  
*1 : The timing reference point for the differential clocking is the cross point of CK and CK.  
For any applications using the single ended clocking, apply VREF to CK pin.  
- 5 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
6.0 BLOCK DIAGRAM (2Mbit x 16I/O x 4 Bank)  
16  
Intput Buffer  
LWE  
CK, CK  
Data Input Register  
Serial to parallel  
LDMi  
Bank Select  
2Mx16  
2Mx16  
2Mx16  
2Mx16  
32  
16  
x16  
DQi  
CK,CK  
ADDR  
Column Decoder  
Latency & Burst Length  
Data Strobe  
Programming Register  
LWCBR  
DLL  
LCKE  
LRAS LCBR  
LWE  
LCAS  
CK,CK  
LDMi  
Timing Register  
UDM  
CK,CK  
CKE  
CS  
RAS  
CAS  
WE  
LDM  
- 6 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
7.0 FUNCTIONAL DESCRIPTION  
7.1 Power-Up Sequence  
DDR SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
1. Apply power and keep CKE at low state (All other inputs may be undefined)  
- Apply VDD before VDDQ  
.
- Apply VDDQ before VREF & VTT  
2. Start clock and maintain stable condition for minimum 200us.  
3. The minimum of 200us after stable power and clock(CK,CK), apply NOP and take CKE to be high .  
4. Issue precharge command for all banks of the device.  
5. Issue a EMRS command to enable DLL  
*1  
6. Issue a MRS command to reset DLL. The additional 200 clock cycles are required to lock the DLL.  
*1,2 7. Issue precharge command for all banks of the device.  
8. Issue at least 2 or more auto-refresh commands.  
9. Issue a mode register set command with A8 to low to initialize the mode register.  
*1 The additional 200cycles of clock input is required to lock the DLL after enabling DLL.  
*2 Sequence of 6&7 is regardless of the order.  
Power up & Initialization Sequence  
0
1
2
3
4
5
6
7
8
9
10 11  
12 13  
14 15 16 17  
18 19  
CK,CK  
tRP  
2 Clock min.  
tRFC  
2 Clock min.  
tRFC  
tRP  
2 Clock min.  
Command  
2nd Auto  
Refresh  
precharge  
ALL Banks  
MRS  
DLL Reset  
precharge  
ALL Banks  
1st Auto  
Refresh  
Mode  
Any  
EMRS  
Register Set  
Command  
200 Clock min.  
Inputs must be  
stable for 200us  
* When the operating frequency is changed, DLL reset should be required again.  
After DLL reset again, the minimum 200 cycles of clock input is needed to lock the DLL.  
- 7 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
7.2 MODE REGISTER SET(MRS)  
The mode register stores the data for controlling the various operating modes of DDR SDRAM. It programs CAS latency, addressing  
mode, burst length, test mode, DLL reset and various vendor specific options to make DDR SDRAM useful for variety of different appli-  
cations. The default value of the mode register is not defined, therefore the mode register must be written after EMRS setting for proper  
operation. The mode register is written by asserting low on CS, RAS, CAS and WE(The DDR SDRAM should be in active mode with  
CKE already high prior to writing into the mode register). The state of address pins A0 ~ A11 and BA0, BA1 in the same cycle as CS,  
RAS, CAS and WE going low is written in the mode register. Minimum two clock cycles are requested to complete the write operation in  
the mode register. The mode register contents can be changed using the same command and clock cycle requirements during opera-  
tion as long as all banks are in the idle state. The mode register is divided into various fields depending on functionality. The burst length  
uses A0 ~ A2, addressing mode uses A3, CAS latency(read latency from column address) uses A4 ~ A6. A7 is used for test mode. A8 is  
used for DLL reset. A7,A8, BA0 and BA1 must be set to low for normal MRS operation. Refer to the table for specific codes for various  
burst length, addressing modes and CAS latencies.  
Address Bus  
BA1  
BA0  
0
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
RFU*1  
RFU*1  
DLL  
TM  
CAS Latency  
Burst Length  
Mode Register  
Burst Type  
DLL  
Test Mode  
A3  
0
1
Type  
Sequential  
Interleave  
A8  
0
1
DLL Reset  
No  
A7  
0
1
mode  
Normal  
Test  
Yes  
CAS Latency  
Burst Length  
BA0  
0
1
An ~ A0  
MRS  
EMRS  
A6  
0
0
0
0
1
1
1
1
A5  
0
0
1
1
0
0
1
1
A4  
0
1
0
1
0
1
0
1
Latency  
Burst Type  
A2  
A1  
A0  
Reserved  
Reserved  
2
Sequential  
Reserve  
2
Interleave  
Reserve  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3
4
8
4
8
*1 : RFU(Reserved for future use)  
should stay "0" during MRS cycle.  
Reserved  
Reserved  
Reserved  
Reserved  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
MRS Cycle  
0
1
2
3
4
5
6
7
8
CK, CK  
Precharge  
All Banks  
Any  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
NOP  
Command  
Command  
tMRD=2 tCK  
tRP  
*1 : MRS can be issued only at all banks precharge state.  
*2 : Minimum tRP is required to issue MRS command.  
- 8 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
7.3 EXTENDED MODE REGISTER SET(EMRS)  
The extended mode register stores the data for enabling or disabling DLL and selecting output driver strength. The default value of the  
extended mode register is not defined, therefore the extened mode register must be written after power up for enabling or disabling DLL.  
The extended mode register is written by asserting low on CS, RAS, CAS, WE and high on BA0(The DDR SDRAM should be in all bank  
precharge with CKE already high prior to writing into the extended mode register). The state of address pins A0, A2 ~ A5, A7 ~ A11 and  
BA1 in the same cycle as CS, RAS, CAS and WE going low are written in the extended mode register. A1 and A6 are used for setting  
driver strength to normal, weak or matched impedance. Two clock cycles are required to complete the write operation in the extended  
mode register. The mode register contents can be changed using the same command and clock cycle requirements during operation as  
long as all banks are in the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. All the other address pins  
except A0,A1,A6 and BA0 must be set to low for proper EMRS operation. Refer to the table for specific codes.  
Address Bus  
BA1  
BA0  
1
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Extended  
RFU*1  
RFU*1  
RFU*1  
D.I.C  
D.I.C  
DLL  
Mode Register  
BA0  
0
1
An ~ A0  
MRS  
EMRS  
A6  
0
0
A1  
0
1
Output Driver Impedence Control  
A0  
0
1
DLL Enable  
Enable  
Full  
Weak  
Matced  
Disable  
1
1
*1 : RFU(Reserved for future use) should stay "0" during EMRS cycle.  
- 9 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
7.4 WRITE INTERRUPTED BY A READ  
A burst write can be interrupted by a read command of any bank. The DQs must be in the high impedance state at least one clock  
cycle before the interrupting read data appear on the outputs to avoid data contention. When the read command is registered, any  
residual data from the burst write cycle must be masked by DM. The delay from the last data to read command (tCDLR) is required to  
avoid the data contention DRAM inside. Data that are presented on the DQ pins before the read command is initiated will actually be  
written to the memory. Read command interrupting write can not be issued at the next clock edge of that of write command.  
< Burst Length=8, CAS Latency=3 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
CMD  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
t
WR  
DQSSmax  
tWPREH  
DQS  
DQ  
tWPRES  
Din 7  
Din 0 Din 1 Din 2 Din 3 Din 4 Din 5 Din 6  
Dout 0  
s
DM  
The following function established how a Read command may interrupt a Write burst and which input data is not written into the memory.  
1. For Read commands interrupting a Write burst, the minimum Write to Read command delay is 2 clock cycles. The case where the Write to Read delay  
is 1 clock cycle is disallowed  
2. For Read commands interrupting a Write burst, the DM pin must be used to mask the input data words whcich immediately precede the interrupting  
Read operation and the input data word which immediately follows the interrupting Read operation  
3. For all cases of a Read interrupting a Write, the DQ and DQS buses must be released by the driving chip (i.e., the memory controller) in time to allow  
the buses to turn around before the DDR SDRAM drives them during a read operation.  
4. If input Write data is masked by the Read command, the DQS input is ignored by the DDR SDRAM.  
5. Refer to "3.3.2 Burst write operation"  
8.0 ABSOLUTE MAXIMUM RATINGS  
Parameter  
Voltage on any pin relative to Vss  
Voltage on VDD supply relative to Vss  
Voltage on VDD supply relative to Vss  
Storage temperature  
Symbol  
VIN, VOUT  
VDD  
Value  
-0.5 ~ 3.6  
-1.0 ~ 3.6  
-0.5 ~ 3.6  
-55 ~ +150  
2.0  
Unit  
V
V
V
°C  
W
VDDQ  
TSTG  
Power dissipation  
PD  
Short circuit current  
IOS  
50  
mA  
Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
- 10 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
9.0 AC & DC OPERATING CONDITIONS  
9.1 POWER & DC OPERATING CONDITIONS(SSTL_2 In/Out)  
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 65°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Device Supply voltage  
VDD  
2.375  
2.50  
2.625  
V
1, 7  
Output Supply voltage  
Reference voltage  
VDDQ  
VREF  
Vtt  
2.375  
0.49*VDDQ  
VREF-0.04  
VREF+0.15  
-0.30  
2.50  
2.625  
0.51*VDDQ  
VREF+0.04  
VDDQ+0.30  
VREF-0.15  
-
V
V
1, 7  
-
2
Termination voltage  
Input logic high voltage  
Input logic low voltage  
Output logic high voltage  
Output logic low voltage  
Input leakage current  
Output leakage current  
Note :  
VREF  
V
3
VIH  
-
-
-
-
-
-
V
4
VIL  
V
5
VOH  
VOL  
IIL  
Vtt+0.76  
-
V
IOH=-15.2mA  
Vtt-0.76  
5
V
IOL=+15.2mA  
-5  
uA  
uA  
6
6
IOL  
-5  
5
1. Under all conditions VDDQ must be less than or equal to VDD  
.
2. VREF is expected to equal 0.50*VDDQ of the transmitting device and to track variations in the DC level of the same. Peak to peak noise on the VREF  
may not exceed + 2% of the DC value. Thus, from 0.50*VDDQ, VREF is allowed + 25mV for DC error and an additional + 25mV for AC noise.  
3. Vtt of the transmitting device must track VREF of the receiving device.  
4. VIH(max.)= VDDQ +1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.  
5. VIL(mim.)= -1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.  
6. For any pin under test input of 0V < VIN < VDD is acceptable. For all other pins that are not under test VIN=0V.  
7. For K4D261638I-LC50, VDD & VDDQ = 2.375V to 2.7V.  
9.2 DC CHARACTERISTICS  
Recommended operating conditions Unless Otherwise Noted ( TA=0 to 65°C)  
Version  
Parameter  
Symbol  
Test Condition  
Unit  
Note  
-40  
-50  
Burst Lenth=2 tRC tRC(min)  
Operating Current  
ICC1  
ICC2P  
ICC2N  
ICC3P  
ICC3N  
ICC4  
200  
180  
mA  
mA  
mA  
mA  
mA  
mA  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
(One Bank Active)  
IOL=0mA, tCC= tCC(min)  
Precharge Standby Current  
in Power-down mode  
45  
70  
40  
60  
CKE VIL(max), tCC= tCC(min)  
CKE VIH(min), CS VIH(min),  
tCC= tCC(min).  
Precharge Standby Current  
in Non Power-down mode  
Active Standby Current  
power-down mode  
85  
70  
CKE VIL(max), tCC= tCC(min)  
CKE VIH(min), CS VIH(min),  
tCC= tCC(min) .  
Active Standby Current in  
in Non Power-down mode  
135  
390  
110  
345  
Operating Current  
( Burst Mode)  
IOL=0mA ,tCC= tCC(min), Page Burst,  
All Banks activated.  
Refresh Current  
ICC5  
ICC6  
mA  
mA  
tRC tRFC(min)  
CKE 0.2V  
200  
10  
180  
10  
1, 2,3  
1, 2  
Self Refresh Current  
Note :  
1. Measured with output open.  
2. Current meassured at VDD(max).  
3. Refresh period is 32ms.  
- 11 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
9.3 AC INPUT OPERATING CONDITIONS  
Recommended operating conditions(Voltage referenced to VSS=0V, VDD=2.5V+ 5%, VDDQ=2.5V+ 5%,TA=0 to 65°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Input High (Logic 1) Voltage; DQ  
VIH  
VREF+0.35  
-
-
V
Input Low (Logic 0) Voltage; DQ  
Clock Input Differential Voltage; CK and CK  
Clock Input Crossing Point Voltage; CK and CK  
Note :  
VIL  
VID  
VIX  
-
-
-
-
VREF-0.35  
VDDQ+0.6  
V
V
V
0.7  
1
2
0.5*VDDQ-0.2  
0.5*VDDQ+0.2  
1. VID is the magnitude of the difference between the input level on CK and the input level on CK.  
2. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same.  
3. For K4D261638I-LC50, VDD & VDDQ = 2.375V to 2.7V.  
(VDD=2.5V+ 5%*2 , TA= 0 to 65°C)  
9.4 AC OPERATING TEST CONDITIONS  
Parameter  
Value  
Unit  
Note  
Input reference voltage for CK(for single ended)  
0.50*VDDQ  
V
1
CK and CK signal maximum peak swing  
CK signal minimum slew rate  
Input Levels(VIH/VIL)  
1.5  
1.0  
V
V/ns  
V
VREF+0.35/VREF-0.35  
Input timing measurement reference level  
Output timing measurement reference level  
VREF  
Vtt  
V
V
Output load condition  
Note :  
See Fig.1  
1. In case of differential clocks(CK and CK ), input reference voltage for clock is a CK and CK’s crossing point.  
2. For K4D261638I-LC50, VDD & VDDQ = 2.375V to 2.7V.  
Vtt=0.5*VDDQ  
RT=50Ω  
Output  
Z0=50Ω  
VREF  
=0.5*VDDQ  
CLOAD=30pF  
(Fig. 1) Output Load Circuit  
- 12 -  
Rev. 1.2 November 2006  
K4D261638I  
9.5 CAPACITANCE  
128M GDDR SDRAM  
(VDD=2.5V, TA= 25°C, f=1MHz)  
Parameter  
Input capacitance( CK, CK )  
Input capacitance(A0~A11, BA0~BA1)  
Input capacitance( CKE, CS, RAS,CAS, WE )  
Data & DQS input/output capacitance(DQ0~DQ15)  
Input capacitance(DM0 ~ DM3)  
Symbol  
CIN1  
CIN2  
Min  
1.0  
1.0  
1.0  
1.0  
1.0  
Max  
5.0  
4.0  
4.0  
6.5  
6.5  
Unit  
pF  
pF  
pF  
pF  
CIN3  
COUT  
CIN4  
pF  
DECOUPLING CAPACITANCE GUIDE LINE  
Recommended decoupling capacitance added to power line at board.  
Parameter  
Decoupling Capacitance between VDD and VSS  
Decoupling Capacitance between VDDQ and VSSQ  
Symbol  
CDC1  
CDC2  
Value  
0.1 + 0.01  
0.1 + 0.01  
Unit  
uF  
uF  
1. VDD and VDDQ pins are separated each other. All VDD pins are connected in chip. All VDDQ pins are connected in chip.  
2. VSS and VSSQ pins are separated each other. All VSS pins are connected in chip. All VSSQ pins are connected in chip.  
9.6 AC CHARACTERISTICS  
-40  
-50  
Parameter  
Symbol  
Unit  
Note  
Min  
7.5  
4.0  
0.45  
0.45  
-0.6  
-0.6  
-
0.9  
0.4  
0.85  
0
0.35  
0.4  
0.4  
0.4  
0.9  
0.9  
0.4  
0.4  
Max  
10  
10  
0.55  
0.55  
0.6  
0.6  
0.4  
1.1  
0.6  
1.15  
-
Min  
7.5  
5.0  
0.45  
0.45  
-0.7  
-0.7  
-
0.9  
0.4  
0.8  
0
0.3  
0.4  
0.4  
0.4  
1.0  
1.0  
0.45  
0.45  
Max  
10  
10  
0.55  
0.55  
0.7  
0.7  
0.45  
1.1  
0.6  
1.2  
-
CL=2  
CL=3  
tCK  
tCK  
tCH  
ns  
ns  
tCK  
tCK  
ns  
ns  
ns  
tCK  
tCK  
tCK  
ns  
CK cycle time  
CK high level width  
CK low level width  
DQS out access time from CK  
Output access time from CK  
Data strobe edge to Dout edge  
Read preamble  
Read postamble  
CK to valid DQS-in  
DQS-In setup time  
DQS-in hold time  
tCL  
tDQSCK  
tAC  
tDQSQ  
tRPRE  
tRPST  
tDQSS  
tWPRES  
tWPREH  
tWPST  
tDQSH  
tDQSL  
tIS  
1
-
-
tCK  
tCK  
tCK  
tCK  
ns  
DQS write postamble  
0.6  
0.6  
0.6  
-
-
-
0.6  
0.6  
0.6  
-
DQS-In high level width  
DQS-In low level width  
Address and Control input setup  
Address and Control input hold  
DQ and DM setup time to DQS  
DQ and DM hold time to DQS  
tIH  
tDS  
tDH  
-
ns  
-
ns  
-
-
ns  
tCLmin  
or  
tCLmin  
or  
Clock half period  
tHP  
tQH  
-
-
-
-
ns  
ns  
1
1
tCHmin  
tCHmin  
Data output hold time from DQS  
Note 1 :  
tHP-0.4  
tHP-0.45  
- The JEDEC DDR specification currently defines the output data valid window(tDV) as the time period when the data strobe and all data associated with  
that data strobe are coincidentally valid.  
- The previously used definition of tDV(=0.35tCK) artificially penalizes system timing budgets by assuming the worst case output vaild window even then  
the clock duty cycle applied to the device is better than 45/55%  
- A new AC timing term, tQH which stands for data output hold time from DQS is difined to account for clock duty cycle variation and replaces tDV  
- tQHmin = tHP-X where  
. tHP=Minimum half clock period for any given cycle and is defined by clock high or clock low time(tCH,tCL)  
. X=A frequency dependent timing allowance account for tDQSQmax  
- 13 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
AC CHARACTERISTICS (II)_Continued  
-40  
-50  
Parameter  
Symbol  
Unit  
Note  
Min  
Max  
Min  
Max  
Row cycle time  
Refresh row cycle time  
tRC  
tRFC  
52  
60  
-
-
55  
70  
-
ns  
ns  
Row active time  
tRAS  
36  
100K  
40  
100K  
ns  
RAS to CAS delay for Read  
RAS to CAS delay for Write  
Row precharge time  
tRCDRD  
tRCDWR  
tRP  
16  
8
16  
-
-
-
15  
10  
15  
-
-
-
ns  
ns  
ns  
2
Row active to Row active  
Last data in to Row precharge @Normal Precharge  
Last data in to Row precharge @Auto Precharge  
Last data in to Read command  
Col. address to Col. address  
Mode register set cycle time  
Auto precharge write recovery + Precharge  
Exit self refresh to read command  
Power down exit time  
tRRD  
tWR  
12  
3
3
2
1
2
-
-
-
-
-
-
-
-
-
10  
3
3
2
1
2
ns  
-
-
-
-
-
-
-
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
1
1
1
tWR_A  
tCDLR  
tCCD  
tMRD  
tDAL  
tXSR  
tPDEX  
tREF  
7
200  
3tCK+tIS  
-
6
200  
3tCK+tIS  
-
-
Refresh interval time  
7.8  
7.8  
us  
Note :  
1. For normal write operation, even numbers of Din are to be written inside DRAM.  
2. tRCDWR should be always greater or equal to 2tCK.  
AC CHARACTERISTICS (III)_Continued  
(Unit : Number of Clock)  
K4D261638F-LC40  
Frequency  
Cas Latency  
tRC  
13  
11  
7
tRFC  
15  
tRAS  
tRCDRD tRCDWR  
tRP  
4
tRRD  
tDAL  
Unit  
tCK  
tCK  
tCK  
250MHz ( 4.0ns )  
200MHz ( 5.0ns )  
133MHz ( 7.5ns )  
3
3
9
8
5
4
3
3
2
2
2
3
2
2
7
6
4
14  
3
3 or 2  
8
3
K4D261638F-LC50  
Frequency  
200MHz ( 5.0ns )  
133MHz ( 7.5ns )  
Cas Latency  
tRC  
11  
8
tRFC  
14  
10  
tRAS  
8
6
tRCDRD tRCDWR  
tRP  
3
2
tRRD  
2
2
tDAL  
6
4
Unit  
tCK  
tCK  
3
3
2
2
2
3 or 2  
- 14 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
10.0 SIMPLIFIED TIMING  
Simplified Timing @ BL=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
CK, CK  
BA[1:0]  
A10/AP  
BAa  
BAa  
BAb  
BAa  
BAa  
BAa  
BAb  
Rb  
Rb  
Ra  
Ra  
Ra  
Ra  
ADDR  
Cb  
Ca  
Ca  
(A0~A9  
,A11)  
WE  
DQS  
Da0 Da1 Da2 Da3  
Da0 Da1 Da2 Da3  
Db0 Db1 Db2 Db3  
DQ  
DM  
ACT_A  
WR_A  
PRECH  
ACT_A  
WR_A  
ACT_B  
WR_B  
COM  
t
t
RCD  
RP  
t
RAS  
t
t
RRD  
RC  
Multi Bank Interleaving Write Burst  
(@ BL=4)  
Normal Write Burst  
(@ BL=4)  
- 15 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
11.0 IBIS : I/V Characteristics for Input and Output Buffers  
(1) Full Strength Driver Characteristics  
Pulldown Current (mA)  
Voltage  
Pullup Current (mA)  
Maximum  
Minimum  
Maximum  
Minimum  
(V)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
0
0
0
-0.9  
-4.536  
-7.92  
0
1.368  
4.968  
8.46  
1.716  
6.996  
12.32  
17.512  
22.616  
27.544  
32.12  
36.564  
40.612  
44.176  
47.388  
50.028  
52.184  
53.812  
55  
55.88  
56.54  
56.98  
57.332  
57.64  
57.86  
58.08  
58.256  
58.388  
58.52  
58.652  
58.784  
-0.924  
-6.424  
-11.572  
-16.588  
-21.472  
-26.136  
-30.756  
-35.024  
-39.204  
-42.988  
-46.508  
-49.808  
-52.668  
-55.22  
-57.464  
-59.356  
-60.896  
-62.172  
-63.272  
-64.24  
11.808  
14.904  
17.892  
20.376  
22.716  
24.624  
26.208  
27.432  
28.224  
28.836  
29.268  
29.592  
29.808  
29.988  
30.168  
30.348  
30.456  
30.564  
30.708  
30.78  
-11.196  
-14.328  
-17.208  
-19.908  
-22.428  
-24.732  
-26.748  
-28.476  
-29.952  
-31.176  
-32.22  
-33.048  
-33.696  
-34.308  
-34.812  
-35.244  
-35.64  
-36  
-65.032  
-65.736  
-66.352  
-66.924  
-67.452  
-67.936  
-68.332  
-36.288  
-36.576  
-36.648  
-36.747  
-36.72  
-36.72  
30.807  
30.879  
30.924  
30.969  
- 16 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
11.0 IBIS : I/V Characteristics for Input and Output Buffers  
(2) Weak Strength Driver Characteristics  
Pulldown Current (mA)  
Voltage  
Pullup Current (mA)  
Maximum  
Minimum  
Maximum  
Minimum  
(V)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
0
0
0
0
1.332  
4.752  
7.992  
11.008  
13.968  
16.74  
19.08  
21.24  
1.716  
6.776  
-1.08  
-4.212  
-2.272  
-10.152  
-12.96  
-1.144  
-5.94  
-10.56  
-15.092  
-19.36  
11.704  
16.456  
21.076  
25.784  
30.052  
34.144  
37.884  
41.404  
44.308  
46.772  
48.664  
50.248  
51.348  
52.14  
52.756  
53.196  
53.196  
53.768  
53.988  
54.164  
54.296  
54.472  
54.604  
54.692  
54.824  
-15.48  
-23.496  
-27.588  
-31.284  
-35.024  
-38.368  
-41.492  
-44.352  
-46.816  
-49.06  
-50.864  
-52.448  
-53.812  
-54.956  
-55.88  
-56.672  
-57.376  
-57.992  
-58.476  
-59.004  
-59.444  
-59.84  
-17.856  
-20.052  
-21.996  
-23.832  
-25.308  
-26.64  
-27.684  
-28.548  
-29.232  
-29.844  
-30.312  
-30.78  
23.04  
24.516  
25.596  
26.388  
26.964  
27.36  
27.648  
27.828  
28.008  
28.188  
28.296  
28.44  
28.548  
28.62  
28.728  
28.8  
28.908  
28.953  
28.998  
-31.14  
-31.464  
-31.752  
-32.04  
-32.157  
-32.328  
-32.418  
-32.472  
-32.508  
-60.28  
- 17 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
11.0 IBIS : I/V Characteristics for Input and Output Buffers  
(3) Matched Strength Driver Characteristics  
Pulldown Current (mA)  
Voltage  
Pullup Current (mA)  
Maximum  
Minimum  
Maximum  
Minimum  
(V)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
0
0
0
0
1.152  
2.988  
4.788  
6.48  
8.028  
9.396  
10.692  
11.7  
12.564  
13.248  
13.716  
14.04  
14.292  
14.472  
14.616  
14.724  
14.796  
14.868  
14.94  
14.976  
15.048  
15.12  
15.192  
15.228  
15.264  
15.3  
1.452  
4.312  
7.084  
9.724  
-0.972  
-2.916  
-4.824  
-6.516  
-8.172  
-9.756  
-11.16  
-12.42  
-13.572  
-14.544  
-15.372  
-16.056  
-16.632  
-17.1  
-17.496  
-17.82  
-18.108  
-18.324  
-18.54  
-18.756  
-18.9  
-1.276  
-4.224  
-7.04  
-9.768  
-12.364  
-14.872  
-17.292  
-19.624  
-21.736  
-23.672  
-25.476  
-27.06  
-28.468  
-29.656  
-30.668  
-31.504  
-32.208  
-32.78  
-33.264  
-33.66  
-34.056  
-34.408  
-34.716  
-34.716  
-35.2  
12.232  
14.74  
16.984  
19.184  
21.164  
22.792  
24.2  
25.256  
26.136  
26.752  
27.148  
27.544  
27.764  
27.984  
28.116  
28.204  
28.336  
28.38  
-19.08  
-19.224  
-19.332  
-19.431  
-19.611  
-19.692  
28.512  
28.6  
28.644  
28.732  
28.776  
-35.42  
-35.64  
15.372  
- 18 -  
Rev. 1.2 November 2006  
K4D261638I  
128M GDDR SDRAM  
12.0 PACKAGE DIMENSIONS (66pin TSOP-II)  
Units : Millimeters  
#66  
#34  
(10  
×)  
(10×)  
#1  
#33  
+0.075  
-0.035  
0.125  
(1.50)  
22.22±0.10  
(10  
×
)
)
0.10 MAX  
0.25TYP  
(0.71)  
0.65TYP  
0.65 0.08  
0.30±0.08  
[
]
0.075 MAX  
±
(10×  
NOTE  
1. (  
0×~8×  
) IS REFERENCE  
2. [  
] IS ASSY OUT QUALITY  
- 19 -  
Rev. 1.2 November 2006  

相关型号:

K4D261638I-LC50

DDR DRAM, 8MX16, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG

K4D261638I-LC500

DDR DRAM, 8MX16, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG

K4D261638I-LC50T

DDR DRAM, 8MX16, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG

K4D261638I-TC40

DDR DRAM, 8MX16, 0.6ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
SAMSUNG

K4D261638I-TC400

DDR DRAM, 8MX16, 0.6ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
SAMSUNG

K4D261638I-TC40T

DDR DRAM, 8MX16, 0.6ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66
SAMSUNG

K4D261638K-LC40

DDR DRAM, 8MX16, 0.6ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG

K4D261638K-LC400

DDR DRAM, 8MX16, 0.6ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG

K4D261638K-LC40T

DDR DRAM, 8MX16, 0.6ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG

K4D261638K-LC50

DDR DRAM, 8MX16, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG

K4D261638K-LC500

DDR DRAM, 8MX16, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG

K4D261638K-TC500

DDR DRAM, 8MX16, 0.7ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, ROHS COMPLIANT, TSOP2-66
SAMSUNG