K4T51083QC-ZCCCT [SAMSUNG]

DDR DRAM, 64MX8, 0.6ns, CMOS, PBGA60;
K4T51083QC-ZCCCT
型号: K4T51083QC-ZCCCT
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 64MX8, 0.6ns, CMOS, PBGA60

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总28页 (文件大小:652K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
512Mb C-die DDR2 SDRAM Specification  
60FBGA & 84FBGA with Pb-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
1 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
Table of Contents  
1.0 Ordering Information ................................................................................................................... 4  
2.0 Key Features................................................................................................................................. 4  
3.0 Package Pinout/Mechanical Dimension & Addressing ............................................................ 5  
3.1 x4 package pinout (Top View) : 60ball FBGA Package........................................................................ 5  
3.2 x8 package pinout (Top View) : 60ball FBGA Package........................................................................ 6  
3.3 x16 package pinout (Top View) : 84ball FBGA Package...................................................................... 7  
3.4 FBGA Package Dimension(x4/x8) .................................................................................................... 8  
3.5 FBGA Package Dimension(x16)....................................................................................................... 9  
4.0 Input/Output Functional Description........................................................................................ 10  
5.0 DDR2 SDRAM Addressing ........................................................................................................ 11  
6.0 Absolute Maximum DC Ratings............................................................................................... 12  
7.0 AC & DC Operating Conditions ................................................................................................ 12  
7.1 Recommended DC Operating Conditions (SSTL - 1.8)...................................................................... 12  
7.2 Operating Temperature Condition ................................................................................................. 13  
7.3 Input DC Logic Level ................................................................................................................... 13  
7.4 Input AC Logic Level ................................................................................................................... 13  
7.5 AC Input Test Conditions ............................................................................................................. 13  
7.6 Differential Input AC Logic Level................................................................................................... 14  
7.7 Differential AC Output Parameters................................................................................................. 14  
8.0 ODT DC Electrical Characteristics ........................................................................................... 14  
9.0 OCD Default Characteristics..................................................................................................... 15  
10.0 IDD Specification Parameters and Test Conditions ............................................................. 16  
11.0 DDR2 SDRAM IDD Spec Table ............................................................................................... 18  
12.0 Input/Output Capacitance ....................................................................................................... 20  
13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400..................................... 20  
13.1 Refresh Parameters by Device Density........................................................................................ 20  
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ............................................ 20  
13.3 Timing Parameters by Speed Grade ............................................................................................ 21  
14.0 General Notes, which may apply for all AC parameters....................................................... 23  
15.0 Specific Notes for dedicated AC parameters ........................................................................ 25  
2 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
Revision History  
Revision  
Month  
Year  
History  
1.0  
February  
2005  
- Initial Release  
- Added Low power current values for 533&400 speed  
- Changed IDD3N/2Q normal current values for x16 org.  
1.1  
March  
2005  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
May  
July  
August  
January  
June  
2005  
2005  
2005  
2005  
2006  
2006  
- Corrected Typo  
- Revised the Odering Information  
- Revised the IDD Current Values  
- Added DDR2-800 IDD Current Values  
- Added DDR2-800 6-6-6 Speed bin  
- Added DDR2-800 6-6-6 IDD Current Values  
July  
- Added the detailed explanation on the notes for AC parameters  
- Corrected Typo  
- Added data setup and hold time derating values for single-end DQS  
1.8  
1.9  
October  
March  
2006  
2007  
3 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
1.0 Ordering Information  
Org.  
DDR2-800 5-5-5  
DDR2-800 6-6-6  
DDR2-667 5-5-5  
DDR2-533 4-4-4  
DDR2-400 3-3-3  
Package  
60 FBGA  
60 FBGA  
84 FBGA  
128Mx4 K4T51043QC-ZC(L)E7 K4T51043QC-ZC(L)F7 K4T51043QC-ZC(L)E6 K4T51043QC-ZC(L)D5 K4T51043QC-ZC(L)CC  
64Mx8 K4T51083QC-ZC(L)E7 K4T51083QC-ZC(L)F7 K4T51083QC-ZC(L)E6 K4T51083QC-ZC(L)D5 K4T51083QC-ZC(L)CC  
32Mx16 K4T51163QC-ZC(L)E7 K4T51163QC-ZC(L)F7 K4T51163QC-ZC(L)E6 K4T51163QC-ZC(L)D5 K4T51163QC-ZC(L)CC  
Note : Speed bin is in order of CL-tRCD-tRP.  
2.0 Key Features  
DDR2-800  
5-5-5  
DDR2-800  
6-6-6  
DDR2-667  
5-5-5  
DDR2-533  
4-4-4  
DDR2-400  
3-3-3  
Speed  
Units  
CAS Latency  
tRCD(min)  
tRP(min)  
5
6
5
4
3
tCK  
ns  
12.5  
12.5  
57.5  
15  
15  
60  
15  
15  
54  
15  
15  
55  
15  
15  
55  
ns  
tRC(min)  
ns  
• JEDEC standard 1.8V ± 0.1V Power Supply  
• VDDQ = 1.8V ± 0.1V  
• 200 MHz fCK for 400Mb/sec/pin, 267MHz fCK for 533Mb/sec/  
pin, 333MHz fCK for 667Mb/sec/pin, 400MHz fCK for 800Mb/  
sec/pin  
• 4 Banks  
• Posted CAS  
• Programmable CAS Latency: 3, 4, 5, 6  
• Programmable Additive Latency: 0, 1, 2, 3, 4 and 5  
• Write Latency(WL) = Read Latency(RL) -1  
• Burst Length: 4 , 8(Interleave/nibble sequential)  
• Programmable Sequential / Interleave Burst Mode  
• Bi-directional Differential Data-Strobe (Single-ended data-  
strobe is an optional feature)  
• Off-Chip Driver(OCD) Impedance Adjustment  
• On Die Termination  
The 512Mb DDR2 SDRAM is organized as a 32Mbit x 4 I/Os x 4  
banks, 16Mbit x 8 I/Os x 4banks or 8Mbit x 16 I/Os x 4 banks  
device. This synchronous device achieves high speed double-  
data-rate transfer rates of up to 800Mb/sec/pin (DDR2-800) for  
general applications.  
The chip is designed to comply with the following key DDR2  
SDRAM features such as posted CAS with additive latency, write  
latency = read latency -1, Off-Chip Driver(OCD) impedance  
adjustment and On Die Termination.  
All of the control and address inputs are synchronized with a pair  
of externally supplied differential clocks. Inputs are latched at the  
crosspoint of differential clocks (CK rising and CK falling). All I/Os  
are synchronized with a pair of bidirectional strobes (DQS and  
DQS) in a source synchronous fashion. The address bus is used  
to convey row, column, and bank address information in a RAS/  
CAS multiplexing style. For example, 512Mb(x4) device receive  
14/11/2 addressing.  
The 512Mb DDR2 device operates with a single 1.8V ± 0.1V  
power supply and 1.8V ± 0.1V VDDQ.  
The 512Mb DDR2 device is available in 60ball FBGAs(x4/x8) and  
in 84ball FBGAs(x16).  
• Special Function Support  
- PASR(Partial Array Self Refresh)  
- 50ohm ODT  
Note : The functionality described and the timing specifications  
included in this data sheet are for the DLL Enabled mode  
of operation.  
- High Temperature Self-Refresh rate enable  
• Average Refresh Period 7.8us at lower than TCASE 85°C,  
3.9us at 85°C < TCASE < 95 °C  
• All of Lead-free products are compliant for RoHS  
Note : This data sheet is an abstract of full DDR2 specification and does not cover the common features which are described in “Samsung’s DDR2  
SDRAM Device Operation & Timing Diagram”  
4 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
3.0 Package Pinout/Mechanical Dimension & Addressing  
3.1 x4 package pinout (Top View) : 60ball FBGA Package  
1
2
3
7
8
9
VDDQ  
VDD  
NC  
NC  
VSS  
DM  
DQS  
VSSQ  
DQ0  
A
VSSQ  
DQS  
VSSQ  
NC  
B
C
VDDQ  
DQ3  
VDDQ  
DQ2  
VDDQ  
VDDQ  
NC  
DQ1  
VSSQ  
VSSQ  
CK  
NC  
D
VDDL  
VREF  
VSSDL  
VSS  
VDD  
ODT  
E
F
CK  
CKE  
BA0  
WE  
RAS  
CAS  
NC  
BA1  
CS  
G
H
J
A10/AP  
A3  
A1  
A5  
A2  
A6  
A0  
VDD  
VSS  
VSS  
A4  
A7  
A9  
K
A11  
NC  
A8  
VDD  
A12  
NC  
A13  
L
Note :  
1. Pin B3 has identical capacitance as pin B7.  
2. VDDL and VSSDL are power and ground for the DLL.  
Ball Locations (x4)  
: Populated Ball  
: Depopulated Ball  
+
Top View (See the balls through the Package)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+
+
G
H
J
+
+
+
K
L
+
+
5 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
3.2 x8 package pinout (Top View) : 60ball FBGA Package  
1
2
3
7
8
9
NU/  
VDD  
DQ6  
VSSQ  
VSS  
DQS  
VSSQ  
DQ0  
VDDQ  
DQ7  
A
RDQS  
DM/  
DQS  
VDDQ  
DQ2  
VSSQ  
DQ1  
B
C
RDQS  
VDDQ  
DQ4  
VDDQ  
DQ3  
VDDQ  
DQ5  
VSSQ  
VSSQ  
D
E
F
VDDL  
VREF  
CKE  
CK  
CK  
VSS  
VSSDL  
RAS  
VDD  
ODT  
WE  
BA1  
A1  
BA0  
NC  
CAS  
A2  
CS  
A0  
G
H
J
A10/AP  
VDD  
VSS  
VSS  
A3  
A7  
A5  
A9  
NC  
A6  
A11  
NC  
A4  
A8  
K
VDD  
A12  
A13  
L
Note :  
1. Pins B3 and A2 have identical capacitance as pins B7 and A8.  
2. For a read, when enabled, strobe pair RDQS & RDQS are identical in function  
and timing to strobe pair DQS & DQS and input masking function is disabled.  
3. The function of DM or RDQS/RDQS are enabled by EMRS command.  
4. VDDL and VSSDL are power and ground for the DLL.  
Ball Locations (x8)  
: Populated Ball  
: Depopulated Ball  
+
Top View (See the balls through the Package)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+
+
+
G
H
J
+
+
+
K
L
6 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
3.3 x16 package pinout (Top View) : 84ball FBGA Package  
1
2
3
7
8
9
A
VSSQ  
UDQS  
VDDQ  
UDQS  
VSSQ  
VDDQ  
DQ15  
VDD  
DQ14  
VDDQ  
NC  
VSS  
UDM  
VDDQ  
DQ11  
VSS  
VSSQ  
DQ9  
B
C
VDDQ  
DQ8  
VSSQ  
LDQS  
VSSQ  
DQ12  
VDD  
DQ10  
VSSQ  
LDQS  
DQ13  
VDDQ  
DQ7  
VSSQ  
NC  
D
E
F
DQ6  
VSSQ  
DQ1  
LDM  
VDDQ  
DQ4  
VDDQ  
DQ3  
VDDQ  
DQ2  
DQ0  
VDDQ  
G
H
J
VSSQ  
VREF  
VSSQ  
CK  
DQ5  
VDD  
VSSDL  
VSS  
VDDL  
CKE  
BA0  
ODT  
K
CK  
WE  
RAS  
NC  
BA1  
L
CAS  
A2  
CS  
A0  
A4  
A8  
NC  
M
N
P
A10/AP  
A3  
A1  
A5  
A9  
VDD  
VSS  
VSS  
A6  
A7  
A11  
NC  
R
A12  
NC  
VDD  
Note :  
1. VDDL and VSSDL are power and ground for the DLL.  
2. In case of only 8 DQs out of 16 DQs are used, LDQS, LDQSB and DQ0~7 must be used.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
Ball Locations (x16)  
: Populated Ball  
: Depopulated Ball  
+
G
H
J
Top View  
(See the balls through the Package)  
K
L
+
+
+
+
+
+
M
N
P
R
7 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
3.4 FBGA Package Dimension(x4/x8)  
10.00 ± 0.10  
# A1 INDEX MARK  
6.40  
0.80  
1.60  
4
9
8
7
6
5
3
2
1
A
B
C
D
E
F
G
H
J
K
L
3.20  
(5.00)  
(0.90)  
(1.80)  
60-0.45±0.05  
0.2 M  
A B  
10.00 ± 0.10  
#A1  
0.35±0.05  
MAX.1.20  
8 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
3.5 FBGA Package Dimension(x16)  
11.00 ± 0.10  
# A1 INDEX MARK  
6.40  
0.80  
1.60  
4
9
8
7
6
5
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
3.20  
(5.50)  
(0.90)  
(1.80)  
84-0.45±0.05  
0.2 M  
A B  
11.00 ± 0.10  
#A1  
0.35±0.05  
MAX.1.20  
9 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
4.0 Input/Output Functional Description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of  
CK, CK  
Input  
CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK (both directions of crossing).  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Tak-  
ing CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (row Active in any  
bank). CKE is synchronous for power down entry and exit, and for self refresh entry. CKE is asynchronous for self refresh exit. After  
V
has become stable during the power on and initialization swquence, it must be maintained for proper operation of the CKE  
CKE  
Input  
REF  
receiver. For proper self-refresh entry and exit, V  
must be maintained to this input. CKE must be maintained high throughout read  
REF  
and write accesses. Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are  
disabled during self refresh.  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on systems with multiple  
CS  
Input  
Input  
Ranks. CS is considered part of the command code.  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When enabled, ODT is only  
applied to each DQ, DQS, DQS, RDQS, RDQS, and DM signal for x4/x8 configurations. For x16 configuration ODT is applied to each  
DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM signal. The ODT pin will be ignored if the Extended Mode Register (EMRS(1)) is pro-  
grammed to disable ODT.  
ODT  
RAS, CAS, WE  
DM  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input  
data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ  
and DQS loading. For x8 device, the function of DM or RDQS/RDQS is enabled by EMRS command.  
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied (For 256Mb and  
512Mb, BA2 is not applied). Bank address also determines if the mode register or extended mode register is to be accessed during a  
MRS or EMRS cycle.  
BA0 - BA1  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write com-  
mands to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine  
whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is  
selected by BA0, BA1. The address inputs also provide the op-code during Mode Register Set commands.  
A0 - A13  
DQ  
Input/Output Data Input/ Output: Bi-directional data bus.  
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, LDQS corre-  
sponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. For the x8, an RDQS option using DM pin can be  
enabled via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS, UDQS, and RDQS may be used in single ended mode  
or paired with optional complementary signals DQS, LDQS, UDQS, and RDQS to provide differential pair signaling to the system during  
both reads and writes. An EMRS(1) control bit enables or disables all complementary data strobe signals.  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1)  
x4 DQS/DQS  
DQS, (DQS)  
(LDQS), (LDQS)  
(UDQS), (UDQS)  
(RDQS), (RDQS)  
Input/Output x8 DQS/DQS  
if EMRS(1)[A11] = 0  
if EMRS(1)[A11] = 1  
x8 DQS/DQS, RDQS/RDQS,  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1)  
x4 DQS  
x8 DQS if EMRS(1)[A11] = 0  
x8 DQS, RDQS, if EMRS(1)[A11] = 1  
x16 LDQS and UDQS  
NC  
No Connect: No internal electrical connection is present.  
Power Supply: 1.8V +/- 0.1V, DQ Power Supply: 1.8V +/- 0.1V  
Ground, DQ Ground  
V
/V  
Supply  
Supply  
Supply  
Supply  
Supply  
DD DDQ  
V
/V  
SS SSQ  
V
DLL Power Supply: 1.8V +/- 0.1V  
DLL Ground  
DDL  
V
SSDL  
V
Reference voltage  
REF  
10 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
5.0 DDR2 SDRAM Addressing  
512Mb  
Configuration  
# of Banks  
128Mb x4  
4
64Mb x 8  
4
32Mb x16  
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0,BA1  
A10/AP  
A0 ~ A13  
A0 ~ A9,A11  
BA0,BA1  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
* Reference information: The following tables are address mapping information for other densities.  
256Mb  
Configuration  
# of Banks  
64Mb x4  
4
32Mb x 8  
4
16Mb x16  
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9,A11  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A8  
1Gb  
2Gb  
4Gb  
Configuration  
# of Banks  
Bank Address  
Auto precharge  
Row Address  
Column Address  
256Mb x4  
8
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9,A11  
128Mb x 8  
8
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
64Mb x16  
8
BA0 ~ BA2  
A10/AP  
A0 ~ A12  
A0 ~ A9  
Configuration  
# of Banks  
Bank Address  
Auto precharge  
Row Address  
Column Address  
512Mb x4  
8
BA0 ~ BA2  
A10/AP  
A0 ~ A14  
A0 ~ A9,A11  
256Mb x 8  
8
BA0 ~ BA2  
A10/AP  
A0 ~ A14  
A0 ~ A9  
128Mb x16  
8
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
Configuration  
# of Banks  
1 Gb x4  
8
512Mb x 8  
8
256Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 ~ BA2  
A10/AP  
A0 - A15  
A0 - A9,A11  
BA0 ~ BA2  
A10/AP  
A0 - A15  
A0 - A9  
BA0 ~ BA2  
A10/AP  
A0 - A14  
A0 - A9  
Column Address/page size  
11 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
6.0 Absolute Maximum DC Ratings  
Symbol  
VDD  
Parameter  
Rating  
Units  
V
Notes  
Voltage on VDD pin relative to VSS  
- 1.0 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
1
1
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
VDDQ  
VDDL  
V
V
1
V
IN, VOUT  
TSTG  
Note :  
V
1
°C  
1, 2  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
7.0 AC & DC Operating Conditions  
7.1 Recommended DC Operating Conditions (SSTL - 1.8)  
Rating  
Typ.  
1.8  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.7  
Max.  
1.9  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
Supply Voltage  
V
V
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.8  
1.9  
4
4
1.7  
1.8  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
1,2  
3
Note : There is no specific device VDD supply voltage requirement for SSTL-1.8 compliance. However under all conditions VDDQ must be less than or equal  
to VDD  
.
1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5  
x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ  
2. Peak to peak AC noise on VREF may not exceed +/-2% VREF(DC).  
3. VTT of transmitting device must track VREF of receiving device.  
.
4. AC parameters are measured with VDD, VDDQ and VDDL tied together.  
12 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
7.2 Operating Temperature Condition  
Symbol  
Parameter  
Rating  
Units  
Notes  
TOPER  
Operating Temperature  
0 to 95  
°C  
1, 2  
Note :  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM.  
2. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to  
self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.  
7.3 Input DC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VIH(DC)  
DC input logic high  
VREF + 0.125  
VDDQ + 0.3  
V
VIL(DC)  
DC input logic low  
- 0.3  
VREF - 0.125  
V
7.4 Input AC Logic Level  
DDR2-400, DDR2-533  
DDR2-667, DDR2-800  
Symbol  
Parameter  
Units  
Min.  
Max.  
Min.  
Max.  
VIH (AC)  
IL (AC)  
AC input logic high  
AC input logic low  
VREF + 0.250  
-
-
VREF + 0.200  
V
V
V
VREF - 0.250  
VREF - 0.200  
7.5 AC Input Test Conditions  
Symbol  
VREF  
Condition  
Input reference voltage  
Value  
0.5 * VDDQ  
Units  
V
Notes  
1
VSWING(MAX)  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1.0  
1.0  
V
1
SLEW  
V/ns  
2, 3  
Note :  
1. Input waveform timing is referenced to the input signal crossing through the VIH/IL(AC) level applied to the device under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(AC) min for rising edges and the range from VREF to VIL(AC)  
max for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive transitions and VIH(AC) to VIL(AC) on the negative  
transitions.  
V
V
V
V
V
V
V
DDQ  
(AC) min  
IH  
(DC) min  
IH  
V
SWING(MAX)  
REF  
(DC) max  
IL  
IL  
(AC) max  
SS  
delta TF  
V
delta TR  
Rising Slew =  
V
(AC) min - V  
delta TR  
- V (AC) max  
IL  
IH  
REF  
REF  
Falling Slew =  
delta TF  
< AC Input Test Signal Waveform >  
13 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
7.6 Differential Input AC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VID(AC)  
0.5  
VDDQ + 0.6  
V
1
AC differential input voltage  
AC differential cross point voltage  
VIX(AC)  
0.5 * VDDQ - 0.175  
0.5 * VDDQ + 0.175  
V
2
Note :  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or  
UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH (AC) - V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ .  
VIX(AC) indicates the voltage at which differential input signals must cross.  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
7.7 Differential AC Output Parameters  
Symbol  
Parameter  
Min.  
Max.  
0.5 * VDDQ + 0.125  
Units  
V
Note  
1
V
OX(AC)  
0.5 * VDDQ - 0.125  
AC differential cross point voltage  
Note :  
1. The typical value of VOX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ .  
VOX(AC) indicates the voltage at which differential output signals must cross.  
8.0 ODT DC Electrical Characteristics  
PARAMETER/CONDITION  
Rtt effective impedance value for EMRS(A6, A2)= 0,1 ; 75 ohm  
Rtt effective impedance value for EMRS(A6, A2)= 1,0 ; 150 ohm  
Rtt effective impedance value for EMRS(A6, A2)= 1,1 ; 50 ohm  
Deviation of VM with respect to VDDQ/2  
SYMBOL  
Rtt1(eff)  
Min.  
60  
NOM  
75  
Max.  
90  
Units  
ohm  
Note  
1
Rtt2(eff)  
Rtt3(eff)  
delta VM  
120  
40  
-6  
150  
50  
180  
60  
ohm  
ohm  
%
1
1,2  
1
+6  
Note :  
1. Test condition for Rtt measurements  
2. Optional for DDR2-400/533/667  
Measurement Definition for Rtt(eff): Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH (ac)) and I(VIL (ac)) respectively.  
VIH (ac), VIL (ac), and VDDQ values defined in SSTL_18  
VIH (ac) - VIL (ac)  
Rtt(eff) =  
I(VIH (ac)) - I(VIL (ac))  
Measurement Definition for VM: Measure voltage (VM) at test pin (midpoint) with no load.  
2 x Vm  
- 1  
x 100%  
delta VM =  
VDDQ  
14 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
9.0 OCD Default Characteristics  
Description  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
Normal 18ohms  
See full strength default driver characteristics  
Output impedance  
ohms  
1,2  
Output impedance step size for OCD calibration  
Pull-up and pull-down mismatch  
Output slew rate  
0
0
1.5  
4
ohms  
ohms  
V/ns  
6
1,2,3  
Sout  
1.5  
5
1,4,5,6,7,8  
Note :  
1. Absolute Specifications (0°C TCASE +95°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
2. Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV;  
(VOUT-VDDQ)/Ioh must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ- 280mV.  
Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV;  
VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from VIL(AC) to VIH(AC).  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC.  
This is guaranteed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty.  
Output slew rate load :  
VTT  
25 ohms  
Output  
(VOUT)  
Reference  
Point  
7. DRAM output slew rate specification applies to 400Mb/sec/pin, 533Mb/sec/pin, 667Mb/sec/pin and 800Mb/sec/pin speed bins.  
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in tDQSQ and tQHS specification.  
15 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
10.0 IDD Specification Parameters and Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5)  
Symbol  
Proposed Conditions  
Operating one bank active-precharge current;  
CK = CK(IDD), RC = RC(IDD), RAS = RASmin(IDD); CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Units  
Notes  
t
t
t
t
t
t
IDD0  
mA  
Operating one bank active-read-precharge current;  
t
t
t
t
t
t
t
IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD =  
IDD1  
mA  
t
RCD(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data pat-  
tern is same as IDD4W  
Precharge power-down current;  
All banks idle; CK = CK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are  
FLOATING  
t
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
t
mA  
mA  
mA  
Precharge quiet standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are STABLE; Data  
bus inputs are FLOATING  
Precharge standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Active power-down current;  
mA  
mA  
Fast PDN Exit MRS(12) = 0mA  
t
t
All banks open; CK = CK(IDD); CKE is LOW; Other control and address bus  
Slow PDN Exit MRS(12) = 1mA  
inputs are STABLE; Data bus inputs are FLOATING  
Active standby current;  
t
t
t
t
t
t
mA  
mA  
All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS\ is HIGH between valid  
commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current;  
t
t
t
t
t
All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP  
IDD4W  
IDD4R  
t
= RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus  
inputs are SWITCHING  
Operating burst read current;  
t
t
t
t
All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RAS-  
mA  
mA  
t
t
max(IDD), RP = RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCH-  
ING; Data pattern is same as IDD4W  
Burst auto refresh current;  
t
t
t
IDD5B  
IDD6  
CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is HIGH, CS\ is HIGH between valid com-  
mands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Self refresh current;  
Normal  
mA  
mA  
CK and CK\ at 0V; CKE 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
Low Power  
Operating bank interleave read current;  
All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC  
t
t
t
t
t
IDD7  
t
t
t
t
t
t
t
= RC(IDD), RRD = RRD(IDD), FAW = FAW(IDD), RCD = 1* CK(IDD); CKE is HIGH, CS\ is HIGH between valid  
commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the fol-  
lowing page for detailed timing conditions  
mA  
16 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
Note :  
1. IDD specifications are tested after the device is properly initialized  
2. Input slew rate is specified by AC Parametric Test Condition  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, DQS\, RDQS, RDQS\, LDQS, LDQS\, UDQS, and UDQS\. IDD values must be met with all combinations of EMRS  
bits 10 and 11.  
5. Definitions for IDD  
LOW is defined as Vin VILAC(max)  
HIGH is defined as Vin VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control  
signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including  
masks or strobes.  
For purposes of IDD testing, the following parameters are utilized  
DDR2-800  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Units  
Parameter  
5-5-5  
6-6-6  
5-5-5  
4-4-4  
3-3-3  
CL(IDD)  
5
6
5
4
3
tCK  
t
12.5  
57.5  
15  
60  
15  
60  
15  
60  
15  
55  
RCD(IDD)  
ns  
ns  
t
RC(IDD)  
t
7.5  
ns  
ns  
RRD(IDD)-x4/x8  
7.5  
7.5  
7.5  
7.5  
t
RRD(IDD)-x16  
10  
10  
10  
3
10  
10  
5
t
2.5  
2.5  
3.75  
CK(IDD)  
ns  
ns  
t
45  
45  
15  
45  
15  
45  
15  
40  
15  
RASmin(IDD)  
t
12.5  
105  
ns  
ns  
RP(IDD)  
t
105  
105  
105  
105  
RFC(IDD)  
Detailed IDD7  
The detailed timings are shown below for IDD7.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) and FAW(IDD) using a burst length of 4.  
Control and address bus inputs are STABLE during DESELECTs. IOUT = 0mA  
t
t
t
Timing Patterns for 4 bank devices with 1KB or 2KB page size  
-DDR2-400 3/3/3  
A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D  
-DDR2-533 4/4/4  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
-DDR2-667 5/5/5  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D  
-DDR2-800 6/6/6  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D  
-DDR2-800 5/5/5  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D  
17 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
11.0 DDR2 SDRAM IDD Spec  
128Mx4(K4T51043QC)  
667@CL=5  
Symbol  
Unit  
Notes  
Notes  
Notes  
800@CL=5  
800@CL=6  
533@CL=4  
400@CL=3  
CE7  
LE7  
CF7  
LF7  
CE6  
85  
LE6  
65  
75  
5
CD5  
LD5  
65  
CCC  
LCC  
65  
75  
4.5  
25  
30  
25  
8
IDD0  
IDD1  
95  
105  
8
90  
105  
8
80  
95  
8
80  
95  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100  
8
75  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
4.5  
25  
35  
35  
35  
30  
35  
25  
8
30  
35  
30  
12  
50  
110  
115  
140  
8
30  
35  
30  
12  
50  
100  
105  
140  
8
40  
40  
40  
30  
30  
30  
30  
25  
12  
TBD  
12  
TBD  
12  
8
55  
55  
55  
45  
120  
125  
135  
4
40  
40  
90  
95  
125  
4
145  
150  
150  
8
145  
150  
150  
8
130  
135  
150  
8
100  
105  
125  
4
IDD6  
IDD7  
250  
240  
220  
180  
220  
180  
220  
180  
64Mx8(K4T51083QC)  
667@CL=5  
Symbol  
Unit  
800@CL=5  
800@CL=6  
533@CL=4  
400@CL=3  
CE7  
100  
110  
8
LE7  
CF7  
90  
LF7  
CE6  
85  
LE6  
65  
75  
5
CD5  
80  
LD5  
65  
CCC  
80  
LCC  
65  
IDD0  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
110  
8
100  
8
95  
75  
95  
75  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
8
4.5  
25  
8
4.5  
25  
35  
35  
35  
30  
35  
25  
8
30  
30  
40  
40  
40  
35  
30  
35  
30  
30  
30  
30  
30  
25  
30  
25  
12  
TBD  
12  
TBD  
12  
12  
8
12  
8
60  
60  
55  
45  
130  
135  
135  
4
50  
40  
50  
40  
165  
170  
155  
8
165  
170  
150  
8
140  
145  
150  
8
120  
125  
140  
8
110  
115  
125  
4
110  
110  
140  
8
95  
100  
125  
4
IDD6  
IDD7  
255  
245  
220  
180  
220  
180  
220  
180  
32Mx16(K4T51163QC)  
667@CL=5  
Symbol  
Unit  
800@CL=5  
800@CL=6  
533@CL=4  
400@CL=3  
CE7  
105  
120  
8
LE7  
CF7  
100  
120  
8
LF7  
CE6  
100  
115  
8
LE6  
85  
CD5  
95  
LD5  
85  
CCC  
95  
LCC  
85  
IDD0  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100  
5
110  
8
100  
4.5  
25  
110  
8
100  
4.5  
25  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
35  
35  
35  
30  
30  
30  
40  
40  
40  
35  
35  
30  
35  
30  
30  
30  
30  
25  
30  
25  
30  
25  
12  
TBD  
12  
TBD  
12  
8
12  
8
12  
8
60  
60  
55  
45  
50  
40  
50  
40  
195  
200  
155  
8
195  
200  
155  
8
175  
180  
150  
8
165  
170  
135  
4
155  
160  
140  
8
145  
150  
125  
4
135  
140  
140  
8
125  
130  
125  
4
IDD6  
IDD7  
340  
320  
300  
270  
300  
270  
300  
270  
18 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
12.0 Input/Output Capacitance  
DDR2-400  
DDR2-533  
DDR2-667  
DDR2-800  
Parameter  
Symbol  
Units  
Min  
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Min  
Max  
2.0  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
1.0  
x
1.0  
x
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
0.25  
2.0  
0.25  
2.0  
0.25  
1.75  
0.25  
3.5  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
1.0  
x
CDI  
CIO  
0.25  
4.0  
0.25  
3.5  
2.5  
x
2.5  
x
2.5  
x
Input/output capacitance delta, DQ, DM, DQS, DQS CDIO  
0.5  
0.5  
0.5  
13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400  
(TOPER ; VDDQ = 1.8V + 0.1V; VDD = 1.8V + 0.1V)  
13.1 Refresh Parameters by Device Density  
Parameter  
Symbol  
256Mb  
512Mb  
1Gb  
2Gb  
4Gb  
Units  
Refresh to active/Refresh command time  
tRFC  
tREFI  
75  
105  
127.5  
195  
7.8  
327.5  
ns  
0 °C TCASE 85°C  
85 °C < TCASE 95°C  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
µs  
µs  
Average periodic refresh interval  
3.9  
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin  
Speed  
Bin(CL - tRCD - tRP)  
Parameter  
tCK, CL=3  
tCK, CL=4  
tCK, CL=5  
tCK, CL=6  
tRCD  
DDR2-800(E7)  
5 - 5 - 5  
DDR2-800(F7)  
6 - 6 - 6  
DDR2-667(E6)  
5 - 5 - 5  
DDR2-533(D5)  
4 - 4 - 4  
DDR2-400(CC)  
3 - 3 - 3  
Units  
min  
5
max  
min  
-
max  
min  
5
max  
min  
5
max  
min  
5
max  
8
-
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.75  
2.5  
-
8
3.75  
3
8
3.75  
3
8
3.75  
3.75  
-
8
5
8
8
8
8
8
-
-
-
2.5  
15  
15  
60  
45  
8
-
-
-
-
-
12.5  
12.5  
57.5  
45  
-
-
15  
15  
54  
39  
-
15  
-
15  
15  
55  
40  
-
tRP  
-
-
-
-
-
-
15  
-
-
-
-
tRC  
55  
70000  
70000  
70000  
70000  
70000  
tRAS  
40  
19 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
13.3 Timing Parameters by Speed Grade  
(Refer to notes for informations related to this table at the bottom)  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Symbol  
Units Notes  
Parameter  
min  
-400  
-350  
0.45  
0.45  
max  
+400  
+350  
0.55  
0.55  
min  
max  
+450  
+400  
0.55  
0.55  
min  
-500  
-450  
0.45  
0.45  
max  
+500  
+450  
0.55  
0.55  
min  
max  
+600  
+500  
0.55  
0.55  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
-450  
-400  
0.45  
0.45  
-600  
-500  
0.45  
0.45  
ps  
ps  
tDQSCK  
tCH  
tCK  
tCK  
CK low-level width  
tCL  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
CK half period  
tHP  
x
8000  
x
x
8000  
x
x
8000  
x
x
8000  
x
ps  
ps  
ps  
20,21  
24  
Clock cycle time, CL=x  
DQ and DM input hold time  
tCK  
2500  
3000  
3750  
5000  
15,16,  
17,20  
tDH(base)  
125  
175  
225  
275  
15,16,  
17,21  
DQ and DM input setup time  
tDS(base)  
tIPW  
50  
x
x
100  
0.6  
x
x
100  
0.6  
x
x
150  
0.6  
x
x
ps  
Control & Address input pulse width for each  
input  
0.6  
tCK  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
DQS low-impedance time from CK/CK  
tDIPW  
tHZ  
0.35  
x
x
0.35  
x
x
0.35  
x
x
0.35  
x
x
tCK  
ps  
tAC max  
tAC max  
tAC max  
tAC max  
tLZ(DQS)  
tAC min tAC max  
tAC min tAC max  
2*tAC  
min  
tAC min tAC max tAC min tAC max  
ps  
27  
27  
2*tAC  
tAC max  
min  
DQ low-impedance time from CK/CK  
tLZ(DQ)  
tAC max 2* tACmin tAC max 2* tACmin tAC max  
ps  
DQS-DQ skew for DQS and associated DQ  
signals  
tDQSQ  
tQHS  
tQH  
x
x
200  
300  
x
x
240  
340  
x
x
x
300  
400  
x
x
x
350  
450  
x
ps  
ps  
ps  
22  
21  
DQ hold skew factor  
x
tHP -  
tQHS  
tHP -  
tQHS  
tHP -  
tQHS  
tHP -  
tQHS  
DQ/DQS output hold time from DQS  
First DQS latching transition to associated clock  
edge  
tDQSS  
-0.25  
0.25  
-0.25  
0.25  
-0.25  
0.25  
-0.25  
0.25  
tCK  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
x
x
x
x
tDSH  
x
x
x
x
tMRD  
x
x
x
x
tWPST  
tWPRE  
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
19  
Write preamble  
14,16,1  
8,23  
Address and control input hold time  
Address and control input setup time  
tIH(base)  
tIS(base)  
250  
175  
x
x
275  
200  
x
x
375  
250  
x
x
475  
350  
x
x
ps  
ps  
14,16,1  
8,22  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
tCK  
tCK  
28  
28  
Active to active command period for 1KB page  
size products  
tRRD  
7.5  
10  
35  
45  
x
x
7.5  
10  
x
x
7.5  
10  
x
x
7.5  
10  
x
x
ns  
ns  
ns  
ns  
12  
12  
Active to active command period for 2KB page  
size products  
tRRD  
tFAW  
Four Activate Window for 1KB page size  
products  
37.5  
50  
37.5  
50  
37.5  
50  
Four Activate Window for 2KB page size  
products  
tFAW  
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
15  
2
15  
2
15  
2
15  
tCK  
ns  
x
x
x
x
x
x
x
x
x
x
x
Auto precharge write recovery + precharge time tDAL  
WR+tRP  
7.5  
WR+tRP  
7.5  
WR+tRP  
7.5  
WR+tRP  
10  
tCK  
ns  
23  
33  
11  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
tWTR  
tRTP  
7.5  
7.5  
7.5  
7.5  
ns  
tXSNR  
tRFC + 10  
tRFC + 10  
tRFC + 10  
tRFC + 10  
ns  
20 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Symbol  
Units Notes  
Parameter  
min  
max  
min  
max  
min  
max  
min  
max  
Exit self refresh to a read command  
tXSRD  
tXP  
200  
200  
200  
200  
tCK  
tCK  
Exit precharge power down to any non-read  
command  
2
x
x
2
x
x
2
2
x
x
2
x
x
Exit active power down to read command  
tXARD  
tXARDS  
2
2
2
tCK  
tCK  
9
Exit active power down to read command  
(slow exit, lower power)  
8 - AL  
7 - AL  
6 - AL  
6 - AL  
9, 10  
CKE minimum pulse width  
(high and low pulse width)  
t
tCK  
36  
3
2
3
2
CKE  
3
2
3
2
t
ODT turn-on delay  
2
2
2
2
tCK  
ns  
AOND  
tAC(max)  
+0.7  
tAC(max)  
+0.7  
tAC(max)  
+1  
tAC(max)  
+1  
t
ODT turn-on  
tAC(min)  
tAC(min)  
tAC(min)  
tAC(min)  
13, 25  
AON  
2tCK+tA  
C(max)+  
1
tAC(min)+ 2tCK+tAC tAC(min)+ 2tCK+tAC tAC(min)+  
tAC(min)+ 2tCK+tAC  
t
ODT turn-on(Power-Down mode)  
ns  
AONPD  
2
(max)+1  
2
(max)+1  
2
2
(max)+1  
t
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
AOFD  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(max)+  
0.6  
tAC(max)+  
0.6  
t
tAC(min)  
tAC(min)  
tAC(min)  
tAC(min)  
26  
24  
AOF  
2.5tCK+  
tAC(max)  
+1  
2.5tCK+  
tAC(max)  
+1  
2.5tCK+  
tAC(max)  
+1  
2.5tCK+  
tAC(max)  
+1  
tAC(min)+  
2
tAC(min)+  
2
tAC(min)+  
2
tAC(min)+  
2
t
ODT turn-off (Power-Down mode)  
ns  
AOFPD  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
12  
12  
Minimum time clocks remains ON after CKE  
asynchronously drops LOW  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tDelay  
ns  
21 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
14.0 General Notes, which may apply for all AC parameters  
1. Slew Rate Measurement Levels  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for single ended signals.  
For differential signals (e.g. DQS - DQS) output slew rate is measured between DQS - DQS = -500 mV and DQS - DQS = +500mV.  
Output slew rate is guaranteed by design, but is not necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VIL(dc) to VIH(ac) for rising edges and from VIH(dc) and VIL(ac)  
for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV to CK - CK = +500 mV (250mV to -500 mV  
for falling edges).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential  
strobe.  
2. DDR2 SDRAM AC timing reference load  
Following figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise  
representation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or  
other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (gen-  
erally a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
Output  
DQS  
RDQS  
RDQS  
DUT  
VTT = VDDQ/2  
Timing  
reference  
point  
25Ω  
<AC Timing Reference Load>  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential sig-  
nals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown in the following figure.  
VDDQ  
DUT  
DQ  
Output  
Test point  
DQS, DQS  
RDQS, RDQS  
VTT = VDDQ/2  
25Ω  
<Slew Rate Test Load>  
22 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS “Enable DQS” mode  
bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode  
dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode,  
these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guaranteed by  
design and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally  
to VSS through a 20 ohm to 10 K ohm resisor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS  
DQS/  
DQS  
t
t
WPST  
WPRE  
VIH(dc)  
VIL(dc)  
VIH(ac)  
DQ  
DM  
D
D
D
D
t
VIL(ac)  
t
t
DH  
DH  
DS  
t
DS  
VIH(ac)  
VIH(dc)  
DMin  
DMin  
DMin  
DMin  
VIL(ac)  
VIL(dc)  
<Data input (write) timing>  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
<Data output (read) timing>  
5. AC timings are for linear signal transitions.  
6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They  
tester correlation.  
may be guaranteed by device design or  
7. All voltages are referenced to VSS.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related  
specifications and device operation are guaranteed for the full voltage range specified.  
23 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
15.0 Specific Notes for dedicated AC parameters  
9. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast active power down exit timing.  
tXARDS is expected to be used for slow active power down exit timing.  
10. AL = Additive Latency  
11. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min) have been satisfied.  
12. For DDR2-533/400, A minimum of two clocks (2*tCK) is required irrespective of operating frequency.  
For DDR2-800/667, tnPARAM=RU{tPARAM / tCK(avg)}, which is in clock cycles, assuming all input clock jitter specification are satisfied.  
13. Timings are guaranteed with command/address input slew rate of 1.0 V/ns.  
14. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester  
correlation.  
15. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns.  
16. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns  
in differential strobe mode and a slew rate of 1V/ns in single ended mode.  
17. tDS and tDH derating Values  
tDS, tDH Derating Values of DDR2-400, DDR2-533 (ALL units in ‘ps’, Note 1 applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
125  
45  
21  
0
-
-
-
-
-
-
125  
83  
0
-11  
-
-
-
-
-
45  
21  
0
-14  
-
-
-
-
-
125  
83  
0
-11  
-25  
-
-
-
-
45  
21  
0
-14  
-31  
-
-
-
-
-
95  
12  
1
-13  
-31  
-
-
33  
12  
-2  
-19  
-42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
23  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
83  
0
-
-
-
-
-
-
24  
13  
-1  
-19  
-43  
-
24  
10  
-7  
-30  
-59  
-
DQ  
Siew  
rate  
25  
11  
-7  
-31  
-74  
-
22  
5
-18  
-47  
-89  
-
-
17  
-6  
-35  
-77  
17  
-7  
-50  
6
-23  
-65  
-
5
-38  
-
V/ns  
-19  
-62  
-11  
-53  
-
-
-
-
-
-
-127 -140 -115 -128 -103 -116  
tDS, tDH Derating Values for DDR2-667, DDR2-800 (ALL units in ‘ps’, Note 1 applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
100  
45  
21  
0
-
-
-
-
-
-
100  
45  
21  
0
-14  
-
-
-
-
-
100  
67  
0
-5  
-13  
-
-
-
-
45  
21  
0
-14  
-31  
-
-
-
-
-
79  
12  
7
-1  
-10  
-
-
33  
12  
-2  
-19  
-42  
-
-
-
24  
19  
11  
2
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
17  
-6  
-35  
-77  
-140  
-
-
-
-
-
38  
26  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
67  
0
-
-
-
-
-
-
67  
0
-5  
-
-
-
24  
10  
-7  
-30  
-59  
-
DQ  
Slew  
rate  
31  
23  
14  
2
-24  
-
22  
5
-18  
-47  
-89  
-
-
35  
26  
14  
-12  
-52  
6
-
-
V/ns  
-23  
-65  
-128  
38  
12  
-28  
-11  
-53  
-116  
-
-
-
-
-
-
-
-40  
For all input signals the total tDS (setup time) and tDH(hold time) required is calculated by adding the datasheet tDS(base) and tDH(base) value to the  
delta tDS and delta tDH derating value respectively. Example: tDS(total setup time)= tDS(base) + delta tDS.  
24 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
tDS1, tDH1 Derating Values for DDR2-400, DDR2-533(All units in ‘ps’; the note applies to the entire table)  
DQS Single-ended Slew Rate  
0.9 V/ns 0.8 V/ns 0.7 V/ns  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
0.6 V/ns  
0.5 V/ns  
0.4 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
1
188  
1
188  
1
167  
125  
42  
31  
-
1
146  
125  
83  
69  
-
1
125  
83  
0
1
63  
42  
0
1
-
1
-
1
-
1
-
1
-
1
-
1
-
-
1
-
1
-
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
146  
167  
81  
-2  
-13  
-27  
-45  
-
43  
1
-
-
-
-
-
-
-
-
63  
-
125  
-7  
-18  
-32  
-50  
-74  
-
-13  
-27  
-44  
-67  
-96  
-
-
-
-
-
-
DQ  
Slew  
rate  
-
-
-
-
-
-
-11  
-25  
-
-14  
-31  
-
-13  
-30  
-53  
-
-29  
-43  
-61  
-85  
-45  
-62  
-85  
-
-
-
-
-
-60  
-78  
-86  
-
-
-
-
-
-109 -108 -152  
V/ns  
-
-
-
-
-
-114 -102 -138 -138 -181 -183 -246  
-
-
-
-
-
-
-
-128 -156 -145 -180 -175 -223 -226 -288  
-210 -243 -240 -286 -291 -351  
-
-
-
-
-
-
-
-
-
-
-
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the  
tDS and tDH derating value respectively. Example: tDS (total setup time) = tDS(base) + tDS.  
25 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
18. tIS and tIH (input setup and hold) derating.  
tIS, tIH Derating Values for DDR2-400, DDR2-533  
CK,CK Differential Slew Rate  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
Units  
Notes  
tIS  
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
tIH  
+124  
+119  
+113  
+105  
+75  
+51  
+30  
+16  
-1  
tIS  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
60  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
+187  
+179  
+167  
+150  
+125  
+83  
0
-11  
-25  
-43  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-14  
-31  
-54  
+19  
+5  
-13  
+49  
+35  
+17  
+46  
+29  
+6  
Command/Ad-  
dress Slew  
rate  
(V/ns)  
-24  
-67  
-83  
-37  
-80  
-53  
-95  
-7  
-50  
-23  
-65  
-110  
-175  
-285  
-350  
-525  
-800  
-125  
-188  
-292  
-375  
-500  
-708  
-145  
-255  
-320  
-495  
-770  
-158  
-262  
-345  
-470  
-678  
-115  
-225  
-290  
-465  
-740  
-128  
-232  
-315  
-440  
-648  
tIS and tIH Derating Values for DDR2-667, DDR2-800  
CK,CK Differential Slew Rate  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
Units  
Notes  
tIS  
+150  
+143  
+133  
+120  
+100  
+67  
0
-5  
-13  
-22  
-34  
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
-14  
-31  
-54  
-83  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
tIS  
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
-4  
-30  
-70  
-138  
-170  
-295  
-487  
-970  
tIH  
+124  
+119  
+113  
+105  
+75  
+51  
+30  
+16  
-1  
-24  
-53  
-95  
-158  
-262  
-345  
-470  
-678  
-1095  
tIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
+55  
+47  
+38  
+26  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
+60  
+46  
+29  
+6  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Command/Ad-  
dress Slew  
rate  
(V/ns)  
-23  
-65  
-60  
0
-40  
-100  
-168  
-200  
-325  
-517  
-1000  
-128  
-232  
-315  
-440  
-648  
-1065  
-108  
-140  
-265  
-457  
-940  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the datasheet tIS(base) and tIH(base) value to the delta  
tIS and delta tIH derating value respectively. Example: tIS (total setup time) = tIS(base) + delta tIS  
26 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
19. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance  
(bus turnaround) will degrade accordingly.  
20. MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater  
than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter (tJIT(HP)) of the  
clock source, and less the half period jitter due to crosstalk (tJIT(crosstalk)) into the clock traces.  
21. tQH = tHP – tQHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately,  
due to data pin skew and output pattern effects, and pchannel to n-channel variation of the output drivers.  
22. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate  
mismatch between DQS / DQS and associated DQ in any given cycle.  
23. tDAL = WR + RU{tRP(ns)/tCK(ns)}, where RU stands for round up.  
WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer
tCK refers to the application clock period.  
Example: For DDR533 at tCK = 3.75ns with tWR programmed to 4 clocks.  
tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
24. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In case of clock frequency change during  
precharge power-down, a specific procedure is required as described in DDR2 device operation  
25. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
26. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
27. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which  
specifies when the device output is no longer driving (tHZ), or begins driving (tLZ). Following figure shows a method to calculate the point when device  
is no longer driving (tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are not  
critical as long as the calculation is consistent.  
28. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST),  
or begins driving (tRPRE). Following figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving  
(tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is  
consistent.  
These notes are referenced in the “Timing parameters by speed grade” tables for DDR2-400/533/667 and DDR2-800.  
VTT + 2x mV  
VTT + x mV  
VOH + x mV  
VOH + 2x mV  
tLZ  
tHZ  
tRPRE begin point  
tRPST end point  
VTT - x mV  
VTT - 2x mV  
VOL + 2x mV  
VOL + x mV  
T1  
T2  
T2  
T1  
tHZ,tRPST end point = 2*T1-T2  
tLZ,tRPRE begin point = 2*T1-T2  
<Test method for tLZ, tHZ, tRPRE and tRPST>  
27 of 29  
Rev. 1.9 March 2007  
K4T51043QC  
K4T51083QC  
K4T51163QC  
512Mb DDR2 SDRAM  
29. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(ac) level to the  
differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL(ac) level to the differential data strobe crosspoint for  
a falling signal applied to the device under test.  
30. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(dc) level to the  
differential data strobe crosspoint for a rising signal and VIL(dc) to the differential data strobe crosspoint for a falling signal applied to the device under  
test.  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
< Differential Input waveform timing >  
31. Input waveform timing is referenced from the input signal crossing at the VIH(ac) level for a rising signal and VIL(ac) for a falling signal applied to the  
device under test.  
32. Input waveform timing is referenced from the input signal crossing at the VIL(dc) level for a rising signal and VIH(dc) for a falling signal applied to the  
device under test.  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
V
V
V
V
V
V
V
DDQ  
min  
min  
IH(ac)  
IH(dc)  
REF(dc)  
max  
max  
IL(dc)  
IL(ac)  
SS  
33. tWTR is at lease two clocks (2 * tCK) independent of operation frequency.  
34. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(ac) level to the  
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(ac) level to the  
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between Vil(dc)max and Vih(dc)min.  
35. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(dc) level to the  
single-ended data strobe crossing VIH/L(ac) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(dc) level to the  
single-ended data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between Vil(dc)max and Vih(dc)min.  
36. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire  
time it takes to achieve the 3 clocks of registeration. Thus, after any CKE transition, CKE may not change from its valid level during the time period of  
tIS + 2*tCK + tIH.  
28 of 29  
Rev. 1.9 March 2007  

相关型号:

K4T51083QC-ZCD5

512Mb C-die DDR2 SDRAM
SAMSUNG

K4T51083QC-ZCD50

DDR DRAM, 64MX8, 0.5ns, CMOS, PBGA60, ROHS COMPLIANT, FBGA-60
SAMSUNG

K4T51083QC-ZCD5T

DDR DRAM, 64MX8, 0.5ns, CMOS, PBGA60
SAMSUNG

K4T51083QC-ZCD6

512Mb C-die DDR2 SDRAM
SAMSUNG

K4T51083QC-ZCD60

DDR DRAM, 64MX8, 0.45ns, CMOS, PBGA60, ROHS COMPLIANT, FBGA-60
SAMSUNG

K4T51083QC-ZCE6

512Mb C-die DDR2 SDRAM
SAMSUNG

K4T51083QC-ZCE6T

DDR DRAM, 64MX8, 0.45ns, CMOS, PBGA60
SAMSUNG

K4T51083QC-ZCE7

512Mb C-die DDR2 SDRAM
SAMSUNG

K4T51083QC-ZCE7T

DDR DRAM, 64MX8, 0.4ns, CMOS, PBGA60
SAMSUNG

K4T51083QC-ZCF7

DDR DRAM, 64MX8, 0.4ns, CMOS, PBGA60
SAMSUNG

K4T51083QC-ZCF70

DDR DRAM, 64MX8, 0.4ns, CMOS, PBGA60, ROHS COMPLIANT, FBGA-60
SAMSUNG

K4T51083QC-ZCLCC

512Mb C-die DDR2 SDRAM
SAMSUNG