K7D401871M-HC22T [SAMSUNG]

Standard SRAM, 256KX18, CMOS, PBGA153;
K7D401871M-HC22T
型号: K7D401871M-HC22T
厂家: SAMSUNG    SAMSUNG
描述:

Standard SRAM, 256KX18, CMOS, PBGA153

时钟 静态存储器 内存集成电路
文件: 总14页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
Document Title  
4M DDR SYNCHRONOUS SRAM  
Revision History  
Rev.No.  
History  
DraftData  
Remark  
Rev. 0.0  
Rev.0.5  
Rev.1.0  
Initial document.  
Aug. 1998  
July. 1999  
Nov. 1999  
Advance  
Correction on the miss print and the package size.  
Added 4ns cycle time (500Mbps).  
Preliminary  
Final  
Rev 1.0  
Nov. 1999  
1
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
FEATURES  
• 128Kx36 or 256Kx18 Organizations.  
• 2.5V Core/1.5V Output Power Supply.  
• HSTL Input and HSTL Outputs.  
• Programmable Impedance Output Drivers.  
Cycle  
Time  
Access  
Time  
Organization  
Part Number  
• Single Differential HSTL Clock.  
• Synchronous Pipeline Mode of Operation with Self-Timed  
Late Write.  
• Free Running Active High and Active Low Echo Clock Output  
Pin.  
• Asynchronous Output Enable.  
• Registered Addresses, Burst Control Inputs and Data Inputs.  
• Registered Outputs.  
• Single and Double Data Rate Burst Read and Write.  
• 4 Count Burst Operation  
• JTAG 1149.1 Compatible Test Access port.  
• 153(9x17) Pin Ball Grid Array Package(14mm x 22mm).  
K7D403671M-H25  
K7D403671M-H22  
K7D403671M-H20  
K7D403671M-H16  
K7D401871M-H25  
K7D401871M-H22  
K7D401871M-H20  
K7D401871M-H16  
4
44  
5
2.4  
2.4  
2.7  
3.3  
2.4  
2.4  
2.7  
3.3  
128Kx36  
6
4
44  
5
256Kx18  
6
FUNCTIONAL BLOCK DIAGRAM  
SA[0:16]( or SA[0:17])  
Address  
Memory Array  
128Kx36  
or  
17(or 18)  
15(or 16)  
2:1  
Register  
Dec.  
MUX  
(Burst Address)  
CE  
(256Kx18)  
Clock  
Buffer  
Data Out  
K,K  
Data In  
Burst  
36(or 18)x2  
36(or 18)x2  
S/A Array  
Counter  
Comparator  
17(or 18)  
W/D  
Array  
Advance  
Control  
(Burst Write  
Address)  
B1  
B3  
Write  
Address  
SD/DD  
36(or 18)x2  
Register  
(2 stage)  
CE  
36(or 18)x2  
15(or 16)  
2 : 1 MUX  
Write Buffer  
Synchronous  
Select  
CE  
Strobe_out  
&
B2  
Echo Clock  
Output  
Output  
Buffer  
Data In  
Register  
(2 stage)  
R/W  
R/W control  
Data Output Strobe  
LD  
Data Output Enable  
State Machine  
Internal  
Clock  
36(or 18)  
DATA  
Generator  
XDIN  
KQ,KQ  
G
PIN DESCRIPTION  
Pin Name  
Pin Description  
Pin Name  
G
Pin Description  
K, K  
SA  
Differential Clocks  
Asynchronous Output Enable  
JTAG Test Clock  
Synchronous Address Input  
Synchronous Burst Address Input  
Synchronous Data I/O  
TCK  
TMS  
TDI  
SA0, SA1  
DQ  
JTAG Test Mode Select  
JTAG Test Data Input  
JTAG Test Data Output  
VDD  
Core Power Supply  
TDO  
ZQ  
VDDQ  
VREF  
B1  
Output Power Supply  
Output Driver Impedance Control Input  
Linear Burst Order  
No Connect (Reserved)  
GND  
HSTL Input Reference Voltage  
Load External Address  
LBO  
MODE  
VSS  
B2  
Burst R/W Enable  
B3  
Single/Double Data Selection  
Differential Output Echo Clocks  
NC  
No Connection  
KQ, KQ  
Rev 1.0  
Nov. 1999  
2
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
PACKAGE PIN CONFIGURATIONS(TOP VIEW)  
K7D403671(128Kx36)  
1
2
3
4
5
ZQ  
B1  
6
SA  
7
8
9
A
B
C
D
E
F
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
VDDQ  
DQ  
SA  
SA  
SA  
VDDQ  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
SA  
VSS  
SA  
VSS  
SA  
SA  
VDDQ  
DQ  
SA  
G
SA  
VDDQ  
DQ  
N.C  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
NC  
VDD  
SA  
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
LBO  
VDD  
VDD  
VSS  
SA  
VDD  
VREF  
VDD  
K
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
MODE  
VDD  
VDD  
VSS  
SA  
NC  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
SA  
VDDQ  
KQ  
VDDQ  
KQ  
G
H
J
VDDQ  
DQ  
VDDQ  
DQ  
K
VDDQ  
DQ  
VDD  
B2  
VDDQ  
DQ  
K
L
VDDQ  
KQ  
B3  
VDDQ  
KQ  
M
N
P
R
T
VDD  
VREF  
VDD  
SA1  
SA0  
TCK  
VDDQ  
DQ  
VDDQ  
DQ  
VDDQ  
DQ  
VDD  
SA  
VDDQ  
DQ  
VSS  
TDI  
VSS  
TDO  
U
VDDQ  
TMS  
NC  
VDDQ  
K7D401871(256Kx18)  
1
2
3
4
5
ZQ  
B1  
6
SA  
7
8
9
A
B
C
D
E
F
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
VDDQ  
DQ  
SA  
SA  
SA  
VDDQ  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
SA  
VSS  
SA  
VSS  
SA  
SA  
VDDQ  
NC  
SA  
G
SA  
VDDQ  
DQ  
NC  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
SA  
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
LBO  
VDD  
VDD  
VSS  
SA  
VDD  
VREF  
VDD  
K
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
MODE  
VDD  
VDD  
VSS  
SA  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
SA  
VDDQ  
KQ  
VDDQ  
NC  
G
H
J
VDDQ  
NC  
VDDQ  
DQ  
K
VDDQ  
DQ  
VDD  
B2  
VDDQ  
NC  
K
L
VDDQ  
NC  
B3  
VDDQ  
KQ  
M
N
P
R
T
VDD  
VREF  
VDD  
SA1  
SA0  
TCK  
VDDQ  
DQ  
VDDQ  
NC  
VDDQ  
NC  
VDD  
SA  
VDD  
SA  
VDDQ  
DQ  
VSS  
TDI  
VSS  
TDO  
U
VDDQ  
TMS  
NC  
VDDQ  
Rev 1.0  
Nov. 1999  
3
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
FUNCTION DESCRIPTION  
The K7D403671M and K7D401871M are 4,718,592 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as  
131,072 words by 36 bits for K7D403671M and 262,144 words by 18 bits for K7D401871M, fabricated using Samsung's advanced  
CMOS technology.  
Single differential HSTL level K clocks are used to initiate the read/write operation and all internal operations are self-timed. At the  
rising edge of K clock, all addresses and burst control inputs are registered internally. And data inputs are registered at rising edges  
of K clock for a single data controlled mode, or at rising and falling edges of K clock for a dual data controlled mode, in the following  
cycle after write addresses are asserted.  
An internal write data buffer allows write data to be stored before loaded into memory core in the next write cycles. Data outputs are  
updated from output registers on the rising edges of K clock for a single data controlled mode, or on the rising and falling edges of  
the K clock for a dual data controlled mode. Read data is referenced to Echo clock outputs. The chip is operated with a single +2.5V  
power supply and is compatible with HSTL input and HSTL output. The package is 9x17(153) Ball Grid Array balls on a 1.27mm  
pitch.  
Read Operation(Single and Double)  
During single read operation, the address is registered during the first clock edge, the internal array is read between this first edge  
and second edge, it is read again in the following cycle from the address increased by burst counter, and data is captured in the out-  
put register driven to the CPU during the second clock high edge and third clock high edge. During double read operation, the  
address is registered during the first clock edge, the internal array is read twice as much as wider than external bits, transfered to  
dout buffer sequentially by burst order and the following cycle the same operation occur from address increased by burst counter,  
and data is captured in the output register driven to the CPU at active high clock edge and active low clock edge.  
During consecutive read cycles where the address is the same, the data output must be held constant without any glitches. This  
characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multi-  
ple SRAM cycles to perform a single read operation.  
Write(Store) Operation  
All addresses and R/W are sampled with B1 and B2 on the clock rising edge. B1 and B2 are low on the rising clock. Write address is  
sampled on the rising clock, one cycle after write address and Din have been sampled by the SRAM during 2 consecutive cycles at  
each active high and low clock edge and stored to write buffer for next real writing array. Actual write is done by using write data  
buffer on the SRAM that capture the write addresses on one address write cycles, and write the array on the next address write  
cycles. The "next address write cycles" can actually be many cycles away, broken by a series of read cycles. The SRAM is able to  
write 72 bits per cycle with 2-prefetched write buffer. This alleviates timing penalty of read after write cycle.  
Echo clock operation  
To assure the output tracibility, the SRAM provides the output Echo clock, pair of complement clock, which is synchronized with inter-  
nal data output.  
During read and write cycle, the Echo clock is triggered by internal output clock signal, and transfered to external through same struc-  
tures as output driver in read cycle.  
Bypass Read Operation  
Since write data is not fully written into the array on first write cycle, there is a need to sense the address in case a future read is to  
be done from the location that has not been written yet. For this case, the address comparator check to see if the new read address  
is the same as the contents of the stored write address latch. If the contents match, the read data must be supplied from the stored  
write data latch with standard read timing. If there is no match, the read data comes from the SRAM array.  
PROGRAMMABLE IMPEDANCE OUTPUT BUFFER OPERATION  
The designer can program the SRAM's output buffer impedance by terminating the ZQ pin to VSS through a precision resistor(RQ).  
The value of RQ is five times the output impedance desired. For example, 250W resistor will give an output impedance of 50W. The  
allowable range of RQ is between 175W and 350W. Impedance updates occur early in cycles that do not activate the outputs, such  
as deselect cycles. They may also occur in cycles initiated with G high. In all cases impedance updates are transparent to the user  
and do not produce access time "push-outs" or other anomalous behavior in the SRAM. Periodic readjustment is necessary as the  
impedance is greatly affected by drifts in supply voltage and temperature. Impedance updates occur no more often than every 32  
clock cycles. Clock cycles are counted whether the SRAM is selected or not and proceed regardless of the type of cycle being exe-  
cuted. Therefore, the user can be assured that after 33 continuous read cycles have occurred, an impedance update will occur the  
next time G are high at a rising edge of the K clock. There are no power up requirements for the SRAM. However, to guarantee opti-  
mum output driver impedance after power up, the SRAM needs 1024 non-read cycles.  
Rev 1.0  
Nov. 1999  
4
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
TRUTH TABLE  
K
L
G
H
H
L
B1  
X
H
L
B2  
X
L
B3  
X
X
H
L
DQ  
Hi-Z  
Hi-Z  
DOUT  
DOUT  
DIN  
Operation  
Clock Stop  
No Operation, Pipeline High-Z  
Load Address, Single Read  
Load Address, Double Read  
Load Address, Single Write  
Load Address, Double Write  
Increment Address, Continue  
H
H
L
L
L
H
H
L
L
H
L
L
L
DIN  
H
H
X
B
NOTE : B(Both) is DIN in write cycle and DOUT in read cycle. Byte write function is not supported. X means "Don't Care".  
BURST SEQUENCE TABLE  
4 Burst Operation for Interleaved Burst (LBO = High)  
Interleaved Burst  
Case 1  
Case 2  
Case 3  
Case 4  
A1  
A0  
A1  
A0  
A1  
A0  
A1  
A0  
First Address  
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
Fourth Address  
4 Burst Operation for Linear Burst (LBO = Low)  
Case 1  
Case 2  
Case 3  
Case 4  
Interleaved Burst  
A1  
A0  
A1  
A0  
A1  
A0  
A1  
A0  
First Address  
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
Fourth Address  
Rev 1.0  
Nov. 1999  
5
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
BUS CYCLE STATE DIAGRAM  
LOAD  
NEW ADDRESS  
READ  
SDR  
WRITE  
SDR  
READ  
DDR  
WRITE  
DDR  
INCREMENT  
ADDRESS  
INCREMENT  
ADDRESS  
INCREMENT  
ADDRESS  
INCREMENT  
ADDRESS  
B1  
POWER  
UP  
NO OP  
NOTE :  
1. State transitions ; B1 =(Load Address), B1=(Increment Address, Continue)  
B2 =(Read), B2 =(Write)  
B3 =(Single Data Rate), B3 =(Double Data Rate)  
Rev 1.0  
Nov. 1999  
6
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Core Supply Voltage Relative to VSS  
Output Supply Voltage Relative to VSS  
Voltage on any pin Relative to VSS  
Maximum Power Dissipation  
Symbol  
VDD  
Value  
-0.5 to 3.5  
-0.5 to VDD+0.5  
-0.5 to VDD+0.5  
-
Unit  
V
VDDQ  
VIN  
V
V
PD  
W
Output Short-Circuit Current(per I/O)  
Storage Temperature  
IOUT  
TSTR  
25  
mA  
°C  
-55 to 125  
NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data.  
Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED DC OPERATING CONDITIONS  
Parameter  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High Level Voltage  
Symbol  
Min  
2.4  
Typ  
2.5  
1.5  
-
Max  
2.6  
Unit  
V
Note  
VDD  
VDDQ  
VIH  
1.4  
1.6  
V
VREF+0.1  
-0.3  
VDD + 0.3  
VREF-0.1  
1.0  
V
1, 2  
1, 3  
Input Low Level Voltage  
VIL  
-
V
Input Reference Voltage  
VREF  
TJ  
0.6  
0.75  
-
V
Operating Junction Temperature  
20  
110  
°C  
4
NOTE :1. These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring  
timing parameters.  
2. VIH (Max)DC=VDD+0.3, VIH (Max)AC=VDD+1.5V(pulse width £ 5ns).  
3. VIL (Min)DC=-0.3V, VIL (Min)AC=-1.5V(pulse width £ 5ns).  
4. Junction temperature is a function of on-chip power dissipation, package thermal impedance, mounting site temperature and  
mounting site thermal impedance. TJ=TA + PD x THETA_JA  
DC CHARACTERISTICS  
Min  
Max  
Parameter  
Symbol  
Unit  
Note  
IDD4  
IDD44  
IDD5  
IDD6  
700  
650  
600  
550  
Average Power Supply Operating Current(x36)  
(Cycle time = tKHKH min)  
-
mA  
1,2  
IDD4  
IDD44  
IDD5  
IDD6  
650  
600  
550  
500  
Average Power Supply Operating Current(x18)  
(Cycle time = tKHKH min)  
-
-
mA  
mA  
1,2  
1
Stop Clock Standby Current  
(VIN=VDD-0.2V or 0.2V fixed, Clock=Low)  
ISB1  
50  
Input Leakage Current  
(VIN=VSS or VDD)  
ILI  
-1  
-1  
1
1
mA  
mA  
Output Leakage Current  
(VOUT=VSS or VDDQ except KQx,KQx)  
ILO  
Output High Voltage(Programmable Impedance Mode)  
Output Low Voltage(Programmable Impedance Mode)  
Output High Voltage(IOH=-0.1mA )  
VOH1  
VOL1  
VOH3  
VOL3  
VDDQ/2  
VSS  
VDDQ  
VDDQ/2  
VDDQ  
0.2  
V
V
V
V
3
4
5
5
VDDQ-0.2  
VSS  
Output Low Voltage(IOL=0.1mA)  
NOTE :1. Minimum cycle. IOUT=0mA.  
2. 50% read cycles.  
3. |IOH|=(VDDQ/2)/(RQ/5)±10% @VOH=VDDQ/2 for 175W £ RQ £ 350W.  
4. |IOL|=(VDDQ/2)/(RQ/5)±10% @VOL=VDDQ/2 for 175W £ RQ £ 350W.  
5. Minimum Impedance Mode when ZQ pin is connected to VDD.  
Rev 1.0  
Nov. 1999  
7
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
PIN CAPACITANCE  
Parameter  
Symbol  
CIN  
Typ.  
Max  
Unit  
pF  
Input Pin Capacitance  
I/O Pin Capacitance  
Clock Pin Capacitance  
-
-
-
6
7
7
CI/O  
pF  
CCLK  
pF  
*NOTE : Periodically Sampled and not 100% tested. (dV=0V, f=1MHz)  
AC TEST CONDITIONS(TJ=20 to 110°C, VDD=2.4 -2.6V, VDDQ=1.4 - 1.6V)  
Parameter  
Input High/Low Level  
Symbol  
VIH/VIL  
VREF  
Value  
Unit  
V
Note  
1.25/0.25  
0.75  
-
-
-
-
-
-
Input Reference Level  
Input Rise/Fall Time  
V
TR/TF  
1.0/1.0  
ns  
V
Output Timing Reference Level  
Clock Input Timing Reference Level  
Output Load  
0.75  
Cross Point  
See Below  
V
AC TEST OUTPUT LOAD  
Output Load(A)  
0.75V  
Output Load(B)  
0.75V  
(for tKQLZ, tKQHZ, tGLQZ & tGHQZ)  
VREF  
VREF  
Dout  
Dout  
ZQ  
Z0=50W  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
50W  
0.75V  
5pF*  
250W  
250W  
ZQ  
*Capacitive load consists of all components  
of the tester environment  
AC CHARACTERISTICS  
-25  
-22  
-20  
-16  
Parameter  
Symbol  
Unit  
Note  
Min  
4.0  
1.6  
1.6  
-
Max  
Min  
4.4  
1.8  
1.8  
-
Max  
Min  
5.0  
2.0  
2.0  
-
Max  
Min  
6.0  
2.4  
2.4  
-
Max  
Clock Cycle Time  
tKHKH  
tKHKL  
tKLKH  
tKHKE  
tKEQV  
tKEQX  
tKQLZ  
tKQHZ  
tGLQX  
tGHQZ  
tGLQV  
tGHQX  
tAVKH  
tKHAX  
tBVKH  
tKHBX  
tDVKH  
tKHDX  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
Clock High Pulse Width  
Clock Low Pulse Width  
Clock to Echo Clock(KQ, KQ)  
Echo Clock to Output Valid  
Echo Clock to Output Hold  
Echo Clock to Output Low-Z  
Echo Clock to Output High-Z  
G Low to Output Low-Z  
G High to Output High-Z  
G Low to Output Valid  
G High to Output Hold  
Address Setup Time  
-
-
-
-
-
-
-
-
2.2  
2.2  
2.5  
3.0  
1
1,2  
1
-
0.2  
-
0.2  
-
0.2  
-
0.3  
-0.5  
-0.5  
-
-
-0.5  
-0.5  
-
-
-0.5  
-0.5  
-
-
-0.6  
-0.6  
-
-
-
-
-
-
1
0.2  
0.2  
0.2  
0.2  
1
0.5  
-
-
0.5  
-
-
0.5  
-
-
0.5  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2.2  
2.2  
2.7  
3.3  
1
-
2.2  
-
2.2  
-
2.7  
-
3.3  
1
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
-
-
-
-
-
-
-
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
-
-
-
-
-
-
-
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
-
-
-
-
-
-
-
0.5  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
-
-
-
-
-
-
-
Address Hold Time  
Burst Control Setup Time  
Burst Control Hold Time  
Data Setup Time  
Data Hold Time  
NOTE : 1. See AC Test Output Load figure  
2. Design target is 0ns  
Rev 1.0  
Nov. 1999  
8
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
TIMING WAVEFORMS FOR DOUBLE DATA RATE CYCLES  
(Burst Length=4)  
READ  
CONTINUE  
(burst of 2)  
READ  
CONTINUE  
(burst of 2)  
WRITE  
CONTINUE  
(burst of 2)  
READ  
CONTINUE  
(burst of 2)  
READ  
(burst of 2)  
NOP  
READ  
READ  
NOP  
NOP  
WRITE  
READ  
(burst of 2)  
(burst of 2)  
(burst of 2)  
9
5
1
2
4
7
6
8
10  
12  
3
11  
K
K
t
KHKL  
t
KLKH  
tKHKH  
B1  
B2  
t
BVKH  
t
t
KHBX  
B3  
SA  
G
A
2
A5  
A1  
A3  
A0  
t
AVKH  
KHAX  
t
KHDX  
DVKH  
t
GHQZ  
tGLQV  
tGLQX  
t
GHQX  
t
DQ  
Q01  
Q02  
Q03  
Q04  
Q51  
Q52  
Q53  
Q54  
Q11  
Q12  
D21  
D22  
D23  
D24  
Q31  
QX2  
t
KHKE  
CEQV  
tKEQX  
t
t
KQHZ  
t
KQLZ  
KQ  
KQ  
DON¢T CARE  
UNDEFINED  
NOTE  
1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disabled(High-Z) one clock cycle after NOP detected.  
3. Doing more than one Read Continue or Write Continue will cause the address to wrap around.  
4. The second NOP cycle is not necessary for correct device operation.  
However, at high clock frequencies it may be required to prevent bus contention.  
Rev 1.0  
Nov. 1999  
9
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
TIMING WAVEFORMS FOR SINGLE DATA RATE CYCLES  
(Burst Length=4)  
READ  
READ  
READ  
WRITE  
CONTINUE  
(burst of 2)  
READ  
CONTINUE  
(burst of 2)  
CONTINUE CONTINUE CONTINUE  
(burst of 2) (burst of 2) (burst of 2)  
NOP  
READ  
READ  
NOP  
NOP  
WRITE  
READ  
(burst of 2)  
(burst of 2)  
(burst of 2)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
K
K
t
KHKL  
tKLKH  
t
KHKH  
B1  
B2  
t
BVKH  
t
KHBX  
B3  
SA  
A2  
A1  
A3  
A0  
t
DVKH  
t
AVKH  
t
KHAX  
G
t
KHDX  
t
GHQZ  
GHQX  
tGLQV  
tGLQX  
t
DQ  
Q01  
Q02  
Q03  
Q04  
Q11  
QX1  
D21  
D22  
Q31  
t
KHKE  
t
KEQV  
t
KEQX  
t
KQLZ  
t
KQHZ  
KQ  
KQ  
DON¢T CARE  
UNDEFINED  
NOTE :  
1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disabled(High-Z) one clock cycle after NOP detected  
3. This devices supports cycle lengths of 1, 2, 4. Continue(B1=HIGH, B2=HIGH, B3=X) up to three times following a B1 operation.  
4. This device will have an address to wrap around if further Continues are applied.  
5. The second NOP cycle is not necessary for correct device operation.  
however, at high clock frequencies it may be required to prevent bus contention.  
Rev 1.0  
Nov. 1999  
10  
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG  
This part contains an IEEE standard 1149.1 Compatible Teat Access Port(TAP). The package pads are monitored by the Serial Scan  
circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not  
driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction  
Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up,  
therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without  
interfacing with normal operation of the SRAM. TCK must be tied to VSS to preclude mid level input. TMS and TDI are designed so an  
undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be  
tied to VDD through a resistor. TDO should be left unconnected.  
JTAG Instruction Coding  
JTAG Block Diagram  
IR2 IR1 IR0 Instruction  
TDO Output  
Note  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SAMPLE-Z Boundary Scan Register  
IDCODE Identification Register  
SAMPLE-Z Boundary Scan Register  
1
2
1
3
4
3
3
3
0
0
0
BYPASS  
SAMPLE  
BYPASS  
BYPASS  
BYPASS  
Bypass Register  
Boundary Scan Register  
Bypass Register  
Bypass Register  
Bypass Register  
1
SRAM  
CORE  
1
1
SA(4R)  
TDI  
SA(5R)  
TDO  
1
NOTE :  
1. Places DQs,KQx,KQx in Hi-Z in order to sample all input data regard-  
less of other SRAM inputs.  
BYPASS Reg.  
2. TDI is sampled as an input to the first ID register to allow for the serial  
shift of the external TDI data.  
3. Bypass register is initiated to VSS when BYPASS instruction is  
invoked. The Bypass Register also holds serially loaded TDI when  
exiting the Shift DR states.  
Identification Reg.  
Instruction Reg.  
4. SAMPLE instruction dose not places DQs,KQx,KQx in Hi-Z.  
Control Signals  
TAP Controller  
TMS  
TCK  
TAP Controller State Diagram  
Test Logic Reset  
0
1
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
Capture IR  
0
1
1
1
1
Capture DR  
0
0
0
Shift IR  
1
Shift DR  
1
Exit1 IR  
0
Exit1 DR  
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update IR  
1
1
0
Update DR  
0
Rev 1.0  
Nov. 1999  
11  
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
SCAN REGISTER DEFINITION  
Part  
Instruction Register  
Bypass Register  
1 bits  
ID Register  
32 bits  
Boundary Scan  
68 bits  
128Kx36  
256Kx18  
3 bits  
3 bits  
1 bits  
32 bits  
49 bits  
ID REGISTER DEFINITION  
Revision Number  
Part Configuration  
Vendor Definition  
(17:12)  
Samsung JEDEC Code  
(11: 1)  
Start Bit  
(0)  
Part  
(31:28)  
(27:18)  
128Kx36  
256Kx18  
0000  
0000  
00101 00100  
00110 00011  
XXXXXX  
XXXXXX  
00001001110  
00001001110  
1
1
BOUNDARY SCAN EXIT ORDER(x36)  
BOUNDARY SCAN EXIT ORDER(x18)  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
4A  
4C  
3A  
3B  
3C  
3D  
2B  
1B  
2D  
3F  
1D  
2F  
1F  
3H  
2H  
1H  
5A  
5B  
5K  
5L  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
6A  
6C  
7A  
7B  
7C  
7D  
8B  
9B  
8D  
7F  
9D  
8F  
9F  
7H  
8H  
9H  
5C  
5G  
5H  
6L  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
26  
27  
28  
29  
30  
31  
32  
4A  
4C  
3A  
3B  
3C  
3D  
2B  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
6A  
6C  
7A  
7B  
7C  
7D  
25  
24  
23  
22  
21  
20  
NC1  
DQ  
NC1  
DQ  
NC1  
DQ  
NC1  
DQ  
DQ  
DQ  
DQ  
KQ  
DQ  
DQ  
DQ  
DQ  
ZQ  
B1  
DQ  
DQ  
DQ  
DQ  
KQ  
DQ  
DQ  
DQ  
DQ  
G
DQ  
DQ  
DQ  
9B  
8D  
7F  
19  
18  
17  
33  
34  
1D  
2F  
DQ  
KQ  
DQ  
DQ  
9F  
8H  
16  
15  
35  
3H  
DQ  
36  
37  
38  
39  
40  
41  
1H  
5A  
5B  
5K  
5L  
4L  
DQ  
ZQ  
B1  
G
K
K
5C  
5G  
5H  
6L  
14  
13  
12  
11  
10  
K
B2  
K
B2  
2
2
B3  
B3  
MODE  
DQ  
MODE  
DQ  
4L  
LBO  
DQ  
DQ  
DQ  
DQ  
KQ  
DQ  
DQ  
DQ  
DQ  
DQ  
SA  
9K  
8K  
7K  
9M  
8M  
9P  
7M  
8P  
9T  
8T  
7P  
7T  
6R  
5T  
5R  
LBO  
9K  
1K  
2K  
3K  
1M  
2M  
1P  
3M  
2P  
1T  
2T  
3T  
4R  
DQ  
DQ  
DQ  
KQ  
DQ  
DQ  
DQ  
DQ  
DQ  
SA  
42  
43  
2K  
DQ  
DQ  
DQ  
7K  
9
1M  
KQ  
DQ  
8M  
9P  
8
7
8
44  
45  
46  
47  
48  
49  
3M  
2P  
1T  
3P  
3T  
4R  
DQ  
DQ  
DQ  
SA  
SA  
SA  
7
6
DQ  
SA  
8T  
7P  
7T  
6R  
5T  
5R  
6
5
4
3
2
1
5
SA  
4
SA  
SA  
SA  
3
SA  
SA0  
SA1  
2
SA0  
SA1  
1
NOTE :  
1. Pins 7D/3D are no connection pins to internal chip and place holders for 8M/16M parts. The scanned data are fixed to 1 for this 4M part.  
2. Mode pin 6L is no connection pin to internal chip. The scanned data is fixed to 1.  
Rev 1.0  
Nov. 1999  
12  
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
JTAG DC OPERATING CONDITIONS  
Parameter  
Power Supply Voltage  
Symbol  
Min  
2.4  
Typ  
Max  
2.6  
Unit  
V
Note  
VDD  
VIH  
2.5  
Input High Level  
1.7  
-
-
-
-
VDD+0.3  
0.7  
V
Input Low Level  
VIL  
-0.3  
2.0  
V
Output High Voltage(IOH=-2mA)  
Output Low Voltage(IOL=2mA)  
VOH  
VOL  
VDD  
V
VSS  
0.4  
V
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.  
JTAG AC TEST CONDITIONS  
Parameter  
Symbol  
Min  
Unit  
V
Note  
Input High/Low Level  
Input Rise/Fall Time  
VIH/VIL  
2.5/0.0  
1.0/1.0  
1.25  
TR/TF  
ns  
V
Input and Output Timing Reference Level  
1
NOTE : 1. See SRAM AC test output load on page 7.  
JTAG AC Characteristics  
Parameter  
TCK Cycle Time  
Symbol  
Min  
50  
20  
20  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
tDVCH  
tCHDX  
tSVCH  
tCHSX  
tCLQV  
-
-
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
-
-
5
-
5
-
5
-
SRAM Input Setup Time  
SRAM Input Hold Time  
Clock Low to Output Valid  
5
-
5
-
0
10  
JTAG TIMING DIAGRAM  
TCK  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
tCHDX  
TMS  
TDI  
tDVCH  
tSVCH  
tCHSX  
PI  
(SRAM)  
tCLQV  
TDO  
Rev 1.0  
Nov. 1999  
13  
K7D403671M  
K7D401871M  
128Kx36 & 256Kx18 SRAM  
153 BGA PACKAGE DIMENSIONS  
1.27  
0.050  
0.60 ±0.10  
0.024 ±0.004  
9
8 7 6 5 4 3 2 1  
0.56 ±0.04  
0.022 ±0.002  
12.50 ±0.10  
0.492 ±0.004  
0.75 ±0.15  
0.90 ±0.10  
0.035 ±0.004  
2.21  
MAX  
0.087  
153-  
Æ 0.030 ±0.006  
Æ
0.3/0.012MAX  
14.00 ±0.10  
0.551 ±0.004  
0.15  
MAX  
0.006  
BOTTOM VIEW  
TOP VIEW  
NOTE :  
1. All Dimensions are in Millimeters.  
2. Solder Ball to PCS Offset : 0.10 MAX.  
3. PCB to Cavity Offset : 0.10 MAX.  
Rev 1.0  
Nov. 1999  
14  

相关型号:

K7D401871M-HC25T

Standard SRAM, 256KX18, CMOS, PBGA153
SAMSUNG

K7D403671-H16

Standard SRAM, 128KX36, 3.3ns, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671-H20

Standard SRAM, 128KX36, 2.7ns, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671-H22

Standard SRAM, 128KX36, 2.4ns, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671M-H16

Standard SRAM, 128KX36, 3.3ns, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671M-H1600

Standard SRAM, 128KX36, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671M-H20

Standard SRAM, 128KX36, 2.7ns, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671M-H2000

Standard SRAM, 128KX36, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671M-H22

Standard SRAM, 128KX36, 2.4ns, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671M-H2200

Standard SRAM, 128KX36, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671M-H25

Standard SRAM, 128KX36, 2.4ns, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D403671M-H2500

Standard SRAM, 128KX36, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG