K7P163666A-HC30T [SAMSUNG]

Standard SRAM, 512KX36, 1.6ns, CMOS, PBGA119, 14 X 22 MM, BGA-119;
K7P163666A-HC30T
型号: K7P163666A-HC30T
厂家: SAMSUNG    SAMSUNG
描述:

Standard SRAM, 512KX36, 1.6ns, CMOS, PBGA119, 14 X 22 MM, BGA-119

静态存储器
文件: 总14页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
Document Title  
512Kx36 & 1Mx18 Synchronous Pipelined SRAM  
Revision History  
Draft Date  
Remark  
Rev. No.  
History  
Dec. 2001  
Advance  
Rev. 0.0  
- Initial Document  
Oct. 2002  
Advance  
Rev. 0.1  
- Absolute maximum ratings are changed  
VDD : 2.815 - > 3.13  
VDDQ : 2.815 - > 2.4  
VTERM : 2.815 - > VDDQ+0.5 (2.4V MAX)  
- Recommended DC operating conditions are changed  
VREF / VCM-CLK : 0.68 - > 0.6, 0.95 - > 0.9  
- DC characteristics is changed  
ISBZZ : 150 - > 128  
- AC Characteristics are changed  
TAVKH / TDVKH / TWVKH / TSVKH : 0.4 / 0.5 / 0.5 - > 0.3 / 0.3 / 0.3  
TKHAX / TKHDX / TKHWX / TKHSX : 0.5 / 0.5 / 0.5 - > 0.5 / 0.6 / 0.6  
Jan. 2003  
Sep. 2003  
Advance  
Final  
Rev. 0.2  
Rev. 0.3  
- Recommended DC operating condition is changed  
Max VDIF-CLK : VDDQ+0.3 -> VDDQ+0.6  
- Correct typo  
VDD -> VDDQ: in MODE CONTROL at page4  
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the  
right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters  
of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.  
Sep. 2003  
- 1 -  
Rev 0.3  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
512Kx36 & 1Mx18 Synchronous Pipelined SRAM  
FEATURES  
• 512Kx36 or 1Mx18 Organizations.  
• 2.5V Core/1.5V Output Power Supply (1.9V max VDDQ).  
• HSTL Input and Output Levels.  
Maximum Access  
Part Number  
Organization  
Frequency  
Time  
• Differential, HSTL Clock Inputs K, K.  
• Synchronous Read and Write Operation  
• Registered Input and Registered Output  
• Internal Pipeline Latches to Support Late Write.  
• Byte Write Capability(four byte write selects, one for each 9bits)  
• Synchronous or Asynchronous Output Enable.  
• Power Down Mode via ZZ Signal.  
• Programmable Impedance Output Drivers.  
• JTAG 1149.1 Compatible Test Access port.  
• 119(7x17)Pin Ball Grid Array Package(14mmx22mm).  
K7P163666A-HC33  
K7P163666A-HC30  
K7P163666A-HC25  
K7P161866A-HC33  
K7P161866A-HC30  
K7P161866A-HC25  
333MHz  
300MHz  
250MHz  
333MHz  
300MHz  
250MHz  
1.5  
1.6  
2.0  
1.5  
1.6  
2.0  
512Kx36  
1Mx18  
FUNCTIONAL BLOCK DIAGRAM  
Read  
Address  
Register  
SA[0:18] or SA[0:19]  
1
512Kx36  
or  
1Mx18  
Write  
0
CK  
Address  
Array  
Register  
SS  
Latch  
Latch  
SW  
Register  
SW  
Register  
Column Decoder  
Write/Read Circuit  
SW  
SWx  
Register  
SWx  
Register  
0
1
SWx  
(x=a, b, c, d)  
or (x=a, b)  
Data In  
Register  
SS  
Register  
SS  
Register  
Data Out  
Register  
G
ZZ  
DQx[1:9]  
(x=a, b, c, d)  
or (x=a, b)  
K
K
CK  
PIN DESCRIPTION  
Pin Name  
Pin Description  
Pin Name  
Pin Description  
HSTL Input Reference Voltage  
K, K  
SAn  
DQn  
SW  
Differential Clocks  
VREF  
Synchronous Address Input  
Bi-directional Data Bus  
M1, M2  
G
Read Protocol Mode Pins ( M1=VSS, M2=VDDQ )  
Asynchronous Output Enable  
Synchronous Select  
Synchronous Global Write Enable  
Synchronous Byte a Write Enable  
Synchronous Byte b Write Enable  
Synchronous Byte c Write Enable  
Synchronous Byte d Write Enable  
Asynchronous Power Down  
Core Power Supply  
SS  
SWa  
SWb  
SWc  
SWd  
ZZ  
TCK  
TMS  
TDI  
TDO  
ZQ  
JTAG Test Clock  
JTAG Test Mode Select  
JTAG Test Data Input  
JTAG Test Data Output  
Output Driver Impedance Control  
GND  
VDD  
VSS  
NC  
VDDQ  
Output Power Supply  
No Connection  
Sep. 2003  
Rev 0.3  
- 2 -  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
PACKAGE PIN CONFIGURATIONS(TOP VIEW)  
K7P163666A(512Kx36)  
1
2
3
4
NC  
NC  
VDD  
ZQ  
SS  
5
6
7
A
B
C
D
E
F
VDDQ  
NC  
SA13  
SA10  
SA9  
SA11  
VSS  
VSS  
VSS  
SWc  
VSS  
VREF  
VSS  
SWd  
VSS  
VSS  
VSS  
M1  
SA7  
SA8  
SA6  
VSS  
VSS  
VSS  
SWb  
VSS  
VREF  
VSS  
SWa  
VSS  
VSS  
VSS  
M2  
SA4  
VDDQ  
NC  
SA17  
SA5  
SA18  
SA12  
DQc9  
DQc7  
DQc5  
DQc4  
DQc2  
VDD  
NC  
NC  
DQc8  
DQc6  
VDDQ  
DQc3  
DQc1  
VDDQ  
DQd1  
DQd3  
VDDQ  
DQd6  
DQd8  
NC  
DQb9  
DQb7  
DQb5  
DQb4  
DQb2  
VDD  
DQb8  
DQb6  
VDDQ  
DQb3  
DQb1  
VDDQ  
DQa1  
DQa3  
VDDQ  
DQa6  
DQa8  
NC  
G
G
H
J
NC  
NC  
VDD  
K
K
L
DQd2  
DQd4  
DQd5  
DQd7  
DQd9  
SA15  
NC  
DQa2  
DQa4  
DQa5  
DQa7  
DQa9  
SA2  
K
M
N
P
R
T
SW  
SA0  
SA1  
VDD  
SA16  
TCK  
NC  
SA14  
TDI  
SA3  
TDO  
NC  
ZZ  
U
VDDQ  
TMS  
NC  
VDDQ  
K7P161866A(1Mx18)  
1
2
3
4
5
6
7
A
B
C
D
E
F
VDDQ  
NC  
SA13  
SA19  
SA12  
NC  
SA10  
SA9  
SA11  
VSS  
VSS  
VSS  
SWb  
VSS  
VREF  
VSS  
NC  
NC  
NC  
VDD  
ZQ  
SS  
G
SA7  
SA8  
SA6  
VSS  
VSS  
VSS  
NC  
SA4  
SA17  
SA5  
DQa9  
NC  
VDDQ  
NC  
NC  
NC  
DQb1  
NC  
NC  
DQb2  
NC  
DQa8  
VDDQ  
DQa6  
NC  
VDDQ  
NC  
DQa7  
NC  
G
H
J
DQb3  
NC  
NC  
NC  
VDD  
K
DQb4  
VDDQ  
NC  
VSS  
VREF  
VSS  
SWa  
VSS  
VSS  
VSS  
M2  
DQa5  
VDD  
NC  
VDD  
VDDQ  
DQa4  
NC  
K
L
DQb5  
NC  
DQb6  
VDDQ  
DQb8  
NC  
K
DQa3  
NC  
M
N
P
R
T
DQb7  
NC  
VSS  
VSS  
VSS  
M1  
SW  
SA0  
SA1  
VDD  
NC  
TCK  
VDDQ  
NC  
DQa2  
NC  
DQb9  
SA15  
SA18  
TMS  
DQa1  
NC  
NC  
SA2  
SA16  
NC  
NC  
SA14  
TDI  
SA3  
TDO  
ZZ  
U
VDDQ  
VDDQ  
Sep. 2003  
Rev 0.3  
- 3 -  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
FUNCTION DESCRIPTION  
The K7P163666A and K7P161866A are 18,874,368 bit Synchronous Pipeline Mode SRAM. It is organized as 524,288 words of 36  
bits(or 1,048,576 words of 18 bits)and is implemented in SAMSUNGs advanced CMOS technology.  
Single differential HSTL level K clocks are used to initiate the read/write operation and all internal operations are self-timed. At the  
updated from output registers edge of the next rising edge of the K clock. An internal write data buffer allows write data to follow one  
cycle after addresses and controls. The package is 119(7x17) Ball Grid Array with balls on a 1.27mm pitch.  
Read Operation  
During reads, the address is registered during the frist clock edge, the internal array is read between this first edge and the second  
edge, and data is captured in the output register and driven to the CPU during the second clock edge. SS is driven low during this  
cycle, signaling that the SRAM should drive out the data.  
During consecutive read cycles where the address is the same, the data output must be held constant without any glitches. This  
characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multi-  
ple SRAM cycles to perform a single read operation.  
Write (Stire) Operation  
All addresses and SW are sampled on the clock rising edge. SW is low on the rising clock. Write data is sampled on the rising clock,  
one cycle after write address and SW have been sampled by the SRAM. SS will be driven low during the same cycle that the  
Address, SW and SW[a:d] are valid to signal that a valid operation is on the Address and Control Input.  
Pipelined write are supported. This is done by using write data buffers on the SRAM that capture the write addresses on one write  
cycle, and write the array on the next write cycle. The "next write cycle" can actually be many cycles away, broken by a series of  
read cycles. Byte writes are supported. The byte write signals SW[a:d] signal which 9-bit bytes will be writen. Timing of SW[a:d] is the  
same as the SW signal.  
Bypass Read Operation  
Since write data is not fully written into the array on first write cycle, there is a need to sense the address in case a future read is to be  
done from the location that has not been written yet. For this case, the address comparator check to see if the new read address is  
the same as the contents of the stored write address Latch. If the contents match, the read data must be supplied from the stored  
write data latch with standard read timing. If there is no match, the read data comes from the SRAM array. The bypassing of the  
SRAM array occurs on a byte by byte basis. If one byte is written and the other bytes are not, read data from the last written will have  
new byte data from the write data buffer and the other bytes from the SRAM array.  
Programmable Impedance Output Buffer Operation  
This HSTL Late Write SRAM has been designed with programmable impedance output buffers. The SRAMs output buffer impedance  
can be adjusted to match the system data bus impedance, by connecting a external resistor (RQ) between the ZQ pin of the SRAM  
and VSS. The value of RQ must be five times the value of the intended line impedance driven by the SRAM. For example, a 250Ω  
resistor will give an output buffer impedance of 50. The allowable range of RQ is from 175to 350. Internal circuits evaluate and  
periodically adjust the output buffer impedance, as the impedance is affected by drifts in supply voltage and temperature. One evalu-  
ation occurs every 32 clock cycles, with each evaluation moving the output buffer impedance level only one step at a time toward the  
optimum level. Impedance updates occur when the SRAM is in High-Z state, and thus are triggered by write and deselect operations.  
Updates will also be triggered with G HIGH initiated High-Z state, providing the specified G setup and hold times are met. Impedance  
match is not instantaneous upon power-up. In order to guarantee optimum output driver impedance, the SRAM requires a minimum  
number of non-read cycles (1,024) after power-up. The output buffers can also be programmed in a minimum impedance configura-  
tion by connecting ZQ to VSS or VDD.  
Mode Control  
There are two mode control select pins (M1 and M2) used to set the proper read protocol. This SRAM supports single clock pipelined  
operating mode. For proper specified device operation, M1 must be connected to VSS and M2 must be connected to VDDQ. These  
mode pins must be set at power-up and must not change during device operation.  
Power-Up/Power-Down Supply Voltage Sequencing  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied  
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage  
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ  
does not exceed VDD by more than 0.5V during power-down.  
Sleep Mode  
Sleep mode is a low power mode initiated by bringing the asynchronous ZZ pin high. During sleep mode, all other inputs are ignored  
and outputs are brought to a High-Impedance state. Sleep mode current and output High-Z are guaranteed after the specified sleep  
mode enable time. During sleep mode the memory array data content is preserved. Sleep mode must not be initiated until after all  
pending operations have completed, as any pending operation is not guaranteed to properly complete after sleep mode is initiated.  
Normal operations can be resumed by bringing the ZZ pin low, but only after the specified sleep mode recovery time.  
Sep. 2003  
- 4 -  
Rev 0.3  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
FUNCTION DESCRIPTION  
The K7P163666A and K7P161866A are 18,874,368 bit Dual Mode (supports both Register Register and Late Select Mode) SRAM  
devices. They are organized as 524,288 words by 36 bits for K7P163666A and 1,048,576 words by 18 bits for K7P161866A, fabri-  
cated using Samsung's advanced CMOS technology. Late Write/Pipelined Read(RR) for x36/x18 organizations and Late Write/Late  
Select Read(LS) for x36 organization are supported.  
The chip is operated with a single +2.5V power supply and is compatible wtih HSTL input and output. The package is 119(7x17)  
Plastic Ball Grid Array with balls on a 1.27mm pitch.  
Read Operation for Register Register Mode(x36 and x18)  
During read operations, addresses and controls are registered during the first rising edge of K clock and then the internal array is  
read between first and second edges of K clock. Data outputs are updated from output registers off the second rising edge of K clock.  
Read Operation for Late Select Mode(x36)  
During read operations, addresses(SA) and controls except the Way Select Address(SAS) are registered during the first rising edge  
of K clock. The internal array(x72 bit data) is read between the first edge and the second edge, and as the Way Select Address(SAS)  
is registered at the second clock edge, x36 bit data is mux selected before the output register.  
Write Operation(Late Write)  
During write operations, addresses including the Way Select Address(SAS) and controls are registered at the first rising edge of K  
clock and data inputs are registered at the following rising edge of K clock. Write addresses and data inputs are stored in the data in  
registers until the next write operation, and only at the next write opeation are data inputs fully written into SRAM array. Byte write  
operation is supported using SW[a:d] and the timing of SW[a:d] is the same as the SW signal.  
Bypass Read Operation  
Since write data is not fully written into the array on first write cycle, there is a need to sense the address in case a future read is to be  
done from the location that has not been written yet. For this case, the address comparator check to see if the new read address is  
the same as the contents of the stored write address Latch. If the contents match, the read data must be supplied from the stored  
write data latch with standard read timing. If there is no match, the read data comes from the SRAM array. The bypassing of the  
SRAM array occurs on a byte by byte basis. If one byte is written and the other bytes are not, read data from the last written will have  
new byte data from the write data buffer and the other bytes from the SRAM array.  
Programmable Impedance Output Buffer Operation  
This HSTL Late Write SRAM has been designed with programmable impedance output buffers. The SRAMs output buffer impedance  
can be adjusted to match the system data bus impedance, by connecting a external resistor (RQ) between the ZQ pin of the SRAM  
and VSS. The value of RQ must be five times the value of the intended line impedance driven by the SRAM. For example, a 250Ω  
resistor will give an output buffer impedance of 50. The allowable range of RQ is from 175to 350. Internal circuits evaluate and  
periodically adjust the output buffer impedance, as the impedance is affected by drifts in supply voltage and temperature. One evalu-  
ation occurs every 32 clock cycles, with each evaluation moving the output buffer impedance level only one step at a time toward the  
optimum level. Impedance updates occur when the SRAM is in High-Z state, and thus are triggered by write and deselect operations.  
Updates will also be triggered with G HIGH initiated High-Z state, providing the specified G setup and hold times are met. Impedance  
match is not instantaneous upon power-up. In order to guarantee optimum output driver impedance, the SRAM requires a minimum  
number of non-read cycles (1,024) after power-up. The output buffers can also be programmed in a minimum impedance configura-  
tion by connecting ZQ to VSS or VDD.  
Mode Control  
There are two mode control select pins (M1 and M2) used to set the proper read protocol. This SRAM supports single clock pipelined  
operating mode. For proper specified device operation, M1 must be connected to VSS and M2 must be connected to VDD. These  
mode pins must be set at power-up and must not change during device operation.  
Power-Up/Power-Down Supply Voltage Sequencing  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied  
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage  
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ  
does not exceed VDD by more than 0.5V during power-down.  
Sleep Mode  
Sleep mode is a low power mode initiated by bringing the asynchronous ZZ pin high. During sleep mode, all other inputs are ignored  
and outputs are brought to a High-Impedance state. Sleep mode current and output High-Z are guaranteed after the specified sleep  
mode enable time. During sleep mode the memory array data content is preserved. Sleep mode must not be initiated until after all  
pending operations have completed, as any pending operation is not guaranteed to properly complete after sleep mode is initiated.  
Normal operations can be resumed by bringing the ZZ pin low, but only after the specified sleep mode recovery time.  
Sep. 2003  
- 5 -  
Rev 0.3  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
TRUTH TABLE  
K
X
X
ZZ  
H
L
G
X
H
L
SS  
X
X
H
L
SW SWa SWb SWc SWd DQa DQb DQc DQd  
Operation  
Hi-Z Hi-Z Hi-Z Hi-Z Power Down Mode. No Operation  
Hi-Z Hi-Z Hi-Z Hi-Z Output Disabled.  
X
X
X
H
L
L
L
L
L
L
X
X
X
X
H
L
X
X
X
X
H
H
L
X
X
X
X
H
H
H
L
X
X
X
X
H
H
H
H
L
L
Hi-Z Hi-Z Hi-Z Hi-Z Output Disabled. No Operation  
DOUT DOUT DOUT DOUT Read Cycle  
L
L
L
X
X
X
X
X
X
L
Hi-Z Hi-Z Hi-Z Hi-Z No Bytes Written  
L
L
DIN  
Hi-Z Hi-Z Hi-Z Write first byte  
Hi-Z Hi-Z Write second byte  
L
L
H
H
H
L
Hi-Z  
DIN  
L
L
H
H
L
Hi-Z Hi-Z  
DIN  
Hi-Z Write third byte  
DIN Write fourth byte  
DIN Write all bytes  
L
L
H
L
Hi-Z Hi-Z Hi-Z  
L
L
L
DIN  
DIN  
DIN  
NOTE : K & K are complementary  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Core Supply Voltage Relative to VSS  
Output Supply Voltage Relative to VSS  
Voltage on any I/O pin Relative to VSS  
Output Short-Circuit Current  
Symbol  
VDD  
Value  
Unit  
V
-0.5 to 3.13  
-0.5 to 2.4  
VDDQ  
VTERM  
IOUT  
V
-0.5 to VDDQ+0.5 (2.4V MAX)  
V
25  
mA  
°C  
°C  
Operating Temperature  
TOPR  
TSTG  
0 to 70  
Storage Temperature  
-55 to 125  
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED DC OPERATING CONDITIONS  
Parameter  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High Level  
Symbol  
Min  
2.37  
1.4  
Typ  
2.5  
1.5  
-
Max  
2.63  
Unit  
V
Note  
VDD  
VDDQ  
1.9  
V
VIH  
VREF+0.1  
-0.3  
VDDQ+0.3  
VREF-0.1  
0.9  
V
Input Low Level  
VIL  
-
V
Input Reference Voltage  
Clock Input Signal Voltage  
Clock Input Differential Voltage  
Clock Input Common Mode Voltage  
VREF  
0.6  
0.75  
-
V
VIN-CLK  
VDIF-CLK  
VCM-CLK  
-0.3  
VDDQ+0.3  
VDDQ+0.6  
0.9  
V
0.1  
-
V
0.6  
0.75  
V
Sep. 2003  
Rev 0.3  
- 6 -  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
PIN CAPACITANCE  
Parameter  
Input Capacitance  
Symbol  
CIN  
Test Condition  
VIN=0V  
Min  
Max  
4
Unit  
pF  
-
-
Data Output Capacitance  
COUT  
VOUT=0V  
5
pF  
NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=1MHz)  
DC CHARACTERISTICS  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
IDD33  
IDD30  
IDD25  
700  
620  
550  
Average Power Supply Operating Current-x36  
(VIN=VIH or VIL, ZZ & SS=VIL)  
-
mA  
1, 2  
IDD33  
IDD30  
IDD25  
650  
570  
500  
Average Power Supply Operating Current-x18  
(VIN=VIH or VIL, ZZ & SS=VIL)  
-
mA  
1, 2  
Power Supply Standby Current  
(VIN=VIH or VIL, ZZ=VIH)  
ISBZZ  
ISBSS  
ILI  
-
128  
200  
1
mA  
mA  
µA  
1
1
Active Standby Power Supply Current  
(VIN=VIH or VIL, SS=VIH, ZZ=VIL)  
-
Input Leakage Current  
(VIN=VSS or VDDQ)  
-1  
-1  
Output Leakage Current  
(VOUT=VSS or VDDQ, DQ in High-Z)  
ILO  
1
µA  
Output High Voltage(Programmable Impedance Mode)  
Output Low Voltage(Programmable Impedance Mode)  
Output High Voltage(IOH=-0.1mA)  
VOH1  
VOL1  
VOH2  
VOL2  
VOH3  
VOL3  
VDDQ/2  
VSS  
VDDQ  
VDDQ/2  
VDDQ  
0.2  
V
V
V
V
V
V
3,5  
4,5  
6
VDDQ-0.2  
VSS  
Output Low Voltage(IOL=0.1mA)  
6
Output High Voltage(IOH=-6mA)  
VDDQ-0.4  
VSS  
VDDQ  
0.4  
6
Output Low Voltage(IOL=6mA)  
6
NOTE :1. Minimum cycle. IOUT=0mA.  
2. 50% read cycles.  
3. |IOH|=(VDDQ/2)/(RQ/5)±15% @VOH=VDDQ/2 for 175Ω ≤ RQ 350.  
4. |IOL|=(VDDQ/2)/(RQ/5)±15% @VOL=VDDQ/2 for 175Ω ≤ RQ 350.  
5. Programmable Impedance Output Buffer Mode. The ZQ pin is connected to VSS through RQ.  
6. Minimum Impedance Output Buffer Mode. The ZQ pin is connected to VSS or VDD.  
Sep. 2003  
Rev 0.3  
- 7 -  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
AC TEST CONDITIONS (TA=0 to 70°C, VDD=2.37 -2.63V, VDDQ=1.5V)  
Parameter  
Core Power Supply Voltage  
Symbol  
VDD  
Value  
2.37~2.63  
1.5  
Unit  
V
Output Power Supply Voltage  
Input High/Low Level  
VDDQ  
VIH/VIL  
VREF  
V
1.25/0.25  
0.75  
V
Input Reference Level  
V
Input Rise/Fall Time  
TR/TF  
0.5/0.5  
0.75  
ns  
V
Input and Out Timing Reference Level  
Clock Input Timing Reference Level  
NOTE : Parameters are tested with RQ=250and VDDQ=1.5V.  
Cross Point  
V
AC TEST OUTPUT LOAD  
50Ω  
VDDQ/2  
50Ω  
50Ω  
5pF  
25Ω  
DQ  
VDDQ/2  
50Ω  
VDDQ/2  
5pF  
AC CHARACTERISTICS  
-33  
-30  
-25  
Parameter  
Symbol  
Unit  
Note  
Min  
3.0  
1.2  
1.2  
-
Max  
Min  
3.3  
1.3  
1.3  
-
Max  
Min  
4.0  
1.6  
1.6  
-
Max  
Clock Cycle Time  
tKHKH  
tKHKL  
tKLKH  
tKHQV  
tKHQX  
tAVKH  
tKHAX  
tDVKH  
tKHDX  
tWVKH  
tKHWX  
tSVKH  
tKHSX  
tKHQZ  
tKHQX1  
tGHQZ  
tGLQX  
tGLQV  
tZZE  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock High Pulse Width  
Clock Low Pulse Width  
Clock High to Output Valid  
Clock High to Output Hold  
Address Setup Time  
-
-
-
-
-
-
1.5  
1.6  
2.0  
0.5  
0.3  
0.5  
0.3  
0.5  
0.3  
0.5  
0.3  
0.5  
-
-
0.5  
0.3  
0.6  
0.3  
0.6  
0.3  
0.6  
0.3  
0.6  
-
-
0.5  
0.3  
0.6  
0.3  
0.6  
0.3  
0.6  
0.3  
0.6  
-
-
-
-
-
Address Hold Time  
-
-
-
-
-
-
Write Data Setup Time  
Write Data Hold Time  
-
-
-
SW, SW[a:d] Setup Time  
SW, SW[a:d] Hold Time  
SS Setup Time  
-
-
-
-
-
-
-
-
-
SS Hold Time  
-
-
-
Clock High to Output Hi-Z  
Clock High to Output Low-Z  
G High to Output High-Z  
G Low to Output Low-Z  
G Low to Output Valid  
ZZ High to Power Down(Sleep Time)  
ZZ Low to Recovery(Wake-up Time)  
1.5  
-
1.6  
-
2.0  
-
0.5  
-
0.5  
-
0.5  
-
1.5  
-
1.6  
-
2.0  
-
0.5  
-
0.5  
-
0.5  
-
1.5  
15  
20  
1.6  
15  
20  
2.0  
15  
20  
-
-
-
tZZR  
-
-
-
Sep. 2003  
Rev 0.3  
- 8 -  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (SS Controlled, G=Low)  
1
2
3
4
5
6
7
8
K
tKHKH  
tAVKH  
tKHKL  
tKLKH  
tKHAX  
tKHSX  
SAn  
SS  
A1  
A2  
A3  
A4  
A5  
A4  
A6  
A7  
tSVKH  
tWVKH  
tKHWX  
tWVKH  
tWVKH  
tKHWX  
tKHWX  
SW  
SWx  
DQn  
tKHDX  
tKHQZ  
tDVKH tKHDX  
tKHQV  
tKHQX  
tKHQX1  
Q2  
D4  
Q1  
D3  
Q5  
Q4  
NOTE  
1. D3 is the input data written in memory location A3.  
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the  
last write cycle address.  
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (G Controlled, SS=Low)  
1
2
3
4
5
6
7
8
K
tKHKH  
A3  
SAn  
G
A1  
A2  
A4  
A5  
A4  
A6  
A7  
SW  
SWx  
DQn  
tGHQZ  
tGLQV  
tGLQX  
Q1  
Q2  
D3  
D4  
Q5  
Q4  
NOTE  
1. D3 is the input data written in memory location A3.  
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the last  
write cycle address.  
Sep. 2003  
Rev 0.3  
- 9 -  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
TIMING WAVEFORMS OF STANDBY CYCLES  
1
2
3
4
5
6
7
8
K
tKHKH  
SAn  
SS  
A1  
A2  
A1  
A2  
A3  
SW  
SWx  
ZZ  
tZZE  
tZZR  
tKHQV  
tKHQV  
DQn  
Q1  
Q2  
Q1  
Sep. 2003  
Rev 0.3  
- 10  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG  
The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing  
between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conform-  
ance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP control-  
ler has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use  
this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must  
be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the  
application of a logic 1, and therefore can be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left  
unconnected.  
JTAG Instruction Coding  
JTAG Block Diagram  
IR2 IR1 IR0 Instruction  
TDO Output  
SAMPLE-Z Boundary Scan Register  
IDCODE Identification Register  
SAMPLE-Z Boundary Scan Register  
Notes  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
1
3
4
3
3
3
0
0
0
BYPASS  
SAMPLE  
BYPASS  
BYPASS  
BYPASS  
Bypass Register  
Boundary Scan Register  
Bypass Register  
Bypass Register  
Bypass Register  
1
1
SRAM  
CORE  
1
1
M1  
M2  
NOTE :  
1. Places DQs in Hi-Z in order to sample all input data regardless of  
other SRAM inputs.  
2. TDI is sampled as an input to the first ID register to allow for the serial  
shift of the external TDI data.  
TDI  
BYPASS Reg.  
TDO  
Identification Reg.  
Instruction Reg.  
3. Bypass register is initiated to VSS when BYPASS instruction is  
invoked. The Bypass Register also holds serially loaded TDI when  
exiting the Shift DR states.  
4. SAMPLE instruction does not places DQs in Hi-Z.  
Control Signals  
TAP Controller  
TMS  
TCK  
TAP Controller State Diagram  
1
0
Test Logic Reset  
0
1
1
0
1
Run Test Idle  
Select DR  
0
Select IR  
0
1
1
1
1
Capture DR  
0
Capture IR  
0
0
Shift DR  
1
Shift IR  
1
Exit1 DR  
0
Exit1 IR  
0
0
0
0
0
Pause DR  
1
Pause IR  
1
Exit2 DR  
1
Exit2 IR  
1
1
0
Update DR  
0
Update IR  
1
Sep. 2003  
Rev 0.3  
- 11  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
SCAN REGISTER DEFINITION  
Part  
Instruction Register  
Bypass Register  
1 bits  
ID Register  
32 bits  
Boundary Scan  
70 bits  
512Kx36  
1Mx18  
3 bits  
3 bits  
1 bits  
32 bits  
51 bits  
ID REGISTER DEFINITION  
Revision Number Part Configuration Vendor Definition Samsung JEDEC Code  
Part  
Start Bit(0)  
(31:28)  
(27:18)  
(17:12)  
XXXXXX  
XXXXXX  
(11: 1)  
512Kx36  
1Mx18  
0000  
00111 00100  
01000 00011  
00001001110  
00001001110  
1
1
0000  
BOUNDARY SCAN EXIT ORDER(x36)  
BOUNDARY SCAN EXIT ORDER(x18)  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
3B  
2B  
3A  
3C  
2C  
2A  
2D  
1D  
2E  
1E  
2F  
2G  
1G  
2H  
1H  
3G  
4D  
4E  
4G  
4H  
4M  
3L  
SA9  
SA18  
SA10  
SA11  
SA12  
SA13  
DQc9  
DQc8  
DQc7  
DQc6  
DQc5  
DQc4  
DQc3  
DQc2  
DQc1  
SWc  
ZQ  
SA8  
SA17  
SA7  
5B  
6B  
5A  
5C  
6C  
6A  
6D  
7D  
6E  
7E  
6F  
6G  
7G  
6H  
7H  
5G  
4F  
4K  
4L  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
26  
27  
28  
29  
30  
31  
3B  
2B  
3A  
3C  
2C  
2A  
SA9  
SA19  
SA10  
SA11  
SA12  
SA13  
SA8  
SA17  
SA7  
5B  
6B  
5A  
5C  
6C  
6A  
6D  
25  
24  
23  
22  
21  
20  
19  
SA6  
SA6  
SA5  
SA5  
SA4  
SA4  
DQb9  
DQb8  
DQb7  
DQb6  
DQb5  
DQb4  
DQb3  
DQb2  
DQb1  
SWb  
G
DQa9  
32  
33  
1D  
2E  
DQb1  
DQb2  
DQa8  
DQa7  
7E  
6F  
18  
17  
34  
2G  
DQb3  
DQa6  
DQa5  
7G  
6H  
16  
15  
35  
36  
37  
38  
39  
40  
41  
1H  
3G  
4D  
4E  
4G  
4H  
4M  
DQb4  
SWb  
ZQ  
G
K
4F  
4K  
4L  
5L  
7K  
14  
13  
12  
11  
10  
SS  
K
SS  
NC*1  
NC*1  
SW  
K
NC  
K
SWa  
DQa1  
DQa2  
DQa3  
DQa4  
DQa5  
DQa6  
DQa7  
DQa8  
DQa9  
ZZ  
5L  
NC  
SWa  
DQa4  
7K  
6K  
7L  
SW  
SWd  
DQd1  
DQd2  
DQd3  
DQd4  
DQd5  
DQd6  
DQd7  
DQd8  
DQd9  
SA14  
SA15  
SA0  
1K  
2K  
1L  
6L  
42  
43  
2K  
1L  
DQb5  
DQb6  
DQa3  
6L  
9
6M  
7N  
6N  
7P  
6P  
7T  
5T  
6R  
4T  
4P  
2L  
2M  
1N  
2N  
1P  
2P  
3T  
2R  
4N  
44  
45  
2M  
1N  
DQb7  
DQb8  
DQa2  
DQa1  
6N  
7P  
8
7
8
7
6
ZZ  
7T  
5T  
6R  
6
5
4
SA3  
5
46  
47  
48  
49  
50  
51  
2P  
3T  
2R  
4N  
2T  
3R  
DQb9  
SA14  
SA15  
SA0  
SA3  
SA2  
SA2  
4
SA16  
SA1  
3
2
SA1  
SA16  
M2  
4P  
6T  
5R  
3
2
1
SA18  
M1  
70  
3R  
M1  
M2  
5R  
1
NOTE :1. Pins 4G and 4H are no connection pin to internal chip. The scanned data are fixed to "0" and "1" respectively.  
Sep. 2003  
Rev 0.3  
- 12  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
JTAG DC OPERATING CONDITIONS  
Parameter  
Power Supply Voltage  
Symbol  
Min  
2.37  
1.7  
Typ  
Max  
2.63  
Unit  
V
Note  
VDD  
VIH  
2.5  
Input High Level  
-
-
-
-
VDD+0.3  
0.8  
V
Input Low Level  
VIL  
-0.3  
2.1  
V
Output High Voltage(IOH=-2mA)  
Output Low Voltage(IOL=2mA)  
VOH  
VOL  
VDD  
V
VSS  
0.2  
V
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.  
JTAG AC TEST CONDITIONS  
Parameter  
Input High/Low Level  
Symbol  
VIH/VIL  
TR/TF  
Min  
2.5/0.0  
1.0/1.0  
1.25  
Unit  
V
Note  
Input Rise/Fall Time  
ns  
V
Input and Output Timing Reference Level  
NOTE : 1. See SRAM AC test output load on page 7.  
1
JTAG AC Characteristics  
Parameter  
TCK Cycle Time  
Symbol  
Min  
50  
20  
20  
5
Max  
Unit  
Note  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
tDVCH  
tCHDX  
tSVCH  
tCHSX  
tCLQV  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
-
-
5
-
5
-
5
-
SRAM Input Setup Time  
SRAM Input Hold Time  
Clock Low to Output Valid  
5
-
5
-
0
10  
JTAG TIMING DIAGRAM  
TCK  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
tCHDX  
TMS  
TDI  
tDVCH  
tSVCH  
tCHSX  
PI  
(SRAM)  
tCLQV  
TDO  
Sep. 2003  
Rev 0.3  
- 13  
K7P163666A  
K7P161866A  
512Kx36 & 1Mx18 SRAM  
119 BGA PACKAGE DIMENSIONS  
1.27  
1.27  
14.00±0.10  
22.00±0.10  
Indicator of  
Ball(1A) Location  
20.50±0.10  
C0.70  
C1.00  
0.750±0.15  
1.50REF  
0.60±0.10  
NOTE :  
0.60±0.10  
1. All Dimensions are in Millimeters.  
2. Solder Ball to PCB Offset : 0.10 MAX.  
3. PCB to Cavity Offset : 0.10 MAX.  
12.50±0.10  
119 BGA PACKAGE THERMAL CHARACTERISTICS  
Parameter  
Junction to Ambient(at still air)  
Junction to Case  
Symbol  
Theta_JA  
Theta_JC  
Theta_JB  
Thermal Resistance  
Unit  
°C/W  
°C/W  
°C/W  
Note  
TBD  
TBD  
TBD  
1W Heating  
Junction to Board  
2W Heating  
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.  
Sep. 2003  
Rev 0.3  
- 14  

相关型号:

K7P163666A-HC33

512Kx36 AND 1Mx18 Synchronous Pipelined SRAM
SAMSUNG

K7P163666A-HC330

Standard SRAM, 512KX36, 1.5ns, CMOS, PBGA119, 14 X 22 MM, BGA-119
SAMSUNG

K7P163666M-HC25

Standard SRAM, 512KX36, 2ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, FLIP CHIP, BGA-119
SAMSUNG

K7P163666M-HC250

Standard SRAM, 512KX36, 2ns, CMOS, PBGA119, BGA-119
SAMSUNG

K7P163666M-HC30

Standard SRAM, 512KX36, 1.6ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, FLIP CHIP, BGA-119
SAMSUNG

K7P163666M-HC300

Standard SRAM, 512KX36, 1.6ns, CMOS, PBGA119, BGA-119
SAMSUNG

K7P163666M-HC33

Standard SRAM, 512KX36, 1.5ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, FLIP CHIP, BGA-119
SAMSUNG

K7P163666M-HC330

Standard SRAM, 512KX36, 1.5ns, CMOS, PBGA119, BGA-119
SAMSUNG

K7P321866M

1Mx36 & 2Mx18 SRAM
SAMSUNG

K7P321866M-GC250

Late-Write SRAM, 2MX18, 2ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, ROHS COMPLIANT, BGA-119
SAMSUNG

K7P321866M-GC300

Late-Write SRAM, 2MX18, 1.6ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, ROHS COMPLIANT, BGA-119
SAMSUNG